1
|
Biswas S, Kuwata T, Yamauchi S, Okazaki K, Kaku Y, Hasan MZ, Morioka H, Matsushita S. Idiotopes of antibodies against HIV-1 CD4-induced epitope shared with those against microorganisms. Immunology 2024; 171:534-548. [PMID: 38102962 DOI: 10.1111/imm.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Induction of antibodies (Abs) against the conformational CD4-induced (CD4i) epitope is frequent in HIV-1 infection. However, the mechanism of development of anti-CD4i Abs is unclear. We used anti-idiotypic (aID) monoclonal Abs (mAbs) of anti-CD4i mAbs to isolate anti-CD4i mAbs from infected subjects and track the causative antigens. One anti-aID mAb sorted from infected subjects by aID mAbs had the characteristics of anti-CD4i Abs, including IGHV1-69 usage and ability to bind to HIV-1 Env enhanced by sCD4. Critical amino acid sequences for the binding of six anti-aID mAbs, with shared idiotope to anti-CD4i mAbs, were analysed by phage display. The identified amino acid sequences showed similarity to proteins from human microbiota and infectious agents. Peptides synthesized from Caudoviricetes sp and Vibrio vulnificus based on the identified sequences were reactive to most anti-aID and some anti-CD4i mAbs. These results suggest that anti-CD4i Abs may evolve from B cells primed by microorganisms.
Collapse
Affiliation(s)
- Shashwata Biswas
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takeo Kuwata
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Soichiro Yamauchi
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kyo Okazaki
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yu Kaku
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Md Zahid Hasan
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shuzo Matsushita
- Division of Clinical Retrovirology, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
2
|
Chandler TL, Yang A, Otero CE, Permar SR, Caddy SL. Protective mechanisms of nonneutralizing antiviral antibodies. PLoS Pathog 2023; 19:e1011670. [PMID: 37796829 PMCID: PMC10553219 DOI: 10.1371/journal.ppat.1011670] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Antibodies that can bind to viruses but are unable to block infection in cell culture are known as "nonneutralizing antibodies." Such antibodies are nearly universally elicited following viral infection and have been characterized in viral infections such as influenza, rotavirus, cytomegalovirus, HIV, and SARS-CoV-2. It has been widely assumed that these nonneutralizing antibodies do not function in a protective way in vivo and therefore are not desirable targets of antiviral interventions; however, increasing evidence now shows this not to be true. Several virus-specific nonneutralizing antibody responses have been correlated with protection in human studies and also shown to significantly reduce virus replication in animal models. The mechanisms by which many of these antibodies function is only now coming to light. While nonneutralizing antibodies cannot prevent viruses entering their host cell, nonneutralizing antibodies work in the extracellular space to recruit effector proteins or cells that can destroy the antibody-virus complex. Other nonneutralizing antibodies exert their effects inside cells, either by blocking the virus life cycle directly or by recruiting the intracellular Fc receptor TRIM21. In this review, we will discuss the multitude of ways in which nonneutralizing antibodies function against a range of viral infections.
Collapse
Affiliation(s)
- Tawny L. Chandler
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Agnes Yang
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| | - Claire E. Otero
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Sallie R. Permar
- Department of Pediatrics, Weill Cornell Medicine, New York City, New York, United States of America
| | - Sarah L. Caddy
- Baker Institute for Animal Health, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
3
|
Matsumoto K, Kuwata T, Tolbert WD, Richard J, Ding S, Prévost J, Takahama S, Judicate GP, Ueno T, Nakata H, Kobayakawa T, Tsuji K, Tamamura H, Smith AB, Pazgier M, Finzi A, Matsushita S. Characterization of a Novel CD4 Mimetic Compound YIR-821 against HIV-1 Clinical Isolates. J Virol 2023; 97:e0163822. [PMID: 36511698 PMCID: PMC9888228 DOI: 10.1128/jvi.01638-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Small CD4-mimetic compound (CD4mc), which inhibits the interaction between gp120 with CD4, acts as an entry inhibitor and induces structural changes in the HIV-1 envelope glycoprotein trimer (Env) through its insertion within the Phe43 cavity of gp120. We recently developed YIR-821, a novel CD4mc, that has potent antiviral activity and lower toxicity than the prototype NBD-556. To assess the possibility of clinical application of YIR-821, we tested its antiviral activity using a panel of HIV-1 pseudoviruses from different subtypes. YIR-821 displayed entry inhibitor activity against 53.5% (21/40) of the pseudoviruses tested and enhanced neutralization mediated by coreceptor binding site (CoRBS) antibodies in 50% (16/32) of these. Furthermore, when we assessed the antiviral effects using a panel of pseudoviruses and autologous plasma IgG, enhancement of antibody-mediated neutralization activity was observed for 48% (15/31) of subtype B strains and 51% (28/55) of non-B strains. The direct antiviral activity of YIR-821 as an entry inhibitor was observed in 53% of both subtype B (27/51) and non-B subtype (40/75) pseudoviruses. Enhancement of antibody-dependent cellular cytotoxicity was also observed with YIR-821 for all six selected clinical isolates, as well as for the transmitted/founder (T/F) CH58 virus-infected cells. The sequence diversity in the CD4 binding site as well as other regions, such as the gp120 inner domain layers or gp41, may be involved in the multiple mechanisms related to the sensitive/resistant phenotype of the virus to YIR-821. Our findings may facilitate the clinical application of YIR-821. IMPORTANCE Small CD4-mimetic compound (CD4mc) interacts with the Phe43 cavity and triggers conformational changes, enhancing antibody-mediated neutralization and antibody-dependent cellular cytotoxicity (ADCC). Here, we evaluated the effect of YIR-821, a novel CD4mc, against clinical isolates, including both subtype B and non-B subtype viruses. Our results confirm the desirable properties of YIR-821, which include entry inhibition, enhancement of IgG-neutralization, binding, and ADCC, in addition to low toxicity and long half-life in a rhesus macaque model, that might facilitate the clinical application of this novel CD4mc. Our observation of primary viruses that are resistant to YIR-821 suggests that further development of CD4mcs with different structural properties is required.
Collapse
Affiliation(s)
- Kaho Matsumoto
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeo Kuwata
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - William D. Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jonathan Richard
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shilei Ding
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Jérémie Prévost
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shokichi Takahama
- Laboratory of Immunosenescence, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - George P. Judicate
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Takamasa Ueno
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Hirotomo Nakata
- Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuya Kobayakawa
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kohei Tsuji
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hirokazu Tamamura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Amos B. Smith
- Department of Chemistry, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM (CRCHUM), Montreal, Quebec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, Montreal, Quebec, Canada
| | - Shuzo Matsushita
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| |
Collapse
|