1
|
Denver P, Cunningham C. Microglial activation and neuroinflammation in acute and chronic cognitive deficits in sepsis. Neuropharmacology 2025; 267:110285. [PMID: 39746541 DOI: 10.1016/j.neuropharm.2024.110285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is characterised by dysregulated immune responses to infection, leading to multi-organ dysfunction and high rates of mortality. With increasing survival rates in recent years long-term neurological and psychiatric consequences have become more apparent in survivors. Many patients develop sepsis associated encephalopathy (SAE) which encompasses the profound but usually transient neuropsychiatric syndrome delirium but also new brain injury that emerges in the months and years post-sepsis. It is now clear that systemic inflammatory signals reach the brain during sepsis and that very significant neuroinflammation ensues. The major brain resident immune cell population, the microglia, has been implicated in acute and chronic cognitive dysfunction in animal models of sepsis based on a growing number of studies using bacterial endotoxin and in polymicrobial sepsis models such as cecal ligation and puncture. The current review explores the effects of sepsis on the brain, focussing on how systemic insults translate to microglial activation and neuroinflammation and how this disrupts neuronal function and integrity. We examine what has been demonstrated specifically with respect to microglial activation, revealing robust evidence for a role for neuroinflammation in sepsis-induced brain sequelae but less clear information on the extent of the specific microglial contribution to this, arising from findings using global knockout mice, non-selective drugs and treatments that equally target peripheral and central compartments. There is, nonetheless, clear evidence that microglia do become activated and do contribute to brain consequences of sepsis thus arguing for improved understanding of these neuroinflammatory processes toward the prevention and treatment of sepsis-induced brain dysfunction.
Collapse
Affiliation(s)
- Paul Denver
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin 2, Ireland.
| |
Collapse
|
2
|
Mix MR, van de Wall S, Heidarian M, Escue EA, Fain CE, Pewe LL, Hancox LS, Arumugam SA, Sievers CM, Badovinac VP, Harty JT. Repetitive antigen stimulation in the periphery dictates the composition and recall responses of brain-resident memory CD8 + T cells. Cell Rep 2025; 44:115247. [PMID: 39903666 PMCID: PMC11867863 DOI: 10.1016/j.celrep.2025.115247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The human brain harbors virus-specific, tissue-resident memory (TRM) CD8+ T cells. However, the impact of repeated peripheral viral infection on the generation, phenotype, localization, and recall responses of brain TRM remains elusive. Here, utilizing two murine models of peripheral viral infection, we demonstrate that circulating memory CD8+ T cells with previous antigen exposure exhibit a markedly reduced capacity to form brain TRM compared to naive CD8+ T cells. Repetitively stimulated brain TRM also demonstrate differential inhibitory receptor expression, preserved functionality, and divergent localization patterns compared to primary memory counterparts. Despite these differences, repetitively stimulated brain TRM provide similar protection against intracranial infection as primary populations with superior recall-based recruitment of peripheral lymphocytes. As CD8+ T cells may distinctly seed the brain with each repeated infection of the same host, these findings point to heterogeneity in the brain TRM pool that is dictated by prior peripheral antigen stimulation history.
Collapse
Affiliation(s)
- Madison R Mix
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Stephanie van de Wall
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Mohammad Heidarian
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Experimental Pathology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Elizabeth A Escue
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Experimental Pathology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cori E Fain
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lecia L Pewe
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Lisa S Hancox
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sahaana A Arumugam
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Cassie M Sievers
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Vladimir P Badovinac
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Experimental Pathology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Experimental Pathology Graduate Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Eme-Scolan E, Arnaud-Paroutaud L, Haidar N, Roussel-Queval A, Rua R. Meningeal regulation of infections: A double-edged sword. Eur J Immunol 2023; 53:e2250267. [PMID: 37402972 DOI: 10.1002/eji.202250267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/06/2023]
Abstract
In the past 10 years, important discoveries have been made in the field of neuroimmunology, especially regarding brain borders. Indeed, meninges are protective envelopes surrounding the CNS and are currently in the spotlight, with multiple studies showing their involvement in brain infection and cognitive disorders. In this review, we describe the meningeal layers and their protective role in the CNS against bacterial, viral, fungal, and parasitic infections, by immune and nonimmune cells. Moreover, we discuss the neurological and cognitive consequences resulting from meningeal infections in neonates (e.g. infection with group B Streptococcus, cytomegalovirus, …) or adults (e.g. infection with Trypanosoma brucei, Streptococcus pneumoniae, …). We hope that this review will bring to light an integrated view of meningeal immune regulations during CNS infections and their neurological consequences.
Collapse
Affiliation(s)
- Elisa Eme-Scolan
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Laurie Arnaud-Paroutaud
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Narjess Haidar
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Annie Roussel-Queval
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| | - Rejane Rua
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France
| |
Collapse
|
4
|
Cassidy BR, Logan S, Farley JA, Owen DB, Sonntag WE, Drevets DA. Progressive cognitive impairment after recovery from neuroinvasive and non-neuroinvasive Listeria monocytogenes infection. Front Immunol 2023; 14:1146690. [PMID: 37143648 PMCID: PMC10151798 DOI: 10.3389/fimmu.2023.1146690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023] Open
Abstract
Background Neuro-cognitive impairment is a deleterious complication of bacterial infections that is difficult to treat or prevent. Listeria monocytogenes (Lm) is a neuroinvasive bacterial pathogen and commonly used model organism for studying immune responses to infection. Antibiotic-treated mice that survive systemic Lm infection have increased numbers of CD8+ and CD4+ T-lymphocytes in the brain that include tissue resident memory (TRM) T cells, but post-infectious cognitive decline has not been demonstrated. We hypothesized that Lm infection would trigger cognitive decline in accord with increased numbers of recruited leukocytes. Methods Male C57BL/6J mice (age 8 wks) were injected with neuroinvasive Lm 10403s, non-neuroinvasive Δhly mutants, or sterile saline. All mice received antibiotics 2-16d post-injection (p.i.) and underwent cognitive testing 1 month (mo) or 4 mo p.i. using the Noldus PhenoTyper with Cognition Wall, a food reward-based discrimination procedure using automated home cage based observation and monitoring. After cognitive testing, brain leukocytes were quantified by flow cytometry. Results Changes suggesting cognitive decline were observed 1 mo p.i. in both groups of infected mice compared with uninfected controls, but were more widespread and significantly worse 4 mo p.i. and most notably after Lm 10403s. Impairments were observed in learning, extinction of prior learning and distance moved. Infection with Lm 10403s, but not Δhly Lm, significantly increased numbers of CD8+ and CD4+ T-lymphocytes, including populations expressing CD69 and TRM cells, 1 mo p.i. Numbers of CD8+, CD69+CD8+ T-lymphocytes and CD8+ TRM remained elevated at 4 mo p.i. but numbers of CD4+ cells returned to homeostatic levels. Higher numbers of brain CD8+ T-lymphocytes showed the strongest correlations with reduced cognitive performance. Conclusions Systemic infection by neuroinvasive as well as non-neuroinvasive Lm triggers a progressive decline in cognitive impairment. Notably, the deficits are more profound after neuroinvasive infection that triggers long-term retention of CD8+ T-lymphocytes in the brain, than after non-neuroinvasive infection, which does not lead to retained cells in the brain. These results support the conclusion that systemic infections, particularly those that lead to brain leukocytosis trigger a progressive decline in cognitive function and implicate CD8+ T-lymphocytes, including CD8+TRM in the etiology of this impairment.
Collapse
Affiliation(s)
- Benjamin R. Cassidy
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Sreemathi Logan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Julie A. Farley
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Daniel B. Owen
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - William E. Sonntag
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Douglas A. Drevets
- Department of Internal Medicine, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
- *Correspondence: Douglas A. Drevets,
| |
Collapse
|
5
|
Mix MR, Harty JT. Keeping T cell memories in mind. Trends Immunol 2022; 43:1018-1031. [PMID: 36369103 PMCID: PMC9691610 DOI: 10.1016/j.it.2022.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022]
Abstract
The mammalian central nervous system (CNS) contains a vibrant community of resident adaptive immune cells at homeostasis. Among these are memory CD8+ and CD4+ T cells, which reside in the CNS in the settings of health, aging, and neurological disease. These T cells commonly exhibit a tissue-resident memory (TRM) phenotype, suggesting that they are antigen-experienced and remain separate from the circulation. Despite these characterizations, T cell surveillance of the CNS has only recently been studied through the lens of TRM immunology. In this Review, we outline emerging concepts of CNS TRM generation, localization, maintenance, function, and specificity. In this way, we hope to highlight roles of CNS TRM in health and disease to inform future studies of adaptive neuroimmunity.
Collapse
Affiliation(s)
- Madison R Mix
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|