1
|
Tahir F, Sadique U, Tahir F, Almutairi MH, Alrefaei AF, Naz S, Ullah Khan R, Khan Momand N, Ragni M. Molecular epidemiology of bovine leukemia virus in cattle and phylogenetic analysis for determining its prevailing genotype in Khyber Pukhtunkhwa, Pakistan. Anim Biotechnol 2025; 36:2486029. [PMID: 40243132 DOI: 10.1080/10495398.2025.2486029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
This research focused on assessing the molecular prevalence of Bovine Leukemia Virus (BLV) in different cattle farms throughout Khyber Pakhtunkhwa and characterizing the dominant BLV genotypes by analyzing partial sequences of the gp51 gene. A total of 1,250 blood samples were collected from cattle of both sexes, various age groups (<1 year, 1-3 years, 3-5 years, and >5 years), and different breeds (Friesian, Jersey, Sahiwal, Achai, and crossbred) from multiple cattle farms. Of the 1,250 samples tested, BLV was detected in 136 (10.88%) using nested PCR. Risk factor analysis revealed a significantly higher prevalence of BLV in exotic breeds and older cattle. To confirm the findings and genotype the BLV isolates, four PCR-positive samples were sequenced. Phylogenetic analysis identified the isolates as belonging to genotype I, closely related to GI BLV isolates from Japan. Furthermore, the isolates in this study formed a tightly clustered group, suggesting a common origin from an earlier virus introduced into the host population in the study area.
Collapse
Affiliation(s)
- Farida Tahir
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Umer Sadique
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Farkhanda Tahir
- Department of Biochemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Mikhlid H Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Shabana Naz
- Department of Zoology, Government College Univeristy, Faisalabad, Pakistan
| | - Rifat Ullah Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | | | - Marco Ragni
- Soil, Plant and Food, University of Bari, Aldomoro, Itay
| |
Collapse
|
2
|
Zhao Y, Zhu X, Zhang Z, Chen J, Chen Y, Hu C, Chen X, Robertson ID, Guo A. The Prevalence and Molecular Characterization of Bovine Leukemia Virus among Dairy Cattle in Henan Province, China. Viruses 2024; 16:1399. [PMID: 39339874 PMCID: PMC11437460 DOI: 10.3390/v16091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Enzootic bovine leukosis, a neoplastic disease caused by the bovine leukemia virus (BLV), was the primary cancer affecting cattle in China before 1985. Although its prevalence decreased significantly between 1986 and 2000, enzootic bovine leukosis has been re-emerging since 2000. This re-emergence has been largely overlooked, possibly due to the latent nature of BLV infection or the perceived lack of sufficient evidence. This study investigated the molecular epidemiology of BLV infections in dairy cattle in Henan province, Central China. Blood samples from 668 dairy cattle across nine farms were tested using nested polymerase chain reaction assays targeting the partial envelope (env) gene (gp51 fragment). Twenty-three samples tested positive (animal-level prevalence of 3.4%; 95% confidence interval: 2.2, 5.1). The full-length env gene sequences from these positive samples were obtained and phylogenetically analyzed, along with previously reported sequences from the GenBank database. The sequences from positive samples were clustered into four genotypes (1, 4, 6, and 7). The geographical annotation of the maximum clade credibility trees suggested that the two genotype 1 strains in Henan might have originated from Japan, while the genotype 7 strain is likely to have originated from Moldova. Subsequent Bayesian stochastic search variable selection analysis further indicated a strong geographical association between the Henan strains and Japan, as well as Moldova. The estimated substitution rate for the env gene ranged from 4.39 × 10-4 to 2.38 × 10-3 substitutions per site per year. Additionally, codons 291, 326, 385, and 480 were identified as positively selected sites, potentially associated with membrane fusion, epitope peptide vaccine design, and transmembrane signal transduction. These findings contribute to the broader understanding of BLV epidemiology in Chinese dairy cattle and highlight the need for measures to mitigate further BLV transmission within and between cattle herds in China.
Collapse
Affiliation(s)
- Yuxi Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Xiaojie Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Zhen Zhang
- Henan Province Seed Industry Development Center, Department of Agriculture and Rural Affairs of Henan Province, Zhengzhou 450045, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Ian D. Robertson
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| |
Collapse
|
3
|
Pluta A, Rola-Łuszczak M, Hoffmann FG, Donnik I, Petropavlovskiy M, Kuźmak J. Genetic Variability of Bovine Leukemia Virus: Evidence of Dual Infection, Recombination and Quasi-Species. Pathogens 2024; 13:178. [PMID: 38392916 PMCID: PMC10893129 DOI: 10.3390/pathogens13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/23/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We have characterized the intrahost genetic variation in the bovine leukemia virus (BLV) by examining 16 BLV isolates originating from the Western Siberia-Tyumen and South Ural-Chelyabinsk regions of Russia. Our research focused on determining the genetic composition of an 804 bp fragment of the BLV env gene, encoding for the entire gp51 protein. The results provide the first indication of the quasi-species genetic nature of BLV infection and its relevance for genome-level variation. Furthermore, this is the first phylogenetic evidence for the existence of a dual infection with BLV strains belonging to different genotypes within the same host: G4 and G7. We identified eight cases of recombination between these two BLV genotypes. The detection of quasi-species with cases of dual infection and recombination indicated a higher potential of BLV for genetic variability at the intra-host level than was previously considered.
Collapse
Affiliation(s)
- Aneta Pluta
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| | - Marzena Rola-Łuszczak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| | - Federico G. Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS 39762, USA;
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Starkville, MS 39762, USA
| | - Irina Donnik
- Ural State Agrarian University, Ekaterinburg 620075, Russia;
| | - Maxim Petropavlovskiy
- Ural Federal Agrarian Scientific Research Centre of the Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620049, Russia;
| | - Jacek Kuźmak
- Department of Biochemistry, National Veterinary Research Institute, 24-100 Puławy, Poland; (M.R.-Ł.); (J.K.)
| |
Collapse
|
4
|
Lv G, Wang J, Lian S, Wang H, Wu R. The Global Epidemiology of Bovine Leukemia Virus: Current Trends and Future Implications. Animals (Basel) 2024; 14:297. [PMID: 38254466 PMCID: PMC10812804 DOI: 10.3390/ani14020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that causes enzootic bovine leucosis (EBL), which is the most significant neoplastic disease in cattle. Although EBL has been successfully eradicated in most European countries, infections continue to rise in Argentina, Brazil, Canada, Japan, and the United States. BLV imposes a substantial economic burden on the cattle industry, particularly in dairy farming, as it leads to a decline in animal production performance and increases the risk of disease. Moreover, trade restrictions on diseased animals and products between countries and regions further exacerbate the problem. Recent studies have also identified fragments of BLV nucleic acid in human breast cancer tissues, raising concerns for public health. Due to the absence of an effective vaccine, controlling the disease is challenging. Therefore, it is crucial to accurately detect and diagnose BLV at an early stage to control its spread and minimize economic losses. This review provides a comprehensive examination of BLV, encompassing its genomic structure, epidemiology, modes of transmission, clinical symptoms, detection methods, hazards, and control strategies. The aim is to provide strategic information for future BLV research.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (J.W.); (S.L.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- China Key Laboratory of Bovine Disease Control in Northeast China, Ministry of Agriculture and Rural Affairs, Daqing 163319, China
- College of Biology and Agriculture, Jiamusi University, Jiamusi 154007, China
| |
Collapse
|
5
|
Úsuga-Monroy C, Díaz FJ, González-Herrera LG, Echeverry-Zuluaga JJ, López-Herrera A. Phylogenetic analysis of the partial sequences of the env and tax BLV genes reveals the presence of genotypes 1 and 3 in dairy herds of Antioquia, Colombia. Virusdisease 2023; 34:483-497. [PMID: 38046065 PMCID: PMC10686916 DOI: 10.1007/s13337-023-00836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/07/2023] [Indexed: 12/05/2023] Open
Abstract
Bovine leukemia virus (BLV) is a retrovirus that primarily infects dairy cows. Although few studies have also used the tax gene, phylogenetic studies of BLV use mostly the env gene. The aim of this work was to establish the circulating genotypes of BLV in specialized dairy cattle from Antioquia, Colombia. Twenty blood samples from Holstein Friesian cows were collected, and their DNA was isolated. A PCR was performed for a partial region of the env and tax genes. A phylogenetic analysis was carried out using the maximum likelihood and Bayesian methods for both genes. Nineteen sequences were identified as genotype 1 by env and tax genes. Only one sequence was clustered with genotype 3 and had the highest proportion of different nucleotide sites compared to other strains. Four amino acid substitutions in the 134 amino acid residue fragment of the Env protein were identified in the Colombian sequences, and three new amino acid substitutions were reported in the 296 amino acid residue fragment of the Tax protein. R43K (Z finger), A185T (Activation domain), and L105F changes were identified in the genotype 3 sample. This genotype has been reported in the United States, Japan, Korea, and Mexico, but so far, not in Colombia. The country has a high rate of imported live animals, semen, and embryos, especially from the United States. Although it is necessary to evaluate samples from other regions of the country, the current results indicate the presence of two BLV genotypes in specialized dairy herds.
Collapse
Affiliation(s)
- Cristina Úsuga-Monroy
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - F. J. Díaz
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia
| | - Luis Gabriel González-Herrera
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - José Julián Echeverry-Zuluaga
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| | - Albeiro López-Herrera
- Grupo BIOGEM, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia Sede Medellín, Calle 65 No 59A-110, Medellín, Colombia
| |
Collapse
|
6
|
Marawan MA, Alouffi A, El Tokhy S, Badawy S, Shirani I, Dawood A, Guo A, Almutairi MM, Alshammari FA, Selim A. Bovine Leukaemia Virus: Current Epidemiological Circumstance and Future Prospective. Viruses 2021; 13:v13112167. [PMID: 34834973 PMCID: PMC8618541 DOI: 10.3390/v13112167] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/23/2022] Open
Abstract
Bovine leukaemia virus (BLV) is a deltaretrovirus that is closely related to human T-cell leukaemia virus types 1 and 2 (HTLV-1 and -2). It causes enzootic bovine leukosis (EBL), which is the most important neoplastic disease in cattle. Most BLV-infected cattle are asymptomatic, which potentiates extremely high shedding rates of the virus in many cattle populations. Approximately 30% of them show persistent lymphocytosis that has various clinical outcomes; only a small proportion of animals (less than 5%) exhibit signs of EBL. BLV causes major economic losses in the cattle industry, especially in dairy farms. Direct costs are due to a decrease in animal productivity and in cow longevity; indirect costs are caused by restrictions that are placed on the import of animals and animal products from infected areas. Most European regions have implemented an efficient eradication programme, yet BLV prevalence remains high worldwide. Control of the disease is not feasible because there is no effective vaccine against it. Therefore, detection and early diagnosis of the disease are essential in order to diminish its spreading and the economic losses it causes. This review comprises an overview of bovine leukosis, which highlights the epidemiology of the disease, diagnostic tests that are used and effective control strategies.
Collapse
Affiliation(s)
- Marawan A. Marawan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh 12354, Saudi Arabia;
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
| | - Suleiman El Tokhy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt;
| | - Sara Badawy
- Department of Pathology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Natural Reference Laboratory of Veterinary Drug Residues (HZAU), MAO Key Laboratory for Detection of Veterinary Drug Residues Huazhong Agricultural University, Wuhan 430070, China
| | - Ihsanullah Shirani
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Para-Clinic Department, Faculty of Veterinary Medicine, Jalalabad 2601, Afghanistan
| | - Ali Dawood
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Infectious Diseases, Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt
| | - Aizhen Guo
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agriculture University, Wuhan 430070, China; (I.S.); (A.D.)
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| | - Mashal M. Almutairi
- The Chair of Vaccines Research for Infectious Diseases, King Saud University, Riyadh 11495, Saudi Arabia;
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 22334, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Arar 73211, Saudi Arabia;
| | - Abdelfattah Selim
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt;
- Correspondence: (M.A.M.); (A.G.); (A.S.)
| |
Collapse
|
7
|
Molecular Characterization of the env Gene of Bovine Leukemia Virus in Cattle from Pakistan with NGS-Based Evidence of Virus Heterogeneity. Pathogens 2021; 10:pathogens10070910. [PMID: 34358060 PMCID: PMC8308526 DOI: 10.3390/pathogens10070910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022] Open
Abstract
Characterization of the global genetic diversity of the bovine leukemia virus (BLV) is an ongoing international research effort. Up to now BLV sequences have been classified into eleven distinct genotypes. Although BLV genotyping and molecular analysis of field isolates were reported in many countries, there is no report describing BLV genotypes present in cattle from Pakistan. In this study we examined 27 env gene sequences from BLV-infected cattle coming from four farms located in Khyber Pakhtunkwa, Gilgit Baltisan and Punjab provinces. Phylogenetic analyses revealed the classification of Pakistani sequences into genotypes G1 and G6. The alignment with the FLK-BLV sequence revealed the presence of 45 mutations, namely, seven in genotype G1 and 33 in genotype G6. Five mutations were found in both, G1 and G6 genotypes. Twelve amino acid substitutions were found in the analyzed sequences, of which only one P264S was specific for sequences from Pakistan. Furthermore, a certain degree of nucleotide heterogeneity was identified by NGS. These results highlight the need for further study on the importance of genetic variability of BLV, especially in the context of its pathogenicity and potential effect on serological detection.
Collapse
|
8
|
Genotypes diversity of env gene of Bovine leukemia virus in Western Siberia. BMC Genet 2020; 21:70. [PMID: 33092552 PMCID: PMC7586112 DOI: 10.1186/s12863-020-00874-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND This study describes the biodiversity and properties of Bovine leukemia virus in Western Siberia. This paper explores the effect of different genotypes of the env gene of the cattle leukemia virus on hematological parameters of infected animals. The researchers focused on exploring the polymorphism of the env gene and, in doing so, discovered the new genotypes Ia and Ib, which differ from genotype I. Several hypotheses on the origin of the different genotypes in Siberia are discussed. RESULTS We obtained varying length of the restriction fragments for genotypes I. Additionally using restrictase Hae III were received fragments was named genotype Ia, and genotype Ib. There are 2.57 ± 0.55% (20 out of 779) samples of genotype Ib which does not differ significantly from 1% (χ2 = 2.46). Other genotypes were observed in the cattle of Siberia as wild type genotypes (their frequency varied from 17.84 to 32.73%). The maximum viral load was observed in animals with the II and IV viral genotypes (1000-1400 viral particles per 1000 healthy cells), and the minimum viral load was observed animals with genotype Ib (from 700 to 900 viral particles per 1000 healthy cells). CONCLUSIONS The probability of the direct introduction of genotype II from South America to Siberia is extremely small and it is more likely that the strain originated independently in an autonomous population with its distribution also occurring independently. A new variety of genotype I (Ib) was found, which can be both a neoplasm and a relict strain.
Collapse
|
9
|
Hamada R, Metwally S, Polat M, Borjigin L, Ali AO, Abdel-Hady AAA, Mohamed AEA, Wada S, Aida Y. Detection and Molecular Characterization of Bovine Leukemia Virus in Egyptian Dairy Cattle. Front Vet Sci 2020; 7:608. [PMID: 33134337 PMCID: PMC7511665 DOI: 10.3389/fvets.2020.00608] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/28/2020] [Indexed: 11/23/2022] Open
Abstract
Bovine leukemia virus (BLV) causes enzootic bovine leukosis (EBL), the most common neoplastic disease in cattle worldwide. The first EBL outbreak in Egypt was reported in 1997. To date, there are few studies regarding BLV diagnosis using only serological detection and no studies investigating the distribution of BLV provirus, which is the retroviral genome integrated into the host genome, in Egypt. The genetic characteristics of Egyptian BLV strains are also unknown. Therefore, we aimed to detect BLV provirus and determine BLV genetic variability among dairy cattle in Egypt. We collected 270 blood samples of dairy cattle from 24 farms located in five provinces in Egypt. Out of the 270 samples, 58 (21.5%) were positive for BLV provirus. Phylogenetic analysis based on 18 420-bp selected sequences out of 50 isolates of the BLV env-gp51 gene demonstrated that Egyptian BLV isolates were clustered into genotype-1 and-4, among 11 genotypes detected worldwide. Furthermore, phylogenetic analysis and alignment of the 501-bp sequence of the env-gp51 gene revealed that at least six genetically different strains are present in Egypt. Genotype-1 isolates comprised four different strains (G1-a, G1-b, G1-c, and G1-d) and genotype-4 isolates included two different strains (G4-x and G4-y). Moreover, in one farm with 100% infection rate, we identified three isolates of G1-a strain, 35 isolates of G4-x strain, and two isolates of G4-y strain. Overall, this study provides the new report on molecular prevalence of BLV in Egypt and records the coexistence of BLV genotype-1 and-4 in Egyptian cattle.
Collapse
Affiliation(s)
- Rania Hamada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Samy Metwally
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan.,Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Animal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| | - Alsagher O Ali
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - A A A Abdel-Hady
- Department of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adel E A Mohamed
- Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Satoshi Wada
- Photonics Control Technology Team, RIKEN Center for Advanced Photonics, Saitama, Japan
| | - Yoko Aida
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Saitama, Japan
| |
Collapse
|
10
|
Phylogenetic Analysis of South African Bovine Leukaemia Virus (BLV) Isolates. Viruses 2020; 12:v12080898. [PMID: 32824449 PMCID: PMC7472093 DOI: 10.3390/v12080898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Bovine leukaemia virus (BLV) causes chronic lymphoproliferative disorder and fatal lymphosarcoma in cattle, leading to significant economic losses in the beef and dairy industries. BLV is endemic globally and eleven genotypes have been identified. To date, only Zambian isolates have been genotyped from Africa. Although high BLV prevalence has been reported in South Africa, there has been no molecular characterisation of South African BLV isolates. To characterise BLV isolates in South Africa for the first time, we investigated the phylogenetic relationships and compared the genetic variability of eight South African BLV isolates with BLV isolates representing the eleven known genotypes from different geographical regions worldwide. Phylogenetic analyses based on full-length and partial env sequences as well as full-length gag sequences revealed that at least two genotypes, genotypes 1 (G1) and 4 (G4), are present in cattle in South Africa, which is consistent with studies from Zambia. However, our analysis revealed that the G1 South African isolate is more similar to other G1 isolates than the G1 Zambian isolates whereas, the G4 South African isolates are more divergent from other G4 isolates but closely related to the G4 Zambian isolate. Lastly, amino acid sequence alignment identified genotype-specific as well as novel amino acid substitutions in the South African isolates. The detection of two genotypes (G1 and G4) in southern Africa highlights the urgent need for disease management and the development of an efficacious vaccine against local strains.
Collapse
|
11
|
LE DT, Yamashita-Kawanishi N, Okamoto M, Nguyen SV, Nguyen NH, Sugiura K, Miura T, Haga T. Detection and genotyping of bovine leukemia virus (BLV) in Vietnamese cattle. J Vet Med Sci 2020; 82:1042-1050. [PMID: 32475959 PMCID: PMC7399327 DOI: 10.1292/jvms.20-0094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bovine leukemia virus (BLV) belongs to the genus, Deltaretrovirus of the family, Retroviridae and it is the causative agent of enzootic bovine leukosis. The prevalence of BLV in three provinces in the Red River Delta Region in the North of Vietnam, Hanoi, Vinhphuc and Bacninh was studied from April 2017 to June 2018. A total of 275 blood samples collected from cattle were used for serum isolation and DNA extraction. Of these samples, 266 sera were subjected to ELISA test for detecting antibody against BLV gp51 protein and 152 DNA samples were used to detect the 444 bp fragment corresponding to a part of the gp51 region of the env by nested PCR. The results showed that 16.5% (n=44) and 21.1% (n=32) of samples were positive for BLV gp51 antibody and BLV proviral DNA, respectively. Phylogenetic analysis of the partial (423 bp) and complete (913 bp) BLV env-gp51 gene indicated that Vietnamese strains were clustered into genotypes 1, 6 and 10 (G1, G6 and G10). Of those genotypes, G1 genotype was dominant; G6 strains were designated as G6e and G6f subgenotypes; the existence of genotype 10 was confirmed for the first time in Vietnam. The present study provides important information regarding the prevalence of BLV infection and genetic characteristics of BLV strains identified in Vietnam, contributing to promote the establishment of disease control and eradication strategies in Vietnam.
Collapse
Affiliation(s)
- Dung Thi LE
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Nanako Yamashita-Kawanishi
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mari Okamoto
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Son Vu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Nam Huu Nguyen
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi100000, Vietnam
| | - Katsuaki Sugiura
- Department of Global Agricultural Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tomoyuki Miura
- Research Center for Infectious Diseases, Institute for Frontier Life and Medical Science, Kyoto University, 53 Shogoin kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takeshi Haga
- Division of Infection Control and Disease Prevention, Department of Veterinary Medical Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Cerón Téllez F, González Méndez AS, Tórtora Pérez JL, Loza-Rubio E, Ramírez Álvarez H. Lack of association between amino acid sequences of the bovine leukemia virus envelope and varying stages of infection in dairy cattle. Virus Res 2020; 278:197866. [PMID: 31968223 DOI: 10.1016/j.virusres.2020.197866] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
We collected 724 blood samples from dairy cattle from six Mexican states, and tested them for the presence of antibodies against BLV using a commercial ELISA test. Our study groups consisted of 32 samples: 12 asymptomatic cows, 12 cows with lymphocytosis and 8 samples of tumor tissue of the abomasum and heart of cattle with lymphoma. We designed three pairs of primers to amplify the complete BLV env gene, and obtained a fragment of 1548 nucleotides in length with the sequenced products. According to the phylogenetic tree we constructed to identify the viral genotype, 96.87 % of the sequences grouped into genotype 1, while a single sample from a cow with lymphocytosis (3.13 %) was associated with genotype 3 sequences. The similarity between the Mexican BLV sequences ranged from 0.985-1.00. In addition, the proportion of non-synonymous and synonymous mutations indicated negative selection. We did not identify any conserved residues in the viral protein sequences that could be related to BLV infection stage in cattle. Proviral quantification was performed using quantitative polymerase chain reaction, and we used Mood´s median test as statistical analysis. We found no significant association between proviral load and phase of infection. The sequences showed high similarity without any association between BLV surface glycoprotein and the different infection stages, nor differences in the proviral load. BLV genotype 1 was identified as prevalent in the studied samples, and for the first time in Mexico, we identified BLV genotype 3 in cattle.
Collapse
Affiliation(s)
- Fernando Cerón Téllez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| | - Ana Silvia González Méndez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| | - Jorge Luis Tórtora Pérez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| | - Elizabeth Loza-Rubio
- National Center of Research in Animal Microbiology and Innocuity, INIFAP, CP. 05110, Mexico City, Mexico.
| | - Hugo Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education, Cuautitlan, Veterinary Medicine, Campus 4, National Autonomous University of Mexico, Km. 2.5 Carretera Cuautitlán-Teoloyucan San Sebastián Xhala, Cuautitlán Izcalli Estado de México, C.P. 54714, Mexico.
| |
Collapse
|
13
|
Moe KK, Polat M, Borjigin L, Matsuura R, Hein ST, Moe HH, Aida Y. New evidence of bovine leukemia virus circulating in Myanmar cattle through epidemiological and molecular characterization. PLoS One 2020; 15:e0229126. [PMID: 32084185 PMCID: PMC7034883 DOI: 10.1371/journal.pone.0229126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 01/30/2020] [Indexed: 11/29/2022] Open
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and causes serious problems for the cattle industry. In this study, we examined the prevalence of BLV infection and the distribution of BLV genotypes in cattle in the northern, central, and southern parts of Myanmar. The prevalence of BLV infection among Myanmar cattle (37.04%) in this study was markedly higher than the prevalence (9.1%) observed in our earlier study in which BLV was detected from the limited number of cattle only from a small area of Myanmar. Phylogenetic analysis of partial env-gp51 sequence of the isolated BLV strains revealed that there are at least three BLV genotypes (genotype-1, genotype-6, and genotype-10) in Myanmar, which have also been detected in the neighboring countries. We performed this study to estimate the BLV proviral load, which is a major diagnosis index for determining the virus transmission risk. The cattle of the three test regions with warm, wet, and humid climatic conditions (upper Sagaing, Yangon, and Kayin) exhibited a high mean proviral load, while cattle of three other regions with low annual rainfall and very high temperature (Mandalay, Magway, and upper Bago) exhibited a low mean proviral load. Further, the level of proviral load and the prevalence of BLV infection in Myanmar native cattle (N = 235) were lower than that in the hybrid cattle (Holstein Friesian × Myanmar native) (N = 62). We also observed that the cattle with high risk for BLV transmission, which have high proviral load, may enhance the BLV infection rate. Hence, to control BLV transmission, it is necessary to eliminate these cattle with high-risk for BLV transmission and to diagnose BLV provirus in cattle in the remaining regions/states of Myanmar sharing a boundary with neighboring countries.
Collapse
Affiliation(s)
- Kyaw Kyaw Moe
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
| | - Liushiqi Borjigin
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
| | - Ryosuke Matsuura
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
| | - Si Thu Hein
- Department of Anatomy, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Hla Hla Moe
- Department of Genetics and Animal Breeding, University of Veterinary Science, Yezin, Nay Pyi Taw, Myanmar
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, Wako, Saitama, Japan
- Laboratory of Viral Infectious Diseases, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, Japan
- * E-mail:
| |
Collapse
|
14
|
Hsieh JC, Li CY, Hsu WL, Chuang ST. Molecular Epidemiological and Serological Studies of Bovine Leukemia Virus in Taiwan Dairy Cattle. Front Vet Sci 2019; 6:427. [PMID: 31867344 PMCID: PMC6908947 DOI: 10.3389/fvets.2019.00427] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2019] [Indexed: 11/27/2022] Open
Abstract
Bovine leukemia virus (BLV) infection results in a decrease in milk yield and quality, a compromise in immunity, and shortening in the longevity of cows. The current status of BLV infection of dairy cattle in Taiwan remains unclear. To evaluate BLV infection, anti-BLV gp51 antibody and proviral DNA were detected. Surprisingly, the seroprevalence of BLV at the animal and herd level was as high as 81.8% (540/660 cattle) and 99.1% (109/110 herds), respectively. Among 152 blood samples analyzed, 132 (86.8%) were detected as positive for BLV-proviral DNA. When the complete blood count (CBC) was taken into account, the white blood cell (WBC) number appears to be the factor with the highest predicted potential for BLV infection. Moreover, based on receiver operating characteristic (ROC) curve analysis, the sensitivity and specificity are 72.0 and 75.0%, respectively, when the cut-off value of the WBC was set at 10.215 K/μL. Despite the co-circulation of genotype 1 and 3 in Taiwan, genotype 1 was much more prevalent (29/30). Taken together, due to the high prevalence of BLV, the identification of risk factors for interrupting the routes of transmission of BLV are critical for the control and prevention of further BLV infection.
Collapse
Affiliation(s)
- Jui-Chun Hsieh
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Chang-Yan Li
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Li Hsu
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Te Chuang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
15
|
Nishikaku K, Ishikura R, Ohnuki N, Polat M, Aida Y, Murakami S, Kobayashi T. Broadly applicable PCR restriction fragment length polymorphism method for genotyping bovine leukemia virus. J Vet Med Sci 2019; 81:1157-1161. [PMID: 31189764 PMCID: PMC6715913 DOI: 10.1292/jvms.18-0603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bovine leukemia virus (BLV) is a causative agent of enzootic bovine lymphoma (EBL). BLV
is prevalent worldwide, and ten genotypes have been classified based on the sequence of
the envelope glycoprotein (gp51) gene. In this study, we present a simple and generally
applicable PCR restriction fragment length polymorphism (PCR-RFLP) method to identify BLV
genotypes. While the genotyping results obtained by previously described PCR-RFLP methods
matched only 78.96% to the results of phylogenetic analysis, we demonstrated that our
PCR-RFLP method can identify 90.4% of the sequences available in the database in
silico. The method was validated with 20 BLV sequences from EBL tumor tissues
and 3 BLV sequences from blood of BLV infected cattle, and was found to show high
specificity. We utilized this method to determine genotypes of blood samples from 18 BLV
seropositive cattle in Kanagawa and Niigata, as well as 12 EBL cattle in Chiba, Japan. Our
analysis with the modified PCR-RFLP detected two genotypes, Genotypes 1 and 3. Genotype 1
was detected as the main genotype, while Genotype 3 was sporadically observed. This
technique can be used as a reliable system for screening a large number of epidemiological
samples.
Collapse
Affiliation(s)
- Kohei Nishikaku
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Rina Ishikura
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Nagaki Ohnuki
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Meripet Polat
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirowasa, Wako, Saitama 351-0198, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoko Aida
- Nakamura Laboratory, Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirowasa, Wako, Saitama 351-0198, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Satoshi Murakami
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| | - Tomoko Kobayashi
- Laboratory of Animal Health, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan.,Viral Infectious Disease Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
16
|
Yu C, Wang X, Zhou Y, Wang Y, Zhang X, Zheng Y. Genotyping bovine leukemia virus in dairy cattle of Heilongjiang, northeastern China. BMC Vet Res 2019; 15:179. [PMID: 31142319 PMCID: PMC6542110 DOI: 10.1186/s12917-019-1863-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 04/05/2019] [Indexed: 12/14/2022] Open
Abstract
Background Bovine leukemia virus (BLV) causes enzootic bovine leukosis in cattle and leads to heavy economic losses in the husbandry industry. Heilongjiang Province, China, is rich in dairy cattle. However, its current BLV epidemiology and genotypes have still not been evaluated and confirmed. In this report, we investigated the BLV epidemiology in dairy cattle in the major regions of Heilongjiang Province via the nested PCR assay. Results A total of 730 blood samples were collected from nine different farms in six regions of Heilongjiang. The results showed that the infection rate of these regions ranged from null to 31%. With a clustering analysis of 60 published BLV env sequences, genotypes 1 and 6 were confirmed to be circulating in Heilongjiang. Importantly, a new genotype, 11, and a new subgenotype, 6E, were also identified in the Harbin and Daqing regions, respectively. An epitope analysis showed that a cluster of T-X-D-X-R-XXXX-A sequences in genotype 11 gp51 neutralizing domain 2 was unique among all currently known BLV isolates and was therefore a defining feature of this new genotype. Conclusions BLV epidemics and genotypes were initially investigated in dairy cattle of Heilongjiang. A relatively high infection rate was found in some regions of this province. A new genotype, G11, with a highly specific motif, was identified and thus added as a new member to the current BLV genotype family. This report provides an initial reference for future investigations and subsequent control of BLV transmission and spread in this region. Electronic supplementary material The online version of this article (10.1186/s12917-019-1863-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Changqing Yu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Xuefeng Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yulong Zhou
- College of Animal Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xianfeng Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yonghui Zheng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, USA
| |
Collapse
|
17
|
Molecular characterization of Italian bovine leukemia virus isolates reveals the presence of distinct phylogenetic clusters. Arch Virol 2019; 164:1697-1703. [DOI: 10.1007/s00705-019-04255-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/19/2019] [Indexed: 11/26/2022]
|
18
|
Ruggiero VJ, Benitez OJ, Tsai YL, Lee PYA, Tsai CF, Lin YC, Chang HFG, Wang HTT, Bartlett P. On-site detection of bovine leukemia virus by a field-deployable automatic nucleic extraction plus insulated isothermal polymerase chain reaction system. J Virol Methods 2018; 259:116-121. [DOI: 10.1016/j.jviromet.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/08/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022]
|
19
|
Gautam S, Mishra N, Kalaiyarasu S, Jhade SK, Sood R. Molecular Characterization of Bovine Leukaemia Virus (BLV) Strains Reveals Existence of Genotype 6 in Cattle in India with evidence of a new subgenotype. Transbound Emerg Dis 2018; 65:1968-1978. [PMID: 30044055 DOI: 10.1111/tbed.12979] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 05/16/2018] [Accepted: 07/16/2018] [Indexed: 01/18/2023]
Abstract
Bovine leukaemia virus (BLV) causes enzootic leucosis in cattle and is prevalent worldwide. Although recent studies have shown that BLV strains can be classified into 10 distinct genotypes, no information is available regarding the BLV genotype prevalent in cattle in India. To determine the genetic variability in BLV, in this study, 118 adult dairy cows from three states of India were screened for BLV infection by env gp51-specific ELISA and nested PCR. Of the 33 cows found positive by both PCR and ELISA, 10 selected BLV strains were subjected to molecular characterization. Phylogenetic analyses of partial and full-length env gp51 gene sequences of Indian BLV strains and other geographical diverse BLV strains representing all the 10 genotypes revealed that Indian strains belonged to BLV genotype 6. Although Indian strains showed close genetic proximity with the strains circulating in South America, they were classified into a new subgenotype within genotype 6. Alignment of deduced amino acid sequences in gp51 demonstrated substitutions mainly in conformational epitope G, neutralizing domain 2 and linear epitope D, with a novel mutation (threonine to alanine at residue 252) found in D-epitope of all the Indian BLV strains. Although serological evidence of BLV infection in India has been reported earlier, this study on molecular characterization of BLV strains established the existence of BLV genotype 6 in India. Additionally, the results of this study highlight the importance of genetic analysis of geographically diverse BLV strains to understand BLV global genetic diversity and further studies are required to determine BLV genetic diversity and extent of BLV infection in cattle in India.
Collapse
Affiliation(s)
- Siddharth Gautam
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Niranjan Mishra
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Semmannan Kalaiyarasu
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Sandeep Kumar Jhade
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| | - Richa Sood
- Indian Council of Agricultural Research-National Institute of High Security Animal Diseases, Bhopal, India
| |
Collapse
|
20
|
Pluta A, Albritton LM, Rola-Łuszczak M, Kuźmak J. Computational analysis of envelope glycoproteins from diverse geographical isolates of bovine leukemia virus identifies highly conserved peptide motifs. Retrovirology 2018; 15:2. [PMID: 29310678 PMCID: PMC5759284 DOI: 10.1186/s12977-017-0383-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/23/2017] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis. The SU or surface subunit, gp51, of its envelope glycoprotein is involved in receptor recognition and virion attachment. It contains the major neutralizing and CD4+ and CD8+ T cell epitopes found in naturally infected animals. In this study, we aimed to determine global variation and conservation within gp51 in the context of developing an effective global BLV vaccine. RESULTS A total of 256 sequences extracted from the NCBI database and collected in different parts of the world, were studied to identify conserved segments along the env gene sequences that encode the gp51 protein. Using the MEME server and the conserved DNA Region module for analysis within DnaSP, we identified six conserved segments, referred to as A-F, and five semi-conserved segments, referred to as G-K. The amino acid conservation ranged from 98.8 to 99.8% in conserved segments A to F, while segments G to K had 89.6-95.2% conserved amino acid sequence. Selection analysis of individual segments revealed that residues of conserved segments had undergone purifying selection, whereas, particular residues in the semi-conserved segments are currently undergoing positive selection, specifically at amino acid positions 48 in segment K, 74 in segment G, 82 in segment I, 133 and 142 in segment J, and residue 291 in segment H. Each of the codons for these six residues contain the most highly variable nucleotides within their respective semi-conserved segments. CONCLUSIONS The data described here show that the consensus amino acid sequence constitutes a strong candidate from which a global vaccine can be derived for use in countries where eradication by culling is not economically feasible. The most conserved segments overlap with amino acids in known immunodeterminants, specifically in epitopes D-D', E-E', CD8+ T-cell epitopes, neutralizing domain 1 and CD4+ T-cell epitopes. Two of the segments reported here represent unique segments that do not overlap with previously identified antigenic determinants. We propose that evidence of positive selection in some residues of the semi-conserved segments suggests that their variation is involved in viral strategy to escape immune surveillance of the host.
Collapse
Affiliation(s)
- Aneta Pluta
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Lorraine M. Albritton
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN USA
| | - Marzena Rola-Łuszczak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Jacek Kuźmak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
21
|
Polat M, Takeshima SN, Aida Y. Epidemiology and genetic diversity of bovine leukemia virus. Virol J 2017; 14:209. [PMID: 29096657 PMCID: PMC5669023 DOI: 10.1186/s12985-017-0876-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/24/2017] [Indexed: 11/10/2022] Open
Abstract
Bovine leukemia virus (BLV), an oncogenic member of the Deltaretrovirus genus, is closely related to human T-cell leukemia virus (HTLV-I and II). BLV infects cattle worldwide and causes important economic losses. In this review, we provide a summary of available information about commonly used diagnostic approaches for the detection of BLV infection, including both serological and viral genome-based methods. We also outline genotyping methods used for the phylogenetic analysis of BLV, including PCR restriction length polymorphism and modern DNA sequencing-based methods. In addition, detailed epidemiological information on the prevalence of BLV in cattle worldwide is presented. Finally, we summarize the various BLV genotypes identified by the phylogenetic analyses of the whole genome and env gp51 sequences of BLV strains in different countries and discuss the distribution of BLV genotypes worldwide.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Shin-nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Nano Medical Engineering Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
- Bovine Leukemia Virus Vaccine Laboratory RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
22
|
Characteristics of candidate genes associated with embryonic development in the cow: Evidence for a role for WBP1 in development to the blastocyst stage. PLoS One 2017; 12:e0178041. [PMID: 28542629 PMCID: PMC5436885 DOI: 10.1371/journal.pone.0178041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
The goal was to gain understanding of how 12 genes containing SNP previously related to embryo competence to become a blastocyst (BRINP3, C1QB, HSPA1L, IRF9, MON1B, PARM1, PCCB, PMM2, SLC18A2, TBC1D24, TTLL3 and WBP1) participate in embryonic development. Gene expression was evaluated in matured oocytes and embryos. BRINP3 and C1QB were not detected at any stage. For most other genes, transcript abundance declined as the embryo developed to the blastocyst stage. Exceptions were for PARM1 and WBP1, where steady-state mRNA increased at the 9-16 cell stage. The SNP in WBP1 caused large differences in the predicted three-dimensional structure of the protein while the SNP in PARM1 caused smaller changes. The mutation in WBP1 causes an amino acid substitution located close to a P-P-X-Y motif involved in protein-protein interactions. Moreover, the observation that the reference allele varies between mammalian species indicates that the locus has not been conserved during mammalian evolution. Knockdown of mRNA for WBP1 decreased the percent of putative zygotes becoming blastocysts and reduced the number of trophectoderm cells and immunoreactive CDX2 in the resulting blastocysts. WBP1 is an important gene for embryonic development in the cow. Further research to identify how the SNP in WBP1 affects processes leading to differentiation of the embryo into TE and ICM lineages is warranted.
Collapse
|
23
|
Kim EJ, Cheong KM, Joung HK, Kim BH, Song JY, Cho IS, Lee KK, Shin YK. Development and evaluation of an immunochromatographic assay using a gp51 monoclonal antibody for the detection of antibodies against the bovine leukemia virus. J Vet Sci 2017; 17:479-487. [PMID: 27030192 PMCID: PMC5204025 DOI: 10.4142/jvs.2016.17.4.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/06/2016] [Accepted: 02/22/2016] [Indexed: 11/30/2022] Open
Abstract
Infection of cattle with bovine leukemia virus (BLV) has been observed and reported worldwide, including in Korea. The onsite identification of infected cattle would help decreasing and eradicating BLV infections on farms. Here, we present a new immunochromatographic assay that employs monoclonal antibodies (MAbs) for the detection of antibodies against BLV in the field. BLV envelope glycoprotein (gp)51 was expressed in E. coli, and MAbs against recombinant BLV gp51 were generated for the development of an immunochromatographic assay to detect BLV antibodies in cattle. The sensitivity and specificity of the assay were determined by comparing these results with those obtained from a standard enzyme linked immunosorbent assay (ELISA). A total of 160 bovine sera were used to evaluate the new immunochromatographic assay. Using ELISA as a reference standard, the relative specificity and sensitivity of this assay were determined to be 94.7% and 98%, respectively. Because of its high sensitivity and specificity, this BLV antibody detection assay would be suitable for the onsite identification of BLV infection in the field.
Collapse
Affiliation(s)
- Eun-Ju Kim
- Division of Viral Disease, Animal and Plant Quarantine Agency, Anyang 14086, Korea
| | - Kwang-Myun Cheong
- Research Institution, MEDIAN Diagnostics Inc., Chuncheon 24399, Korea
| | - Ha-Kyung Joung
- Division of Viral Disease, Animal and Plant Quarantine Agency, Anyang 14086, Korea
| | - Bo-Hye Kim
- Division of Viral Disease, Animal and Plant Quarantine Agency, Anyang 14086, Korea
| | - Jae-Young Song
- Division of Veterinary Drugs and Biologics, Animal and Plant Quarantine Agency, Anyang 14086, Korea
| | - In-Soo Cho
- Division of Viral Disease, Animal and Plant Quarantine Agency, Anyang 14086, Korea
| | - Kyoung-Ki Lee
- Division of Animal Disease Diagnostic, Animal and Plant Quarantine Agency, Anyang 14086, Korea
| | - Yeun-Kyung Shin
- Division of Viral Disease, Animal and Plant Quarantine Agency, Anyang 14086, Korea
| |
Collapse
|
24
|
Marawan MA, Mekata H, Hayashi T, Sekiguchi S, Kirino Y, Horii Y, Moustafa AMM, Arnaout FK, Galila ESM, Norimine J. Phylogenetic analysis of env gene of bovine leukemia virus strains spread in Miyazaki prefecture, Japan. J Vet Med Sci 2017; 79:912-916. [PMID: 28331116 PMCID: PMC5447981 DOI: 10.1292/jvms.17-0055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
To understand how the latest dominant bovine leukemia virus (BLV) strains were introduced and spread in the Miyazaki prefecture, we collected blood samples from 3 geographic areas (north, central and south) and carried out
sequence analysis of the BLV env gene. Two genotypes, genotype I, and III, were identified and the majority of the strains belonged to genotype I (71/74). To clarify a route of BLV introduction, we divided the
strains into 20 subgenotypes based on their nucleotide sequences and performed phylogenetic analysis. Our study indicated that common BLV strains were comparatively evenly distributed even in the area, where the farmers have not
introduced cattle from other areas and the cattle have limited exposure to BLV infection in grazing fields.
Collapse
Affiliation(s)
- Marawan A Marawan
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan.,Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Al Qalyubia Governorate 13511, Egypt
| | - Hirohisa Mekata
- Organization for Promotion of Tenure Track, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Takumi Hayashi
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Satoshi Sekiguchi
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Yumi Kirino
- Project for Zoonoses Education and Research, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Yoichiro Horii
- Division of International Cooperation and Education, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Abdel-Moneim M Moustafa
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Al Qalyubia Governorate 13511, Egypt
| | - Faysal K Arnaout
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Al Qalyubia Governorate 13511, Egypt
| | - El Sayed M Galila
- Infectious Diseases, Department of Animal Medicine, Faculty of Veterinary Medicine, Benha University, Al Qalyubia Governorate 13511, Egypt
| | - Junzo Norimine
- Laboratory of Animal Infectious Disease and Prevention, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan.,Division of International Cooperation and Education, Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
25
|
Pluta A, Rola-Łuszczak M, Kubiś P, Balov S, Moskalik R, Choudhury B, Kuźmak J. Molecular characterization of bovine leukemia virus from Moldovan dairy cattle. Arch Virol 2017; 162:1563-1576. [PMID: 28213870 PMCID: PMC5425504 DOI: 10.1007/s00705-017-3241-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 12/03/2022]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (EBL), a disease that has worldwide distribution. Whilst it has been eradicated in most of Western Europe and Scandinavia, it remains a problem in other regions, particularly Eastern Europe and South America. For this study, in 2013, 24 cattle from three farms in three regions of Moldova were screened by ELISA and nested PCR. Of these cattle, 14 which were PCR positive, and these were molecularly characterized based on the nucleotide sequence of the env gene and the deduced amino acid sequence of the encoded gp51 protein. Our results demonstrated a low level of genetic variability (0-2.9%) among BLV field strains from Moldova, in contrast to that observed for other retroviruses, including human immunodeficiency virus (HIV) (20-38%) Mason IL (Trudy vologod moloch Inst 146–164, 1970) and equine infectious anemia virus (EIAV) (~40%) Willems L et al (AIDS Res Hum Retroviruses
16(16):1787–1795, 2000), where the envelope gene exhibits high levels of variation Polat M et al (Retrovirology
13(1):4, 2016). Sequence comparisons and phylogenetic analysis revealed that BLV genotype 7 (G7) is predominant in Moldova and that the BLV population in Moldovan cattle is a mixture of at least three new sub-genotypes: G7D, G7E and G4C. Neutrality tests revealed that negative selection was the major force operating upon the 51-kDa BLV envelope surface glycoprotein subunit gp51, although one positively selected site within conformational epitope G was detected in the N-terminal part of gp51. Furthermore, two functional domains, linear epitope B and the zinc-binding domain, were found to have an elevated ratio of nonsynonymous to synonymous codon differences. Together, these data suggest that the evolutionary constraints on epitopes G and B and the zinc-binding domains of gp51 differ from those on the other domains, with a tendency towards formation of homogenous genetic groups, which is a common concept of global BLV diversification during virus transmission that may be associated with genetic drift.
Collapse
Affiliation(s)
- Aneta Pluta
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland.
| | - Marzena Rola-Łuszczak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Piotr Kubiś
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| | - Svetlana Balov
- Republican Center for Veterinary Diagnostic, Chisinau, Moldova
| | - Roman Moskalik
- Scientific Practical Institute for Biotechnologies and Zootechny and Veterinary Medicine, Chisinau, Moldova
| | - Bhudipa Choudhury
- OIE Reference Laboratory for EBL, Department of Virology, Animal and Plant Health Agency, Weybridge, UK
| | - Jacek Kuźmak
- OIE Reference Laboratory for EBL, Department of Biochemistry, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
26
|
Ortega MS, Wohlgemuth S, Tribulo P, Siqueira LGB, Null DJ, Cole JB, Da Silva MV, Hansen PJ. A single nucleotide polymorphism in COQ9 affects mitochondrial and ovarian function and fertility in Holstein cows†. Biol Reprod 2017; 96:652-663. [DOI: 10.1093/biolre/iox004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/31/2017] [Indexed: 11/12/2022] Open
|
27
|
Polat M, Moe HH, Shimogiri T, Moe KK, Takeshima SN, Aida Y. The molecular epidemiological study of bovine leukemia virus infection in Myanmar cattle. Arch Virol 2016; 162:425-437. [PMID: 27771791 DOI: 10.1007/s00705-016-3118-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/11/2016] [Indexed: 11/29/2022]
Abstract
Bovine leukemia virus (BLV) is the etiological agent of enzootic bovine leukosis, which is the most common neoplastic disease of cattle. BLV infects cattle worldwide and affects both health status and productivity. However, no studies have examined the distribution of BLV in Myanmar, and the genetic characteristics of Myanmar BLV strains are unknown. Therefore, the aim of this study was to detect BLV infection in Myanmar and examine genetic variability. Blood samples were obtained from 66 cattle from different farms in four townships of the Nay Pyi Taw Union Territory of central Myanmar. BLV provirus was detected by nested PCR and real-time PCR targeting BLV long terminal repeats. Results were confirmed by nested PCR targeting the BLV env-gp51 gene and real-time PCR targeting the BLV tax gene. Out of 66 samples, six (9.1 %) were positive for BLV provirus. A phylogenetic tree, constructed using five distinct partial and complete env-gp51 sequences from BLV strains isolated from three different townships, indicated that Myanmar strains were genotype-10. A phylogenetic tree constructed from whole genome sequences obtained by sequencing cloned, overlapping PCR products from two Myanmar strains confirmed the existence of genotype-10 in Myanmar. Comparative analysis of complete genome sequences identified genotype-10-specific amino acid substitutions in both structural and non-structural genes, thereby distinguishing genotype-10 strains from other known genotypes. This study provides information regarding BLV infection levels in Myanmar and confirms that genotype-10 is circulating in Myanmar.
Collapse
Affiliation(s)
- Meripet Polat
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan
| | - Hla Hla Moe
- Department of Animal Science, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Takeshi Shimogiri
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan
| | - Kyaw Kyaw Moe
- Department of Pathology and Microbiology, University of Veterinary Science, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Shin-Nosuke Takeshima
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan
| | - Yoko Aida
- Viral Infectious Diseases Unit, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan. .,Laboratory of Viral Infectious Diseases, Department of Medical Genome Sciences, Graduate School of Frontier Science, The University of Tokyo, Wako, Saitama, 351-0198, Japan.
| |
Collapse
|
28
|
Lee E, Kim EJ, Ratthanophart J, Vitoonpong R, Kim BH, Cho IS, Song JY, Lee KK, Shin YK. Molecular epidemiological and serological studies of bovine leukemia virus (BLV) infection in Thailand cattle. INFECTION GENETICS AND EVOLUTION 2016; 41:245-254. [DOI: 10.1016/j.meegid.2016.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
|