1
|
Salas SAS, Damba T, Buist‐Homan M, Moshage H. Protective Effect of Carvedilol Against Oxidative Stress Induced by Palmitic Acid in Primary Rat Hepatocytes. Cell Biochem Funct 2025; 43:e70057. [PMID: 39924769 PMCID: PMC11808198 DOI: 10.1002/cbf.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Hepatocyte lipotoxicity (HL) is an important factor in the pathogenesis of Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD). It is defined as the detrimental effects of exposure to (excessive) amounts of toxic lipid species, leading to increased mitochondrial β-oxidation, oxidative stress (OxS), and organellar dysfunction. Carvedilol (CV) is a β-adrenergic blocker with antioxidant properties. To elucidate whether CV protects hepatocytes against lipotoxicity induced by palmitic acid (PA) by reducing OxS and endoplasmic reticulum (ER) stress. Primary rat hepatocytes (rHep) were used. Lipotoxicity was induced by PA (1 mmol/L). Cell damage was evaluated by Sytox Green staining. Mitochondrial generation of reactive oxygen species (mROS) was assessed by MitoSox. mRNA and protein expression were measured by qPCR and Western blot, respectively. Lipid accumulation was measured by Oil Red O staining and triglyceride (TG) content. PA induced cell death in > 80% of cells and increased mROS generation. PA increased mRNA expression of ER stress markers CHOP and sXBP1 and slightly increased lipid accumulation. Expression of the β-oxidation-related gene Cpt1a was increased. CV (10 µmol/L) significantly reduced PA-induced cell death to control levels (< 8% of total cells), and mROS generation and expression of the mitochondrial antioxidant enzymes Sod2 and Cat were increased by 40% by CV in the presence of PA. CV did not change the expression of ER stress markers. CV, added before PA, protects rHep against PA-induced cytotoxicity by reducing OxS and increasing the expression of antioxidant enzymes without any additional protective effect on ER stress or lipid accumulation.
Collapse
Affiliation(s)
- Sandra A. Serna Salas
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Turtushikh Damba
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- School of PharmacyMongolian National University of Medical SciencesUlaanbaatarMongolia
| | - Manon Buist‐Homan
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory Medicine, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
- Department of Laboratory Medicine, University Medical Center GroningenUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
2
|
Moliterni C, Vari F, Schifano E, Tacconi S, Stanca E, Friuli M, Longo S, Conte M, Salvioli S, Gnocchi D, Mazzocca A, Uccelletti D, Vergara D, Dini L, Giudetti AM. Lipotoxicity of palmitic acid is associated with DGAT1 downregulation and abolished by PPARα activation in liver cells. J Lipid Res 2024; 65:100692. [PMID: 39505261 DOI: 10.1016/j.jlr.2024.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Lipotoxicity refers to the harmful effects of excess fatty acids on metabolic health, and it can vary depending on the type of fatty acids involved. Saturated and unsaturated fatty acids exhibit distinct effects, though the precise mechanisms behind these differences remain unclear. Here, we investigated the lipotoxicity of palmitic acid (PA), a saturated fatty acid, compared with oleic acid (OA), a monounsaturated fatty acid, in the hepatic cell line HuH7. Our results demonstrated that PA, unlike OA, induces lipotoxicity, endoplasmic reticulum (ER) stress, and autophagy inhibition. Compared with OA, PA treatment leads to less lipid droplet (LD) accumulation and a significant reduction in the mRNA and protein level of diacylglycerol acyltransferase 1 (DGAT1), a key enzyme of triacylglycerol synthesis. Using modulators of ER stress and autophagy, we established that DGAT1 downregulation by PA is closely linked to these cellular pathways. Notably, the ER stress inhibitor 4-phenylbutyrate can suppress PA-induced DGAT1 downregulation. Furthermore, knockdown of DGAT1 by siRNA or with A922500, a specific DGAT1 inhibitor, resulted in cell death, even with OA. Both PA and OA increased the oxygen consumption rate; however, the increase associated with PA was only partially coupled to ATP synthesis. Importantly, treatment with GW7647 a specific PPARα agonist mitigated the lipotoxic effects of PA, restoring PA-induced ER stress, autophagy block, and DGAT1 suppression. In conclusion, our study highlights the crucial role of DGAT1 in PA-induced lipotoxicity, broadening the knowledge of the mechanisms underlying hepatic lipotoxicity and providing the basis for potential therapeutic interventions.
Collapse
Affiliation(s)
- Camilla Moliterni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Francesco Vari
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Stefano Tacconi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Eleonora Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Conte
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, Bari, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy.
| |
Collapse
|
3
|
Baeken MW. Sirtuins and their influence on autophagy. J Cell Biochem 2024; 125:e30377. [PMID: 36745668 DOI: 10.1002/jcb.30377] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/19/2023] [Indexed: 02/07/2023]
Abstract
Sirtuins and autophagy are well-characterized agents that can promote longevity and protect individual organisms from age-associated diseases like neurodegenerative disorders. In recent years, more and more data has been obtained that discerned potential overlaps and crosstalk between Sirtuin proteins and autophagic activity. This review aims to summarize the advances within the field for each individual Sirtuin in mammalian systems. In brief, most Sirtuins have been implicated in promoting autophagy, with Sirtuin 1 and Sirtuin 6 showing the highest immediate involvement, while Sirtuin 4 and Sirtuin 5 only demonstrate occasional influence. The way Sirtuins regulate autophagy, however, is very diverse, as they have been shown to regulate gene expression of autophagy-associated genes and posttranslational modifications of proteins, with consequences for the activity and cellular localization of these proteins. They have also been shown to determine specific proteins for autophagic degradation. Overall, much data has been accumulated over recent years, yet many open questions remain. Especially although the dynamic between Sirtuin proteins and the immediate regulation of autophagic players like Light Chain 3B has been confirmed, many of these proteins have various orthologues in mammalian systems, and research so far has not exceeded the bona fide components of autophagy.
Collapse
Affiliation(s)
- Marius W Baeken
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
4
|
Zhao X, Zhang W, Jiang F, Chen X, Chen C, Wang M, Chen B, Cannon RD, Saffery R, Han TL, Zhang H, Zhou X. Excessive palmitic acid disturbs macrophage α-ketoglutarate/succinate metabolism and causes adipose tissue insulin resistance associated with gestational diabetes mellitus. Free Radic Biol Med 2024; 222:424-436. [PMID: 38960008 DOI: 10.1016/j.freeradbiomed.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Abnormal polarization of adipose tissue macrophages (ATMs) results in low-grade systemic inflammation and insulin resistance (IR), potentially contributing to the development of diabetes. However, the underlying mechanisms that regulate the polarization of ATMs associated with gestational diabetes mellitus (GDM) remain unclear. Thus, we aimed to determine the effects of abnormal fatty acids on macrophage polarization and development of insulin resistance in GDM. Levels of fatty acids and inflammation were assessed in the serum samples and adipose tissues of patients with GDM. An in vitro cell model treated with palmitic acid was established, and the mechanisms of palmitic acid in regulating macrophage polarization was clarified. The effects of excessive palmitic acid on the regulation of histone methylations and IR were also explored in the high-fat diet induced GDM mice model. We found that pregnancies with GDM were associated with increased levels of serum fatty acids, and inflammation and IR in adipose tissues. Increased palmitic acid could induce mitochondrial dysfunction and excessive ROS levels in macrophages, leading to abnormal cytoplasmic and nuclear metabolism of succinate and α-ketoglutarate (αKG). Specifically, a decreased nuclear αKG/succinate ratio could attenuate the enrichment of H3K27me3 at the promoters of pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, leading to cytokine secretion. Importantly, GDM mice treated with GSK-J4, an inhibitor of histone lysine demethylase, were protected from abnormal pro-inflammatory macrophage polarization and excessive production of pro-inflammatory cytokines. Our findings highlight the importance of the metabolism of αKG and succinate as transcriptional modulators in regulating the polarization of ATMs and the insulin sensitivity of adipose tissue, ensuring a normal pregnancy. This novel insight sheds new light on gestational fatty acid metabolism and epigenetic alterations associated with GDM.
Collapse
Affiliation(s)
- Xue Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Weiyi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Fei Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Xuyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Chang Chen
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Min Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Bingnan Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China
| | - Richard D Cannon
- Department of Oral Sciences, Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Richard Saffery
- Molecular Immunity, Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Ting-Li Han
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Liggins Institute, The University of Auckland, Auckland, New Zealand; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China.
| | - Xiaobo Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, China; Department of Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
5
|
Zhang K, Jiang L, Xue L, Wang Y, Sun Y, Fan M, Qian H, Wang L, Li Y. 5-Heptadecylresorcinol Improves Aging-Associated Hepatic Fatty Acid Oxidation Dysfunction via Regulating Adipose Sirtuin 3. Nutrients 2024; 16:978. [PMID: 38613012 PMCID: PMC11013747 DOI: 10.3390/nu16070978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Aging-associated hepatic fatty acid (FA) oxidation dysfunction contributes to impaired adaptive thermogenesis. 5-Heptadecylresorcinol (AR-C17) is a prominent functional component of whole wheat and rye, and has been demonstrated to improve the thermogenic capacity of aged mice via the regulation of Sirt3. However, the effect of AR-C17 on aging-associated hepatic FA oxidation dysfunction remains unclear. Here, 18-month-old C57BL/6J mice were orally administered with AR-C17 at a dose of 150 mg/kg/day for 8 weeks. Systemic glucose and lipid metabolism, hepatic FA oxidation, and the lipolysis of white adipose tissues (WAT) were measured. The results showed that AR-C17 improved the hepatic FA oxidation, and especially acylcarnitine metabolism, of aged mice during cold stimulation, with the enhancement of systemic glucose and lipid metabolism. Meanwhile, AR-C17 improved the WAT lipolysis of aged mice, promoting hepatic acylcarnitine production. Furthermore, the adipose-specific Sirt3 knockout mice were used to investigate and verify the regulation mechanism of AR-C17 on aging-associated hepatic FA oxidation dysfunction. The results showed that AR-C17 failed to improve the WAT lipolysis and hepatic FA oxidation of aged mice in the absence of adipose Sirt3, indicating that AR-C17 might indirectly influence hepatic FA oxidation via regulating WAT Sirt3. Our findings suggest that AR-C17 might improve aging-associated hepatic FA oxidation dysfunction via regulating adipose Sirt3.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (K.Z.); (L.J.); (L.X.); (Y.W.); (Y.S.); (M.F.); (H.Q.)
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (K.Z.); (L.J.); (L.X.); (Y.W.); (Y.S.); (M.F.); (H.Q.)
| |
Collapse
|
6
|
Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target. Eur J Pharmacol 2024; 963:176155. [PMID: 37914065 DOI: 10.1016/j.ejphar.2023.176155] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Sirtuins (SIRTs) were originally characterized by yeast Sir2 as a lifespan regulator that is conserved in all three structural domains of bacteria, archaea and eukaryotes and belong to histone deacetylases consisting of seven members (SIRT1-SIRT7). Surprisingly, SIRTs have been shown to play important regulatory roles in almost all cellular functions, including mitochondrial biogenesis, oxidative stress, inflammation, cell growth, energy metabolism, neural function, and stress resistance. Among the SIRT members, sirtuin 3 (SIRT3) is one of the most important deacetylases that regulates the mitochondrial acetylation and plays a role in pathological processes, such as metabolism, DNA repair, oxidative stress, apoptosis and ferroptosis. Therefore, SIRT3 is considered as a potential target for the treatment of a variety of pathological diseases, including metabolic diseases, neurodegenerative diseases, age-related diseases and others. Furthermore, the isolation, screening, and development of SIRT3 signaling agonists, especially from natural products, have become a widely investigated objective. This paper describes the structure of SIRT3 protein, discusses the pathological process of SIRT3-mediated acetylation modification, and reviews the role of SIRT3 in diseases, SIRT3 activators and its related disease studies.
Collapse
Affiliation(s)
- Yuanyuan Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Haidong Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Jianhong Li
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, China.
| |
Collapse
|
7
|
Janilkarn-Urena I, Idrissova A, Zhang M, VanDreal M, Sanghavi N, Skinner SG, Cheng S, Zhang Z, Watanabe J, Asatryan L, Cadenas E, Davies DL. Dihydromyricetin supplementation improves ethanol-induced lipid accumulation and inflammation. Front Nutr 2023; 10:1201007. [PMID: 37680900 PMCID: PMC10481966 DOI: 10.3389/fnut.2023.1201007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/01/2023] [Indexed: 09/09/2023] Open
Abstract
Introduction Excessive alcohol consumption leads to a myriad of detrimental health effects, including alcohol-associated liver disease (ALD). Unfortunately, no available treatments exist to combat the progression of ALD beyond corticosteroid administration and/or liver transplants. Dihydromyricetin (DHM) is a bioactive polyphenol and flavonoid that has traditionally been used in Chinese herbal medicine for its robust antioxidant and anti-inflammatory properties. It is derived from many plants, including Hovenia dulcis and is found as the active ingredient in a variety of popular hangover remedies. Investigations utilizing DHM have demonstrated its ability to alleviate ethanol-induced disruptions in mitochondrial and lipid metabolism, while demonstrating hepatoprotective activity. Methods Female c57BL/6J mice (n = 12/group) were treated using the Lieber DeCarli forced-drinking and ethanol (EtOH) containing liquid diet, for 5 weeks. Mice were randomly divided into three groups: (1) No-EtOH, (2) EtOH [5% (v/v)], and (3) EtOH [5% (v/v)] + DHM (6 mg/mL). Mice were exposed to ethanol for 2 weeks to ensure the development of ALD pathology prior to receiving dihydromyricetin supplementation. Statistical analysis included one-way ANOVA along with Bonferroni multiple comparison tests, where p ≤ 0.05 was considered statistically significant. Results Dihydromyricetin administration significantly improved aminotransferase levels (AST/ALT) and reduced levels of circulating lipids including LDL/VLDL, total cholesterol (free cholesterol), and triglycerides. DHM demonstrated enhanced lipid clearance by way of increased lipophagy activity, shown as the increased interaction and colocalization of p62/SQSTM-1, LC3B, and PLIN-1 proteins. DHM-fed mice had increased hepatocyte-to-hepatocyte lipid droplet (LD) heterogeneity, suggesting increased neutralization and sequestration of free lipids into LDs. DHM administration significantly reduced prominent pro-inflammatory cytokines commonly associated with ALD pathology such as TNF-α, IL-6, and IL-17. Discussion Dihydromyricetin is commercially available as a dietary supplement. The results of this proof-of-concept study demonstrate its potential utility and functionality as a cost-effective and safe candidate to combat inflammation and the progression of ALD pathology.
Collapse
Affiliation(s)
- Isis Janilkarn-Urena
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Alina Idrissova
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Mindy Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Masha VanDreal
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Neysa Sanghavi
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Samantha G. Skinner
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Sydney Cheng
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Zeyu Zhang
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
- Translational Research Lab, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
| | - Junji Watanabe
- Translational Research Lab, USC Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Liana Asatryan
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Enrique Cadenas
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| | - Daryl L. Davies
- Titus Family Department of Clinical Pharmacy, University of Southern California Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, Los Angeles, CA, United States
| |
Collapse
|
8
|
Zhang C, Li H, Li J, Hu J, Yang K, Tao L. Oxidative stress: A common pathological state in a high-risk population for osteoporosis. Biomed Pharmacother 2023; 163:114834. [PMID: 37163779 DOI: 10.1016/j.biopha.2023.114834] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023] Open
Abstract
Osteoporosis is becoming a major concern in the field of public health. The process of bone loss is insidious and does not directly induce obvious symptoms. Complications indicate an irreversible decrease in bone mass. The high-risk populations of osteoporosis, including postmenopausal women, elderly men, diabetic patients and obese individuals need regular bone mineral density testing and appropriate preventive treatment. However, the primary changes in these populations are different, increasing the difficulty of effective treatment of osteoporosis. Determining the core pathogenesis of osteoporosis helps improve the efficiency and efficacy of treatment among these populations. Oxidative stress is a common pathological state secondary to estrogen deficiency, aging, hyperglycemia and hyperlipemia. In this review, we divided oxidative stress into the direct effect of reactive oxygen species (ROS) and the reduction of antioxidant enzyme activity to discuss their roles in the development of osteoporosis. ROS initiated mitochondrial apoptotic signaling and suppressed osteogenic marker expression to weaken osteogenesis. MAPK and NF-κB signaling pathways mediated the positive effect of ROS on osteoclast differentiation. Antioxidant enzymes not only eliminate the negative effects of ROS, but also directly participate in the regulation of bone metabolism. Additionally, we also described the roles of proinflammatory factors and HIF-1α under the pathophysiological changes of inflammation and hypoxia, which provided a supplement of oxidative stress-induced osteoporosis. In conclusion, our review showed that oxidative stress was a common pathological state in a high-risk population for osteoporosis. Targeted oxidative stress treatment would greatly optimize the therapeutic schedule of various osteoporosis treatments.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Hao Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jie Li
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China
| | - Jiajin Hu
- Health Sciences Institute, China Medical University, Shenyang 110122, China
| | - Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, No.155 Nanjing North Street, Shenyang, China.
| |
Collapse
|
9
|
Wang C, Li X, Zhang W, Liu W, Lv Z, Gui R, Li M, Li Y, Sun X, Liu P, Fan X, Yang S, Xiong Y, Qian L. ETNPPL impairs autophagy through regulation of the ARG2-ROS signaling axis, contributing to palmitic acid-induced hepatic insulin resistance. Free Radic Biol Med 2023; 199:126-140. [PMID: 36841363 DOI: 10.1016/j.freeradbiomed.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
Excessive free fatty acids (FFAs) accumulation is a leading risk factor for the pathogenesis of insulin resistance (IR) in metabolic tissues, including the liver. Ethanolamine-phosphate phospho-lyase (ETNPPL), a newly identified metabolic enzyme, catalyzes phosphoethanolamine (PEA) to ammonia, inorganic phosphate, and acetaldehyde and is highly expressed in hepatic tissue. Whether it plays a role in regulating FFA-induced IR in hepatocytes has yet to be understood. In this study, we established an in vitro palmitic acid (PA)-induced IR model in human HepG2 cells and mouse AML12 cells with chronic treatment of PA. Next, we overexpressed ETNPPL by using lentivirus-mediated ectopic to investigate the effects of ETNPPL per se on IR without PA stimulation. We show that ETNPPL expression is significantly elevated in PA-induced IR and that silencing ETNPPL ameliorates this IR in hepatocytes. Inversely, overexpressing ETNPPL under normal conditions without PA promotes IR, reactive oxygen species generation, and ARG2 activation in both HepG2 and AML12 cells. Moreover, ETNPPL depletion markedly down-regulates ARG2 expression in hepatocytes. Besides, silencing ARG2 prevents ETNPPL-induced ROS accumulation and inhibition of autophagic flux and IR in hepatocytes. Finally, we found that phytopharmaceutical disruption of ETNPPL by quercetin ameliorates PA-induced IR in hepatocytes. Our study discloses that ETNPPL inhibiting autophagic flux mediates insulin resistance triggered by PA in hepatocytes via ARG2/ROS signaling cascade. Our findings provide novel insights into elucidating the pathogenesis of obesity-associated hepatic IR, suggesting that targeting ETNPPL might represent a potential approach for T2DM therapy.
Collapse
Affiliation(s)
- Caihua Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Wei Zhang
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Wenxuan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Ziwei Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Runlin Gui
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Yujia Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaomin Sun
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Ping Liu
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Xiaobin Fan
- Department of Obstetrics and Gynecology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Shiyao Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China.
| | - Lu Qian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710069, PR China; Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Northwest University, Xi'an, Shaanxi, 710018, PR China.
| |
Collapse
|
10
|
Zhang K, Li T, Li Q, Nie C, Sun Y, Xue L, Wang Y, Fan M, Qian H, Li Y, Wang L. 5-Heptadecylresorcinol Regulates the Metabolism of Thermogenic Fat and Improves the Thermogenic Capacity of Aging Mice via a Sirtuin 3-Adenosine Monophosphate-Activated Protein Kinase Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:557-568. [PMID: 36535764 DOI: 10.1021/acs.jafc.2c07073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
5-Heptadecylresorcinol (AR-C17), a well-known biomarker for whole grain rye consumption, is a primary homolog of alkylresorcinols. In this study, the effects of AR-C17 on the thermogenesis of brown adipocytes and 3T3-L1 adipocytes were investigated. The results showed that AR-C17 increased sirtuin 3 (Sirt3) expression, and the expressions of specific thermogenic genes in adipocytes were increased. Furthermore, AR-C17 increased the mitochondrial functions during the thermogenic activation of adipocytes. In in vivo study, AR-C17 increased the cold tolerance and thermogenic capacity of adipose tissues in aging mice. In addition, Sirt3 activity was required for AR-C17-induced thermogenesis. Meanwhile, AR-C17 increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and AMPK was involved in the regulation of AR-C17 on thermogenic adipocytes. Mechanically, AR-C17 upregulated a Sirt3-AMPK positive-feedback loop in adipocytes and further increased the expression of uncoupling protein 1 to activate thermogenesis. This study indicated that AR-C17 could be a promising thermogenic activator of adipocytes to alleviate obesity and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Li
- China National Institute of Standardization, Beijing 100015, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Nie H, Ji T, Fu Y, Chen D, Tang Z, Zhang C. Molecular mechanisms and promising role of dihydromyricetin in cardiovascular diseases. Physiol Res 2022. [DOI: 10.33549/physiolres.934915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vine tea, a Chinese herbal medicine, is widely used in traditional Asian medicine to treat common health problems. Dihydromyricetin (DMY) is the main functional flavonoid compound extracted from vine tea. In recent years, preclinical studies have focused on the potential beneficial effects of dihydromyricetin, including glucose metabolism regulation, lipid metabolism regulation, neuroprotection, and anti-tumor effects. In addition, DMY may play a role in cardiovascular disease by resisting oxidative stress and participating in the regulation of inflammation. This review is the first review that summaries the applications of dihydromyricetin in cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial hypertrophy, and diabetic cardiomyopathy. We also clarified the underlying mechanisms and signaling pathways involved in the above process. The aim of this review is to provide a better understanding and quick overview for future researches of dihydromyricetin in the field of cardiovascular diseases, and more detailed and robust researches are needed for evaluation and reference.
Collapse
Affiliation(s)
| | | | | | | | | | - C Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
12
|
NIE H, JI T, FU Y, CHEN D, TANG Z, ZHANG C. Molecular mechanisms and promising role of dihydromyricetin in cardiovascular diseases. Physiol Res 2022; 71:749-762. [PMID: 36426886 PMCID: PMC9814984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vine tea, a Chinese herbal medicine, is widely used in traditional Asian medicine to treat common health problems. Dihydromyricetin (DMY) is the main functional flavonoid compound extracted from vine tea. In recent years, preclinical studies have focused on the potential beneficial effects of dihydromyricetin, including glucose metabolism regulation, lipid metabolism regulation, neuroprotection, and anti-tumor effects. In addition, DMY may play a role in cardiovascular disease by resisting oxidative stress and participating in the regulation of inflammation. This review is the first review that summaries the applications of dihydromyricetin in cardiovascular diseases, including atherosclerosis, myocardial infarction, myocardial hypertrophy, and diabetic cardiomyopathy. We also clarified the underlying mechanisms and signaling pathways involved in the above process. The aim of this review is to provide a better understanding and quick overview for future researches of dihydromyricetin in the field of cardiovascular diseases, and more detailed and robust researches are needed for evaluation and reference.
Collapse
Affiliation(s)
- Hao NIE
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianyi JI
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu FU
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Danyang CHEN
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Zhouping TANG
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan Hubei, China
| | - Cuntai ZHANG
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Xie J, Zhang T, Li P, Wang D, Liu T, Xu S. Dihydromyricetin Attenuates Cerebral Ischemia Reperfusion Injury by Inhibiting SPHK1/mTOR Signaling and Targeting Ferroptosis. Drug Des Devel Ther 2022; 16:3071-3085. [PMID: 36118165 PMCID: PMC9477154 DOI: 10.2147/dddt.s378786] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Background Dihydromyricetin (DHM) exerts protective effects in various brain diseases. The aim of this research was to investigate the biological role of DHM in cerebral ischemia reperfusion (I/R) injury. Methods We generated a rat model of cerebral I/R injury by performing middle cerebral artery occlusion/reperfusion (MCAO/R). The neurological score and brain water content of the experimental rats was then evaluated. The infarct volume and extent of apoptosis in brain tissues was then assessed by 2,3,5-triphenyltetrazolium (TTC) and TdT-mediated dUTP nick end labeling (TUNEL) staining. Hippocampal neuronal cells (HT22) were subjected to oxygen-glucose deprivation/reperfusion (OGD/R) and cell counting kit-8 (CCK-8) assays and flow cytometry were performed to detect cell viability and apoptosis. The levels of lipid reactive oxygen species (ROS) and iron were detected and the expression levels of key proteins were assessed by Western blotting. Results DHM obviously reduced neurological deficits, brain water content, infarct volume and cell apoptosis in the brain tissues of MCAO/R rats. DHM repressed ferroptosis and inhibited the sphingosine kinase 1 (SPHK1)/mammalian target of rapamycin (mTOR) pathway in MCAO/R rats. In addition, DHM promoted cell viability and repressed apoptosis in OGD/R-treated HT22 cells. DHM also suppressed the levels of lipid ROS and intracellular iron in OGD/R-treated HT22 cells. The expression levels of glutathione peroxidase 4 (GPX4) was enhanced while the levels of acyl-CoA synthetase long-chain family member 4 (ACSL4) and phosphatidylethanolamine binding protein 1 (PEBP1) were reduced in OGD/R-treated HT22 cells in the presence of DHM. Moreover, the influence conferred by DHM was abrogated by the overexpression of SPHK1 or treatment with MHY1485 (an activator of mTOR). Conclusion This research demonstrated that DHM repressed ferroptosis by inhibiting the SPHK1/mTOR signaling pathway, thereby alleviating cerebral I/R injury. Our findings suggest that DHM may be a candidate drug for cerebral I/R injury treatment.
Collapse
Affiliation(s)
- Jiangbo Xie
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- Department of Neurology, Weifang Traditional Chinese Hospital, Weifang, People’s Republic of China
| | - Tingting Zhang
- Department of Rehabilitation Medicine, Weifang Traditional Chinese Hospital, Weifang, People’s Republic of China
| | - Peichun Li
- Department of Rehabilitation Medicine, Weifang Traditional Chinese Hospital, Weifang, People’s Republic of China
| | - Dong Wang
- Department of Neurology, Weifang Traditional Chinese Hospital, Weifang, People’s Republic of China
| | - Tao Liu
- Department of Neurology, Weifang Traditional Chinese Hospital, Weifang, People’s Republic of China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
14
|
McGinnis CD, Jennings EQ, Harris PS, Galligan JJ, Fritz KS. Biochemical Mechanisms of Sirtuin-Directed Protein Acylation in Hepatic Pathologies of Mitochondrial Dysfunction. Cells 2022; 11:cells11132045. [PMID: 35805129 PMCID: PMC9266223 DOI: 10.3390/cells11132045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial protein acetylation is associated with a host of diseases including cancer, Alzheimer’s, and metabolic syndrome. Deciphering the mechanisms regarding how protein acetylation contributes to disease pathologies remains difficult due to the complex diversity of pathways targeted by lysine acetylation. Specifically, protein acetylation is thought to direct feedback from metabolism, whereby nutritional status influences mitochondrial pathways including beta-oxidation, the citric acid cycle, and the electron transport chain. Acetylation provides a crucial connection between hepatic metabolism and mitochondrial function. Dysregulation of protein acetylation throughout the cell can alter mitochondrial function and is associated with numerous liver diseases, including non-alcoholic and alcoholic fatty liver disease, steatohepatitis, and hepatocellular carcinoma. This review introduces biochemical mechanisms of protein acetylation in the regulation of mitochondrial function and hepatic diseases and offers a viewpoint on the potential for targeted therapies.
Collapse
Affiliation(s)
- Courtney D. McGinnis
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
| | - Erin Q. Jennings
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (E.Q.J.); (J.J.G.)
| | - Peter S. Harris
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
| | - James J. Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA; (E.Q.J.); (J.J.G.)
| | - Kristofer S. Fritz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (C.D.M.); (P.S.H.)
- Correspondence:
| |
Collapse
|
15
|
Wei M, Ye Y, Ali MM, Chamba Y, Tang J, Shang P. Effect of Fluoride on Cytotoxicity Involved in Mitochondrial Dysfunction: A Review of Mechanism. Front Vet Sci 2022; 9:850771. [PMID: 35518640 PMCID: PMC9062983 DOI: 10.3389/fvets.2022.850771] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
Fluoride is commonly found in the soil and water environment and may act as chronic poison. A large amount of fluoride deposition causes serious harm to the ecological environment and human health. Mitochondrial dysfunction is a shared feature of fluorosis, and numerous studies reported this phenomenon in different model systems. More and more evidence shows that the functions of mitochondria play an extremely influential role in the organs and tissues after fluorosis. Fluoride invades into cells and mainly damages mitochondria, resulting in decreased activity of mitochondrial related enzymes, weakening of protein expression, damage of respiratory chain, excessive fission, disturbance of fusion, disorder of calcium regulation, resulting in the decrease of intracellular ATP and the accumulation of Reactive oxygen species. At the same time, the decrease of mitochondrial membrane potential leads to the release of Cyt c, causing a series of caspase cascade reactions and resulting in apoptosis. This article mainly reviews the mechanism of cytotoxicity related to mitochondrial dysfunction after fluorosis. A series of mitochondrial dysfunction caused by fluorosis, such as mitochondrial dynamics, mitochondrial Reactive oxygen species, mitochondrial fission, mitochondrial respiratory chain, mitochondrial autophagy apoptosis, mitochondrial fusion disturbance, mitochondrial calcium regulation are emphasized, and the mechanism of the effect of fluoride on cytotoxicity related to mitochondrial dysfunction are further explored.
Collapse
Affiliation(s)
- Mingbang Wei
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Yourong Ye
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yangzom Chamba
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Jia Tang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| | - Peng Shang
- College of Animal Science, Tibet Agriculture and Animal Husbandry College, Linzhi, China.,The Provincial and Ministerial Co-founded Collaborative Innovation Center for R&D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Linzhi, China
| |
Collapse
|
16
|
Tam E, Reno C, Nguyen K, Cho S, Sweeney G. Importance of Autophagy in Mediating Cellular Responses to Iron Overload in Cardiomyocytes. Rev Cardiovasc Med 2022; 23:167. [PMID: 39077594 PMCID: PMC11273664 DOI: 10.31083/j.rcm2305167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 07/31/2024] Open
Abstract
Both iron overload and deficiency can promote development of cardiomyopathy. Advances in our knowledge from recent research have indicated numerous potential cellular mechanisms. Regulation of myocardial autophagy by iron is of particular interest and will be reviewed here. Autophagy is already well established to play a significant role in regulating the development of heart failure. This review will focus on regulation of autophagy by iron, crosstalk between autophagy and other cellular process which have also already been implicated in heart failure (oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, ferroptosis) and the therapeutic potential of targeting these interactions.
Collapse
Affiliation(s)
- Eddie Tam
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Chloe Reno
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Khang Nguyen
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Sungji Cho
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
17
|
[Dihydromyricetin reduces lipid accumulation in LO2 cells via AMPK/mTOR-mediated lipophagy pathway and inhibits HepG2 cell proliferation in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:518-527. [PMID: 35527487 PMCID: PMC9085583 DOI: 10.12122/j.issn.1673-4254.2022.04.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To explore the mechanism underlying the hepatoprotective effect of dihydromyricetin (DMY) against lipid accumulation in light of the lipophagy pathway and the inhibitory effect of DMY on HepG2 cell proliferation. METHODS LO2 cells were cultured in the presence of 10% FBS for 24 h and treated with 100 μg/mL DMY, or exposed to 50% FBS for 24 h followed by treatment with 50, 100, or 200 μg/mL DMY; the cells in recovery group were cultured in 50% FBS for 24 h and then in 10% FBS for another 24 h. Oil red O staining was used to observe the accumulation of lipid droplets in the cells, and the levels of TC, TG, and LDL and activities of AST, ALT and LDH were measured. The expression of LC3 protein was detected using Western blotting. AO staining and transmission electron microscopy were used to determine the numbers of autophagolysosomes and autophagosomes, respectively. The formation of autophagosomes was observed with MDC staining, and the mRNA expression levels of LC3, ATG7, AMPK, mTOR, p62 and Beclin1 were determined with q-PCR. Flow cytometry was performed to analyze the effect of 50, 100, and 200 μg/mL DMY on cell cycle and apoptosis of HepG2 cells; DNA integrity in the treated cells was examined with cell DNA fragmentation test. RESULTS DMY treatment and pretreatment obviously inhibited lipid accumulation and reduced the levels of TC, TG, LDL and enzyme activities of AST, ALT and LDH in LO2 cells (P < 0.05). In routinely cultured LO2 cells, DMY significantly promoted the formation of autophagosomes and autophagolysosomes and upregulated the expression of LC3 protein. DMY obviously attenuated high FBS-induced inhibition of autophagosome formation in LO2 cells, up- regulated the mRNA levels of LC3, ATG7, Beclin1 and AMPK, and downregulated p62 and mTOR mRNA levels (P < 0.05 or 0.01). In HepG2 cells, DMY caused obvious cell cycle arrest, inhibited cell proliferation, and induced late apoptosis and DNA fragmentation. CONCLUSION DMY reduces lipid accumulation in LO2 cells by regulating the AMPK/ mTOR-mediated lipophagy pathway and inhibits the proliferation of HepG2 by causing cell cycle arrest and promoting apoptosis.
Collapse
|