1
|
Lacconi V, Massimiani M, Antonello G, Gasco P, Bernardini R, Ferrari C, Ippoliti L, La Sala G, Pietroiusti A, Fenoglio I, Riganti C, Campagnolo L. Assessing gut barrier integrity and reproductive performance following pre-mating oral administration of solid-lipid-nanoparticles designed for drug delivery. FRONTIERS IN TOXICOLOGY 2025; 6:1508598. [PMID: 39839550 PMCID: PMC11746049 DOI: 10.3389/ftox.2024.1508598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/17/2024] [Indexed: 01/23/2025] Open
Abstract
Solid lipid nanoparticles (SLNs) have gained interest as drug delivery carriers due to their efficient cellular internalization and increased therapeutic effect of the loaded drug, with minimal side effects. Although recently several studies have shown the possibility to administer SLNs during pregnancy to vehicle mRNA to the placenta, data about the effect of premating exposure to SLNs on pregnancy outcome are scant. Considering that assumption of drug-delivering nanocarriers in reproductive age may potentially affect women's reproductive health, the aim of the present study was to evaluate whether repeated oral administration of SLNs to female mice prior to mating would influence key pregnancy outcomes. For this purpose, SLNs melatonin loaded (SLN + mlt) or unloaded were orally administered to CD1 female mice at two different dosages-low (7.5 mg/kg) and high (750 mg/kg) -three times a week for 6 weeks. Females mice were mated and pregnancy was monitored from conception to delivery. All the assessed pregnancy parameters, including time to pregnancy, pregnancy duration, litter size, and the presence of any gross anomalies in the pups, and maternal key biochemical parameters were not significantly affected by SLN administration. Embryonic development was also evaluated and no effects on the number of implantation sites, fetus numbers, incidence of fetal resorptions, and measurements of crown-rump length, as well as fetal and placental weights, were observed in the treated mothers. The impact of SLNs on maternal intestinal barrier integrity and inflammation was assessed both in vivo in mice and in vitro using an intestinal epithelial barrier model by qRT-PCR. Results showed that unloaded SLNs, but not the SLN + mlt, affected intestinal barrier integrity. Although variation in the expression of inflammatory cytokines was recorded, this did not reflect in significant histological alterations and the integrity of the intestinal barrier was maintained. The in vitro model further confirmed the biocompatibility of SLNs, showing that both loaded and unloaded SLNs did not affect the integrity of the simulated intestinal epithelial barrier. In conclusion, these data suggest that administering SLNs, as a drug delivery vehicle, prior to conception does not affect either maternal health or fetal development, posing no risk to future pregnancy.
Collapse
Affiliation(s)
- Valentina Lacconi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Micol Massimiani
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy
| | | | | | - Roberta Bernardini
- Department of Translational Medicine and Centro Interdipartimentale di Medicina Comparata, Tecniche Alternative ed Acquacoltura (CIMETA), University of Rome “Tor Vergata”, Rome, Italy
| | - Cristiana Ferrari
- Department of Occupational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Lorenzo Ippoliti
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Gina La Sala
- Institute of Biochemistry and Cell Biology, Italian National Research Council (CNR), Monterotondo Scalo, Italy
| | - Antonio Pietroiusti
- Departmental Faculty of Medicine, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, Torino, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
2
|
Hameed S, Sharif S, Ovais M, Xiong H. Emerging trends and future challenges of advanced 2D nanomaterials for combating bacterial resistance. Bioact Mater 2024; 38:225-257. [PMID: 38745587 PMCID: PMC11090881 DOI: 10.1016/j.bioactmat.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The number of multi-drug-resistant bacteria has increased over the last few decades, which has caused a detrimental impact on public health worldwide. In resolving antibiotic resistance development among different bacterial communities, new antimicrobial agents and nanoparticle-based strategies need to be designed foreseeing the slow discovery of new functioning antibiotics. Advanced research studies have revealed the significant disinfection potential of two-dimensional nanomaterials (2D NMs) to be severed as effective antibacterial agents due to their unique physicochemical properties. This review covers the current research progress of 2D NMs-based antibacterial strategies based on an inclusive explanation of 2D NMs' impact as antibacterial agents, including a detailed introduction to each possible well-known antibacterial mechanism. The impact of the physicochemical properties of 2D NMs on their antibacterial activities has been deliberated while explaining the toxic effects of 2D NMs and discussing their biomedical significance, dysbiosis, and cellular nanotoxicity. Adding to the challenges, we also discussed the major issues regarding the current quality and availability of nanotoxicity data. However, smart advancements are required to fabricate biocompatible 2D antibacterial NMs and exploit their potential to combat bacterial resistance clinically.
Collapse
Affiliation(s)
- Saima Hameed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Sumaira Sharif
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Ovais
- BGI Genomics, BGI Shenzhen, Shenzhen, 518083, Guangdong, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| |
Collapse
|
3
|
Fu Z, Ju H, Xu GS, Wu YC, Chen X, Li HJ. Recent development of carrier materials in anthocyanins encapsulation applications: A comprehensive literature review. Food Chem 2024; 439:138104. [PMID: 38043284 DOI: 10.1016/j.foodchem.2023.138104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Anthocyanins are natural polyphenols belonging to the flavonoid family that possess a variety of putative health benefits when consumed in a balanced diet. However, applications of anthocyanins in, for example, functional foods are limited due to poor stability, degradation, and low transmembrane efficiency. To maintain bioactivities of anthocyanins and optimize their use, various carrier materials have been developed. Here, we reviewed the uses of the different carrier materials (organic/inorganic, micro/nano) for anthocyanin encapsulation and delivery over the past five years. The performance of different materials and interactions between anthocyanins and these materials are described. Lastly, we give our perspective on the future development trend of anthocyanin encapsulation strategies.
Collapse
Affiliation(s)
- Ze Fu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Hao Ju
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Guang-Sen Xu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China.
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Xiao Chen
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, School of Marine Science and Technology, Harbin Institute of Technology, Wei Hai 264200, PR China.
| |
Collapse
|
4
|
McKnight CA, Diehl LJ, Bergin IL. Digestive Tract and Salivary Glands. HASCHEK AND ROUSSEAUX' S HANDBOOK OF TOXICOLOGIC PATHOLOGY 2024:1-148. [DOI: 10.1016/b978-0-12-821046-8.00001-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
5
|
Ma Y, Yu N, Lu H, Shi J, Zhang Y, Chen Z, Jia G. Titanium dioxide nanoparticles: revealing the mechanisms underlying hepatotoxicity and effects in the gut microbiota. Arch Toxicol 2023; 97:2051-2067. [PMID: 37344693 DOI: 10.1007/s00204-023-03536-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Numerous studies in recent years have questioned the safety of oral exposure to titanium dioxide nanoparticles (TiO2 NPs). TiO2 NPs are not only likely to accumulate in the gastrointestinal tract, but they are also found to penetrate the body circulation and reach distant organs. The liver, which is considered to be a target organ for nanoparticles, is of particular concern. TiO2 NPs accumulate in the liver and cause oxidative stress and inflammatory reactions, resulting in pathological damage. The impact of TiO2 NPs on liver aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was studied using a meta-analysis. According to the findings, TiO2 NPs exposure can cause an elevation in AST and ALT levels in the blood. Furthermore, TiO2 NPs are eliminated mostly through feces, and their lengthy residence in the gut exposes them to microbiota. The gut microbiota is also dysbiotic due to titanium dioxide's antibacterial capabilities. This further leads to changes in the amount of microbiota metabolites, which can reach the liver with blood circulation and trigger hepatotoxicity through the gut-liver axis. This review examines the gut-liver axis to assess the effects of gut microbiota dysbiosis on the liver to provide suggestions for assessing the gut-hepatotoxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Ying Ma
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Nairui Yu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Huaye Lu
- Jiangsu Prov Ctr Dis Control and Prevent, 172 Jiangsu Rd, Nanjing, 210009, People's Republic of China
| | - Jiaqi Shi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Yi Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| | - Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China.
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, 100191, People's Republic of China
| |
Collapse
|
6
|
Lenders V, Koutsoumpou X, Phan P, Soenen SJ, Allegaert K, de Vleeschouwer S, Toelen J, Zhao Z, Manshian BB. Modulation of engineered nanomaterial interactions with organ barriers for enhanced drug transport. Chem Soc Rev 2023; 52:4672-4724. [PMID: 37338993 DOI: 10.1039/d1cs00574j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The biomedical use of nanoparticles (NPs) has been the focus of intense research for over a decade. As most NPs are explored as carriers to alter the biodistribution, pharmacokinetics and bioavailability of associated drugs, the delivery of these NPs to the tissues of interest remains an important topic. To date, the majority of NP delivery studies have used tumor models as their tool of interest, and the limitations concerning tumor targeting of systemically administered NPs have been well studied. In recent years, the focus has also shifted to other organs, each presenting their own unique delivery challenges to overcome. In this review, we discuss the recent advances in leveraging NPs to overcome four major biological barriers including the lung mucus, the gastrointestinal mucus, the placental barrier, and the blood-brain barrier. We define the specific properties of these biological barriers, discuss the challenges related to NP transport across them, and provide an overview of recent advances in the field. We discuss the strengths and shortcomings of different strategies to facilitate NP transport across the barriers and highlight some key findings that can stimulate further advances in this field.
Collapse
Affiliation(s)
- Vincent Lenders
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Xanthippi Koutsoumpou
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Stefaan J Soenen
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Karel Allegaert
- Department of Hospital Pharmacy, Erasmus MC University Medical Center, CN Rotterdam, 3015, The Netherlands
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B3000 Leuven, Belgium
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Steven de Vleeschouwer
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jaan Toelen
- Leuven Child and Youth Institute, KU Leuven, 3000 Leuven, Belgium
- Woman and Child, Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium.
| |
Collapse
|
7
|
Van Pee T, Nawrot TS, van Leeuwen R, Hogervorst J. Ambient particulate air pollution and the intestinal microbiome; a systematic review of epidemiological, in vivo and, in vitro studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162769. [PMID: 36907413 DOI: 10.1016/j.scitotenv.2023.162769] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 05/13/2023]
Abstract
A healthy indigenous intestinal microbiome is indispensable for intra- and extra-intestinal human health. Since well-established factors such as diet and antibiotic use only explain 16 % of the inter-individual variation in gut microbiome composition, recent studies have focused on the association between ambient particulate air pollution and the intestinal microbiome. We systematically summarize and discuss all evidence concerning the effect of particulate air pollution on intestinal bacterial diversity indices, specific bacterial taxa, and potential underlying intestinal mechanisms. To this end, all possibly relevant publications published between February 1982 and January 2023 were screened, and eventually, 48 articles were included. The vast majority (n = 35) of these studies were animal studies. The exposure periods investigated in the human epidemiological studies (n = 12) ranged from infancy through elderly. This systematic review found that intestinal microbiome diversity indices were generally negatively associated with particulate air pollution in epidemiological studies, with an increase in taxa belonging to Bacteroidetes (two studies), Deferribacterota (one study), and Proteobacteria (four studies), a decrease in taxa belonging to Verrucomicrobiota (one study), and no consensus for taxa belonging to Actinobacteria (six studies) and Firmicutes (seven studies). There was no unequivocal effect of ambient particulate air pollution exposure on bacterial indices and taxa in animal studies. Only one study in humans examined a possible underlying mechanism; yet, the included in vitro and animal studies depicted higher gut damage, inflammation, oxidative stress, and permeability in exposed versus unexposed animals. Overall, the population-based studies showed a dose-related continuum of short- and long-term ambient particulate air pollution exposure on lower gut diversity and shifts in taxa over the entire life course.
Collapse
Affiliation(s)
- Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Public Health and Primary Care, Leuven University, Herestraat 49-box 706, 3000 Leuven, Belgium.
| | - Romy van Leeuwen
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Janneke Hogervorst
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| |
Collapse
|
8
|
Khalaj M, Kamali M, Aminabhavi TM, Costa MEV, Dewil R, Appels L, Capela I. Sustainability insights into the synthesis of engineered nanomaterials - Problem formulation and considerations. ENVIRONMENTAL RESEARCH 2023; 220:115249. [PMID: 36632884 DOI: 10.1016/j.envres.2023.115249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Engineered nanomaterials (ENMs) have been introduced into the market for a wide range of applications. As per the literature review, the fabrication of new generations of ENMs is starting to comply with environmental, economic, and social criteria in addition to technical aspects to meet sustainability criteria. At this stage, identification of the appropriate criteria for the synthesis of ENMs is critical because the technologies already developed at the lab scales are being currently transferred to pilot and full scales. Hence, the development of scientific-based methodologies to identify, screen, and prioritize the involved criteria is highly necessary. In the present manuscript, a fuzzy-Delphi methodology is adopted to identify the main criteria and sub-criteria encompassing the sustainable fabrication of ENMs, and to explore the "degree of consensus" among the experts on the relative importance of the mentioned criteria. The "health and safety risks" respecting the equipment and the materials, solvent used, and availability of "green experts" were identified as the most critical criteria. Furthermore, although all the criteria were identified as being important, some criteria, such as "solvent" and "raw materials cost", raised a lower degree of consensus, indicating that various "degrees of uncertainties" still exist regarding the level of importance of the studied criteria.
Collapse
Affiliation(s)
- Mohammadreza Khalaj
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal; Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Mohammadreza Kamali
- Center for Environmental and Marine Studies, CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka, 580 031, 580 031, India; Department of Chemistry, Karnatak University, Dharwad, 580 003, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali, Punjab, 140 413, India.
| | - M Elisabete V Costa
- Department of Materials and Ceramics Engineering, Aveiro Institute of Materials, CICECO, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Raf Dewil
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Lise Appels
- KU Leuven, Department of Chemical Engineering, Process and Environmental Technology Lab, J. De Nayerlaan 5, 2860, Sint-Katelijne-Waver, Belgium
| | - Isabel Capela
- Department of Environment and Planning, Center for Environmental and Marine Studies, CESAM,University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
9
|
Wu Z, Setyawati MI, Lim HK, Ng KW, Tay CY. Nanoparticle-induced chemoresistance: the emerging modulatory effects of engineered nanomaterials on human intestinal cancer cell redox metabolic adaptation. NANOSCALE 2022; 14:14491-14507. [PMID: 36106385 DOI: 10.1039/d2nr03893e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The widespread use of engineered nanomaterials (ENMs) in food products necessitates the understanding of their impact on the gastrointestinal tract (GIT). Herein, we screened several representative food-borne comparator ENMs (i.e. ZnO, SiO2 and TiO2 nanoparticles (NPs)) and report that human colon cancer cells can insidiously exploit ZnO NP-induced adaptive response to acquire resistance against several chemotherapeutic drugs. By employing a conditioning and challenge treatment regime, we demonstrate that repeated exposure to a non-toxic dose of ZnO NPs (20 μM) could dampen the efficacy of cisplatin, paclitaxel and doxorubicin by 10-50% in monolayer culture and 3D spheroids of human colon adenocarcinoma cells. Structure-activity relationship studies revealed a complex interplay between nanoparticle surface chemistry and cell type in determining the chemoresistance-inducing effect, with silica coated ZnO NPs having a negligible influence on the anticancer treatment. Mechanistically, we showed that the pro-survival paracrine signaling was potentiated and propagated by a subset of ZnO NP "stressed" (Zn2++/ROS+) cells to the surrounding "bystander" (Zn2++/ROS-) cells. Transcriptome profiling, bioinformatics analysis and siRNA gene knockdown experiments revealed the nuclear factor erythroid 2-related factor 2 (Nrf2) as the key modulator of the ZnO NP-induced drug resistance. Our findings suggest that a ROS-inducing ENM can emerge as a nano-stressor, capable of regulating the chemosensitivity of colon cancer cells.
Collapse
Affiliation(s)
- Zhuoran Wu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Hong Kit Lim
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore
| |
Collapse
|
10
|
Ma L, Han Z, Yin H, Tian J, Zhang J, Li N, Ding C, Zhang L. Characterization of Cathepsin B in Mediating Silica Nanoparticle-Induced Macrophage Pyroptosis via an NLRP3-Dependent Manner. J Inflamm Res 2022; 15:4537-4545. [PMID: 35966002 PMCID: PMC9374095 DOI: 10.2147/jir.s371536] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/30/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Silica nanoparticles (SiNPs) are one of the most widely used inorganic nanomaterials, and exposure to SiNP has been demonstrated to induce pulmonary inflammation, primarily promoted by the NLRP3-mediated macrophage pyroptosis. However, mechanisms underlying the activation of NLRP3 signaling are complex, and whether cathepsin B (CTSB), an enzyme released by the ruptured lysosome, could trigger NLRP3 assembly is controversial. Methods To further characterize the role of CTSB in silica-induced pyroptosis, we conducted this study by establishing SiNP exposure models in vitro. The morphological features of SiNPs were exhibited by the SEM and TEM, and the effects of SiNPs’ internalization on macrophages were examined by the TEM and immunofluorescent staining. Moreover, Western blot was performed to detect the expression of proteins related to pyroptosis and CTSB after blocking the expression of NLRP3 and CTSB. Results We found that SiNPs internalization caused the rupture of macrophage membrane and promoted the aging of cells with increased intracellular vacuoles. Also, the expression of NLRP3, ASC, Caspase-1, GSDMD, Pro-IL-1β, IL-1β, and CTSB increased under the stimulation of SiNP, which could be suppressed by additional treatment with MCC950, an NLRP3-specific inhibitor. Besides, we found SiNP joint treatment with leupeptin, a CTSB inhibitor, could inhibit the expression of CTSB, but it had no effect on the expression of NLRP3, ASC, and Caspase-1, and the process of macrophage pyroptosis was also not affected. Conclusion SiNP exposure induces rupture of macrophages and the release of lysosomal CTSB, but CTSB fails to specifically act on the NLRP3 inflammasome to induce pyroptosis which is causally linked to lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Lan Ma
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Zhengpu Han
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Haoyu Yin
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Jiaqi Tian
- School of Public Health, Weifang Medical University, Weifang, 261053, People's Republic of China.,Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Ning Li
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, People's Republic of China
| | - Chunjie Ding
- School of Public Health, Xinxiang Medical University, Xinxiang, 453000, People's Republic of China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan, 250001, People's Republic of China
| |
Collapse
|
11
|
Chortarea S, Kuru OC, Netkueakul W, Pelin M, Keshavan S, Song Z, Ma B, Gómes J, Abalos EV, Luna LAVD, Loret T, Fordham A, Drummond M, Kontis N, Anagnostopoulos G, Paterakis G, Cataldi P, Tubaro A, Galiotis C, Kinloch I, Fadeel B, Bussy C, Kostarelos K, Buerki-Thurnherr T, Prato M, Bianco A, Wick P. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129053. [PMID: 35650742 DOI: 10.1016/j.jhazmat.2022.129053] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.
Collapse
Affiliation(s)
- Savvina Chortarea
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Ogul Can Kuru
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Woranan Netkueakul
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandeep Keshavan
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Julio Gómes
- Avanzare Innovacion Tecnologica S.L. 26370 Navarrete, Spain
| | - Elvira Villaro Abalos
- Instituto de Tecnologías Químicas de La Rioja (InterQuímica), 26370 Navarrete, Spain
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Thomas Loret
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Alexander Fordham
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Matthew Drummond
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nikolaos Kontis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Pietro Cataldi
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece; Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ian Kinloch
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), and Barcelona Institute of Science and Technology (BIST), Barcelona 08193, Spain
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013 Bilbao, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| |
Collapse
|
12
|
Smutná T, Dumková J, Kristeková D, Laštovičková M, Jedličková A, Vrlíková L, Dočekal B, Alexa L, Kotasová H, Pelková V, Večeřa Z, Křůmal K, Petráš J, Coufalík P, Všianský D, Záchej S, Pinkas D, Vondráček J, Hampl A, Mikuška P, Buchtová M. Macrophage-mediated tissue response evoked by subchronic inhalation of lead oxide nanoparticles is associated with the alteration of phospholipases C and cholesterol transporters. Part Fibre Toxicol 2022; 19:52. [PMID: 35922858 PMCID: PMC9351260 DOI: 10.1186/s12989-022-00494-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background Inhalation of lead oxide nanoparticles (PbO NPs), which are emitted to the environment by high-temperature technological processes, heavily impairs target organs. These nanoparticles pass through the lung barrier and are distributed via the blood into secondary target organs, where they cause numerous pathological alterations. Here, we studied in detail, macrophages as specialized cells involved in the innate and adaptive immune response in selected target organs to unravel their potential involvement in reaction to subchronic PbO NP inhalation. In this context, we also tackled possible alterations in lipid uptake in the lungs and liver, which is usually associated with foam macrophage formation. Results The histopathological analysis of PbO NP exposed lung revealed serious chronic inflammation of lung tissues. The number of total and foam macrophages was significantly increased in lung, and they contained numerous cholesterol crystals. PbO NP inhalation induced changes in expression of phospholipases C (PLC) as enzymes linked to macrophage-mediated inflammation in lungs. In the liver, the subchronic inhalation of PbO NPs caused predominantly hyperemia, microsteatosis or remodeling of the liver parenchyma, and the number of liver macrophages also significantly was increased. The gene and protein expression of a cholesterol transporter CD36, which is associated with lipid metabolism, was altered in the liver. The amount of selected cholesteryl esters (CE 16:0, CE 18:1, CE 20:4, CE 22:6) in liver tissue was decreased after subchronic PbO NP inhalation, while total and free cholesterol in liver tissue was slightly increased. Gene and protein expression of phospholipase PLCβ1 and receptor CD36 in human hepatocytes were affected also in in vitro experiments after acute PbO NP exposure. No microscopic or serious functional kidney alterations were detected after subchronic PbO NP exposure and CD68 positive cells were present in the physiological mode in its interstitial tissues. Conclusion Our study revealed the association of increased cholesterol and lipid storage in targeted tissues with the alteration of scavenger receptors and phospholipases C after subchronic inhalation of PbO NPs and yet uncovered processes, which can contribute to steatosis in liver after metal nanoparticles exposure. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00494-7.
Collapse
Affiliation(s)
- Tereza Smutná
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Markéta Laštovičková
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Adriena Jedličková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Lucie Vrlíková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic
| | - Bohumil Dočekal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Lukáš Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Zbyněk Večeřa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Kamil Křůmal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics, v.v.i., Czech Academy of Sciences, 612 65, Brno, Czech Republic
| | - Pavel Coufalík
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Dalibor Všianský
- Department of Geological Sciences, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | | | - Dominik Pinkas
- Electron Microscopy Core Facility of the Microscopy Centre, Institute of Molecular Genetics, v.v.i., Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics, v.v.i., Czech Academy of Sciences, 612 65, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Pavel Mikuška
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveří 97, 602 00, Brno, Czech Republic. .,Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
13
|
Antonello G, Marucco A, Gazzano E, Kainourgios P, Ravagli C, Gonzalez-Paredes A, Sprio S, Padín-González E, Soliman MG, Beal D, Barbero F, Gasco P, Baldi G, Carriere M, Monopoli MP, Charitidis CA, Bergamaschi E, Fenoglio I, Riganti C. Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models. Part Fibre Toxicol 2022; 19:49. [PMID: 35854319 PMCID: PMC9297619 DOI: 10.1186/s12989-022-00491-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The widespread use of nano-biomaterials (NBMs) has increased the chance of human exposure. Although ingestion is one of the major routes of exposure to NBMs, it is not thoroughly studied to date. NBMs are expected to be dramatically modified following the transit into the oral-gastric-intestinal (OGI) tract. How these transformations affect their interaction with intestinal cells is still poorly understood. NBMs of different chemical nature—lipid-surfactant nanoparticles (LSNPs), carbon nanoparticles (CNPs), surface modified Fe3O4 nanoparticles (FNPs) and hydroxyapatite nanoparticles (HNPs)—were treated in a simulated human digestive system (SHDS) and then characterised. The biological effects of SHDS-treated and untreated NBMs were evaluated on primary (HCoEpiC) and immortalised (Caco-2, HCT116) epithelial intestinal cells and on an intestinal barrier model. Results The application of the in vitro SDHS modified the biocompatibility of NBMs on gastrointestinal cells. The differences between SHDS-treated and untreated NBMs could be attributed to the irreversible modification of the NBMs in the SHDS. Aggregation was detected for all NBMs regardless of their chemical nature, while pH- or enzyme-mediated partial degradation was detected for hydroxyapatite or polymer-coated iron oxide nanoparticles and lipid nanoparticles, respectively. The formation of a bio-corona, which contains proteases, was also demonstrated on all the analysed NBMs. In viability assays, undifferentiated primary cells were more sensitive than immortalised cells to digested NBMs, but neither pristine nor treated NBMs affected the intestinal barrier viability and permeability. SHDS-treated NBMs up-regulated the tight junction genes (claudin 3 and 5, occludin, zonula occludens 1) in intestinal barrier, with different patterns between each NBM, and increase the expression of both pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-22, IL-10). Notably, none of these NBMs showed any significant genotoxic effect. Conclusions Overall, the results add a piece of evidence on the importance of applying validated in vitro SHDS models for the assessment of NBM intestinal toxicity/biocompatibility. We propose the association of chemical and microscopic characterization, SHDS and in vitro tests on both immortalised and primary cells as a robust screening pipeline useful to monitor the changes in the physico-chemical properties of ingested NBMs and their effects on intestinal cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00491-w.
Collapse
Affiliation(s)
- Giulia Antonello
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.,Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy.,Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy
| | - Arianna Marucco
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Elena Gazzano
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123, Turin, Italy
| | - Panagiotis Kainourgios
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Costanza Ravagli
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | | | - Simone Sprio
- National Research Council, Institute of Science and Technology for Ceramics ISTEC-CNR, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Esperanza Padín-González
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - David Beal
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Francesco Barbero
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Paolo Gasco
- Nanovector Srl, Headwork, Via Livorno 60, 10144, Turin, Italy
| | - Giovanni Baldi
- Colorobbia Consulting Srl, Headwork, Via Pietramarina, 53, 50059, Sovigliana, Vinci, FI, Italy
| | - Marie Carriere
- CEA, CNRS, IRIG, SyMMES-CIBEST, Université Grenoble Alpes, 38000, Grenoble, France
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen Green, Dublin 2, Ireland
| | - Costas A Charitidis
- Research Unit of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou St., 15780, Zographos, Athens, Greece
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, Piazza Polonia, 94, 10126, Turin, Italy
| | - Ivana Fenoglio
- Department of Chemistry, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5 bis, 10126, Turin, Italy.
| |
Collapse
|
14
|
Scarcello E, Sofranko A, Wahle T, Schins RPF. Neurotoxicity of Engineered Nanomaterials: Testing Considerations. Front Public Health 2022; 10:904544. [PMID: 35910929 PMCID: PMC9326246 DOI: 10.3389/fpubh.2022.904544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
As with toxicology in general, major challenges have emerged in its subfield neurotoxicology regarding the testing of engineered nanomaterials (ENM). This is on the one hand due to their complex physicochemical properties, like size, specific surface area, chemical composition as well as agglomeration and dissolution behavior in biological environments. On the other hand, toxicological risk assessment has faced an increasing demand for the development and implementation of non-animal alternative approaches. Regarding the investigation and interpretation of the potential adverse effects of ENM on the brain, toxicokinetic data are relatively scarce and thus hampers dose selection for in vitro neurotoxicity testing. Moreover, recent in vivo studies indicate that ENM can induce neurotoxic and behavioral effects in an indirect manner, depending on their physicochemical properties and route of exposure. Such indirect effects on the brain may proceed through the activation and spill-over of inflammatory mediators by ENM in the respiratory tract and other peripheral organs as well via ENM induced disturbance of the gut microbiome and intestinal mucus barrier. These ENM specific aspects should be incorporated into the ongoing developments of advanced in vitro neurotoxicity testing methods and strategies.
Collapse
|
15
|
Zhang JY, Liu XX, Lin JY, Bao XY, Peng JQ, Gong ZP, Luan X, Chen Y. Biomimetic engineered nanocarriers inspired by viruses for oral-drug delivery. Int J Pharm 2022; 624:121979. [DOI: 10.1016/j.ijpharm.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 10/17/2022]
|
16
|
Yan J, Chen Q, Tian L, Li K, Lai W, Bian L, Han J, Jia R, Liu X, Xi Z. Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota-host co-metabolites and intestinal barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153279. [PMID: 35074372 DOI: 10.1016/j.scitotenv.2022.153279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
The wide use of TiO2 particles in food and the high exposure risk to children have prompted research into the health risks of TiO2. We used the microbiome and targeted metabolomics to explore the potential mechanism of intestinal toxicity of foodborne TiO2 micro-/nanoparticles after oral exposure for 28 days in juvenile mice. Results showed that the gut microbiota-including the abundance of Bacteroides, Bifidobacterium, Lactobacillus, and Prevotella-changed dynamically during exposure. The organic inflammatory response was activated, and lipopolysaccharide levels increased. Intestinal toxicity manifested as increased mucosal permeability, impaired intestinal barrier, immune damage, and pathological changes. The expression of antimicrobial peptides, occludin, and ZO-1 significantly reduced, while that of JNK2 and Src/pSrc increased. Compared with micro-TiO2 particles, the nano-TiO2 particles had strong toxicity. Fecal microbiota transplant confirmed the key role of gut microbiota in intestinal toxicity. The levels of gut microbiota-host co-metabolites, including pyroglutamic acid, L-glutamic acid, phenylacetic acid, and 3-hydroxyphenylacetic acid, changed significantly. Significant changes were observed in the glutathione and propanoate metabolic pathways. There was a significant correlation between the changes in gut microbiota, metabolites, and intestinal cytokine levels. These, together with the intestinal barrier damage signaling pathway, constitute the network mechanism of the intestinal toxicity of TiO2 particles.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Rui Jia
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| |
Collapse
|
17
|
Baranowska-Wójcik E, Szwajgier D, Gustaw K. Effect of TiO 2 on Selected Pathogenic and Opportunistic Intestinal Bacteria. Biol Trace Elem Res 2022; 200:2468-2474. [PMID: 34297273 PMCID: PMC9023387 DOI: 10.1007/s12011-021-02843-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/14/2021] [Indexed: 11/06/2022]
Abstract
Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs-nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, questions concerning its effect on the gastrointestinal microbiota have been raised. In the present study, we examined interactions between bacteria and TiO2. The study involved six pathogenic/opportunistic bacterial strains and four different-sized TiO2 types: three types of food-grade E171 compounds and TiO2 NPs (21 nm). Each bacterial strain was exposed to four concentrations of TiO2 (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the analyzed strains, caused by the type and concentration of TiO2, were observed. The growth of a majority of the strains was shown to be inhibited after exposure to 300 and 600 mg/L of the food-grade E171 and TiO2 NPs.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704, Lublin, Poland.
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704, Lublin, Poland
| | - Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704, Lublin, Poland
| |
Collapse
|
18
|
Utembe W, Tlotleng N, Kamng'ona AW. A systematic review on the effects of nanomaterials on gut microbiota. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100118. [PMID: 35909630 PMCID: PMC9325792 DOI: 10.1016/j.crmicr.2022.100118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Some nanomaterials (NMs) have been shown to possess antimicrobial activity and cause GM dysbiosis. Since NMs are being used widely, a systematic assessment of the effects of NMs on GM is warranted. In this systematic review, a total of 46 in vivo and 22 in vitro studies were retrieved from databases and search engines including Science-Direct, Pubmed and Google scholar. Criteria for assessment of studies included use of in vitro or in vivo studies, characterization of NMs, use of single or multiple doses as well as consistency of results. GM dysbiosis has been studied most widely on TiO2, Ag, Zn-based NMs. There was moderate evidence for GM dysbiosis caused by Zn- and Cu-based NMs, Cu-loaded chitosan NPs and Ag NMs, and anatase TiO2 NPs, as well as low evidence for SWCNTs, nanocellulose, SiO2, Se, nanoplastics, CeO2, MoO3 and graphene-based NMs. Most studies indicate adverse effects of NMs towards GM. However, more work is required to elucidate the differences on the reported effects of NM by type and sex of organisms, size, shape and surface properties of NMs as well as effects of exposure to mixtures of NMs. For consistency and better agreement among studies on GM dysbiosis, there is need for internationally agreed protocols on, inter alia, characterization of NMs, dosing (amounts, frequency and duration), use of sonication, test systems (both in vitro and in vivo), including oxygen levels for in vitro models.
Collapse
Affiliation(s)
- W Utembe
- Toxicology and Biochemistry Department, National Institute for Occupational Health (NIOH), National Health Laboratory Services (NHLS), Johannesburg, South Africa
- Department of Environmental Heath, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2000, South Africa
| | - N Tlotleng
- Epidemiology and Surveillance Department, NIOH, NHLS, Johannesburg, South Africa
| | - AW Kamng'ona
- Department of Biomedical Sciences, Kamuzu University of Health Sciences, Blantyre, Malawi
| |
Collapse
|
19
|
Huang C, Wu D, Khan FA, Wang Y, Xu J, Luo C, Zhang K, Sun F, Huo L. Zinc oxide nanoparticle causes toxicity to the development of mouse oocyte and early embryo. Toxicol Lett 2022; 358:48-58. [DOI: 10.1016/j.toxlet.2022.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/31/2021] [Accepted: 01/18/2022] [Indexed: 12/24/2022]
|
20
|
Baranowska-Wójcik E. Factors Conditioning the Potential Effects TiO2 NPs Exposure on Human Microbiota: a Mini-Review. Biol Trace Elem Res 2021; 199:4458-4465. [PMID: 33447907 PMCID: PMC8516783 DOI: 10.1007/s12011-021-02578-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/05/2021] [Indexed: 01/07/2023]
Abstract
The recent years have seen a significant interest in the applications of nanotechnology in various facets of our lives. Due to their increasingly widespread use, human exposure to nanoparticles (NPs) is fast becoming unavoidable. Among the wide group of nanoparticles currently employed in industry, titanium dioxide nanoparticles, TiO2 NPs, are particularly popular. Due to its white colour, TiO2 is widely used as a whitening food additive (E 171). Yet, there have been few studies aimed at determining its direct impact on bacteria, while the available data suggest that TiO2 NPs may influence microbiota causing problems such as inflammatory bowel disease, obesity, or immunological disorders. Indeed, there are increasing concerns that its presence may lead to intestinal barrier impairment, including dysbiosis of intestinal microbiota. This article aims to present an overview of studies conducted to date with regard to the impact of TiO2 NPs on human microbiota as well as factors that can affect the same. Such information is necessary if we are to conclusively determine the potential toxicity of inorganic nanoparticles.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, Lublin, Poland.
| |
Collapse
|
21
|
Moor J, Wüthrich T, Aebi S, Mostacci N, Overesch G, Oppliger A, Hilty M. Influence of pig farming on human Gut Microbiota: role of airborne microbial communities. Gut Microbes 2021; 13:1-13. [PMID: 34060426 PMCID: PMC8172160 DOI: 10.1080/19490976.2021.1927634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
It has been hypothesized that both genetics and diet influence the composition of the human cecal microbiota. However, it remains unclear whether and how occupational exposure to microbes impacts the microbial communities in human guts. Using a One Health approach, we visited pig farms (n = 26) and collected stool specimens from pig workers (n = 59), pig barn air samples (n = 19), and rectal swabs from pigs at three different growth stages (n = 144). Stool samples from cattle workers were included as a control group (n = 22). Each sample's microbiota was characterized using 16S rRNA gene sequencing and the DADA2 pipeline.We obtained a significantly different clustering of the microbial compositions of pig and cattle workers by permutational multivariate analysis of variance (PERMANOVA; P < .001). Workers primarily exposed to pigs had higher relative abundances of Prevotellaceae and less Bacteroidaceae than workers exposed to cattle. We also found that the microbial compositions of pig workers' stool samples shared extensive fractions with the samples from their pigs. We also identified amplicon sequencing variants (ASVs) in the airborne microbiota which were likely involved in zoonotic transmission events.We hypothesize that ASVs originating from pig feces are aerosolized and, through breathing, get trapped in the pig farm workers' upper respiratory tract from where they can get swallowed. Consequently, some of the animal associated ASVs are transferred into the gastrointestinal tracts (GITs) which leads to changes in the composition of the human gut microbiota. The importance of this finding for human health must be investigated further.
Collapse
Affiliation(s)
- Julia Moor
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tsering Wüthrich
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland,Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Suzanne Aebi
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Nadezda Mostacci
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Gudrun Overesch
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Anne Oppliger
- Unisante, Department of Occupational and Environmental Health, University of Lausanne, Lausanne, Switzerland
| | - Markus Hilty
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland,Markus Hilty Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001Bern, Switzerland, Phone +41 31 632 49 83
| |
Collapse
|
22
|
Bazina L, Bitounis D, Cao X, DeLoid GM, Parviz D, Strano MS, Greg Lin HY, Bell DC, Thrall BD, Demokritou P. Biotransformations and cytotoxicity of eleven graphene and inorganic two-dimensional nanomaterials using simulated digestions coupled with a triculture in vitro model of the human gastrointestinal epithelium. ENVIRONMENTAL SCIENCE. NANO 2021; 8:3233-3249. [PMID: 37465590 PMCID: PMC10353755 DOI: 10.1039/d1en00594d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Background Engineered nanomaterials (ENMs) have already made their way into myriad applications and products across multiple industries. However, the potential health risks of exposure to ENMs remain poorly understood. This is particularly true for the emerging class of ENMs know as 2-dimensional nanomaterials (2DNMs), with a thickness of one or a few layers of atoms arranged in a planar structure. Methods The present study assesses the biotransformations and in vitro cytotoxicity in the gastrointestinal tract of 11 2DNMs, namely graphene, graphene oxide (GO), partially reduced graphene oxide (prGO), reduced graphene oxide (rGO), hexagonal boron nitride (h-BN), molybdenum disulphide (MoS2), and tungsten disulphide (WS2). The evaluated pristine materials were either readily dispersed in water or dispersed with the use of a surfactant (Na-cholate or PF108). Materials dispersed in a fasting food model (FFM, water) were subjected to simulated 3-phase (oral, gastric, and small intestinal) digestion to replicate the biotransformations that would occur in the GIT after ingestion. A triculture model of small intestinal epithelium was used to assess the effects of the digested products (digestas) on epithelial layer integrity, cytotoxicity, viability, oxidative stress, and initiation of apoptosis. Results Physicochemical characterization of the 2DNMs in FFM dispersions and in small intestinal digestas revealed significant agglomeration by all materials during digestion, most prominently by graphene, which was likely caused by interactions with digestive proteins. Also, MoS2 had dissolved by ~75% by the end of simulated digestion. Other than a low but statistically significant increase in cytotoxicity observed with all inorganic materials and graphene dispersed in PF108, no adverse effects were observed in the exposed tricultures. Conclusions Our results suggest that occasional ingestion of small quantities of 2DNMs may not be highly cytotoxic in a physiologically relevant in vitro model of the intestinal epithelium. Still, their inflammatory or genotoxic potential after short- or long-term ingestion remains unclear and needs to be studied in future in vitro and in vivo studies. These would include studies of effects on co-ingested nutrient digestion and absorption, which have been documented for numerous ingested ENMs, as well as effects on the gut microbiome, which can have important health implications.
Collapse
Affiliation(s)
- Lila Bazina
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| | - Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hao-Yu Greg Lin
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David C Bell
- Center for Nanoscale Systems, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Brian D Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA 99354, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School T.H. Chan of Public Health, Boston, MA 02115, USA
| |
Collapse
|
23
|
Lotfipour F, Shahi S, Farjami A, Salatin S, Mahmoudian M, Dizaj SM. Safety and Toxicity Issues of Therapeutically Used Nanoparticles from the Oral Route. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9322282. [PMID: 34746313 PMCID: PMC8570876 DOI: 10.1155/2021/9322282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/18/2021] [Indexed: 12/22/2022]
Abstract
The emerging science of nanotechnology sparked a research attention in its potential benefits in comparison to the conventional materials used. Oral products prepared via nanoparticles (NPs) have garnered great interest worldwide. They are used commonly to incorporate nutrients and provide antimicrobial activity. Formulation into NPs can offer opportunities for targeted drug delivery, improve drug stability in the harsh environment of the gastrointestinal (GI) tract, increase drug solubility and bioavailability, and provide sustained release in the GI tract. However, some issues like the management of toxicity and safe handling of NPs are still debated and should be well concerned before their application in oral preparations. This article will help the reader to understand safety issues of NPs in oral drug delivery and provides some recommendations to the use of NPs in the drug industry.
Collapse
Affiliation(s)
- Farzaneh Lotfipour
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahriar Shahi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afsaneh Farjami
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Bredeck G, Kämpfer AAM, Sofranko A, Wahle T, Büttner V, Albrecht C, Schins RPF. Ingested Engineered Nanomaterials Affect the Expression of Mucin Genes-An In Vitro-In Vivo Comparison. NANOMATERIALS 2021; 11:nano11102621. [PMID: 34685068 PMCID: PMC8537393 DOI: 10.3390/nano11102621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
The increasing use of engineered nanomaterials (ENM) in food has fueled the development of intestinal in vitro models for toxicity testing. However, ENM effects on intestinal mucus have barely been addressed, although its crucial role for intestinal health is evident. We investigated the effects of ENM on mucin expression and aimed to evaluate the suitability of four in vitro models of increasing complexity compared to a mouse model exposed through feed pellets. We assessed the gene expression of the mucins MUC1, MUC2, MUC5AC, MUC13 and MUC20 and the chemokine interleukin-8 in pre-confluent and confluent HT29-MTX-E12 cells, in stable and inflamed triple cultures of Caco-2, HT29-MTX-E12 and THP-1 cells, and in the ileum of mice following exposure to TiO2, Ag, CeO2 or SiO2. All ENM had shared and specific effects. CeO2 downregulated MUC1 in confluent E12 cells and in mice. Ag induced downregulation of Muc2 in mice. Overall, the in vivo data were consistent with the findings in the stable triple cultures and the confluent HT29-MTX-E12 cells but not in pre-confluent cells, indicating the higher relevance of advanced models for hazard assessment. The effects on MUC1 and MUC2 suggest that specific ENM may lead to an elevated susceptibility towards intestinal infections and inflammations.
Collapse
|
25
|
Perez L, Scarcello E, Ibouraadaten S, Yakoub Y, Leinardi R, Ambroise J, Bearzatto B, Gala JL, Paquot A, Muccioli GG, Bouzin C, van den Brule S, Lison D. Dietary nanoparticles alter the composition and function of the gut microbiota in mice at dose levels relevant for human exposure. Food Chem Toxicol 2021; 154:112352. [PMID: 34153347 DOI: 10.1016/j.fct.2021.112352] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/02/2021] [Accepted: 06/12/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nanotechnologies provide new opportunities for improving the safety, quality, shelf life, flavor and appearance of foods. The most common nanoparticles (NPs) in human diet are silver metal, mainly present in food packaging and appliances, and silicon and titanium dioxides used as additives. The rapid development and commercialization of consumer products containing these engineered NPs is, however, not well supported by appropriate toxicological studies and risk assessment. Local and systemic toxicity and/or disruption of the gut microbiota (GM) have already been observed after oral administration of NPs in experimental animals, but results are not consistent and doses used were often much higher than the estimated human intakes. In view of the strong evidence linking alterations of the GM to cardiometabolic (CM) diseases, we hypothesized that dietary NPs might disturb this GM-CM axis. MATERIALS AND METHODS We exposed male C57BL/6JRj mice (n = 13 per dose group) to dietary NPs mixed in food pellets at doses relevant for human exposure: Ag (0, 4, 40 or 400 μg/kg pellet), SiO2 (0, 0.8, 8 and 80 mg/kg pellet) or TiO2 (0, 0.4, 4 or 40 mg/kg pellet). After 24 weeks of exposure, we assessed effects on the GM and CM health (n = 8 per dose group). The reversibility of the effects was examined after 8 additional weeks without NPs exposure (recovery period, n ≤ 5 per dose group). RESULTS No overt toxicity was recorded. The GM β-diversity was dose-dependently disrupted by the three NPs, and the bacterial short chain fatty acids (SCFAs) were dose-dependently reduced after the administration of SiO2 and TiO2 NPs. These effects disappeared completely or partly after the recovery period, strengthening the association with dietary NPs. We did not observe atheromatous disease or glucose intolerance after NP exposure. Instead, dose-dependent decreases in the expression of IL-6 in the liver, circulating triglycerides (TG) and urea nitrogen (BUN) were recorded after administration of the NPs. CONCLUSION We found that long-term oral exposure to dietary NPs at doses relevant for estimated human intakes disrupts the GM composition and function. These modifications did not appear associated with atheromatous or deleterious metabolic outcomes.
Collapse
Affiliation(s)
- Laeticia Perez
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Louvain centre for Toxicology and Applied Pharmacology, Avenue Hippocrate 57, 1200, Brussels, Belgium.
| | - Eleonora Scarcello
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Louvain centre for Toxicology and Applied Pharmacology, Avenue Hippocrate 57, 1200, Brussels, Belgium
| | - Saloua Ibouraadaten
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Louvain centre for Toxicology and Applied Pharmacology, Avenue Hippocrate 57, 1200, Brussels, Belgium
| | - Yousof Yakoub
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Louvain centre for Toxicology and Applied Pharmacology, Avenue Hippocrate 57, 1200, Brussels, Belgium
| | - Riccardo Leinardi
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Louvain centre for Toxicology and Applied Pharmacology, Avenue Hippocrate 57, 1200, Brussels, Belgium
| | - Jérôme Ambroise
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Centre de Technologies Moléculaires Appliquées, Clos Chapelle-aux-champs 30, 1200, Brussels, Belgium
| | - Bertrand Bearzatto
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Centre de Technologies Moléculaires Appliquées, Clos Chapelle-aux-champs 30, 1200, Brussels, Belgium
| | - Jean-Luc Gala
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Centre de Technologies Moléculaires Appliquées, Clos Chapelle-aux-champs 30, 1200, Brussels, Belgium
| | - Adrien Paquot
- Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Avenue Mounier 73, B1.72.01, 1200, Brussels, Belgium
| | - Giulio G Muccioli
- Université catholique de Louvain, Louvain Drug Research Institute, Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Avenue Mounier 73, B1.72.01, 1200, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Sybille van den Brule
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Louvain centre for Toxicology and Applied Pharmacology, Avenue Hippocrate 57, 1200, Brussels, Belgium
| | - Dominique Lison
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Louvain centre for Toxicology and Applied Pharmacology, Avenue Hippocrate 57, 1200, Brussels, Belgium.
| |
Collapse
|
26
|
Huang X, Tang M. Review of gut nanotoxicology in mammals: Exposure, transformation, distribution and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145078. [PMID: 33940715 DOI: 10.1016/j.scitotenv.2021.145078] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Nanomaterials are increasingly used in food processing, daily necessities and other fields due to their excellent properties, and increase the environmental contamination. Human beings will inevitably come into contact with these nanomaterials through multiple exposure routes especially oral exposure. The intestine is an important organ for nutrient absorption and physiologic barrier, which may be the main target of nanoparticles (NPs) exposure. However, for a long time, research on the toxicity of NPs has mainly focused on organs such as liver, kidney and brain. There are few assessment data over the intestinal safety. Recently, as reported, NPs can be translocated to the intestinal part in mammals and would be distributed in different substructures of intestines, thus causing damage to the structure and function of the intestine, in which the gut microbiota and its metabolites play important roles. In addition, due to the special physiological environment of gut, nanomaterials will undergo complex transformations that may cause different biological effects from their original form. Therefore, this review aims to assess the potential adverse effects of NPs on intestine and its possible mechanisms through the results of in vivo mammalian experiments. In addition, the exposure pathway, biodistribution and biotransformation of NPs in the intestine are also considered. We hope this review will arouse people's attention to the intestinal nanotoxicology and provide basic information for further related studies.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
27
|
Baranowska-Wójcik E, Gustaw K, Szwajgier D, Oleszczuk P, Pawlikowska-Pawlęga B, Pawelec J, Kapral-Piotrowska J. Four Types of TiO 2 Reduced the Growth of Selected Lactic Acid Bacteria Strains. Foods 2021; 10:foods10050939. [PMID: 33923019 PMCID: PMC8146636 DOI: 10.3390/foods10050939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/14/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
Food-grade titanium dioxide (TiO2) containing a nanoparticle fraction (TiO2 NPs -nanoparticles) is widely used as a food additive (E171 in the EU). In recent years, it has increasingly been raising controversies as to the presence or absence of its harmful effects on the gastrointestinal microbiota. The complexity and variability of microbiota species present in the human gastrointestinal tract impede the assessment of the impact of food additives on this ecosystem. As unicellular organisms, bacteria are a very convenient research model for investigation of the toxicity of nanoparticles. We examined the effect of TiO2 (three types of food-grade E171 and one TiO2 NPs, 21 nm) on the growth of 17 strains of lactic acid bacteria colonizing the human digestive tract. Each bacterial strain was treated with TiO2 at four concentrations (60, 150, 300, and 600 mg/L TiO2). The differences in the growth of the individual strains were caused by the type and concentration of TiO2. It was shown that the growth of a majority of the analyzed strains was decreased by the application of E171 and TiO2 NPs already at the concentration of 150 and 300 mg/L. At the highest dose (600 mg/L) of the nanoparticles, the reactions of the bacteria to the different TiO2 types used in the experiment varied.
Collapse
Affiliation(s)
- Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
- Correspondence: (E.B.-W.); (D.S.); Tel.: +48-81-462-33-94 (E.B.-W.); Tel.: +48-81-462-33-68 (D.S.)
| | - Klaudia Gustaw
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences, Skromna Street 8, 20-704 Lublin, Poland;
- Correspondence: (E.B.-W.); (D.S.); Tel.: +48-81-462-33-94 (E.B.-W.); Tel.: +48-81-462-33-68 (D.S.)
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
| | - Bożena Pawlikowska-Pawlęga
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.P.-P.); (J.K.-P.)
| | - Jarosław Pawelec
- Institute Microscopic Laboratory, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Justyna Kapral-Piotrowska
- Department of Functional Anatomy and Cytobiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (B.P.-P.); (J.K.-P.)
| |
Collapse
|
28
|
Kämpfer AAM, Busch M, Büttner V, Bredeck G, Stahlmecke B, Hellack B, Masson I, Sofranko A, Albrecht C, Schins RPF. Model Complexity as Determining Factor for In Vitro Nanosafety Studies: Effects of Silver and Titanium Dioxide Nanomaterials in Intestinal Models. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004223. [PMID: 33458953 DOI: 10.1002/smll.202004223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/21/2020] [Indexed: 06/12/2023]
Abstract
With the rising interest in the effects of orally ingested engineered nanomaterials (ENMs), much effort is undertaken to develop and advance intestinal in vitro models. The cytotoxic, proinflammatory, and DNA damaging properties of polyvinylpyrrolidone-capped silver (Ag-PVP) and titanium dioxide (TiO2 , P25) ENM in four in vitro models of increasing complexity-from proliferating Caco-2 and HT29-MTX-E12 monocultures to long-term transwell triple cultures including THP-1 macrophages to reproduce the human intestine in healthy versus inflamed-like state-are studied. Results are compared against in vivo effects of the same ENM through intestinal tissue analysis from 28-day oral exposure studies in mice. Adverse responses are only observed in monocultures and suggest toxic potential for both ENM, typically showing stronger effects for Ag-PVP than for TiO2 . By contrast, no adverse effects are observed in either the transwell cultures or the analyzed murine tissues. The data provide further support that monoculture models represent a cost and time efficient tool for early-phase hazard assessment. However, the observed similarities in morphology and ENM effects in murine intestinal tissue and the in vitro triple culture model suggest that advanced multifacetted research questions concerning oral ENM exposure are more adequately addressed by the more complex and time intensive models.
Collapse
Affiliation(s)
- Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| | - Mathias Busch
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| | - Veronika Büttner
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| | - Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| | - Burkhard Stahlmecke
- IUTA - Institute of Energy and Environmental Technology, Bliersheimer Str. 58-60, Duisburg, 47229, Germany
| | - Bryan Hellack
- IUTA - Institute of Energy and Environmental Technology, Bliersheimer Str. 58-60, Duisburg, 47229, Germany
- UBA - German Environment Agency, Paul-Ehrlich-Str. 29, Langen, 63225, Germany
| | - Isabelle Masson
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| | - Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| | - Catrin Albrecht
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, Düsseldorf, 40225, Germany
| |
Collapse
|
29
|
Liu Y, Wang T, Si B, Du H, Liu Y, Waqas A, Huang S, Zhao G, Chen S, Xu A. Intratracheally instillated diesel PM 2.5 significantly altered the structure and composition of indigenous murine gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111903. [PMID: 33429322 DOI: 10.1016/j.ecoenv.2021.111903] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
A diverse and large community of gut microbiota reside in the intestinal tract of various organisms and play important roles in metabolism and immune homeostasis of its host. The disorders of microbiota-host interaction have been closely associated with numerous chronic inflammatory and metabolic diseases, including inflammatory bowel disease and type 2 diabetes. The accumulating evidence has shown that fine particulate matter (PM2.5) exposure contributes to the diabetes, atherosclerosis and inflammatory bowel diseases; however, few studies have explored the impact of inhaled diesel PM2.5 on gut microbiota in vivo. In this study, C57BL/6J mice were exposed to diesel PM2.5 for 14 days via intratracheal instillation, and colon tissues and feces were harvested for microbiota analysis. Using high-throughput sequencing technology, we observed that intratracheally instillated diesel PM2.5 significantly altered the gut microbiota diversity and community. At the phylum and genus levels, principal coordinate analysis (PCoA) and principal component analysis (PCA) indicated pronounced segregation of microbiota compositions, which were further confirmed by β diversity analysis. As the most affected phylum, Bacteroidetes was greatly diminished by diesel PM2.5. On the genus level, Escherichia, Parabacteroides, Akkermansia, and Oscillibacter were significantly elevated by diesel PM2.5 exposure. Our findings provided clear evidence that exposure to diesel PM2.5 via intratracheal instillation deteriorated the gastrointestinal (GI) tract and significantly altered the structure and composition of gut microbiota, which might subsequently contribute to the developmental abnormalities of inflammation, immunity and metabolism.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tong Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bo Si
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China; University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hua Du
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Ahmed Waqas
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Shengwei Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Guoping Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory of Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China; Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
30
|
Chen Z, Han S, Zhang J, Zheng P, Liu X, Zhang Y, Jia G. Exploring urine biomarkers of early health effects for occupational exposure to titanium dioxide nanoparticles using metabolomics. NANOSCALE 2021; 13:4122-4132. [PMID: 33570056 DOI: 10.1039/d0nr08792k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many experimental studies have demonstrated that titanium dioxide nanoparticles (TiO2 NPs) could induce adverse health effects in vivo and in vitro. But epidemiological evidence and biomarkers related to early health effects are still lacking. This study aimed to explore biomarkers in the urine samples of workers occupationally exposed to a relatively low concentration of TiO2 NPs. A cross-sectional study was conducted in Jinan, China, involving 132 employees of a TiO2 NP manufacturing plant, among which the exposed group and control group were 1 : 1 matched by confounding factors such as gender, age, BMI, smoking and drinking. Untargeted metabolomics was performed in urine samples using high performance liquid chromatography-mass spectrometry (HPLC-MS) technology. The differential metabolites between the TiO2 NP exposed group and the control group were analyzed and then screened for potential biomarkers using bioinformatics methods. Metabolomics found a total of 1760 differentially expressed metabolites in the TiO2 NP exposed group, of which 60 differential metabolites were simultaneously confirmed by one-dimensional and multi-dimensional statistical analysis. Among these 60 differential metabolites, the relative expression of 27 metabolites increased, and the remaining 33 decreased. Pathway enrichment analysis further found that the metabolic pathway of long chain acyl-coa dehydrogenase deficiency (Lcad) was significantly enriched. Ten differential metabolites were selected as potential biomarkers of occupational exposure to TiO2 NPs using machine learning methods, including dibenzyl ether, quassimarin, tryptophan, etc. The receiver operating characteristic curves (ROCs) of these potential biomarkers showed good sensitivity and specificity. These potential biomarkers also had biological basis for occupational exposure to TiO2 NPs. Therefore, urine metabolites represented by dibenzyl ether are considered as good biomarkers of early health effects for occupational exposure to TiO2 NPs.
Collapse
Affiliation(s)
- Zhangjian Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Shuo Han
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Jiahe Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Pai Zheng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China.
| | - Xiaodong Liu
- Beijing Institute of Occupational Disease Prevention and Treatment, No. 50 Yikesong Xiangshan, Haidian District, Beijing, 100093, People's Republic of China
| | - Yuanyuan Zhang
- Beijing Institute of Occupational Disease Prevention and Treatment, No. 50 Yikesong Xiangshan, Haidian District, Beijing, 100093, People's Republic of China
| | - Guang Jia
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China.
| |
Collapse
|
31
|
van den Brule S, Rappe M, Ambroise J, Bouzin C, Dessy C, Paquot A, Muccioli GG, Lison D. Diesel exhaust particles alter the profile and function of the gut microbiota upon subchronic oral administration in mice. Part Fibre Toxicol 2021; 18:7. [PMID: 33563307 PMCID: PMC7871568 DOI: 10.1186/s12989-021-00400-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ambient air pollution by particulate matters, including diesel exhaust particles (DEP), is a major cause of cardiovascular and metabolic mortality worldwide. The mechanisms by which DEP cause these adverse outcomes are not completely understood. Because the gut microbiota controls cardiovascular and metabolic health, we hypothesized that the fraction of inhaled DEP which reach the gut after mucociliary clearance and swallowing might induce gut dysbiosis and, in turn, contribute to aggravate or induce cardiovascular and metabolic diseases. RESULTS Female ApoE-/- mice fed a Western diet, and wild-type (C57Bl/6) mice fed standard diet were gavaged with DEP (SRM2975) doses corresponding to mucociliary clearance from inhalation exposure (200 or 1000 ng/day, 3 times a week for 3 months; and 40, 200 or 1000 ng/day, 3 times a week for 6 months, respectively). No mortality, overt systemic or digestive toxicity was observed. A dose-dependent alteration of the gut microbiota was recorded in both strains. In ApoE-/-, β-diversity was modified by DEP, but no significant modification of the relative abundance of the phyla, families or genera was identified. In C57BL/6 mice, DEP reduced α-diversity (Shannon and Simpson indices), and modified β-diversity, including a reduction of the Proteobacteria and Patescibacteria phyla, and an increase of the Campylobacterota phylum. In both mouse models, perturbation of the gut microbiota composition was associated with a dose-dependent reduction of bacterial short chain fatty acids (butyrate and propionate) in cecal content. However, DEP ingestion did not aggravate (ApoE-/-), or induce (C57BL/6 mice) atherosclerotic plaques, and no metabolic alteration (glucose tolerance, resistance to insulin, or lipidemia) was recorded. CONCLUSIONS We show here that oral exposure to DEP, at doses relevant for human health, changes the composition and function of the gut microbiota. These modifications were, however, not translated into ultimate atherosclerotic or metabolic outcomes.
Collapse
Affiliation(s)
- Sybille van den Brule
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Margaux Rappe
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Jérôme Ambroise
- Centre de Technologies Moléculaires Appliquées, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Caroline Bouzin
- IREC Imaging Platform (2IP), Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique, UCLouvain and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Adrien Paquot
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Dominique Lison
- Louvain centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium.
| |
Collapse
|
32
|
Gillois K, Stoffels C, Leveque M, Fourquaux I, Blesson J, Mils V, Cambier S, Vignard J, Terrisse H, Mirey G, Audinot JN, Theodorou V, Ropers MH, Robert H, Mercier-Bonin M. Repeated exposure of Caco-2 versus Caco-2/HT29-MTX intestinal cell models to (nano)silver in vitro: Comparison of two commercially available colloidal silver products. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142324. [PMID: 33254900 DOI: 10.1016/j.scitotenv.2020.142324] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/12/2023]
Abstract
Colloidal silver products are sold for a wide range of disinfectant and health applications. This has increased the potential for human exposure to silver nanoparticles (AgNPs) and ions (Ag+), for which oral ingestion is considered to be a major route of exposure. Our objective was to evaluate and compare the toxicity of two commercially available colloidal silver products on two human intestinal epithelial models under realistic exposure conditions. Mesosilver™ and AgC were characterized and a concentration range between 0.1 and 12 μg/mL chosen. Caco-2 cells vs. co-culture of Caco-2 and mucus-secreting HT29-MTX cells (90/10) were used. Repeated exposure was carried out to determine cell viability over 18 days of cell differentiation in 24-well plates. Selected concentrations (0.1, 1, and 3 μg/mL) were tested on cells cultured in E-plates and Transwells with the same repeated exposure regimen, to determine cell impedance, and cell viability and trans-epithelial electrical resistance (TEER), respectively. Silver uptake, intracellular localisation, and translocation were determined by CytoViva™, HIM-SIMS, and ICP-MS. Genotoxicity was determined on acutely-exposed proliferating Caco-2 cells by γH2AX immunofluorescence staining. Repeated exposure of a given concentration of AgC, which is composed solely of ionic silver, generally exerted more toxic effects on Caco-2 cells than Mesosilver™, which contains a mix of AgNPs and ionic silver. Due to its patchy structure, the presence of mucus in the Caco-2/HT29-MTX co-culture only slightly mitigated the deleterious effects on cell viability. Increased genotoxicity was observed for AgC on proliferating Caco-2 cells. Silver uptake, intracellular localisation, and translocation were similar. In conclusion, Mesosilver™ and AgC colloidal silver products show different levels of gut toxicity due to the forms of distinct silver (AgNPs and/or Ag+) contained within. This study highlights the applicability of high-resolution (chemical) imaging to detect and localize silver and provides insights into its uptake mechanisms, intracellular fate and cellular effects.
Collapse
Affiliation(s)
- Kévin Gillois
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Charlotte Stoffels
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Mathilde Leveque
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Isabelle Fourquaux
- Centre de Microscopie Électronique Appliquée à la Biologie, CMEAB, 133 route de Narbonne, 31062 Toulouse, France
| | - Justine Blesson
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Valérie Mils
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Julien Vignard
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Hélène Terrisse
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000 Nantes, France
| | - Gladys Mirey
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Jean-Nicolas Audinot
- Luxembourg Institute of Science and Technology (LIST), 41, rue de Brill, Belvaux L-4422, Luxembourg
| | - Vassilia Theodorou
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | | | - Hervé Robert
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim, Université de Toulouse, INRAE, INP-ENVT, INP-EI-Purpan, Université de Toulouse 3 Paul Sabatier, Toulouse, France.
| |
Collapse
|
33
|
Cao Y, Li S, Chen J. Modeling better in vitro models for the prediction of nanoparticle toxicity: a review. Toxicol Mech Methods 2021; 31:1-17. [PMID: 32972312 DOI: 10.1080/15376516.2020.1828521] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/22/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Exposure to nanoparticles (NPs) is plausible in real life due to ambient particulate exposure or development of nanotechnologies, hence the evaluation of NP toxicity as well as mechanism-based studies are necessary. The in vitro models allow rapid testing of NP toxicity, but it is required that the developed in vitro models are reliable to reflect the toxicity of NPs. In this review, we discussed the principles to model better in vitro models to predict the toxicity of NPs based on our own experiences and works of literature. We suggested that in vitro nanotoxicological studies should consider (1) using normal cells because the commonly used cancer cell lines might not reflect the toxicity of NPs to normal tissues; (2) the possible influence of biological molecules to reflect the toxicity of NPs in a biological microenvironment; (3) the influence of pathophysiological conditions to mimic the responses of NPs under different in vivo conditions; and (4) developing advanced tissue-based models to reflect the responses of tissues/organs to NPs. It is our hope that this review may provide useful information for the future design of in vitro nanotoxicological studies.
Collapse
Affiliation(s)
- Yi Cao
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| | - Jiamao Chen
- Key Laboratory of Environment-Friendly Chemistry and Applications of Ministry Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, P. R. China
| |
Collapse
|
34
|
Garcés M, Cáceres L, Chiappetta D, Magnani N, Evelson P. Current understanding of nanoparticle toxicity mechanisms and interactions with biological systems. NEW J CHEM 2021. [DOI: 10.1039/d1nj01415c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanotechnology is an emerging science involving the manipulation of matter on the nanometer scale.
Collapse
Affiliation(s)
- Mariana Garcés
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Departamento de Ciencias Químicas
- Cátedra de Química General e Inorgánica
- Buenos Aires
| | - Lourdes Cáceres
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Departamento de Ciencias Químicas
- Cátedra de Química General e Inorgánica
- Buenos Aires
| | - Diego Chiappetta
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Cátedra de Tecnología Farmacéutica I
- Buenos Aires
- Argentina
| | - Natalia Magnani
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Departamento de Ciencias Químicas
- Cátedra de Química General e Inorgánica
- Buenos Aires
| | - Pablo Evelson
- Universidad de Buenos Aires
- Facultad de Farmacia y Bioquímica
- Departamento de Ciencias Químicas
- Cátedra de Química General e Inorgánica
- Buenos Aires
| |
Collapse
|
35
|
Dumková J, Smutná T, Vrlíková L, Dočekal B, Kristeková D, Večeřa Z, Husáková Z, Jakešová V, Jedličková A, Mikuška P, Alexa L, Coufalík P, Tvrdoňová M, Křůmal K, Vaculovič T, Kanický V, Hampl A, Buchtová M. A Clearance Period after Soluble Lead Nanoparticle Inhalation Did Not Ameliorate the Negative Effects on Target Tissues Due to Decreased Immune Response. Int J Mol Sci 2020; 21:ijms21228738. [PMID: 33228049 PMCID: PMC7699374 DOI: 10.3390/ijms21228738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
The inhalation of metal (including lead) nanoparticles poses a real health issue to people and animals living in polluted and/or industrial areas. In this study, we exposed mice to lead(II) nitrate nanoparticles [Pb(NO3)2 NPs], which represent a highly soluble form of lead, by inhalation. We aimed to uncover the effects of their exposure on individual target organs and to reveal potential variability in the lead clearance. We examined (i) lead biodistribution in target organs using laser ablation and inductively coupled plasma mass spectrometry (LA-ICP-MS) and atomic absorption spectrometry (AAS), (ii) lead effect on histopathological changes and immune cells response in secondary target organs and (iii) the clearance ability of target organs. In the lungs and liver, Pb(NO3)2 NP inhalation induced serious structural changes and their damage was present even after a 5-week clearance period despite the lead having been almost completely eliminated from the tissues. The numbers of macrophages significantly decreased after 11-week Pb(NO3)2 NP inhalation; conversely, abundance of alpha-smooth muscle actin (α-SMA)-positive cells, which are responsible for augmented collagen production, increased in both tissues. Moreover, the expression of nuclear factor κB (NF-κB) and selected cytokines, such as tumor necrosis factor alpha (TNFα), transforming growth factor beta 1 (TGFβ1), interleukin 6(IL-6), IL-1α and IL-1β , displayed a tissue-specific response to lead exposure. In summary, diminished inflammatory response in tissues after Pb(NO3)2 NPs inhalation was associated with prolonged negative effect of lead on tissues, as demonstrated by sustained pathological changes in target organs, even after long clearance period.
Collapse
Affiliation(s)
- Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.D.); (T.S.); (A.H.)
| | - Tereza Smutná
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.D.); (T.S.); (A.H.)
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (L.V.); (D.K.); (V.J.); (A.J.)
| | - Lucie Vrlíková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (L.V.); (D.K.); (V.J.); (A.J.)
| | - Bohumil Dočekal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (B.D.); (Z.V.); (P.M.); (L.A.); (P.C.); (K.K.)
| | - Daniela Kristeková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (L.V.); (D.K.); (V.J.); (A.J.)
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Zbyněk Večeřa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (B.D.); (Z.V.); (P.M.); (L.A.); (P.C.); (K.K.)
| | - Zuzana Husáková
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (Z.H.); (M.T.); (T.V.); (V.K.)
| | - Veronika Jakešová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (L.V.); (D.K.); (V.J.); (A.J.)
| | - Adriena Jedličková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (L.V.); (D.K.); (V.J.); (A.J.)
| | - Pavel Mikuška
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (B.D.); (Z.V.); (P.M.); (L.A.); (P.C.); (K.K.)
| | - Lukáš Alexa
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (B.D.); (Z.V.); (P.M.); (L.A.); (P.C.); (K.K.)
| | - Pavel Coufalík
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (B.D.); (Z.V.); (P.M.); (L.A.); (P.C.); (K.K.)
| | - Michaela Tvrdoňová
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (Z.H.); (M.T.); (T.V.); (V.K.)
| | - Kamil Křůmal
- Department of Environmental Analytical Chemistry, Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (B.D.); (Z.V.); (P.M.); (L.A.); (P.C.); (K.K.)
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (Z.H.); (M.T.); (T.V.); (V.K.)
| | - Viktor Kanický
- Department of Chemistry, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic; (Z.H.); (M.T.); (T.V.); (V.K.)
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic; (J.D.); (T.S.); (A.H.)
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, 602 00 Brno, Czech Republic; (L.V.); (D.K.); (V.J.); (A.J.)
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
36
|
Marucco A, Prono M, Beal D, Alasonati E, Fisicaro P, Bergamaschi E, Carriere M, Fenoglio I. Biotransformation of Food-Grade and Nanometric TiO 2 in the Oral-Gastro-Intestinal Tract: Driving Forces and Effect on the Toxicity toward Intestinal Epithelial Cells. NANOMATERIALS 2020; 10:nano10112132. [PMID: 33120920 PMCID: PMC7692287 DOI: 10.3390/nano10112132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
Background: Oral exposure to titanium dioxide (TiO2) is common since it is widely used in food and pharmaceutical products. Concern on the safety of this substance has been recently raised, due to the presence of an ultrafine fraction in food-grade TiO2. Discrepancy exists among data reported in in vitro and in vivo studies on intestinal acute/chronic toxicity of TiO2. This might be due to the different biological identity of TiO2 in traditional in vitro test by respect in vivo conditions. Methods: One food-grade TiO2 and two nanometric TiO2 samples were treated with a simulated human digestive dystem (SHDS) in order to investigate the bio-transformation occurring to the particles once ingested in term of size distribution (Dynamic Light Scattering—DLS-, Flow Particle Imaging, Asymmetric Flow Field Flow Fractionation-AF4-) and surface modification (Electrophoretic Light Scattering—ELS-, Electron Paramagnetic Resonance Spectroscopy—EPR-). The effect of SHDS on the cyto-, genotoxicity and potential to induce oxidative stress towards human colorectal carcinoma HCT116 cells was also assessed. Results: Aggregation as a consequence of the high ionic strength of the gastric and intestinal simulated fluids was observed, together with the formation of a partially irreversible bio-corona containing phosphate ions and proteins. Such bio-corona led to a partial masking of the TiO2 particles surface and reactivity. Pristine and treated TiO2 nanoparticles showed comparable acute toxicity and genotoxicity toward HCT116 cells, whereas a small decrease of the induction of oxidative stress after treatment was observed. Conclusions: Overall the results underline the importance of SHDS as a tool to improve the predictive power of in vitro tests towards intestinal nanomaterial toxicity.
Collapse
Affiliation(s)
- Arianna Marucco
- Department of Chemistry, University of Torino, 10125 Torino, Italy;
| | - Marion Prono
- Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France; (M.P.); (D.B.)
| | - David Beal
- Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France; (M.P.); (D.B.)
| | - Enrica Alasonati
- Département Biomédicale et Chimie Inorganique, Laboratoire National de Métrologie et D’essais, F-75724 Paris, France; (E.A.); (P.F.)
| | - Paola Fisicaro
- Département Biomédicale et Chimie Inorganique, Laboratoire National de Métrologie et D’essais, F-75724 Paris, France; (E.A.); (P.F.)
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Torino, 10126 Torino, Italy;
| | - Marie Carriere
- Chimie Interface Biologie pour l’Environnement, la Santé et la Toxicologie (CIBEST), University Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France; (M.P.); (D.B.)
- Correspondence: (M.C.); (I.F.)
| | - Ivana Fenoglio
- Department of Chemistry, University of Torino, 10125 Torino, Italy;
- Correspondence: (M.C.); (I.F.)
| |
Collapse
|
37
|
Setyawati MI, Zhao Z, Ng KW. Transformation of Nanomaterials and Its Implications in Gut Nanotoxicology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001246. [PMID: 32495486 DOI: 10.1002/smll.202001246] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Ingestion of engineered nanomaterials (ENMs) is inevitable due to their widespread utilization in the agrifood industry. Safety evaluation has become pivotal to identify the consequences on human health of exposure to these ingested ENMs. Much of the current understanding of nanotoxicology in the gastrointestinal tract (GIT) is derived from studies utilizing pristine ENMs. In reality, agrifood ENMs interact with their microenvironment, and undergo multiple physicochemical transformations, such as aggregation/agglomeration, dissolution, speciation change, and surface characteristics alteration, across their life cycle from synthesis to consumption. This work sieves out the implications of ENM transformations on their behavior, stability, and reactivity in food and product matrices and through the GIT, in relation to measured toxicological profiles. In particular, a strong emphasis is given to understand the mechanisms through which these transformations can affect ENM induced gut nanotoxicity.
Collapse
Affiliation(s)
- Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhitong Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA, 02115, USA
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore, 637141, Singapore
- Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore, 138648, Singapore
| |
Collapse
|
38
|
Miller MR, Poland CA. Nanotoxicology: The Need for a Human Touch? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001516. [PMID: 32697439 DOI: 10.1002/smll.202001516] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Indexed: 06/11/2023]
Abstract
With the ever-expanding number of manufactured nanomaterials (MNMs) under development there is a vital need for nanotoxicology studies that test the potential for MNMs to cause harm to health. An extensive body of work in cell cultures and animal models is vital to understanding the physicochemical characteristics of MNMs and the biological mechanisms that underlie any detrimental actions to cells and organs. In human subjects, exposure monitoring is combined with measurement of selected health parameters in small panel studies, especially in occupational settings. However, the availability of further in vivo human data would greatly assist the risk assessment of MNMs. Here, the potential for controlled inhalation exposures of MNMs in human subjects is discussed. Controlled exposures to carbon, gold, aluminum, and zinc nanoparticles in humans have already set a precedence to demonstrate the feasibility of this approach. These studies have provided considerable insight into the potential (or not) of nanoparticles to induce inflammation, alter lung function, affect the vasculature, reach the systemic circulation, and accumulate in other organs. The need for further controlled exposures of MNMs in human volunteers - to establish no-effect limits, biological mechanisms, and provide vital data for the risk assessment of MNMs - is advocated.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Craig A Poland
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Agans RT, Gordon A, Hussain S, Paliy O. Titanium Dioxide Nanoparticles Elicit Lower Direct Inhibitory Effect on Human Gut Microbiota Than Silver Nanoparticles. Toxicol Sci 2020; 172:411-416. [PMID: 31550005 DOI: 10.1093/toxsci/kfz183] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Due to continued technological development, people increasingly come in contact with engineered nanomaterials (ENMs) that are now used in foods and many industrial applications. Many ENMs have historically been shown to possess antimicrobial properties, which has sparked concern for how dietary nanomaterials impact gastrointestinal health via microbial dysbiosis. We employed an in vitro Human Gut Simulator system to examine interactions of dietary nano titanium dioxide (TiO2) with human gut microbiota. Electron microscopy indicated a close association of TiO2 particles with bacterial cells. Addition of TiO2 to microbial communities led to a modest reduction in community density but had no impact on community diversity and evenness. In contrast, administration of known antimicrobial silver nanoparticles (NPs) in a control experiment resulted in a drastic reduction of population density. In both cases, communities recovered once the addition of nanomaterials was ceased. Constrained ordination analysis of community profiles revealed that simulated colonic region was the primary determinant of microbiota composition. Accordingly, predicted community functional capacity and measured production of short-chain fatty acids were not changed significantly upon microbiota exposure to TiO2. We conclude that tested TiO2 NPs have limited direct effect on human gut microbiota.
Collapse
Affiliation(s)
- Richard T Agans
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Alex Gordon
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| | - Saber Hussain
- Molecular Mechanisms Branch, Bioeffects Division, Airman Systems Directorate, 711 Human Performance Wing, Wright-Patterson Air Force Base, Dayton, Ohio
| | - Oleg Paliy
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, Ohio
| |
Collapse
|
40
|
Peng G, Montenegro MF, Ntola CNM, Vranic S, Kostarelos K, Vogt C, Toprak MS, Duan T, Leifer K, Bräutigam L, Lundberg JO, Fadeel B. Nitric oxide-dependent biodegradation of graphene oxide reduces inflammation in the gastrointestinal tract. NANOSCALE 2020; 12:16730-16737. [PMID: 32785315 DOI: 10.1039/d0nr03675g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Understanding the biological fate of graphene-based materials such as graphene oxide (GO) is crucial to assess adverse effects following intentional or inadvertent exposure. Here we provide first evidence of biodegradation of GO in the gastrointestinal tract using zebrafish as a model. Raman mapping was deployed to assess biodegradation. The degradation was blocked upon knockdown of nos2a encoding the inducible nitric oxide synthase (iNOS) or by pharmacological inhibition of NOS using l-NAME, demonstrating that the process was nitric oxide (NO)-dependent. NO-dependent degradation of GO was further confirmed in vitro by combining a superoxide-generating system, xanthine/xanthine oxidase (X/XO), with an NO donor (PAPA NONOate), or by simultaneously producing superoxide and NO by decomposition of SIN-1. Finally, by using the transgenic strain Tg(mpx:eGFP) to visualize the movement of neutrophils, we could show that inhibition of the degradation of GO resulted in increased neutrophil infiltration into the gastrointestinal tract, indicative of inflammation.
Collapse
Affiliation(s)
- Guotao Peng
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Marcelo F Montenegro
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Chifundo N M Ntola
- National Graphene Institute, and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sandra Vranic
- National Graphene Institute, and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kostas Kostarelos
- National Graphene Institute, and Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK and Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain
| | - Carmen Vogt
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Muhammet S Toprak
- Department of Applied Physics, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Tianbo Duan
- Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Klaus Leifer
- Department of Engineering Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Bräutigam
- Comparative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Pyrogenic and Precipitated Amorphous Silica Nanoparticles Differentially Affect Cell Responses to LPS in Human Macrophages. NANOMATERIALS 2020; 10:nano10071395. [PMID: 32708373 PMCID: PMC7407657 DOI: 10.3390/nano10071395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/23/2022]
Abstract
Previous work has demonstrated that precipitated (NM-200) and pyrogenic (NM-203) Amorphous Silica Nanoparticles (ASNPs) elicit the inflammatory activation of murine macrophages, with more pronounced effects observed with NM-203. Here, we compare the effects of low doses of NM-200 and NM-203 on human macrophage-like THP-1 cells, assessing how the pre-exposure to these nanomaterials affects the cell response to lipopolysaccharide (LPS). Cell viability was affected by NM-203, but not by NM-200, and only in the presence of LPS. While NM-203 stimulated mTORC1, neither ASNPs activated NFκB or the transcription of its target genes PTGS2 and IL1B. NM-200 and NM-203 caused a block of the autophagic flux and inhibited the LPS-dependent increase of Glutamine Synthetase (GS) expression. Both ASNPs suppressed the activation of caspase-1, delaying the LPS-dependent secretion of IL-1β. Thus, ASNPs modulate several important pathways in human macrophages, altering their response to LPS. NM-203 had larger effects on autophagy, mTORC1 activity and GS expression than NM-200, confirming the higher biological activity of pyrogenic ASNPs when compared with precipitated ASNPs.
Collapse
|
42
|
Hempt C, Kaiser JP, Scholder O, Buerki-Thurnherr T, Hofmann H, Rippl A, Schuster TB, Wick P, Hirsch C. The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium. Toxicol In Vitro 2020; 67:104903. [PMID: 32473318 DOI: 10.1016/j.tiv.2020.104903] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 12/15/2022]
Abstract
For several decades, food-grade synthetic amorphous silica (SAS) have been used as a technological additive to reduce caking of food powders. Human exposure is thus inevitable and safety concerns are taken seriously. The toxicity of silica in general and SAS in particular has been studied extensively. Overall, there is little evidence that food-grade SAS pose any health risks to humans. However, from the available data it was often not clear which type of silica was used. Accordingly, the latest report of the European food safety authority requested additional toxicity data for well-characterised "real food-grade SAS". To close this gap, we screened a panel of ten well-defined, food-grade SAS for potential adverse effects on differentiated Caco-2 cells. Precipitated and fumed SAS with low, intermediate and high specific surface area were included to determine structure-activity relationships. In a physiological dose-range up to 50 μg/ml and 48 h of incubation, none of the materials induced adverse effects on differentiated Caco-2 cells. This held true for endpoints of acute cytotoxicity as well as epithelial specific measures of barrier integrity. These results showed that despite considerable differences in production routes and material characteristics, food-relevant SAS did not elicit acute toxicity responses in intestinal epithelial cells.
Collapse
Affiliation(s)
- Claudia Hempt
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland; Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - Jean-Pierre Kaiser
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Olivier Scholder
- Nanoscale Materials Science Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, Switzerland
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Heinrich Hofmann
- Institute of Materials, Powder Technology Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Alexandra Rippl
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Tobias B Schuster
- Evonik Resource Efficiency GmbH, Rodenbacher Chaussee 4, 63457 Hanau-Wolfgang, Germany
| | - Peter Wick
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Cordula Hirsch
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|
43
|
Vimercati L, Cavone D, Caputi A, De Maria L, Tria M, Prato E, Ferri GM. Nanoparticles: An Experimental Study of Zinc Nanoparticles Toxicity on Marine Crustaceans. General Overview on the Health Implications in Humans. Front Public Health 2020; 8:192. [PMID: 32509719 PMCID: PMC7253631 DOI: 10.3389/fpubh.2020.00192] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/27/2020] [Indexed: 01/05/2023] Open
Abstract
The presence of products containing nanoparticles or nanofibers is rapidly growing. Nanotechnology involves a wide spectrum of industrial fields. There is a lack of information regarding the toxicity of these nanoparticles in aqueous media. The potential acute toxicity of ZnO NPs using two marine crustacean species: the copepod Tigriopus fulvus and the amphypod Corophium insidiosum was evaluated. Acute tests were conducted on adults of T. Fulvus nauplii and C. insidiosum. Both test species were exposed for 96 h to 5 increasing concentrations of ZnO NPs and ZnSO4H2O, and the endpoint was mortality. Statistical analysis revealed that the mean LC50 values of both ZnO NPs and ZnSO4H2O (ZnO NPs: F = 59.42; P < 0.0015; ZnSO4H2O: F = 25.57; P < 0.0015) were significantly lower for Tigriopus fulvus than for Corophium insidiosum. This result confirms that the toxic effect could be mainly attributed to the Zn ions, confirming that the dissolution processes play a crucial role in the toxicity of the ZnO NPs.
Collapse
Affiliation(s)
- Luigi Vimercati
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Domenica Cavone
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Antonio Caputi
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Luigi De Maria
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| | - Michele Tria
- Marine Environment and Pollution Prevention, Department of Prevention, ASL TA Health Company, Taranto, Italy
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment of the Italian National Research Council (IAMC-CNR), Taranto, Italy
| | - Giovanni Maria Ferri
- Unit of Occupational Medicine, Interdisciplinary Department of Medicine (DIM), School of Medicine, University Hospital “Policlinico”, University of Bari “A. Moro”, Bari, Italy
| |
Collapse
|
44
|
Dumková J, Smutná T, Vrlíková L, Kotasová H, Dočekal B, Čapka L, Tvrdoňová M, Jakešová V, Pelková V, Křůmal K, Coufalík P, Mikuška P, Večeřa Z, Vaculovič T, Husáková Z, Kanický V, Hampl A, Buchtová M. Variability in the Clearance of Lead Oxide Nanoparticles Is Associated with Alteration of Specific Membrane Transporters. ACS NANO 2020; 14:3096-3120. [PMID: 32105447 DOI: 10.1021/acsnano.9b08143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Lead oxide nanoparticles (PbONPs), upon their entry into the lungs via inhalation, induce structural changes in primary and secondary target organs. The fate and ultrastructural localization of PbONPs in organs is known to be dependent on the specific organ. Here, we focused on the differences in the ability to clear the inhaled PbONPs from secondary target organs and on molecular and cellular mechanisms contributing to nanoparticle removal. Mice were exposed to PbONPs in whole-body inhalation chambers. Clearance of ionic lead and PbONPs (Pb/PbONPs) from the lungs and liver was very effective, with the lead being almost completely eliminated from the lungs and the physiological state of the lung tissue conspicuously restored. Kidneys exposed to nanoparticles did not exhibit serious signs of damage; however, LA-ICP-MS uncovered a certain amount of lead located preferentially in the kidney cortex even after a clearance period. The concentration of lead in femurs, as representatives of the axial skeleton, was the highest among studied organs at all designated time points after PbONP exposure, and the clearance ability of lead from the femurs was very low in contrast to other organs. The organ-specific increase of ABC transporters expression (ABCG2 in lungs and ABCC3 in the liver) was observed in exposed animals, suggesting their involvement in removing Pb/PbONPs from tissues. Moreover, the expression of caveolins and clathrin displayed a tissue-specific response to lead exposure. Our results uncovered high variability among the organs in their ability to clear Pb/PbONPs and in the transporters involved in this process.
Collapse
Affiliation(s)
- Jana Dumková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Tereza Smutná
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lucie Vrlíková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Hana Kotasová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Bohumil Dočekal
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Lukáš Čapka
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Michaela Tvrdoňová
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Veronika Jakešová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Vendula Pelková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Kamil Křůmal
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Pavel Coufalík
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Pavel Mikuška
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Zbyněk Večeřa
- Institute of Analytical Chemistry, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
| | - Tomáš Vaculovič
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Zuzana Husáková
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Viktor Kanický
- Department of Chemistry, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno 625 00, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Brno 602 00, Czech Republic
- Section of Animal Physiology and Immunology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
45
|
Tassinari R, Di Felice G, Butteroni C, Barletta B, Corinti S, Cubadda F, Aureli F, Raggi A, Narciso L, Tait S, Valeri M, Martinelli A, Di Virgilio A, Pacchierotti F, Cordelli E, Eleuteri P, Villani P, Fessard V, Maranghi F. Hazard identification of pyrogenic synthetic amorphous silica (NM-203) after sub-chronic oral exposure in rat: A multitarget approach. Food Chem Toxicol 2020; 137:111168. [PMID: 32007467 DOI: 10.1016/j.fct.2020.111168] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 01/17/2023]
Abstract
Food additive E551 consists of synthetic amorphous silica (SAS), comprising agglomerates and aggregates of primary particles in the nanorange (<100 nm), which potential nanospecific risks for humans associated to dietary exposure are not yet completely assessed. In NANoREG project, aim of the study was to identify potential hazards of pyrogenic SAS nanomaterial NM-203 by a 90-day oral toxicity study (OECD test guideline 408). Adult Sprague-Dawley rats of both sexes were orally treated with 0, 2, 5, 10, 20 and 50 mg SAS/kg bw per day; dose levels were selected to be as close as possible to E551 dietary exposure. Several endpoints were investigated, the whole integrative study is presented here along with the results of dispersion characterization, tissue distribution, general toxicity, blood/serum biomarkers, histopathological and immunotoxicity endpoints. No mortality, general toxicity and limited deposition in target tissues were observed. NM-203 affected liver and spleen in both sexes. Proposed NOAEL 5 mg/kg bw per day in male rats for enlarged sinusoids in liver. In female rats, TSH and creatinine levels were affected, proposed LOAEL 2 mg/kg bw per day. Overall, these data provide new insight for a comprehensive risk assessment of SAS exposure by the oral route.
Collapse
Affiliation(s)
- Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gabriella Di Felice
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Cinzia Butteroni
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Bianca Barletta
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Corinti
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Cubadda
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Federica Aureli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy; National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Raggi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Laura Narciso
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valeri
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Martinelli
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio Di Virgilio
- Experimental Animal Welfare Sector, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pacchierotti
- Health Protection Technology Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenia Cordelli
- Health Protection Technology Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Patrizia Eleuteri
- Health Protection Technology Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Paola Villani
- Health Protection Technology Division, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Rome, Italy
| | - Valerie Fessard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Fougères, France
| | - Francesca Maranghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
46
|
Bueno J. ADMETox: Bringing Nanotechnology Closer to Lipinski’s Rule of Five. NANOTECHNOLOGY IN THE LIFE SCIENCES 2020:61-74. [DOI: 10.1007/978-3-030-43855-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
47
|
Senchukova M. A Brief Review about the Role of Nanomaterials, Mineral-Organic Nanoparticles, and Extra-Bone Calcification in Promoting Carcinogenesis and Tumor Progression. Biomedicines 2019; 7:65. [PMID: 31466331 PMCID: PMC6783842 DOI: 10.3390/biomedicines7030065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 02/05/2023] Open
Abstract
People come in contact with a huge number of nanoparticles (NPs) throughout their lives, which can be of both natural and anthropogenic origin and are capable of entering the body through swallowing, skin penetration, or inhalation. In connection with the expanding use of nanomaterials in various industrial processes, the question of whether there is a need to study the potentially adverse effects of NPs on human health becomes increasingly important. Despite the fact that the nature and the extent of damage caused depends on the chemical and the physical characteristics of individual NPs, there are also general mechanisms related to their toxicity. These mechanisms include the ability of NPs to translocate to various organs through endocytosis, as well as their ability to stimulate the production of reactive oxygen species (ROS), leading to oxidative stress, inflammation, genotoxicity, metabolic changes, and potentially carcinogenesis. In this review, we discuss the main characteristics of NPs and the effects they cause at both cellular and tissue levels. We also focus on possible mechanisms that underlie the relationship of NPs with carcinogenesis. We briefly summarize the main concepts related to the role of endogenous mineral organic NPs in the development of various human diseases and their participation in extra-bone calcification. Considering data from both our studies and those published in scientific literature, we propose the revision of some ideas concerning extra-bone calcification, since it may be one of the factors associated with the initiation of the mechanisms of immunological tolerance.
Collapse
Affiliation(s)
- Marina Senchukova
- Department of Oncology, Orenburg State Medical University, 460000 Orenburg, Russia.
| |
Collapse
|
48
|
Rossi S, Savi M, Mazzola M, Pinelli S, Alinovi R, Gennaccaro L, Pagliaro A, Meraviglia V, Galetti M, Lozano-Garcia O, Rossini A, Frati C, Falco A, Quaini F, Bocchi L, Stilli D, Lucas S, Goldoni M, Macchi E, Mutti A, Miragoli M. Subchronic exposure to titanium dioxide nanoparticles modifies cardiac structure and performance in spontaneously hypertensive rats. Part Fibre Toxicol 2019; 16:25. [PMID: 31234877 PMCID: PMC6591966 DOI: 10.1186/s12989-019-0311-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 06/06/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Non-communicable diseases, intended as the results of a combination of inherited, environmental and biological factors, kill 40 million people each year, equivalent to roughly 70% of all premature deaths globally. The possibility that manufactured nanoparticles (NPs) may affect cardiac performance, has led to recognize NPs-exposure not only as a major Public Health concern, but also as an occupational hazard. In volunteers, NPs-exposure is problematic to quantify. We recently found that inhaled titanium dioxide NPs, one of the most produced engineered nanomaterials, acutely increased cardiac excitability and promoted arrhythmogenesis in normotensive rats by a direct interaction with cardiac cells. We hypothesized that such scenario can be exacerbated by latent cardiovascular disorders such as hypertension. RESULTS We monitored cardiac electromechanical performance in spontaneously hypertensive rats (SHRs) exposed to titanium dioxide NPs for 6 weeks using a combination of cardiac functional measurements associated with toxicological, immunological, physical and genetic assays. Longitudinal radio-telemetry ECG recordings and multiple-lead epicardial potential mapping revealed that atrial activation times significantly increased as well as proneness to arrhythmia. At the third week of nanoparticles administration, the lung and cardiac tissue encountered a maladaptive irreversible structural remodelling starting with increased pro-inflammatory cytokines levels and lipid peroxidation, resulting in upregulation of the main pro-fibrotic cardiac genes. At the end of the exposure, the majority of spontaneous arrhythmic events terminated, while cardiac hemodynamic deteriorated and a significant accumulation of fibrotic tissue occurred as compared to control untreated SHRs. Titanium dioxide nanoparticles were quantified in the heart tissue although without definite accumulation as revealed by particle-induced X-ray emission and ultrastructural analysis. CONCLUSIONS The co-morbidity of hypertension and inhaled nanoparticles induces irreversible hemodynamic impairment associated with cardiac structural damage potentially leading to heart failure. The time-dependence of exposure indicates a non-return point that needs to be taken into account in hypertensive subjects daily exposed to nanoparticles.
Collapse
Affiliation(s)
- Stefano Rossi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, INAIL, ex-ISPESL, University of Parma, Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marta Mazzola
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, INAIL, ex-ISPESL, University of Parma, Parma, Italy
| | - Rossella Alinovi
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, INAIL, ex-ISPESL, University of Parma, Parma, Italy
| | - Laura Gennaccaro
- Institute for Biomedicine, Eurac Research, Bolzano, Italy.,Affiliated Institute of the University of Lübeck, Lübeck, Germany.,Present address: Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Alessandra Pagliaro
- Institute for Biomedicine, Eurac Research, Bolzano, Italy.,Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Viviana Meraviglia
- Institute for Biomedicine, Eurac Research, Bolzano, Italy.,Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Maricla Galetti
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, INAIL, ex-ISPESL, University of Parma, Parma, Italy
| | - Omar Lozano-Garcia
- Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences (NARILIS), Research Centre for the Physics of Matter and Radiation (PMR), University of Namur, B-5000, Namur, Belgium.,Present address: Cátedra de Cardiología y Medicina Vascular, Escuela de Medicina y Ciencias de la Salud Tecnologico de Monterrey, Monterrey, Mexico
| | - Alessandra Rossini
- Institute for Biomedicine, Eurac Research, Bolzano, Italy.,Affiliated Institute of the University of Lübeck, Lübeck, Germany
| | - Caterina Frati
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy
| | - Angela Falco
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy
| | - Federico Quaini
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Stéphane Lucas
- Namur Nanosafety Centre (NNC), Namur Research Institute for Life Sciences (NARILIS), Research Centre for the Physics of Matter and Radiation (PMR), University of Namur, B-5000, Namur, Belgium
| | - Matteo Goldoni
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, INAIL, ex-ISPESL, University of Parma, Parma, Italy
| | - Emilio Macchi
- CERT, Center of Excellence for Toxicological Research, INAIL, ex-ISPESL, University of Parma, Parma, Italy.,Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Antonio Mutti
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy.,CERT, Center of Excellence for Toxicological Research, INAIL, ex-ISPESL, University of Parma, Parma, Italy.,Azienda Ospedaliera-Universitaria, Unità di Medicina del lavoro e Tossicologia industriale, Parma, Italy
| | - Michele Miragoli
- Department of Medicine and Surgery, University of Parma, Via Gramsci, n° 14, 43126, Parma, Italy. .,CERT, Center of Excellence for Toxicological Research, INAIL, ex-ISPESL, University of Parma, Parma, Italy. .,Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
49
|
Toxicological Evaluation of SiO₂ Nanoparticles by Zebrafish Embryo Toxicity Test. Int J Mol Sci 2019; 20:ijms20040882. [PMID: 30781642 PMCID: PMC6413002 DOI: 10.3390/ijms20040882] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/03/2019] [Accepted: 02/10/2019] [Indexed: 11/21/2022] Open
Abstract
As the use of nanoparticles (NPs) is increasing, the potential toxicity and behavior of NPs in living systems need to be better understood. Our goal was to evaluate the developmental toxicity and bio-distribution of two different sizes of fluorescently-labeled SiO2 NPs, 25 and 115 nm, with neutral surface charge or with different surface functionalization, rendering them positively or negatively charged, in order to predict the effect of NPs in humans. We performed a zebrafish embryo toxicity test (ZFET) by exposing the embryos to SiO2 NPs starting from six hours post fertilization (hpf). Survival rate, hatching time, and gross morphological changes were assessed at 12, 24, 36, 48, 60, and 72 hpf. We evaluated the effect of NPs on angiogenesis by counting the number of sub-intestinal vessels between the second and seventh intersegmental vessels and gene expression analysis of vascular endothelial growth factor (VEGF) and VEGF receptors at 72 hpf. SiO2 NPs did not show any adverse effects on survival rate, hatching time, gross morphology, or physiological angiogenesis. We found that SiO2 NPs were trapped by the chorion up until to the hatching stage. After chemical removal of the chorion (dechorionation), positively surface-charged SiO2 NPs (25 nm) significantly reduced the survival rate of the fish compared to the control group. These results indicate that zebrafish chorion acts as a physical barrier against SiO2 NPs, and removing the chorions in ZFET might be necessary for evaluation of toxicity of NPs.
Collapse
|
50
|
Fadeel B, Bussy C, Merino S, Vázquez E, Flahaut E, Mouchet F, Evariste L, Gauthier L, Koivisto AJ, Vogel U, Martín C, Delogu LG, Buerki-Thurnherr T, Wick P, Beloin-Saint-Pierre D, Hischier R, Pelin M, Candotto Carniel F, Tretiach M, Cesca F, Benfenati F, Scaini D, Ballerini L, Kostarelos K, Prato M, Bianco A. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS NANO 2018; 12:10582-10620. [PMID: 30387986 DOI: 10.1021/acsnano.8b04758] [Citation(s) in RCA: 332] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Graphene and its derivatives are heralded as "miracle" materials with manifold applications in different sectors of society from electronics to energy storage to medicine. The increasing exploitation of graphene-based materials (GBMs) necessitates a comprehensive evaluation of the potential impact of these materials on human health and the environment. Here, we discuss synthesis and characterization of GBMs as well as human and environmental hazard assessment of GBMs using in vitro and in vivo model systems with the aim to understand the properties that underlie the biological effects of these materials; not all GBMs are alike, and it is essential that we disentangle the structure-activity relationships for this class of materials.
Collapse
Affiliation(s)
- Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine , Karolinska Institutet , 17777 Stockholm , Sweden
| | - Cyrill Bussy
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Sonia Merino
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Ester Vázquez
- Faculty of Chemical Science and Technology , University of Castilla-La Mancha , 13071 Ciudad Real , Spain
| | | | | | | | - Laury Gauthier
- CNRS, Université Paul Sabatier , 31062 Toulouse , France
| | - Antti J Koivisto
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment , 2100 Copenhagen , Denmark
| | - Cristina Martín
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| | - Lucia G Delogu
- Department of Chemistry and Pharmacy University of Sassari , Sassari 7100 , Italy
- Istituto di Ricerca Pediatrica , Fondazione Città della Speranza , 35129 Padova , Italy
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | | | - Roland Hischier
- Swiss Federal Laboratories for Materials Science and Technology (EMPA) , 9014 St. Gallen , Switzerland
| | - Marco Pelin
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | | | - Mauro Tretiach
- Department of Life Sciences , University of Trieste , 34127 Trieste , Italy
| | - Fabrizia Cesca
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology , Istituto Italiano di Tecnologia , 16132 Genova , Italy
| | - Denis Scaini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Laura Ballerini
- Scuola Internazionale Superiore di Studi Avanzati (SISSA) , 34136 Trieste , Italy
| | - Kostas Kostarelos
- Nanomedicine Laboratory, Faculty of Biology, Medicine & Health , University of Manchester , Manchester M13 9PL , United Kingdom
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , University of Trieste , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC BiomaGUNE , 20009 San Sebastian , Spain
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
| | - Alberto Bianco
- University of Strasbourg, CNRS , Immunology, Immunopathology and Therapeutic Chemistry , 67000 Strasbourg , France
| |
Collapse
|