1
|
Zhu W, Cao S, Huang M, Li P, Ke J, Xu A, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Differential phosphorylation of receptor kinase SlLYK4 mediates immune responses to bacterial and fungal pathogens in tomato. SCIENCE ADVANCES 2025; 11:eadu2840. [PMID: 40446045 PMCID: PMC12124392 DOI: 10.1126/sciadv.adu2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 04/24/2025] [Indexed: 06/02/2025]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a devastating plant disease. Exopolysaccharide (EPS), a major virulence factor of R. solanacearum, elicits pattern-triggered immunity (PTI) in tomato, but the means by which EPS is recognized in the plant remain poorly understood. We found that tomato non-arginine-aspartate (non-RD) receptor kinase SlLYK4 mediates the perception of R. solanacearum EPS and positively regulates resistance to bacterial wilt. The RD receptor kinases SlLYK1 and SlLYK13 are required for EPS-triggered immune responses and form complexes with SlLYK4. These receptor kinase complexes have dual functions in recognizing bacterial EPS and fungal chitin. Phosphorylation of serine-320 in the juxtamembrane domain of SlLYK4 is essential in EPS- and chitin-mediated signaling, whereas phosphorylation of serine-334 or serine-634 in the C-terminal domain is required for chitin or EPS signaling, respectively. Our results reveal the mechanism underlying EPS recognition in tomato and provide insight into how differential phosphorylation of receptor kinase regulates antibacterial and antifungal immunity.
Collapse
Affiliation(s)
- Wanting Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Sen Cao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Mengling Huang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Pengyue Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingjing Ke
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ai Xu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiatao Xie
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiao Yu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bo Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
2
|
Wang X, Wang Z, Tang X, Qin J, Zhou X, Gu L, Bian H, Sun L, Huang H, Yang R, Wang J, Wang S, Chen S, Yang Z, Zhao W. The SlDOF9-SlSWEET17 Module: a Switch for Controlling Sugar Distribution Between Nematode Induced Galls and Roots in Tomato. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501771. [PMID: 40349184 DOI: 10.1002/advs.202501771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/12/2025] [Indexed: 05/14/2025]
Abstract
In the complex interactions between plants and pathogens, the regulation of nutrient allocation plays a critical role in determining plant health and susceptibility to diseases. Root-knot nematodes (RKNs, Meloidogyne incognita) extract sugar from plants during their interactions with the hosts. SWEET (Sugars Will Eventually be Exported Transporters) proteins are a class of non-energy-consuming sugar uniporters that regulate the allocation of sugars in plant. Here, it is find that SlSWEET17 (Solanum lycopersicum SWEET17), a member of the SWEET family in tomato, is localized to the plasma membrane, Golgi body and small vacuoles, and is highly expressed in galls. Further studies show that SlSWEET17 negatively regulates the sugar transport capacity of other SlSWEETs via protein interactions. Overexpression of SlSWEET17 significantly decreases the soluble sugar content in galls and susceptibility to RKNs, while SlSWEET17 knockout-mutation (ko-mutation) has the opposite effect. It is also identified SlDOF9 (Solanum lycopersicum DNA binding with one finger 9), an upstream negative regulator of SlSWEET17, using ChIP (chromatin immunoprecipitation) analysis, electrophoretic mobility shift assays and dual-Luciferase assays. SlDOF9-overexpressing plants show increased sugar content in galls and susceptibility to RKNs, and sldof9cr ko-mutants have the opposite phenotype. This results show how SlDOF9-SlSWEET17 affects RKN infection through sugar partitioning from roots to galls.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhimei Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xinyue Tang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiamei Qin
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoxuan Zhou
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lixia Gu
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huihui Bian
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jianli Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhongren Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia, 010010, China
| | - Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
3
|
Lin Y, He C, Li Z, Sun Y, Tong L, Chen X, Zeng R, Su Z, Song Y. sly-miR408b Targets a Plastocyanin-Like Protein to Regulate Mycorrhizal Symbiosis in Tomato. PLANT, CELL & ENVIRONMENT 2025; 48:3590-3602. [PMID: 39789691 DOI: 10.1111/pce.15363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Symbiosis between arbuscular mycorrhizal fungi and plants plays a crucial role in nutrient acquisition and stress resistance for terrestrial plants. microRNAs have been reported to participate in the regulation of mycorrhizal symbiosis by controlling the expression of their target genes. Herein, we found that sly-miR408b was significantly downregulated in response to mycorrhizal colonisation. Overexpression of sly-miR408b compromised mycorrhizal colonisation by Rhizophagus irregularis in tomato (Solanum lycopersicum) roots. A basic blue protein gene (SlBBP) was then identified as the new target gene of miR408b in tomato. The expression of membrane-located SlBBP was induced in a copper-dependent manner. Importantly, the loss function of SlBBP decreased the root mycorrhizal colonisation. Overexpression of SlBBP decreased SOD activity, which may interfere with the process of scavenging excessive reactive oxygen species (ROS). Mutation of RBOH1, which encodes ROS-producing enzymes NADPH oxidases, obviously reduced the arbuscule abundance in the mutant roots. Overall, our results provide evidence that sly-miR408b and its target gene SlBBP regulate mycorrhizal symbiosis in tomato through mediating ROS production.
Collapse
Affiliation(s)
- Yibin Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenling He
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenfang Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shanxi Agricultural University, Taigu, China
| | - Yingying Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lu Tong
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinyu Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhenxia Su
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Mejias J, Margets A, Bredow M, Foster J, Khwanbua E, Goshon J, Maier TR, Whitham SA, Innes RW, Baum TJ. A novel toolbox of GATEWAY-compatible vectors for rapid functional gene analysis in soybean composite plants. PLANT CELL REPORTS 2025; 44:72. [PMID: 40063264 DOI: 10.1007/s00299-025-03458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/17/2025] [Indexed: 04/12/2025]
Abstract
KEY MESSAGE We developed a set of GATEWAY vectors to accelerate gene function analysis in soybean composite plants to rapidly screen transgenic roots and investigate subcellular localization, protein-protein interactions, and root-pathogen interactions. The generation of transgenic plants is essential for plant biology research to investigate plant physiology, pathogen interactions, and gene function. However, producing stable transgenic plants for plants such as soybean is a laborious and time-consuming process, which can impede research progress. Composite plants consisting of wild-type shoots and transgenic roots are an alternative method for generating transgenic plant tissues that can facilitate functional analysis of genes-of-interest involved in root development or root-microbe interactions. In this report, we introduce a novel set of GATEWAY-compatible vectors that enable a wide range of molecular biology uses in roots of soybean composite plants. These vectors incorporate in-frame epitope fusions of green fluorescent protein, 3x-HA, or miniTurbo-ID, which can be easily fused to a gene-of-interest using the GATEWAY cloning system. Moreover, these vectors allow for the identification of transgenic roots using either mCherry fluorescence or the RUBY marker. We demonstrate the functionality of these vectors by expressing subcellular markers in soybean, providing evidence of their effectiveness in generating protein fusions in composite soybean plants. Furthermore, we show how these vectors can be used for gene function analysis by expressing the bacterial effector, AvrPphB in composite roots, enabling the identification of soybean targets via immunoprecipitation followed by mass spectrometry. Additionally, we demonstrate the successful expression of stable miniTurbo-ID fusion proteins in composite roots. Overall, this new set of vectors is a powerful tool that can be used to assess subcellular localization and perform gene function analyses in soybean roots without the need to generate stable transgenic plants.
Collapse
Affiliation(s)
- Joffrey Mejias
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- CIRAD, UMR PHIM, Montpellier, France
| | - Alexandra Margets
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Melissa Bredow
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
- CIRAD, UMR PHIM, Montpellier, France
| | - Jessica Foster
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Ekkachai Khwanbua
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Jackson Goshon
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Thomas R Maier
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Steven A Whitham
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Thomas J Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
5
|
Ramos-Alvelo M, Molinero-Rosales N, Tamayo-Navarrete MI, Ćavar Zeljković S, Tarkowski P, García-Garrido JM, Ho-Plágaro T. The SlDLK2 receptor, involved in the control of arbuscular mycorrhizal symbiosis, regulates hormonal balance in roots. Front Microbiol 2024; 15:1472449. [PMID: 39723137 PMCID: PMC11668738 DOI: 10.3389/fmicb.2024.1472449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Arbuscular mycorrhiza (AM) represents a symbiotic mutualistic association between most land plants and Glomeromycota fungi. AM fungi develops specialized intraradical and highly branched structures, called arbuscules, where bidirectional exchange of nutrients between plant and fungi partners occurs, improving plant growth and fitness. Transcriptional reprogramming and hormonal regulation are necessary for the formation of the arbuscules. SlDLK2, a member of the third clade from the DWARF14 family of α, β-hydrolases closely related to the strigolactone receptor D14, is a negative regulator of arbuscule branching in tomato, but the underlying mechanisms are unknown. We explored the possible role of SlDLK2 on the regulation of hormonal balance. RNA-seq analysis was performed on roots from composite tomato plants overexpressing SlDLK2 and in control plants transformed with the empty vector. Analysis of transcriptomic data predicted that significantly repressed genes were enriched for genes related to hormone biosynthesis pathways, with a special relevance of carotenoid/apocarotenoid biosynthesis genes. Stable transgenic SlDLK2 overexpressing (OE) tomato lines were obtained, and hormone contents were analyzed in their roots and leaves. Interesting significant hormonal changes were found in roots of SlDLK2 OE lines with respect to the control lines, with a strong decrease on jasmonic acid and ABA. In addition, SlDLK2 OE roots showed a slight reduction in auxin contents and in one of the major strigolactones in tomato, solanacol. Overall, our results suggest that the negative regulation of AM symbiosis by SlDLK2 is associated with the repression of genes involved in the biosynthesis of AM-promoting hormones.
Collapse
Affiliation(s)
- Martín Ramos-Alvelo
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | - Nuria Molinero-Rosales
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| | | | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czechia
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czechia
| | | | - Tania Ho-Plágaro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Granada, Spain
| |
Collapse
|
6
|
Chien H, Kuo TY, Yao CH, Su YR, Chang YT, Guo ZL, Chang KC, Hsieh YH, Yang SY. Nuclear factors NF-YC3 and NF-YBs positively regulate arbuscular mycorrhizal symbiosis in tomato. PLANT PHYSIOLOGY 2024; 196:1840-1856. [PMID: 39028839 DOI: 10.1093/plphys/kiae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/12/2024] [Accepted: 06/12/2024] [Indexed: 07/21/2024]
Abstract
The involvement of nuclear factor Y (NF-Y) in transcriptional reprogramming during arbuscular mycorrhizal symbiosis has been demonstrated in several plant species. However, a comprehensive picture is lacking. We showed that the spatial expression of NF-YC3 was observed in cortical cells containing arbuscules via the cis-regulatory element GCC boxes. Moreover, the NF-YC3 promoter was transactivated by the combination of CYCLOPS and autoactive calcium and calmodulin-dependent kinase (CCaMK) via GCC boxes. Knockdown of NF-YC3 significantly reduced the abundance of all intraradical fungal structures and affected arbuscule size. BCP1, SbtM1, and WRI5a, whose expression associated with NF-YC3 levels, might be downstream of NF-YC3. NF-YC3 interacted with NF-YB3a, NF-YB5c, or NF-YB3b, in yeast (Saccharomyces cerevisiae) and in planta, and interacted with NF-YA3a in yeast. Spatial expression of 3 NF-YBs was observed in all cell layers of roots under both mock and mycorrhizal conditions. Simultaneous knockdown of 3 NF-YBs, but not individually, reduced the fungal colonization level, suggesting that there might be functional redundancy of NF-YBs to regulate AM symbiosis. Collectively, our data suggest that NF-YC3 and NF-YBs positively regulate AM symbiosis in tomato, and arbuscule-related NF-YC3 may be an important downstream gene of the common symbiosis signaling pathway.
Collapse
Affiliation(s)
- Heng Chien
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Yu Kuo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ching-Hung Yao
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Ru Su
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ting Chang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Zheng-Lin Guo
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Kai-Chieh Chang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Heng Hsieh
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
7
|
Avilés-Cárdenas JD, Molinero-Rosales N, Pérez-Tienda J, Rosas-Díaz T, Castillo AG, García-Garrido JM. Enhancing arbuscular mycorrhiza symbiosis effectiveness through the involvement of the tomato GRAS transcription factor SCL3/SlGRAS18. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109019. [PMID: 39146911 DOI: 10.1016/j.plaphy.2024.109019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/24/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Arbuscular mycorrhizal (AM) fungi improve plant growth, nutrition, fitness and stress tolerance while AM fungi obtain carbohydrates and lipids from the host. This whole process of mutual benefit requires substantial alterations in the structural and functional aspects of the host root cells. These modifications ultimately culminate in the formation of arbuscules, which are specialized intraradical and highly branched fungal structures. Arbuscule-containing cells undergo massive reprogramming to hosting arbuscule and members of the GRAS transcription factor family have been characterized as AM inducible genes which play a pivotal role in these process. Here, we show a functional analysis for the GRAS transcription factor SCL3/SlGRAS18 in tomato. SlGRAS18 interacts with SlDELLA, a central regulator of AM formation. Silencing of SlGRAS18 positively impacts arbuscule development and the improvement in symbiotic status, favouring flowering and therefore progress in the formation and development of fruits in SlGRAS18 silenced plants which parallel to a discernible pattern of mineral nutrient redistribution in leaves. Our results advance the knowledge of GRAS transcription factors involved in the formation and establishment of AM symbiosis and provide experimental evidence for how specific genetic alterations can lead to more effective AM symbiosis.
Collapse
Affiliation(s)
- Jonathan D Avilés-Cárdenas
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Nuria Molinero-Rosales
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Jacob Pérez-Tienda
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain
| | - Tábata Rosas-Díaz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010, Málaga, Spain
| | - Araceli G Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM "La Mayora"), Universidad de Málaga-Consejo Superior de Investigaciones Cientificas (UMA-CSIC), Campus Teatinos, 29010, Málaga, Spain
| | - José M García-Garrido
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008, Granada, Spain.
| |
Collapse
|
8
|
Ho-Plágaro T, Tamayo-Navarrete MI, Ćavar Zeljković S, Tarkowski P, García-Garrido JM. A dual regulatory role for the arbuscular mycorrhizal master regulator RAM1 in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5021-5036. [PMID: 38726891 PMCID: PMC11349867 DOI: 10.1093/jxb/erae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/09/2024] [Indexed: 08/29/2024]
Abstract
The REQUIRED FOR ARBUSCULAR MYCORRHIZATION1 (RAM1) transcription factor from the GRAS family is well known for its role as a master regulator of the arbuscular mycorrhizal (AM) symbiosis in dicotyledonous and monocotyledonous species, being essential in transcriptional reprogramming for the development and functionality of the arbuscules. In tomato, SlGRAS27 is the putative orthologue of RAM1 (here named SlRAM1), but has not yet been characterized. A reduced colonization of the root and impaired arbuscule formation were observed in SlRAM1-silenced plants, confirming the functional conservation of the RAM1 orthologue in tomato. However, unexpectedly, SlRAM1-overexpressing (UBIL:SlRAM1) plants also showed decreased mycorrhizal colonization. Analysis of non-mycorrhizal UBIL:SlRAM1 roots revealed an overall regulation of AM-related genes and a reduction of strigolactone biosynthesis. Moreover, external application of the strigolactone analogue GR244DO almost completely reversed the negative effects of SlRAM1 overexpression on the frequency of mycorrhization. However, it only partially recovered the pattern of arbuscule distribution observed in control plants. Our results strongly suggest that SlRAM1 has a dual regulatory role during mycorrhization and, in addition to its recognized action as a positive regulator of arbuscule development, it is also involved in different mechanisms for the negative regulation of mycorrhization, including the repression of strigolactone biosynthesis.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| | - María Isabel Tamayo-Navarrete
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| | - Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - José Manuel García-Garrido
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda no. 1, 18008 Granada, Spain
| |
Collapse
|
9
|
Qi P, Zhang D, Zhang Y, Zhu W, Du X, Ma X, Xiao C, Lin Y, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Ubiquitination and degradation of plant helper NLR by the Ralstonia solanacearum effector RipV2 overcome tomato bacterial wilt resistance. Cell Rep 2024; 43:114596. [PMID: 39110591 DOI: 10.1016/j.celrep.2024.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
The Ralstonia solanacearum species complex causes bacterial wilt in a variety of crops. Tomato cultivar Hawaii 7996 is a widely used resistance resource; however, the resistance is evaded by virulent strains, with the underlying mechanisms still unknown. Here, we report that the phylotype Ⅱ strain ES5-1 can overcome Hawaii 7996 resistance. RipV2, a type Ⅲ effector specific to phylotype Ⅱ strains, is vital in overcoming tomato resistance. RipV2, which encodes an E3 ubiquitin ligase, suppresses immune responses and Toll/interleukin-1 receptor/resistance nucleotide-binding/leucine-rich repeat (NLR) (TNL)-mediated cell death. Tomato helper NLR N requirement gene 1 (NRG1), enhanced disease susceptibility 1 (EDS1), and senescence-associated gene 101b (SAG101b) are identified as RipV2 target proteins. RipV2 is essential for ES5-1 virulence in Hawaii 7996 but not in SlNRG1-silenced tomato, demonstrating SlNRG1 to be an RipV2 virulence target. Our results dissect the mechanisms of RipV2 in disrupting immunity and highlight the importance of converged immune components in conferring bacterial wilt resistance.
Collapse
Affiliation(s)
- Peipei Qi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Dan Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wanting Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xinya Du
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiaoshuang Ma
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Chunfang Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
10
|
Aparicio Chacón MV, Hernández Luelmo S, Devlieghere V, Robichez L, Leroy T, Stuer N, De Keyser A, Ceulemans E, Goossens A, Goormachtig S, Van Dingenen J. Exploring the potential role of four Rhizophagus irregularis nuclear effectors: opportunities and technical limitations. FRONTIERS IN PLANT SCIENCE 2024; 15:1384496. [PMID: 38736443 PMCID: PMC11085264 DOI: 10.3389/fpls.2024.1384496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.
Collapse
Affiliation(s)
- María Victoria Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofía Hernández Luelmo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Viktor Devlieghere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Louis Robichez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Toon Leroy
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Naomi Stuer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Evi Ceulemans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| |
Collapse
|
11
|
Wulf K, Sun J, Wang C, Ho-Plagaro T, Kwon CT, Velandia K, Correa-Lozano A, Tamayo-Navarrete MI, Reid JB, García Garrido JM, Foo E. The Role of CLE Peptides in the Suppression of Mycorrhizal Colonization of Tomato. PLANT & CELL PHYSIOLOGY 2024; 65:107-119. [PMID: 37874980 PMCID: PMC10799714 DOI: 10.1093/pcp/pcad124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/11/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023]
Abstract
Symbioses with beneficial microbes are widespread in plants, but these relationships must balance the energy invested by the plants with the nutrients acquired. Symbiosis with arbuscular mycorrhizal (AM) fungi occurs throughout land plants, but our understanding of the genes and signals that regulate colonization levels is limited, especially in non-legumes. Here, we demonstrate that in tomato, two CLV3/EMBRYO-SURROUNDING REGION (CLE) peptides, SlCLE10 and SlCLE11, act to suppress AM colonization of roots. Mutant studies and overexpression via hairy transformation indicate that SlCLE11 acts locally in the root to limit AM colonization. Indeed, SlCLE11 expression is strongly induced in AM-colonized roots, but SlCLE11 is not required for phosphate suppression of AM colonization. SlCLE11 requires the FIN gene that encodes an enzyme required for CLE peptide arabinosylation to suppress mycorrhizal colonization. However, SlCLE11 suppression of AM does not require two CLE receptors with roles in regulating AM colonization, SlFAB (CLAVATA1 ortholog) or SlCLV2. Indeed, multiple parallel pathways appear to suppress mycorrhizal colonization in tomato, as double mutant studies indicate that SlCLV2 and FIN have an additive influence on mycorrhizal colonization. SlCLE10 appears to play a more minor or redundant role, as cle10 mutants did not influence intraradical AM colonization. However, the fact that cle10 mutants had an elevated number of hyphopodia and that ectopic overexpression of SlCLE10 did suppress mycorrhizal colonization suggests that SlCLE10 may also play a role in suppressing AM colonization. Our findings show that CLE peptides regulate AM colonization in tomato and at least SlCLE11 likely requires arabinosylation for activity.
Collapse
Affiliation(s)
- Kate Wulf
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Jiacan Sun
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Chenglei Wang
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
- Enza Zaden Australia, 218 Eumungerie Road, Narromine, NSW 2821, Australia
| | - Tania Ho-Plagaro
- Department of Soil Microbiology and Symbiotic Systems, Zaidín Experimental Station (EEZ), CSIC, C. Prof. Albareda, 1, Granada 18008, Spain
| | - Choon-Tak Kwon
- Department of Smart Farm Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Yongin 17104, Republic of Korea
- Graduate School of Green-Bio Science, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Yongin 17104, Republic of Korea
| | - Karen Velandia
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Alejandro Correa-Lozano
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - María Isabel Tamayo-Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Zaidín Experimental Station (EEZ), CSIC, C. Prof. Albareda, 1, Granada 18008, Spain
| | - James B Reid
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Jose Manuel García Garrido
- Department of Soil Microbiology and Symbiotic Systems, Zaidín Experimental Station (EEZ), CSIC, C. Prof. Albareda, 1, Granada 18008, Spain
| | - Eloise Foo
- Discipline of Biological Sciences, School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| |
Collapse
|
12
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
13
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
14
|
Wang X, Teng C, Lyu K, Li Q, Peng W, Fan L, Lyu S, Fan Y. Application of AtMYB75 as a reporter gene in the study of symbiosis between tomato and Funneliformis mosseae. MYCORRHIZA 2023:10.1007/s00572-023-01110-y. [PMID: 37198421 DOI: 10.1007/s00572-023-01110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Composite plants containing transgenic hairy roots produced with Agrobacterium rhizogenes-mediated transformation have become an important method to study the interaction between plants and arbuscular mycorrhizal fungi (AMF). Not all hairy roots induced by A. rhizogenes are transgenic, however, which leads to requirement of a binary vector to carry a reporter gene to distinguish transgenic roots from non-transformed hairy roots. The beta-glucuronidase gene (GUS) and fluorescent protein gene often are used as reporter markers in the process of hairy root transformation, but they require expensive chemical reagents or imaging equipment. Alternatively, AtMYB75, an R2R3 MYB transcription factor from Arabidopsis thaliana, recently has been used as a reporter gene in hairy root transformation in some leguminous plants and can cause anthocyanin accumulation in transgenic hairy roots. Whether AtMYB75 can be used as a reporter gene in the hairy roots of tomato and if the anthocyanins accumulating in the roots will affect AMF colonization, however, are still unknown. In this study, the one-step cutting method was used for tomato hairy root transformation by A.rhizogenes. It is faster and has a higher transformation efficiency than the conventional method. AtMYB75 was used as a reporter gene in tomato hairy root transformation. The results showed that the overexpression of AtMYB75 caused anthocyanin accumulation in the transformed hairy roots. Anthocyanin accumulation in the transgenic hairy roots did not affect their colonization by the arbuscular mycorrhizal fungus, Funneliformis mosseae strain BGC NM04A, and there was no difference in the expression of the AMF colonization marker gene SlPT4 in AtMYB75 transgenic roots and wild-type roots. Hence, AtMYB75 can be used as a reporter gene in tomato hairy root transformation and in the study of symbiosis between tomato and AMF.
Collapse
Affiliation(s)
- Xiuyuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Chong Teng
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Kaidi Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Qianqian Li
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Wentao Peng
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China
| | - Lijuan Fan
- Jinan Laiwu Vocational Secondary Professional School, Jinan, 271100, China
| | - Shanhua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China.
| | - Yinglun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
15
|
Rhizogenic Agrobacterium protein RolB interacts with the TOPLESS repressor proteins to reprogram plant immunity and development. Proc Natl Acad Sci U S A 2023; 120:e2210300120. [PMID: 36634142 PMCID: PMC9934019 DOI: 10.1073/pnas.2210300120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhizogenic Agrobacterium strains comprise biotrophic pathogens that cause hairy root disease (HRD) on hydroponically grown Solanaceae and Cucurbitaceae crops, besides being widely explored agents for the creation of hairy root cultures for the sustainable production of plant-specialized metabolites. Hairy root formation is mediated through the expression of genes encoded on the T-DNA of the root-inducing (Ri) plasmid, of which several, including root oncogenic locus B (rolB), play a major role in hairy root development. Despite decades of research, the exact molecular function of the proteins encoded by the rol genes remains enigmatic. Here, by means of TurboID-mediated proximity labeling in tomato (Solanum lycopersicum) hairy roots, we identified the repressor proteins TOPLESS (TPL) and Novel Interactor of JAZ (NINJA) as direct interactors of RolB. Although these interactions allow RolB to act as a transcriptional repressor, our data hint at another in planta function of the RolB oncoprotein. Hence, by a series of plant bioassays, transcriptomic and DNA-binding site enrichment analyses, we conclude that RolB can mitigate the TPL functioning so that it leads to a specific and partial reprogramming of phytohormone signaling, immunity, growth, and developmental processes. Our data support a model in which RolB manipulates host transcription, at least in part, through interaction with TPL, to facilitate hairy root development. Thereby, we provide important mechanistic insights into this renowned oncoprotein in HRD.
Collapse
|
16
|
Yang F, Ding L, Zhao D, Fan H, Zhu X, Wang Y, Liu X, Duan Y, Chen L. Identification and Functional Analysis of Tomato MicroRNAs in the Biocontrol Bacterium Pseudomonas putida Induced Plant Resistance to Meloidogyne incognita. PHYTOPATHOLOGY 2022; 112:2372-2382. [PMID: 35668060 DOI: 10.1094/phyto-03-21-0101-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Root-knot nematodes (RKNs, Meloidogyne spp.) seriously damage tomato production worldwide, and biocontrol bacteria can induce tomato immunity to RKNs. Our previous studies have revealed that Pseudomonas putida strain Sneb821 can trigger tomato immunity against M. incognita and that several long noncoding RNAs and microRNAs (miRNAs) are involved in this process. However, the molecular functions of the miRNAs in tomato immune responses remain unclear. In this study, deep small RNA sequencing identified 78 differentially expressed miRNAs in tomato plants inoculated with Sneb821 and M. incognita relative to plants inoculated with M. incognita alone; 38 miRNAs were upregulated, and 40 miRNAs were downregulated. The expression levels of six known miRNAs and five novel miRNAs were validated using RT-qPCR assays. These included Sly-miR482d-3p, Sly-miR156e-5p, Sly-miR319a, novel_miR_116, novel_miR_121, and novel_miR_221, which were downregulated, and Sly-miR390a-3p, Sly-miR394-3p, Sly-miR396a-3p, novel_miR_215, and novel_miR_83, which were upregulated in plants treated with Sneb821 and M. incognita. In addition, Sly-miR482d was functionally characterized through gene silencing and overexpression of its target gene NBS-LRR (Solyc05g009750.1) in tomato and by challenging the plants with M. incognita inoculation. The number of second-stage juveniles (J2) inside roots and induced galls were significantly decreased in both Sly-miR482d-silenced plants and Solyc05g009750.1 overexpressing plants, whereas the activity of superoxide dismutase, peroxidase, and hydrogen peroxide content were significantly increased. The results suggest that Sneb821 could inhibit Sly-miR482d expression and thus regulate tomato immune responses against M. incognita infestation. This study provides novel insights into the biocontrol bacteria-mediated tomato immunity to M. incognita that engages with plant miRNAs.
Collapse
Affiliation(s)
- Fan Yang
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Dongling Road 120, Shenyang 110866, China
| | - Ling Ding
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Dongling Road 120, Shenyang 110866, China
| | - Dan Zhao
- College of Plant Protection, Jilin Agricultural University, Xincheng Road 2888, Jilin 130118, China
| | - Haiyan Fan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Dongling Road 120, Shenyang 110866, China
| | - Xiaofeng Zhu
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Yuanyuan Wang
- College of Biotechnology, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Xiaoyu Liu
- College of Science, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Yuxi Duan
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
| | - Lijie Chen
- College of Plant Protection, Shenyang Agricultural University, Dongling Road 120, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Ministry of Education, Dongling Road 120, Shenyang 110866, China
| |
Collapse
|
17
|
Hsieh YH, Wei YH, Lo JC, Pan HY, Yang SY. Arbuscular mycorrhizal symbiosis enhances tomato lateral root formation by modulating CEP2 peptide expression. THE NEW PHYTOLOGIST 2022; 235:292-305. [PMID: 35358343 DOI: 10.1111/nph.18128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Plant lateral root (LR) growth usually is stimulated by arbuscular mycorrhizal (AM) symbiosis. However, the molecular mechanism is still unclear. We used gene expression analysis, peptide treatment and virus-induced gene alteration assays to demonstrate that C-terminally encoded peptide (CEP2) expression in tomato was downregulated during AM symbiosis to mitigate its negative effect on LR formation through an auxin-related pathway. We showed that enhanced LR density and downregulated CEP2 expression were observed during mycorrhizal symbiosis. Synthetic CEP2 peptide treatment reduced LR density and impaired the expression of genes involved in indole-3-butyric acid (IBA, the precursor of IAA) to IAA conversion, auxin polar transport and the LR-related signaling pathway; however, application of IBA or synthetic auxin 1-naphthaleneacetic acid (NAA) to the roots may rescue both defective LR formation and reduced gene expression. CEP receptor 1 (CEPR1) might be the receptor of CEP2 because its knockdown plants did not respond to CEP2 treatment. Most importantly, the LR density of CEP2 overexpression or knockdown plants could not be further increased by AM inoculation, suggesting that CEP2 was critical for AM-induced LR formation. These results indicated that AM symbiosis may regulate root development by modulating CEP2, which affects the auxin-related pathway.
Collapse
Affiliation(s)
- Yu-Heng Hsieh
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Hsien Wei
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Jui-Chi Lo
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hsuan-Yu Pan
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Shu-Yi Yang
- Institute of Plant Biology, Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
18
|
Arbuscular Mycorrhizal Symbiosis Leads to Differential Regulation of Genes and miRNAs Associated with the Cell Wall in Tomato Leaves. BIOLOGY 2022; 11:biology11060854. [PMID: 35741375 PMCID: PMC9219611 DOI: 10.3390/biology11060854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal symbiosis is an association that provides nutritional benefits to plants. Importantly, it induces a physiological state allowing plants to respond to a subsequent pathogen attack in a more rapid and intense manner. Consequently, mycorrhiza-colonized plants become less susceptible to root and shoot pathogens. This study aimed to identify some of the molecular players and potential mechanisms related to the onset of defense priming by mycorrhiza colonization, as well as miRNAs that may act as regulators of priming genes. The upregulation of cellulose synthases, pectinesterase inhibitors, and xyloglucan endotransglucosylase/hydrolase, as well as the downregulation of a pectinesterase, suggest that the modification and reinforcement of the cell wall may prime the leaves of mycorrhizal plants to react faster and stronger to subsequent pathogen attack. This was confirmed by the findings of miR164a-3p, miR164a-5p, miR171e-5p, and miR397, which target genes and are also related to the biosynthesis or modification of cell wall components. Our findings support the hypothesis that the reinforcement or remodeling of the cell wall and cuticle could participate in the priming mechanism triggered by mycorrhiza colonization, by strengthening the first physical barriers upstream of the pathogen encounter.
Collapse
|
19
|
Improved and Highly Efficient Agrobacterium rhizogenes-Mediated Genetic Transformation Protocol: Efficient Tools for Functional Analysis of Root-Specific Resistance Genes for Solanum lycopersicum cv. Micro-Tom. SUSTAINABILITY 2022. [DOI: 10.3390/su14116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gene function analysis, molecular breeding, and the introduction of new traits in crop plants all require the development of a high-performance genetic transformation system. In numerous crops, including tomatoes, Agrobacterium-mediated genetic transformation is the preferred method. As one of our ongoing research efforts, we are in the process of mapping a broad-spectrum nematode resistance gene (Me1) in pepper. We work to transform tomato plants with candidate genes to confer resistance to nematodes in Solanaceae members. The transformation technology development is designed to produce a reproducible, rapid, and highly effective Agrobacterium-mediated genetic transformation system of Micro-Tom. In our system, a transformation efficiency of over 90% was achieved. The entire procedure, starting from the germination of seeds to the establishment of transformed plants in soil, was completed in 53 days. We confirmed the presence of the NeoR/KanR and DsRed genes in the transformed roots by polymerase chain reaction. The hairy root plants were infected with nematodes, and after 3 months, the presence of DsRed and NeoR/KanR genes was detected in the transformant roots to confirm the long-term effectiveness of the method. The presented study may facilitate root-related research and exploration of root–pathogen interactions.
Collapse
|
20
|
Nanjareddy K, Zepeda‐Jazo I, Arthikala M. A protocol for the generation of Arachis hypogaea composite plants: A valuable tool for the functional study of mycorrhizal symbiosis. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11454. [PMID: 35228912 PMCID: PMC8861588 DOI: 10.1002/aps3.11454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 05/13/2023]
Abstract
PREMISE Agrobacterium rhizogenes-induced hairy root systems are one of the most preferred and versatile systems for the functional characterization of genes. The use of hairy root systems is a rapid and convenient alternative for studying root biology, biotic and abiotic stresses, and root symbiosis in in vitro recalcitrant legume species such as Arachis hypogaea. METHODS AND RESULTS We present a rapid, simplified method for the generation of composite A. hypogaea plants with transgenic hairy roots. We demonstrate a technique of hairy root induction mediated by A. rhizogenes from young A. hypogaea shoots. The efficacy of the system for producing transgenic roots is demonstrated using an enhanced green fluorescent protein (eGFP) expression vector. Furthermore, the application of the system for studying root branching is shown using the auxin-responsive marker DR5 promoter fused to β-glucuronidase (GUS). Finally, the success of the hairy root system for root symbiotic studies is illustrated by inoculating hairy roots with arbuscular mycorrhizal fungi. CONCLUSIONS In this study, we have developed a rapid, efficient, and cost-effective composite plant protocol for A. hypogaea that is particularly effective for root-related studies and for the validation of candidate genes in A. hypogaea during mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Kalpana Nanjareddy
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de México (UNAM), León, C.P.37689GuanajuatoMexico
| | - Isaac Zepeda‐Jazo
- Departamento de Genómica AlimentariaUniversidad de La Ciénega del Estado de Michoacán de Ocampo, Sahuayo, C.P.59103Michoacán de OcampoMexico
| | - Manoj‐Kumar Arthikala
- Ciencias Agrogenómicas, Escuela Nacional de Estudios Superiores Unidad LeónUniversidad Nacional Autónoma de México (UNAM), León, C.P.37689GuanajuatoMexico
| |
Collapse
|
21
|
Success of microbial genes based transgenic crops: Bt and beyond Bt. Mol Biol Rep 2021; 48:8111-8122. [PMID: 34716867 DOI: 10.1007/s11033-021-06760-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/09/2021] [Indexed: 10/19/2022]
Abstract
Transgenic technology could hold the key to help farmers to fulfill the ever increasing fast-paced global demand for food. Microbes have always wondered us by their potentials and thriving abilities in the extreme conditions. The use of microorganisms as a gene source in transgenic development is a promising option for crop improvement. The aforesaid approach has already for improving the characteristics of food, industrial, horticulture, and floriculture crops. Many transgenic crops containing microbial genes have been accepted by the farmers and consumers worldwide over the last few decades. The acceptance has brought remarkable changes in the status of society by providing food safety, economic, and health benefits. Among transgenic plants harboring microbial genes, Bacillus thuringiensis (Bt) based transgenic were more focused and documented owing to its significant performance in controlling insects. However, other microbial gene-based transgenic plants have also reserved their places in the farmer's field globally. Therefore, in this review, we have thrown some light on successful transgenic plants harboring microbial genes other than Bt, having application in agriculture. Also, we presented the role of microbial genetic element and product thereof in the inception of biotechnology and discussed the potential of microbial genes in crop improvement.
Collapse
|
22
|
Bourigault Y, Rodrigues S, Crépin A, Chane A, Taupin L, Bouteiller M, Dupont C, Merieau A, Konto-Ghiorghi Y, Boukerb AM, Turner M, Hamon C, Dufour A, Barbey C, Latour X. Biocontrol of Biofilm Formation: Jamming of Sessile-Associated Rhizobial Communication by Rhodococcal Quorum-Quenching. Int J Mol Sci 2021; 22:ijms22158241. [PMID: 34361010 PMCID: PMC8347015 DOI: 10.3390/ijms22158241] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by a community of microbes adhering to a surface and/or to each other through the secretion of an adhesive and protective matrix. The establishment of these structures requires a coordination of action between microorganisms through powerful communication systems such as quorum-sensing. Therefore, auxiliary bacteria capable of interfering with these means of communication could be used to prevent biofilm formation and development. The phytopathogen Rhizobium rhizogenes, which causes hairy root disease and forms large biofilms in hydroponic crops, and the biocontrol agent Rhodococcus erythropolis R138 were used for this study. Changes in biofilm biovolume and structure, as well as interactions between rhizobia and rhodococci, were monitored by confocal laser scanning microscopy with appropriate fluorescent biosensors. We obtained direct visual evidence of an exchange of signals between rhizobia and the jamming of this communication by Rhodococcus within the biofilm. Signaling molecules were characterized as long chain (C14) N-acyl-homoserine lactones. The role of the Qsd quorum-quenching pathway in biofilm alteration was confirmed with an R. erythropolis mutant unable to produce the QsdA lactonase, and by expression of the qsdA gene in a heterologous host, Escherichia coli. Finally, Rhizobium biofilm formation was similarly inhibited by a purified extract of QsdA enzyme.
Collapse
Affiliation(s)
- Yvann Bourigault
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Sophie Rodrigues
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Alexandre Crépin
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, F-86073 Poitiers, France;
| | - Andrea Chane
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Laure Taupin
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Mathilde Bouteiller
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Charly Dupont
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Annabelle Merieau
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Yoan Konto-Ghiorghi
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Amine M. Boukerb
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
| | - Marie Turner
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
- Biocontrol Consortium, F-75007 Paris, France
| | - Céline Hamon
- Vegenov, F-29250 Saint-Pol-de-Léon, France; (M.T.); (C.H.)
| | - Alain Dufour
- Laboratoire de Biotechnologie et Chimie Marines, LBCM IUEM, EA 3884, Université de Bretagne-Sud, F-56100 Lorient, France; (S.R.); (L.T.); (A.D.)
| | - Corinne Barbey
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
| | - Xavier Latour
- Laboratory of Microbiology Signals and Microenvironment (LMSM EA 4312), University of Rouen Normandy, F-27000 Evreux, France; (Y.B.); (A.C.); (M.B.); (C.D.); (A.M.); (Y.K.-G.); (A.M.B.); (C.B.)
- Research Federations NORVEGE Fed4277 & NORSEVE, Normandy University, F-76821 Mont-Saint-Aignan, France
- Biocontrol Consortium, F-75007 Paris, France
- Correspondence: ; +33-235-146-000
| |
Collapse
|
23
|
Ho-Pl�garo T, Huertas R, Tamayo-Navarrete MI, Blancaflor E, Gavara N, Garc�a-Garrido JM. A Novel Putative Microtubule-Associated Protein Is Involved in Arbuscule Development during Arbuscular Mycorrhiza Formation. PLANT & CELL PHYSIOLOGY 2021; 62:306-320. [PMID: 33386853 PMCID: PMC8112838 DOI: 10.1093/pcp/pcaa159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/06/2020] [Indexed: 05/11/2023]
Abstract
The formation of arbuscular mycorrhizal (AM) symbiosis requires plant root host cells to undergo major structural and functional reprogramming to house the highly branched AM fungal structure for the reciprocal exchange of nutrients. These morphological modifications are associated with cytoskeleton remodelling. However, molecular bases and the role of microtubules (MTs) and actin filament dynamics during AM formation are largely unknown. In this study, the tomato tsb (tomato similar to SB401) gene, belonging to a Solanaceae group of genes encoding MT-associated proteins (MAPs) for pollen development, was found to be highly expressed in root cells containing arbuscules. At earlier stages of mycorrhizal development, tsb overexpression enhanced the formation of highly developed and transcriptionally active arbuscules, while tsb silencing hampers the formation of mature arbuscules and represses arbuscule functionality. However, at later stages of mycorrhizal colonization, tsb overexpressing (OE) roots accumulate fully developed transcriptionally inactive arbuscules, suggesting that the collapse and turnover of arbuscules might be impaired by TSB accumulation. Imaging analysis of the MT cytoskeleton in cortex root cells OE tsb revealed that TSB is involved in MT bundling. Taken together, our results provide unprecedented insights into the role of novel MAP in MT rearrangements throughout the different stages of the arbuscule life cycle.
Collapse
Affiliation(s)
- Tania Ho-Pl�garo
- Department of Soil Microbiology and Symbiotic Systems, Estaci�n Experimental del Zaid�n (EEZ), CSIC, Calle Profesor Albareda No 1, Granada 18008, Spain
| | - Ra�l Huertas
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Mar�a I Tamayo-Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Estaci�n Experimental del Zaid�n (EEZ), CSIC, Calle Profesor Albareda No 1, Granada 18008, Spain
| | - Elison Blancaflor
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Nuria Gavara
- Unitat de Biof�sica i Bioenginyeria, Facultat de Medicina i Ci�ncies de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Jos� M Garc�a-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estaci�n Experimental del Zaid�n (EEZ), CSIC, Calle Profesor Albareda No 1, Granada 18008, Spain
| |
Collapse
|
24
|
Ho-Plágaro T, Morcillo RJL, Tamayo-Navarrete MI, Huertas R, Molinero-Rosales N, López-Ráez JA, Macho AP, García-Garrido JM. DLK2 regulates arbuscule hyphal branching during arbuscular mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2021; 229:548-562. [PMID: 32966595 DOI: 10.1111/nph.16938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
D14 and KAI2 receptors enable plants to distinguish between strigolactones (SLs) and karrikins (KARs), respectively, in order to trigger appropriate environmental and developmental responses. Both receptors are related to the regulation of arbuscular mycorrhiza (AM) formation and are members of the RsbQ-like family of α,β-hydrolases. DLK2 proteins, whose function remains unknown, constitute a third clade from the RsbQ-like protein family. We investigated whether the tomato SlDLK2 is a new regulatory component in the AM symbiosis. Genetic approaches were conducted to analyze SlDLK2 expression and to understand SlDLK2 function in AM symbiosis. We show that SlDLK2 expression in roots is AM-dependent and is associated with cells containing arbuscules. SlDLK2 ectopic expression arrests arbuscule branching and downregulates AM-responsive genes, even in the absence of symbiosis; while the opposite effect was observed upon SlDLK2 silencing. Moreover, SlDLK2 overexpression in Medicago truncatula roots showed the same altered phenotype observed in tomato roots. Interestingly, SlDLK2 interacts with DELLA, a protein that regulates arbuscule formation/degradation in AM roots. We propose that SlDLK2 is a new component of the complex plant-mediated mechanism regulating the life cycle of arbuscules in AM symbiosis.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| | - Rafael J L Morcillo
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - María Isabel Tamayo-Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| | - Raúl Huertas
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | - Nuria Molinero-Rosales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| | - Juan Antonio López-Ráez
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, 201602, China
| | - José Manuel García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, Granada, 18008, Spain
| |
Collapse
|
25
|
Cui ML, Liu C, Piao CL, Liu CL. A Stable Agrobacterium rhizogenes-Mediated Transformation of Cotton ( Gossypium hirsutum L.) and Plant Regeneration From Transformed Hairy Root via Embryogenesis. FRONTIERS IN PLANT SCIENCE 2020; 11:604255. [PMID: 33381137 PMCID: PMC7767857 DOI: 10.3389/fpls.2020.604255] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/18/2020] [Indexed: 06/01/2023]
Abstract
Genetic transformation is a powerful tool to study gene function, secondary metabolism pathways, and molecular breeding in crops. Cotton (Gossypium hirsutum L.) is one of the most important economic crops in the world. Current cotton transformation methods take at least seven to culture and are labor-intensive and limited to some cultivars. In this study, we first time achieved plantlet regeneration of cotton via embryogenesis from transformed hairy roots. We inoculated the cotyledon explants of a commercial cultivar Zhongmian-24 with Agrobacterium rhizogenes strain AR1193, harboring a binary vector pBI-35S::GFP that contained the NPT II (neomycin phosphotransferase) gene and the GFP (green fluorescent protein) gene as a fluorescent marker in the T-DNA region. 82.6% explants produced adventitious roots, of which 53% showed GFP expression after transformation. 82% of transformed hairy roots produced embryonic calli, 12% of which regenerated into stable transformed cotton plants after 7 months of culture. The integration of GFP in the transformed cotton genomes were confirmed by PCR (Polymerase chain reaction) and Southern blot analysis as well as the stable expression of GFP were also detected by semi-quantitative RT-PCR analysis. The resultant transformed plantlets were phenotypically, thus avoiding Ri syndrome. Here we report a stable and reproducible method for A. rhizogenes-mediated transformation of cotton using cotyledon as explants, which provides a useful and reliable platform for gene function analysis of cotton.
Collapse
Affiliation(s)
- Min-Long Cui
- College of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chen Liu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Chun-Lan Piao
- College of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou, China
| | - Chuan-Liang Liu
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Lachner LA, Galstyan LG, Krause K. A highly efficient protocol for transforming Cuscuta reflexa based on artificially induced infection sites. PLANT DIRECT 2020; 4:e00254. [PMID: 32789286 PMCID: PMC7417715 DOI: 10.1002/pld3.254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/17/2020] [Indexed: 05/02/2023]
Abstract
The parasitic plant genus Cuscuta is notoriously difficult to transform and to propagate or regenerate in vitro. With it being a substantial threat to many agroecosystems, techniques allowing functional analysis of gene products involved in host interaction and infection mechanisms are, however, in high demand. We set out to explore whether Agrobacterium-mediated transformation of different plant parts can provide efficient alternatives to the currently scarce and inefficient protocols for transgene expression in Cuscuta. We used fluorescent protein genes on the T-DNA as markers for transformation efficiency and transformation stability. As a result, we present a novel highly efficient transformation protocol for Cuscuta reflexa cells that exploits the propensity of the infection organ to take up and express transgenes with the T-DNA. Both, Agrobacterium rhizogenes and Agrobacterium tumefaciens carrying binary transformation vectors with reporter fluorochromes yielded high numbers of transformation events. An overwhelming majority of transformed cells were observed in the cell layer below the adhesive disk's epidermis, suggesting that these cells are particularly susceptible to infection. Cotransformation of these cells happens frequently when Agrobacterium strains carrying different constructs are applied together. Explants containing transformed tissue expressed the fluorescent markers in in vitro culture for several weeks, offering a future possibility for development of transformed cells into callus. These results are discussed with respect to the future potential of this technique and with respect to the special characteristics of the infection organ that may explain its competence to take up the foreign DNA.
Collapse
Affiliation(s)
| | - Levon Galstyan Galstyan
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Present address:
Faculty of Food TechnologiesArmenian National Agrarian UniversityYerevanArmenia
| | - Kirsten Krause
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
27
|
Fan YL, Zhang XH, Zhong LJ, Wang XY, Jin LS, Lyu SH. One-step generation of composite soybean plants with transgenic roots by Agrobacterium rhizogenes-mediated transformation. BMC PLANT BIOLOGY 2020; 20:208. [PMID: 32397958 PMCID: PMC7333419 DOI: 10.1186/s12870-020-02421-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 04/29/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Agrobacterium rhizogenes-mediated (ARM) transformation is a highly efficient technique for generating composite plants composed of transgenic roots and wild-type shoot, providing a powerful tool for studying root biology. The ARM transformation has been established in many plant species, including soybean. However, traditional transformation of soybean, transformation efficiency is low. Additionally, the hairy roots were induced in a medium, and then the generated composite plants were transplanted into another medium for growth. This two-step operation is not only time-consuming, but aggravates contamination risk in the study of plant-microbe interactions. RESULTS Here, we report a one-step ARM transformation method with higher transformation efficiency for generating composite soybean plants. Both the induction of hairy roots and continuous growth of the composite plants were conducted in a single growth medium. The primary root of a 7-day-old seedling was decapitated with a slanted cut, the residual hypocotyl (maintained 0.7-1 cm apical portion) was inoculated with A. rhizogenes harboring the gene construct of interest. Subsequently, the infected seedling was planted into a pot with wet sterile vermiculite. Almost 100% of the infected seedlings could produce transgenic positive roots 16 days post-inoculation in 7 tested genotypes. Importantly, the transgenic hairy roots in each composite plant are about three times more than those of the traditional ARM transformation, indicating that the one-step method is simpler in operation and higher efficiency in transformation. The reliability of the one-step method was verified by CRISPR/Cas9 system to knockout the soybean Rfg1, which restricts nodulation in Williams 82 (Nod-) by Sinorhizobium fredii USDA193. Furthermore, we applied this method to analyze the function of Arabidopsis YAO promoter in soybean. The activity of YAO promoter was detected in whole roots and stronger in the root tips. We also extended the protocol to tomato. CONCLUSIONS We established a one-step ARM transformation method, which is more convenient in operation and higher efficiency (almost 100%) in transformation for generating composite soybean plants. This method has been validated in promoter functional analysis and rhizobia-legume interactions. We anticipate a broad application of this method to analyze root-related events in tomato and other plant species besides soybean.
Collapse
Affiliation(s)
- Ying-lun Fan
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xing-hui Zhang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Li-jing Zhong
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Xiu-yuan Wang
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Liang-shen Jin
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| | - Shan-hua Lyu
- College of Agriculture, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
28
|
Xu S, Lai E, Zhao L, Cai Y, Ogutu C, Cherono S, Han Y, Zheng B. Development of a fast and efficient root transgenic system for functional genomics and genetic engineering in peach. Sci Rep 2020; 10:2836. [PMID: 32071340 PMCID: PMC7029003 DOI: 10.1038/s41598-020-59626-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/17/2020] [Indexed: 01/30/2023] Open
Abstract
Peach is an economically import fruit crop worldwide, and serves as a model species of the Rosaceae family as well. However, peach functional genomics studies are severely hampered due to its recalcitrance to regeneration and stable transformation. Here, we report a fast and efficient Agrobacterium rhizogenes-mediated transformation system in peach. Various explants, including leaf, hypocotyl and shoot, were all able to induce transgenic hairy roots, with a transformation efficiency of over 50% for hypocotyl. Composite plants were generated by infecting shoots with A. rhizogenes to induce transgenic adventitious hairy roots. The composite plant system was successfully used to validate function of an anthocyanin-related regulatory gene PpMYB10.1 in transgenic hairy roots, and two downstream genes, PpUFGT and PpGST, were strongly activated. Our stable and reproductive A. rhizogenes-mediated transformation system provides an avenue for gene function assay, genetic engineering, and investigation of root-rhizosphere microorganism interaction in peach.
Collapse
Affiliation(s)
- Shengli Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Enhui Lai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Lei Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Sylvia Cherono
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.,University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China. .,Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China.
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
29
|
Martínez-Medina A, Pescador L, Fernández I, Rodríguez-Serrano M, García JM, Romero-Puertas MC, Pozo MJ. Nitric oxide and phytoglobin PHYTOGB1 are regulatory elements in the Solanum lycopersicum-Rhizophagus irregularis mycorrhizal symbiosis. THE NEW PHYTOLOGIST 2019; 223:1560-1574. [PMID: 31066909 DOI: 10.1111/nph.15898] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/27/2019] [Indexed: 05/20/2023]
Abstract
The regulatory role of nitric oxide (NO) and phytoglobins in plant response to pathogenic and mutualistic microbes has been evidenced. However, little is known about their function in the arbuscular mycorrhizal (AM) symbiosis. We investigated whether NO and phytoglobin PHYTOGB1 are regulatory components in the AM symbiosis. Rhizophagus irregularis in vitro-grown cultures and tomato plants were used to monitor AM-associated NO-related root responses as compared to responses triggered by the pathogen Fusarium oxysporum. A genetic approach was conducted to understand the role of PHYTOGB1 on NO signaling during both interactions. After a common early peak in NO levels in response to both fungi, a specific NO accumulation pattern was triggered in tomato roots during the onset of the AM interaction. PHYTOGB1 was upregulated by the AM interaction. By contrast, the pathogen triggered a continuous NO accumulation and a strong downregulation of PHYTOGB1. Manipulation of PHYTOGB1 levels in overexpressing and silenced roots led to a deregulation of NO levels and altered mycorrhization and pathogen infection. We demonstrate that the onset of the AM symbiosis is associated with a specific NO-related signature in the host root. We propose that NO regulation by PHYTOGB1 is a regulatory component of the AM symbiosis.
Collapse
Affiliation(s)
- Ainhoa Martínez-Medina
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, 18008, Spain
| | - Leyre Pescador
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, 18008, Spain
| | - Iván Fernández
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, 18008, Spain
| | - María Rodríguez-Serrano
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, 18008, Spain
| | - Juan M García
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, 18008, Spain
| | - María C Romero-Puertas
- Department of Biochemistry and Cellular and Molecular Biology of Plants, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, 18008, Spain
| | - María J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas, Profesor Albareda 1, Granada, 18008, Spain
| |
Collapse
|
30
|
Molinero-Rosales N, Martín-Rodríguez JÁ, Ho-Plágaro T, García-Garrido JM. Identification and expression analysis of the arbuscular mycorrhiza-inducible Rieske non-heme oxygenase Ptc52 gene from tomato. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:95-103. [PMID: 31051335 DOI: 10.1016/j.jplph.2019.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Arbuscular mycorrhizal (AM) formation enhances plant growth and fitness through improved uptake of water and mineral nutrients in exchange for carbon compounds to the AM fungus. The fungal structure for the reciprocal exchange of nutrients in the symbiosis is the arbuscule, and defence genes expressed in cells containing arbuscules could play a role in the control of hyphal spread and arbuscule formation in the root. We characterized and analyzed the Ptc52 gene from tomato (SlPtc52), a member of the gene family of non-heme oxygenases, whose function has been related to the lethal leaf spot 1 (Lls1) lesion mimic phenotype in plants which is sometimes associated with enhanced disease resistance. Sequence analysis of the SlPTC52 protein revealed conserved typical motifs from non-heme oxygenases, including a Rieske [2Fe-2S] motif, a mononuclear non-heme iron-binding motif and a C-terminal CxxC motif. The level of transcript accumulation was low in stem, flower and green fruits, and high in leaves. Although SlPtc52 expression was perceptible at low levels in roots, its expression increased concomitantly with AM fungus root colonization. Tomato non-mycorrhizal hairy roots expressing the GUS protein under the control of promoter SlPtc52 exhibited GUS activity in the endodermis, the apical meristem of the root tip and in the lateral root primordium. AM fungal colonization also resulted in intensive GUS activity that clearly corresponds to cortical cells containing arbuscules. SlPtc52 gene silencing led to a delay in root colonization and a decrease in arbuscular abundance, suggesting that SlPTC52 plays a regulatory role during AM symbiosis.
Collapse
Affiliation(s)
- Nuria Molinero-Rosales
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ) CSIC, Calle Profesor Albareda nº1, 18008, Granada, Spain
| | | | - Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ) CSIC, Calle Profesor Albareda nº1, 18008, Granada, Spain
| | - José Manuel García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ) CSIC, Calle Profesor Albareda nº1, 18008, Granada, Spain.
| |
Collapse
|
31
|
Paolis AD, Frugis G, Giannino D, Iannelli MA, Mele G, Rugini E, Silvestri C, Sparvoli F, Testone G, Mauro ML, Nicolodi C, Caretto S. Plant Cellular and Molecular Biotechnology: Following Mariotti's Steps. PLANTS (BASEL, SWITZERLAND) 2019; 8:E18. [PMID: 30634627 PMCID: PMC6359066 DOI: 10.3390/plants8010018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 01/19/2023]
Abstract
This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gain new insights into the biochemical function of Agrobacterium rhizogenes rol genes and their application to metabolite production, fruit tree transformation, and reverse genetics; (iii) improve genetic transformation in legume species, most of them recalcitrant to regeneration; (iv) untangle the potential of KNOTTED1-like homeobox (KNOX) transcription factors in plant morphogenesis as key regulators of hormonal homeostasis; and (v) elucidate the molecular mechanisms of the transition from juvenility to the adult phase in Prunus tree species.
Collapse
Affiliation(s)
- Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Eddo Rugini
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Cristian Silvestri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Francesca Sparvoli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy.
| | - Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Sofia Caretto
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
32
|
Ho-Plágaro T, Molinero-Rosales N, Fariña Flores D, Villena Díaz M, García-Garrido JM. Identification and Expression Analysis of GRAS Transcription Factor Genes Involved in the Control of Arbuscular Mycorrhizal Development in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:268. [PMID: 30930915 PMCID: PMC6429219 DOI: 10.3389/fpls.2019.00268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/19/2019] [Indexed: 05/15/2023]
Abstract
The formation and functioning of arbuscular mycorrhizal (AM) symbiosis are complex and tightly regulated processes. Transcriptional regulation mechanisms have been reported to mediate gene expression changes closely associated with arbuscule formation, where nutrients move between the plant and fungus. Numerous genes encoding transcription factors (TFs), with those belonging to the GRAS family being of particular importance, are induced upon mycorrhization. In this study, a screening for candidate transcription factor genes differentially regulated in AM tomato roots showed that more than 30% of known GRAS tomato genes are upregulated upon mycorrhization. Some AM-upregulated GRAS genes were identified as encoding for transcription factors which are putative orthologs of previously identified regulators of mycorrhization in other plant species. The symbiotic role played by other newly identified AM-upregulated GRAS genes remains unknown. Preliminary results on the involvement of tomato SlGRAS18, SlGRAS38, and SlGRAS43 from the SCL3, SCL32, and SCR clades, respectively, in mycorrhization are presented. All three showed high transcript levels in the late stages of mycorrhization, and the analysis of promoter activity demonstrated that SlGRAS18 and SlGRAS43 are significantly induced in cells containing arbuscules. When SlGRAS18 and SlGRAS38 genes were silenced using RNA interference in hairy root composite tomato plants, a delay in mycorrhizal infection was observed, while an increase in mycorrhizal colonization was observed in SlGRAS43 RNAi roots. The possible mode of action of these TFs during mycorrhization is discussed, with a particular emphasis on the potential involvement of the SHR/SCR/SCL3 module of GRAS TFs in the regulation of gibberellin signaling during mycorrhization, which is analogous to other plant developmental processes.
Collapse
|
33
|
Gomes C, Dupas A, Pagano A, Grima-Pettenati J, Paiva JAP. Hairy Root Transformation: A Useful Tool to Explore Gene Function and Expression in Salix spp. Recalcitrant to Transformation. FRONTIERS IN PLANT SCIENCE 2019; 10:1427. [PMID: 31781143 PMCID: PMC6859806 DOI: 10.3389/fpls.2019.01427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/15/2019] [Indexed: 05/22/2023]
Abstract
Willow (Salix spp. L.) species are fast-growing trees and shrubs that have attracted emergent attention for their potential as feedstocks for bioenergy and biofuel production, as well as for pharmaceutical and phytoremediation applications. This economic and environmental potential has propelled the creation of several genetic and genomic resources for Salix spp. Furthermore, the recent availability of an annotated genome for Salix purpurea has pinpointed novel candidate genes underlying economically relevant traits. However, functional studies have been stalled by the lack of rapid and efficient coupled regeneration-transformation systems for Salix purpurea and Salix spp. in general. In this report, we describe a fast and highly efficient hairy root transformation protocol for S. purpurea. It was effective for different explant sources and S. purpurea genotypes, with efficiencies between 63.4% and 98.7%, and the screening of the transformed hairy roots was easily carried out using the fluorescent marker DsRed. To test the applicability of this hairy root transformation system for gene functional analysis, we transformed hairy roots with the vector pGWAY-SpDRM2, where the gene SpDRM2 encoding a putative Domain Rearranged Methyltransferase (DRM) was placed under the control of the CaMV 35S constitutive promoter. Indeed, the transgenic hairy roots obtained exhibited significantly increased expression of SpDRM2 as compared to controls, demonstrating that this protocol is suitable for the medium/high-throughput functional characterization of candidate genes in S. purpurea and other recalcitrant Salix spp.
Collapse
Affiliation(s)
- Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Annabelle Dupas
- LRSV, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université Toulouse 3, Castanet Tolosan, France
| | - Andrea Pagano
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Jacqueline Grima-Pettenati
- LRSV, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université Toulouse 3, Castanet Tolosan, France
| | - Jorge Almiro P. Paiva
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
- *Correspondence: Jorge Almiro P. Paiva,
| |
Collapse
|