1
|
Zhang SY, Luo RF, Wu YX, Zhang TT, Yusuf A, Wang N, Li M, Duan S. Establishment and application of high-pressure propagation breeding (HPPB)-mediated genetic transformation system in citrus rootstocks. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40299770 DOI: 10.1111/pbi.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 05/01/2025]
Affiliation(s)
- Si-Yu Zhang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Rui-Fang Luo
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ya-Xiao Wu
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Ting-Ting Zhang
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Abdulhamid Yusuf
- Department of Plant Science and Biotechnology, Federal University, Dutsin-Ma, Katsina State, Nigeria
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Min Li
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Shuo Duan
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
2
|
Jiang H, Qu S, Liu F, Sun H, Li H, Teng W, Zhan Y, Li Y, Han Y, Zhao X. Multi-omics analysis identified the GmUGT88A1 gene, which coordinately regulates soybean resistance to cyst nematode and isoflavone content. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1291-1307. [PMID: 39831827 PMCID: PMC11933870 DOI: 10.1111/pbi.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/02/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines) is a major pathogen harmful to soybean all over the world, causing huge yield loss every year. Soybean resistance to SCN is a complex quantitative trait controlled by a small number of major genes (rhg1 and Rhg4) and multiple micro-effect genes. Therefore, the continuous identification of new resistant lines and genes is needed for the sustainable development of global soybean production. Here, a novel disease-resistance quantitative trait locus Rscn-16 was identified and fine mapped to an 8.4-kb interval on chromosome 16 using an F2 population. According to transcriptome and metabolome analysis, a UDP-glucosyltransferase encoding gene, GmUGT88A1, was identified as the most likely gene of Rscn-16. Soybean lines overexpressing GmUGT88A1 exhibited increased resistance to SCN, higher isoflavone glycosides and larger seed size while the phenotype of RNA-interference and knockout soybean lines showed sensitivity to SCN and decreased in seed size compared to wild-type plants. GmMYB29 gene could bind to the promoter of GmUGT88A1 and coordinate with GmUGT88A1 to regulate soybean resistance to SCN and isoflavone accumulation. Under SCN infection, GmUGT88A1 participated in the reorientation of isoflavone biosynthetic metabolic flow and the accumulation of isoflavone glycosides, thus protecting soybean from SCN stress. GmUGT88A1 was found to control soybean seed size by affecting transcription abundance of GmSWEET10b and GmFAD3C, which are known to control soybean seed weight. Our findings provide insights into the regulation of SCN resistance, isoflavone content and seed size through metabolic flux redirection, and offer a potential means for soybean improvement.
Collapse
Affiliation(s)
- Haipeng Jiang
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
- Heilongjiang Bayi Agricultural UniversityDaqingChina
| | - Shuo Qu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Fang Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Haowen Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Haiyan Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Weili Teng
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yuhang Zhan
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yongguang Li
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Yingpeng Han
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| | - Xue Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural AffairsNortheast Agricultural UniversityHarbinChina
| |
Collapse
|
3
|
Yang M, Du C, Li M, Wang Y, Bao G, Huang J, Zhang Q, Zhang S, Xu P, Teng W, Li Q, Liu S, Song B, Yang Q, Wang Z. The transcription factors GmVOZ1A and GmWRI1a synergistically regulate oil biosynthesis in soybean. PLANT PHYSIOLOGY 2025; 197:kiae485. [PMID: 39268876 DOI: 10.1093/plphys/kiae485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024]
Abstract
Soybean (Glycine max [L.] Merr.) is a major oil-producing crop worldwide. Although several related proteins regulating soybean oil accumulation have been reported, little is known about the regulatory mechanisms. In this study, we characterized vascular plant one-zinc-finger 1A (GmVOZ1A) that interacts with WRINKLED 1a (GmWRI1a) using yeast 2-hybrid library screening. The GmVOZ1A-GmWRI1a interaction was further verified by protein-protein interaction assays in vivo and in vitro. GmVOZ1A enhanced the seed fatty acid and oil contents by regulating genes involved in lipid biosynthesis. Conversely, a loss-of-function mutation in GmVOZ1A resulted in a reduction in triacylglycerol (TAG) content in soybean. Protein-DNA interaction assays revealed that GmVOZ1A and GmWRI1a cooperate to upregulate the expression level of acyl-coenzyme A-binding protein 6a (GmACBP6a) and promote the accumulation of TAG. In addition, GmACBP6a overexpression promoted seed fatty acid and oil contents, as well as increased seed size and 100-seed weight. Taken together, these findings indicate that the transcription factor GmVOZ1A regulates soybean oil synthesis and cooperates with GmWRI1a to upregulate GmACBP6a expression and oil biosynthesis in soybean. The results lay a foundation for a comprehensive understanding of the regulatory mechanisms underlying soybean oil biosynthesis and will contribute to improving soybean oil production through molecular breeding approaches.
Collapse
Affiliation(s)
- Mingming Yang
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Changhuan Du
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Meng Li
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Yuanzhuo Wang
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Gege Bao
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Jinxiu Huang
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Qingyan Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Pengfei Xu
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Weili Teng
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Qingqing Li
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Liu
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Bo Song
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| | - Qiang Yang
- Center for Agricultural Technology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150030, China
| | - Zhikun Wang
- Key Laboratory of Soybean Biology of Ministry of Education China/Key Laboratory of Soybean Biology and Breeding (Genetics) of Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
4
|
Huang C, Yang C, Yang H, Gong Y, Li X, Li L, Li L, Liu X, Li X. Systematic investigation and validation of peanut genetic transformation via the pollen tube injection method. PLANT METHODS 2024; 20:190. [PMID: 39702279 DOI: 10.1186/s13007-024-01314-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Genetic transformation is a pivotal approach in plant genetic engineering. Peanut (Arachis hypogaea L.) is an important oil and cash crop, but the stable genetic transformation of peanut is still difficult and inefficient. Recently, the pollen tube injection pathway has been shown to be effective for the genetic transformation of peanut. However, the poor reproducibility of this pathway is still controversial. In this study, the appropriate time and location of injection, along with transgenic screening, were systematically investigated in the pollen tube mediated peanut genetic transformation. Our findings revealed that Agrobacterium injections could be conducted within a time window of two to three hours preceding and succeeding the blooming process. Among the various selective markers evaluated, the Basta screening emerged as the most expedient, followed closely by the DsRed visual screening. According to resistance screening and molecular identification, the average transformation efficiency was 2.6% in the heritable transgenic progenies, which was more likely affected by individual operation by style cavity injection. Furthermore, the use of synergistic FT artificially regulated the blooming of peanuts under indoor conditions, facilitating operations involving keel petal injection and ultimately enhancing the genetic transformation efficiency. Thus, our study systematically validated the feasibility of peanut genetic transformation through an optimized pollen-tube injection technique without tissue culture, potentially guiding future advancements in peanut engineering and molecular breeding programs.
Collapse
Affiliation(s)
- Chen Huang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Chen Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Huifang Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Yadi Gong
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Xiaomeng Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Lexin Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Ling Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoyun Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
5
|
Khan MW, Shaheen A, Zhang X, Dewir YH, Mendler-Drienyovszki N. A Novel Solid Media-Free In-Planta Soybean ( Glycine max. (L) Merr.) Transformation Approach. Life (Basel) 2024; 14:1412. [PMID: 39598210 PMCID: PMC11595655 DOI: 10.3390/life14111412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/16/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Soybean's lengthy protocols for transgenic plant production are a bottleneck in the transgenic breeding of this crop. Explants cultured on a medium for an extended duration exhibit unanticipated modifications. Stress-induced somaclonal variations and in vitro contaminations also cause substantial losses of transgenic plants. This effect could potentially be mitigated by direct shoot regeneration without solid media or in-planta transformation. The current study focused primarily on developing a rapid and effective media-free in-planta transformation technique for three soybean genotypes (Wm82) and our newly developed two hybrids, designated as ZX-16 and ZX-3. The whole procedure for a transgenic plant takes the same time as a stable grown seedling. Multiple axillary shoots were regenerated on stable-grown soybean seedlings without the ectopic expression of developmental regulatory genes. An approximate amount of 200 µL medium with a growth regulator was employed for shoot organogenesis and growth. The maximal shoot regeneration percentages in the Wm82 and ZX-3 genotypes were 87.1% and 84.5%, respectively. The stable transformation ranged from 3% to 8.0%, with an average of 5.5%. This approach seems to be the opposite of the hairy root transformation method, which allowed transgenic shoots to be regenerated on normal roots. Further improvement regarding an increase in the transformation efficiency and of this technique for a broad range of soybean genotypes and other dicot species would be extremely beneficial in achieving increased stable transformation.
Collapse
Affiliation(s)
- Muhammad Waqar Khan
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China;
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng 475004, China;
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Jinming Road, Kaifeng 475004, China;
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Nóra Mendler-Drienyovszki
- Research Institute of Nyíregyháza, Institutes for Agricultural Research and Educational Farm (IAREF), University of Debrecen, 4400 Nyíregyháza, Hungary;
| |
Collapse
|
6
|
Zhao J, Yang T, Liu P, Liu H, Zhang H, Guo S, Liu X, Chen X, Chen M. Genome-Wide Identification of the Soybean AlkB Homologue Gene Family and Functional Characterization of GmALKBH10Bs as RNA m 6A Demethylases and Expression Patterns under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2491. [PMID: 39273973 PMCID: PMC11397283 DOI: 10.3390/plants13172491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Soybean (Glycine max (L.) Merr) is one of the most important crops worldwide, but its yield is vulnerable to abiotic stresses. In Arabidopsis, the AlkB homologue (ALKBH) family genes plays a crucial role in plant development and stress response. However, the identification and functions of its homologous genes in soybean remain obscured. Here, we identified a total of 22 ALKBH genes in soybean and classified them into seven subfamilies according to phylogenetic analysis. Gene duplication events among the family members and gene structure, conserved domains, and motifs of all candidate genes were analyzed. By comparing the changes in the m6A levels on mRNA from hair roots between soybean seedlings harboring the empty vector and those harboring the GmALKBH10B protein, we demonstrated that all four GmALKBH10B proteins are bona fide m6A RNA demethylases in vivo. Subcellular localization and expression patterns of the GmALKBH10B revealed that they might be functionally redundant. Furthermore, an analysis of cis-elements coupled with gene expression data demonstrated that GmALKBH10B subfamily genes, including GmALKBH10B1, GmALKBH10B2, GmALKBH10B3, and GmALKBH10B4, are likely involved in the cis-elements' response to various environmental stimuli. In summary, our study is the first to report the genome-wide identification of GmALKBH family genes in soybean and to determine the function of GmALKBH10B proteins as m6A RNA demethylases, providing insights into GmALKBH10B genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Jie Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfeng Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijie Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sichao Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Police University, Nanjing 210023, China
| | - Xiaoguang Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Yu T, Hou Z, Wang H, Chang S, Song X, Zheng W, Zheng L, Wei J, Lu Z, Chen J, Zhou Y, Chen M, Sun S, Jiang Q, Jin L, Ma Y, Xu Z. Soybean steroids improve crop abiotic stress tolerance and increase yield. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2333-2347. [PMID: 38600703 PMCID: PMC11258977 DOI: 10.1111/pbi.14349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 02/20/2024] [Accepted: 03/20/2024] [Indexed: 04/12/2024]
Abstract
Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.
Collapse
Affiliation(s)
- Tai‐Fei Yu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ze‐Hao Hou
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Hai‐Long Wang
- Beijing Key Laboratory of Agricultural Genetic Resources and BiotechnologyInstitute of Biotechnology, Beijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Shi‐Yang Chang
- Department of Histology and EmbryologyHebei Medical UniversityShijiazhuangHebeiChina
| | - Xin‐Yuan Song
- Agro‐biotechnology Research InstituteJilin Academy of Agriculture SciencesChangchunChina
| | - Wei‐Jun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Northwest Agricultural and Forestry UniversityYanglingChina
| | - Lei Zheng
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ji‐Tong Wei
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhi‐Wei Lu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Jun Chen
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Yong‐Bin Zhou
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ming Chen
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Su‐Li Sun
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Qi‐Yan Jiang
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- College of Agronomy/College of Life SciencesJilin Agricultural UniversityChangchunChina
| | - Long‐Guo Jin
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - You‐Zhi Ma
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- College of Agronomy/College of Life SciencesJilin Agricultural UniversityChangchunChina
| | - Zhao‐Shi Xu
- State Key Laboratory of Crop Gene Resources and BreedingInstitute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
- College of Agronomy/College of Life SciencesJilin Agricultural UniversityChangchunChina
- National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural Sciences / Seed Industry LaboratorySanyaChina
| |
Collapse
|
8
|
Jedličková V, Štefková M, Mandáková T, Sánchez López JF, Sedláček M, Lysak MA, Robert HS. Injection-based hairy root induction and plant regeneration techniques in Brassicaceae. PLANT METHODS 2024; 20:29. [PMID: 38368430 PMCID: PMC10874044 DOI: 10.1186/s13007-024-01150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/28/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Hairy roots constitute a valuable tissue culture system for species that are difficult to propagate through conventional seed-based methods. Moreover, the generation of transgenic plants derived from hairy roots can be facilitated by employing carefully designed hormone-containing media. RESULTS We initiated hairy root formation in the rare crucifer species Asperuginoides axillaris via an injection-based protocol using the Agrobacterium strain C58C1 harboring a hairy root-inducing (Ri) plasmid and successfully regenerated plants from established hairy root lines. Our study confirms the genetic stability of both hairy roots and their derived regenerants and highlights their utility as a permanent source of mitotic chromosomes for cytogenetic investigations. Additionally, we have developed an effective embryo rescue protocol to circumvent seed dormancy issues in A. axillaris seeds. By using inflorescence primary stems of Arabidopsis thaliana and Cardamine hirsuta as starting material, we also established hairy root lines that were subsequently used for regeneration studies. CONCLUSION We developed efficient hairy root transformation and regeneration protocols for various crucifers, namely A. axillaris, A. thaliana, and C. hirsuta. Hairy roots and derived regenerants can serve as a continuous source of plant material for molecular and cytogenetic analyses.
Collapse
Affiliation(s)
- Veronika Jedličková
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Marie Štefková
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Terezie Mandáková
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Juan Francisco Sánchez López
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marek Sedláček
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin A Lysak
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hélène S Robert
- Mendel Center for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
9
|
Freitas-Alves NS, Moreira-Pinto CE, Arraes FBM, Costa LSDL, de Abreu RA, Moreira VJV, Lourenço-Tessutti IT, Pinheiro DH, Lisei-de-Sa ME, Paes-de-Melo B, Pereira BM, Guimaraes PM, Brasileiro ACM, de Almeida-Engler J, Soccol CR, Morgante CV, Basso MF, Grossi-de-Sa MF. An ex vitro hairy root system from petioles of detached soybean leaves for in planta screening of target genes and CRISPR strategies associated with nematode bioassays. PLANTA 2023; 259:23. [PMID: 38108903 DOI: 10.1007/s00425-023-04286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
MAIN CONCLUSION The ex vitro hairy root system from petioles of detached soybean leaves allows the functional validation of genes using classical transgenesis and CRISPR strategies (e.g., sgRNA validation, gene activation) associated with nematode bioassays. Agrobacterium rhizogenes-mediated root transformation has been widely used in soybean for the functional validation of target genes in classical transgenesis and single-guide RNA (sgRNA) in CRISPR-based technologies. Initial data showed that in vitro hairy root induction from soybean cotyledons and hypocotyls were not the most suitable strategies for simultaneous performing genetic studies and nematode bioassays. Therefore, an ex vitro hairy root system was developed for in planta screening of target molecules during soybean parasitism by root-knot nematodes (RKNs). Applying this method, hairy roots were successfully induced by A. rhizogenes from petioles of detached soybean leaves. The soybean GmPR10 and GmGST genes were then constitutively overexpressed in both soybean hairy roots and tobacco plants, showing a reduction in the number of Meloidogyne incognita-induced galls of up to 41% and 39%, respectively. In addition, this system was evaluated for upregulation of the endogenous GmExpA and GmExpLB genes by CRISPR/dCas9, showing high levels of gene activation and reductions in gall number of up to 58.7% and 67.4%, respectively. Furthermore, morphological and histological analyses of the galls were successfully performed. These collective data validate the ex vitro hairy root system for screening target genes, using classical overexpression and CRISPR approaches, directly in soybean in a simple manner and associated with nematode bioassays. This system can also be used in other root pathosystems for analyses of gene function and studies of parasite interactions with plants, as well as for other purposes such as studies of root biology and promoter characterization.
Collapse
Affiliation(s)
- Nayara S Freitas-Alves
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Fabrício B M Arraes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Lorena S de L Costa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Rayane A de Abreu
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Bruna M Pereira
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Patricia M Guimaraes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Ana C M Brasileiro
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Janice de Almeida-Engler
- INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, ISA, France
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Embrapa Semiarid, Petrolina, PE, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Marcos F Basso
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Maria F Grossi-de-Sa
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil.
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.
- Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil.
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil.
- Catholic University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
10
|
Wang M, Qin YY, Wei NN, Xue HY, Dai WS. Highly efficient Agrobacterium rhizogenes-mediated hairy root transformation in citrus seeds and its application in gene functional analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1293374. [PMID: 38023879 PMCID: PMC10644275 DOI: 10.3389/fpls.2023.1293374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Highly efficient genetic transformation technology is beneficial for plant gene functional research and molecular improvement breeding. However, the most commonly used Agrobacterium tumefaciens-mediated genetic transformation technology is time-consuming and recalcitrant for some woody plants such as citrus, hampering the high-throughput functional analysis of citrus genes. Thus, we dedicated to develop a rapid, simple, and highly efficient hairy root transformation system induced by Agrobacterium rhizogenes to analyze citrus gene function. In this report, a rapid, universal, and highly efficient hairy root transformation system in citrus seeds was described. Only 15 days were required for the entire workflow and the system was applicable for various citrus genotypes, with a maximum transformation frequency of 96.1%. After optimization, the transformation frequency of Citrus sinensis, which shows the lowest transformation frequency of 52.3% among four citrus genotypes initially, was increased to 71.4% successfully. To test the applicability of the hairy roots transformation system for gene functional analysis of citrus genes, we evaluated the subcellular localization, gene overexpression and gene editing in transformed hairy roots. Compared with the traditional transient transformation system performed in tobacco leaves, the transgenic citrus hairy roots displayed a more clear and specific subcellular fluorescence localization. Transcript levels of genes were significantly increased in overexpressing transgenic citrus hairy roots as compared with wild-type (WT). Additionally, hairy root transformation system in citrus seeds was successful in obtaining transformants with knocked out targets, indicating that the Agrobacterium rhizogenes-mediated transformation enables the CRISPR/Cas9-mediated gene editing. In summary, we established a highly efficient genetic transformation technology with non-tissue-culture in citrus that can be used for functional analysis such as protein subcellular localization, gene overexpression and gene editing. Since the material used for genetic transformation are roots protruding out of citrus seeds, the process of planting seedlings prior to transformation of conventional tissue culture or non-tissue-culture was eliminated, and the experimental time was greatly reduced. We anticipate that this genetic transformation technology will be a valuable tool for routine research of citrus genes in the future.
Collapse
Affiliation(s)
| | | | | | | | - Wen-Shan Dai
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
11
|
Cardi T, Murovec J, Bakhsh A, Boniecka J, Bruegmann T, Bull SE, Eeckhaut T, Fladung M, Galovic V, Linkiewicz A, Lukan T, Mafra I, Michalski K, Kavas M, Nicolia A, Nowakowska J, Sági L, Sarmiento C, Yıldırım K, Zlatković M, Hensel G, Van Laere K. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. TRENDS IN PLANT SCIENCE 2023; 28:1144-1165. [PMID: 37331842 DOI: 10.1016/j.tplants.2023.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The discovery of the CRISPR/Cas genome-editing system has revolutionized our understanding of the plant genome. CRISPR/Cas has been used for over a decade to modify plant genomes for the study of specific genes and biosynthetic pathways as well as to speed up breeding in many plant species, including both model and non-model crops. Although the CRISPR/Cas system is very efficient for genome editing, many bottlenecks and challenges slow down further improvement and applications. In this review we discuss the challenges that can occur during tissue culture, transformation, regeneration, and mutant detection. We also review the opportunities provided by new CRISPR platforms and specific applications related to gene regulation, abiotic and biotic stress response improvement, and de novo domestication of plants.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Biosciences and Bioresources (IBBR), Portici, Italy; CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Jana Murovec
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Justyna Boniecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | | | - Simon E Bull
- Molecular Plant Breeding, Institute of Agricultural Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Switzerland; Plant Biochemistry, Institute of Molecular Plant Biology, ETH, Zurich, Switzerland
| | - Tom Eeckhaut
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium
| | | | - Vladislava Galovic
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Anna Linkiewicz
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Tjaša Lukan
- National Institute of Biology, Department of Biotechnology and Systems Biology, Ljubljana, Slovenia
| | - Isabel Mafra
- Rede de Química e Tecnologia (REQUIMTE) Laboratório Associado para a Química Verde (LAQV), Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Krzysztof Michalski
- Plant Breeding and Acclimatization Institute, National Research Institute, Błonie, Poland
| | - Musa Kavas
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Alessandro Nicolia
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Justyna Nowakowska
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Laszlo Sági
- Centre for Agricultural Research, Loránd Eötvös Research Network, Martonvásár, Hungary
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Milica Zlatković
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Goetz Hensel
- Heinrich-Heine-University, Institute of Plant Biochemistry, Centre for Plant Genome Engineering, Düsseldorf, Germany; Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katrijn Van Laere
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium.
| |
Collapse
|
12
|
Liu X, Hou Z, Zhang Y, Merchant A, Zhong ME, Ma G, Zeng Q, Wu L, Zhou X, Luo K, Ding C. Cloning and functional characterization of a tau class glutathione transferase associated with haloxyfop-P-methyl resistance in Digitaria sanguinalis. PEST MANAGEMENT SCIENCE 2023; 79:3950-3958. [PMID: 37248658 DOI: 10.1002/ps.7588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Haloxyfop-P-methyl, an acetyl-CoA carboxylase (ACCase)-inhibiting herbicide, has been extensively used to control grass weeds. Widespread use of haloxyfop-P-methyl in cotton fields in China has led to the development of glutathione transferase (GST)-mediated resistance in Digitaria sanguinalis. An RNA-seq analysis identified DsGSTU1, a tau class glutathione transferase from the D. sanguinalis transcriptome as a potential candidate. Here, we cloned DsGSTU1 from D. sanguinalis young leaf tissues and subsequently characterized DsGSTU1 by a combination of sequence analysis, as well as functional heterologous expression in rice. RESULTS The full-length coding DNA sequence (CDS) of DsGSTU1 is 717 bp in length. Higher DsGSTU1 expression was observed in haloxyfop-P-methyl-resistant (HR) D. sanguinalis than in haloxyfop-P-methyl-susceptible (HS) plants. Overexpression of the DsGSTU1 gene was confirmed by transformation into the wild-type (WT) Nipponbare rice with pBWA(V)HS, a recombinant expression vector. GST activity in transgenic rice seedlings was 1.18-1.40-fold higher than the WT rice seedlings before and after haloxyfop-P-methyl treatment, respectively. Additionally, transgenic rice seedlings overexpressing DsGSTU1 were less sensitive to haloxyfop-P-methyl. CONCLUSION Our combined findings suggest that DsGSTU1 is involved in metabolic resistance to haloxyfop-P-methyl in D. sanguinalis. A better understanding of the major genes contributing to herbicide-resistant D. sanguinalis facilitates the development of resistance management strategies for this global invasive grass weed. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiangying Liu
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhenlin Hou
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Yuying Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Austin Merchant
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
| | - Guolan Ma
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Qing Zeng
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Lamei Wu
- Hunan Provincial Key Laboratory for Biology and Control of Weeds, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Kun Luo
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Chunxia Ding
- College of Plant Protection, Hunan Agricultural University, Changsha, China
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
13
|
Yan H, Ma D, Yi P, Sun G, Chen X, Yi Y, Huang X. Highly efficient Agrobacterium rhizogenes-mediated transformation for functional analysis in woodland strawberry. PLANT METHODS 2023; 19:99. [PMID: 37742022 PMCID: PMC10517450 DOI: 10.1186/s13007-023-01078-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The diploid woodland strawberry (Fragaria vesca) is an excellent model plant for investigating economically significant traits and several genetic resources within the Rosaceae family. Agrobacterium rhizogenes-mediated hairy root transformation is an alternative for exploring gene functions, especially the genes specifically expressed in roots. However, the hairy root transformation has not been established in strawberry. RESULTS Here, we described an efficient and rapid hairy root transgenic system for strawberry using A. rhizogenes. Strain of A. rhizogenes MSU440 or C58C1 was the most suitable for hairy root transformation. The transformation efficiency was highest when tissues contained hypocotyls as explants. The optimal procedure involves A. rhizogenes at an optical density (OD600) of 0.7 for 10 min and co-cultivation duration for four days, achieving a transgenic efficiency of up to 71.43%. An auxin responsive promoter DR5ver2 carrying an enhanced green fluorescent protein (eGFP) marker was transformed by A. rhizogenes MSU440, thereby generating transgenic hairy roots capable of high eGFP expression in root tip and meristem of strawberry where auxin accumulated. Finally, this system was applied for functional analysis using jGCaMP7c, which could sense calcium signals. A significant upsurge in eGFP expression in the transgenic hairy roots was displayed after adding calcium chloride. The results suggested that this approach was feasible for studying specific promoters and could be a tool to analyze gene functions in the roots of strawberries. CONCLUSION We established a rapid and efficient hairy root transformation in strawberry by optimizing parameters, which was adequate for promoter analysis and functional characterization of candidate genes in strawberry and other rosaceous plants.
Collapse
Affiliation(s)
- Huiqing Yan
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
| | - Dandan Ma
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Peipei Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Guilian Sun
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Xingyan Chen
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
| | - Yin Yi
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China
| | - Xiaolong Huang
- School of Life Sciences, Guizhou Normal University, Guiyang, 550001, China.
- Key Laboratory of Plant Physiology and Development Regulation, Guizhou Normal University, Guiyang, 550001, China.
- Key Laboratory of State Forestry Administration on Bioaffiliationersity Conservation in Mountainous Karst Area of Southwestern China, Guizhou Normal University, Guiyang, 550001, China.
| |
Collapse
|
14
|
Niazian M, Belzile F, Curtin SJ, de Ronne M, Torkamaneh D. Optimization of in vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation of soybean for visual screening of transformants using RUBY. FRONTIERS IN PLANT SCIENCE 2023; 14:1207762. [PMID: 37484469 PMCID: PMC10361064 DOI: 10.3389/fpls.2023.1207762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023]
Abstract
In vitro and ex vitro Agrobacterium rhizogenes-mediated hairy root transformation (HRT) assays are key components of the plant biotechnology and functional genomics toolkit. In this report, both in vitro and ex vitro HRT were optimized in soybean using the RUBY reporter. Different parameters including A. rhizogenes strain, optical density of the bacterial cell culture (OD600), co-cultivation media, soybean genotype, explant age, and acetosyringone addition and concentration were evaluated. Overall, the in vitro assay was more efficient than the ex vitro assay in terms of the percentage of induction of hairy roots and transformed roots (expressing RUBY). Nonetheless, the ex vitro technique was deemed faster and a less complicated approach. The highest transformation of RUBY was observed on 7-d-old cotyledons of cv. Bert inoculated for 30 minutes with the R1000 resuspended in ¼ B5 medium to OD600 (0.3) and 150 µM of acetosyringone. The parameters of this assay also led to the highest percentage of RUBY through two-step ex vitro hairy root transformation. Finally, using machine learning-based modeling, optimal protocols for both assays were further defined. This study establishes efficient and reliable hairy root transformation protocols applicable for functional studies in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Shaun J. Curtin
- Plant Science Research Unit, United States Department of Agriculture (USDA), St Paul, MN, United States
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, United States
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN, United States
- Center for Genome Engineering, University of Minnesota, St. Paul, MN, United States
| | - Maxime de Ronne
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC, Canada
- Centre de recherche et d’innovation sur les végétaux (CRIV), Université Laval, Québec City, QC, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec City, QC, Canada
| |
Collapse
|
15
|
Zhang X, Li S, Li X, Song M, Ma S, Tian Y, Gao L. Peat-based hairy root transformation using Rhizobium rhizogenes as a rapid and efficient tool for easily exploring potential genes related to root-knot nematode parasitism and host response. PLANT METHODS 2023; 19:22. [PMID: 36871001 PMCID: PMC9985853 DOI: 10.1186/s13007-023-01003-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Root-knot nematodes (RKNs) pose a worldwide threat to agriculture of many crops including cucumber. Genetic transformation (GT) has emerged as a powerful tool for exploration of plant-RKN interactions and genetic improvement of RKN resistance. However, it is usually difficult to achieve a highly efficient and stable GT protocol for most crops due to the complexity of this process. RESULTS Here we firstly applied the hairy root transformation system in exploring root-RKN interactions in cucumber plants and developed a rapid and efficient tool transformation using Rhizobium rhizogenes strain K599. A solid-medium-based hypocotyl-cutting infection (SHI) method, a rockwool-based hypocotyl-cutting infection (RHI) method, and a peat-based cotyledon-node injection (PCI) method was evaluated for their ability to induce transgenic roots in cucumber plants. The PCI method generally outperformed the SHI and RHI methods for stimulating more transgenic roots and evaluating the phenotype of roots during nematode parasitism. Using the PCI method, we generated the CRISPR/Cas9-mediated malate synthase (MS) gene (involved in biotic stress responses) knockout plant and the LATERAL ORGAN BOUNDARIES-DOMAIN 16 (LBD16, a potential host susceptibility gene for RKN) promoter-driven GUS expressing plant. Knockout of MS in hairy roots resulted in effective resistance against RKNs, while nematode infection induced a strong expression of LBD16-driven GUS in root galls. This is the first report of a direct link between these genes and RKN performance in cucumber. CONCLUSION Taken together, the present study demonstrates that the PCI method allows fast, easy and efficient in vivo studies of potential genes related to root-knot nematode parasitism and host response.
Collapse
Affiliation(s)
- Xu Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Shihui Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Xin Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Mengyuan Song
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Si Ma
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China
| | - Yongqiang Tian
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, 2 Yuanmingyuan Xilu, Yuanmingyuan West Road No.2, Haidian District, Beijing, 100193, People's Republic of China.
| |
Collapse
|
16
|
Cao L, Wang Z, Ma H, Liu T, Ji J, Duan K. Multiplex CRISPR/Cas9-mediated raffinose synthase gene editing reduces raffinose family oligosaccharides in soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:1048967. [PMID: 36457532 PMCID: PMC9706108 DOI: 10.3389/fpls.2022.1048967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Soybean [Glycine max (L.) Merr.] is an important world economic crop. It is rich in oil, protein, and starch, and soluble carbohydrates in soybean seeds are also important for human and livestock consumption. The predominant soluble carbohydrate in soybean seed is composed of sucrose and raffinose family oligosaccharides (RFOs). Among these carbohydrates, only sucrose can be digested by humans and monogastric animals and is beneficial for metabolizable energy, while RFOs are anti-nutritional factors in diets, usually leading to flatulence and indigestion, ultimately reducing energy efficiency. Hence, breeding efforts to remove RFOs from soybean seeds can increase metabolizable energy and improve nutritional quality. The objective of this research is to use the multiplex Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-mediated gene editing system to induce the knockout of soybean raffinose synthase (RS) genes RS2 and RS3 simultaneously to reduce RFOs in mature seeds. First, we constructed five types of multiplex gene editing systems and compared their editing efficiency in soybean hairy roots. We confirmed that the two-component transcriptional unit (TCTU) and single transcriptional unit (STU) systems with transfer RNA (tRNA) as the cleavage site performed better than other systems. The average editing efficiency at the four targets with TCTU-tRNA and STU-tRNA was 50.5% and 46.7%, respectively. Then, we designed four single-guide RNA (sgRNA) targets to induce mutations at RS2 and RS3 by using the TCTU-tRNA system. After the soybean transformation, we obtained several RS2 and RS3 mutation plants, and a subset of alleles was successfully transferred to the progeny. We identified null single and double mutants at the T2 generation and analyzed the seed carbohydrate content of their progeny. The RS2 and RS3 double mutants and the RS2 single mutant exhibited dramatically reduced levels of raffinose and stachyose in mature seeds. Further analysis of the growth and development of these mutants showed that there were no penalties on these phenotypes. Our results indicate that knocking out RS genes by multiplex CRISPR/Cas9-mediated gene editing is an efficient way to reduce RFOs in soybean. This research demonstrates the potential of using elite soybean cultivars to improve the soybean meal trait by multiplex CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9-mediated gene editing.
Collapse
|
17
|
Ma H, Meng X, Xu K, Li M, Gmitter FG, Liu N, Gai Y, Huang S, Wang M, Wang M, Wang N, Xu H, Liu J, Sun X, Duan S. Highly efficient hairy root genetic transformation and applications in citrus. FRONTIERS IN PLANT SCIENCE 2022; 13:1039094. [PMID: 36388468 PMCID: PMC9647159 DOI: 10.3389/fpls.2022.1039094] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Highly efficient genetic transformation technology is greatly beneficial for crop gene function analysis and precision breeding. However, the most commonly used genetic transformation technology for woody plants, mediated by Agrobacterium tumefaciens, is time-consuming and inefficient, which limits its utility for gene function analysis. In this study, a simple, universal, and highly efficient genetic transformation technology mediated by A. rhizogenes K599 is described. This technology can be applied to multiple citrus genotypes, and only 2-8 weeks were required for the entire workflow. Genome-editing experiments were simultaneously conducted using 11 plasmids targeting different genomic positions and all corresponding transformants with the target knocked out were obtained, indicating that A. rhizogenes-mediated genome editing was highly efficient. In addition, the technology is advantageous for investigation of specific genes (such as ACD2) for obtaining "hard-to-get" transgenic root tissue. Furthermore, A. rhizogenes can be used for direct viral vector inoculation on citrus bypassing the requirement for virion enrichment in tobacco, which facilitates virus-induced gene silencing and virus-mediated gene expression. In summary, we established a highly efficient genetic transformation technology bypassing tissue culture in citrus that can be used for genome editing, gene overexpression, and virus-mediated gene function analysis. We anticipate that by reducing the cost, required workload, experimental period, and other technical obstacles, this genetic transformation technology will be a valuable tool for routine investigation of endogenous and exogenous genes in citrus.
Collapse
Affiliation(s)
- Haijie Ma
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Xinyue Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Kai Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Min Li
- China-USA Citrus Huanglongbing Joint Laboratory (A Joint Laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Fred G. Gmitter
- Citrus Research and Education Center, Horticultural Sciences Department, University of Florida, Lake Alfred, FL, United States
| | - Ningge Liu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Suya Huang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Min Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Min Wang
- China-USA Citrus Huanglongbing Joint Laboratory (A Joint Laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Nian Wang
- Citrus Research and Education Center, Horticultural Sciences Department, University of Florida, Lake Alfred, FL, United States
| | - Hairen Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Jinhua Liu
- Natural Medicine Institute of Zhejiang YangShengTang Co., LTD, Hangzhou, Zhejiang, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Shuo Duan
- China-USA Citrus Huanglongbing Joint Laboratory (A Joint Laboratory of The University of Florida’s Institute of Food and Agricultural Sciences and Gannan Normal University), National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
18
|
Huang P, Lu M, Li X, Sun H, Cheng Z, Miao Y, Fu Y, Zhang X. An Efficient Agrobacterium rhizogenes-Mediated Hairy Root Transformation Method in a Soybean Root Biology Study. Int J Mol Sci 2022; 23:ijms232012261. [PMID: 36293115 PMCID: PMC9603872 DOI: 10.3390/ijms232012261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The stable genetic transformation of soybean is time-consuming and inefficient. As a simple and practical alternative method, hairy root transformation mediated by Agrobacterium rhizogenes is widely applied in studying root-specific processes, nodulation, biochemical and molecular functions of genes of interest, gene editing efficiency of CRISPR/Cas9, and biological reactors and producers. Therefore, many laboratories have developed unique protocols to obtain hairy roots in composite plants composed of transgenic roots and wild-type shoots. However, these protocols still suffer from the shortcomings of low efficiency and time, space, and cost consumption. To address this issue, we developed a new protocol efficient regeneration and transformation of hairy roots (eR&T) in soybean, by integrating and optimizing the main current methods to achieve high efficiency in both hairy root regeneration and transformation within a shorter period and using less space. By this eR&T method, we obtained 100% regeneration of hairy roots for all explants, with an average 63.7% of transformation frequency, which promoted the simultaneous and comparative analysis of the function of several genes. The eR&T was experimentally verified Promoter:GUS reporters, protein subcellular localization, and CRISPR/Cas9 gene editing experiments. Employing this approach, we identified several novel potential regulators of nodulation, and nucleoporins of the Nup107-160 sub-complex, which showed development-dependent and tissue-dependent expression patterns, indicating their important roles in nodulation in soybean. Thus, the new eR&T method is an efficient and economical approach for investigating not only root and nodule biology, but also gene function.
Collapse
Affiliation(s)
- Penghui Huang
- Moa Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingyang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Xiangbei Li
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huiyu Sun
- Moa Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Cheng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yuchen Miao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yongfu Fu
- Moa Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.F.); (X.Z.)
| | - Xiaomei Zhang
- Moa Key Lab of Soybean Biology (Beijing), National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Correspondence: (Y.F.); (X.Z.)
| |
Collapse
|
19
|
Wang X, You J, Liu A, Qi X, Li D, Zhao Y, Zhang Y, Zhang L, Zhang X, Li P. Variation in Melatonin Contents and Genetic Dissection of Melatonin Biosynthesis in Sesame. PLANTS (BASEL, SWITZERLAND) 2022; 11:2005. [PMID: 35956483 PMCID: PMC9370803 DOI: 10.3390/plants11152005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
In recent years, people have become increasingly interested in bioactive molecules in plants that are beneficial to human health, and melatonin (N-acetyl-5-methoxytryptamine) has attracted research attention due to its excellent performance. In this study, the content of melatonin in oilseeds was investigated. From the results, it was found that sesame is an important natural food source of melatonin intake. Furthermore, the variation in melatonin content was explored in a natural sesame population, and its contents varied from 0.04 to 298.62 ng g-1. Through a genome-wide association study (GWAS), a candidate gene SiWRKY67 was screened that regulates melatonin content in sesame. The sesame hairy root transformation system was developed and used to verify this gene, and it was found that the overexpression of SiWRKY67 could positively promote the melatonin content in the hairy roots. Our results provide not only a foundation for understanding the genetic structure of melatonin content in sesame seeds but also a reference for the marker-assisted breeding of sesame varieties with high melatonin content.
Collapse
Affiliation(s)
- Xiao Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
| | - Jun You
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Aili Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xin Qi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
| | - Donghua Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Ya Zhao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
| | - Yanxin Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiurong Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.W.); (A.L.); (X.Q.); (D.L.); (Y.Z.); (Y.Z.)
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
20
|
Niazian M, Belzile F, Torkamaneh D. CRISPR/Cas9 in Planta Hairy Root Transformation: A Powerful Platform for Functional Analysis of Root Traits in Soybean. PLANTS (BASEL, SWITZERLAND) 2022; 11:1044. [PMID: 35448772 PMCID: PMC9027312 DOI: 10.3390/plants11081044] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 12/22/2022]
Abstract
Sequence and expression data obtained by next-generation sequencing (NGS)-based forward genetics methods often allow the identification of candidate causal genes. To provide true experimental evidence of a gene's function, reverse genetics techniques are highly valuable. Site-directed mutagenesis through transfer DNA (T-DNA) delivery is an efficient reverse screen method in plant functional analysis. Precise modification of targeted crop genome sequences is possible through the stable and/or transient delivery of clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) reagents. Currently, CRISPR/Cas9 is the most powerful reverse genetics approach for fast and precise functional analysis of candidate genes/mutations of interest. Rapid and large-scale analyses of CRISPR/Cas-induced mutagenesis is achievable through Agrobacterium rhizogenes-mediated hairy root transformation. The combination of A. rhizogenes hairy root-CRISPR/Cas provides an extraordinary platform for rapid, precise, easy, and cost-effective "in root" functional analysis of genes of interest in legume plants, including soybean. Both hairy root transformation and CRISPR/Cas9 techniques have their own complexities and considerations. Here, we discuss recent advancements in soybean hairy root transformation and CRISPR/Cas9 techniques. We highlight the critical factors required to enhance mutation induction and hairy root transformation, including the new generation of reporter genes, methods of Agrobacterium infection, accurate gRNA design strategies, Cas9 variants, gene regulatory elements of gRNAs and Cas9 nuclease cassettes and their configuration in the final binary vector to study genes involved in root-related traits in soybean.
Collapse
Affiliation(s)
- Mohsen Niazian
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
- Field and Horticultural Crops Research Department, Kurdistan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Sanandaj 6616936311, Iran
| | - François Belzile
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada; (M.N.); (F.B.)
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
21
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
22
|
Kiryushkin AS, Ilina EL, Guseva ED, Pawlowski K, Demchenko KN. Hairy CRISPR: Genome Editing in Plants Using Hairy Root Transformation. PLANTS (BASEL, SWITZERLAND) 2021; 11:51. [PMID: 35009056 PMCID: PMC8747350 DOI: 10.3390/plants11010051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 05/27/2023]
Abstract
CRISPR/Cas-mediated genome editing is a powerful tool of plant functional genomics. Hairy root transformation is a rapid and convenient approach for obtaining transgenic roots. When combined, these techniques represent a fast and effective means of studying gene function. In this review, we outline the current state of the art reached by the combination of these approaches over seven years. Additionally, we discuss the origins of different Agrobacterium rhizogenes strains that are widely used for hairy root transformation; the components of CRISPR/Cas vectors, such as the promoters that drive Cas or gRNA expression, the types of Cas nuclease, and selectable and screenable markers; and the application of CRISPR/Cas genome editing in hairy roots. The modification of the already known vector pKSE401 with the addition of the rice translational enhancer OsMac3 and the gene encoding the fluorescent protein DsRed1 is also described.
Collapse
Affiliation(s)
- Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elena L. Ilina
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Elizaveta D. Guseva
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 10691 Stockholm, Sweden
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (E.L.I.); (E.D.G.)
| |
Collapse
|
23
|
Amo J, Lara A, Martínez-Martínez A, Martínez V, Rubio F, Nieves-Cordones M. The protein kinase SlCIPK23 boosts K + and Na + uptake in tomato plants. PLANT, CELL & ENVIRONMENT 2021; 44:3589-3605. [PMID: 34545584 DOI: 10.1111/pce.14189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Regulation of root transport systems is essential under fluctuating nutrient supply. In the case of potassium (K+ ), HAK/KUP/KT K+ transporters and voltage-gated K+ channels ensure root K+ uptake in a wide range of K+ concentrations. In Arabidopsis, the CIPK23/CBL1-9 complex regulates both transporter- and channel-mediated root K+ uptake. However, research about K+ homeostasis in crops is in demand due to species-specific mechanisms. In the present manuscript, we studied the contribution of the voltage-gated K+ channel LKT1 and the protein kinase SlCIPK23 to K+ uptake in tomato plants by analysing gene-edited knockout tomato mutant lines, together with two-electrode voltage-clamp experiments in Xenopus oocytes and protein-protein interaction analyses. It is shown that LKT1 is a crucial player in tomato K+ nutrition by contributing approximately 50% to root K+ uptake under K+ -sufficient conditions. Moreover, SlCIPK23 was responsible for approximately 100% of LKT1 and approximately 40% of the SlHAK5 K+ transporter activity in planta. Mg+2 and Na+ compensated for K+ deficit in tomato roots to a large extent, and the accumulation of Na+ was strongly dependent on SlCIPK23 function. The role of CIPK23 in Na+ accumulation in tomato roots was not conserved in Arabidopsis, which expands the current set of CIPK23-like protein functions in plants.
Collapse
Affiliation(s)
- Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Alberto Lara
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Almudena Martínez-Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| | - Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, Spain
| |
Collapse
|