1
|
Yang Y, Gergelis KR, Shen J, Afzal A, Mullikin TC, Gao RW, Aziz K, Shumway DA, Corbin KS, Liu W, Mutter RW. Study of linear energy transfer effect on rib fracture in breast cancer patients receiving pencil-beam-scanning proton therapy. Med Phys 2025; 52:3428-3438. [PMID: 40102627 PMCID: PMC12059513 DOI: 10.1002/mp.17745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/28/2025] [Accepted: 02/06/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND In breast cancer patients treated with pencil-beam scanning proton therapy (PBS), the increased linear energy transfer (LET) near the end of the proton range can affect nearby ribs. This may associate with a higher risk of rib fractures. PURPOSE To study the effect of LET on rib fracture in breast cancer patients treated with PBS using a novel tool of dose-LET volume histogram (DLVH). METHODS From a prospective registry of patients treated with post-mastectomy proton therapy to the chest wall and regional lymph nodes for breast cancer between 2015 and 2020, we retrospectively identified rib fracture cases detected after completing treatment. Contemporaneously treated control patients who did not develop rib fracture were matched to patients 2:1 considering prescription dose, boost location, reconstruction status, laterality, chest wall thickness, and treatment year. The DLVH index, V(d, l), defined as volume(V) of the structure with at least dose(d) and dose-averaged LET (l) (LETd), was calculated. DLVH plots between the fracture and control group were compared. Conditional logistic regression (CLR) model was used to establish the relation of V(d, l) and the observed fracture at each combination of d and l. The p-value derived from CLR model shows the statistical difference between fracture patients and the matched control group. Using the 2D p-value map derived from CLR model, the DLVH features associated with the patient outcomes were extracted. RESULTS Seven rib fracture patients were identified, and fourteen matched patients were selected for the control group. The median time from the completion of proton therapy to rib fracture diagnosis was 12 months (range 5-14 months). Two patients had grade 2 symptomatic rib fracture while the remaining 5 were grade 1 incidentally detected on imaging. The derived p-value map demonstrated larger V(0-36 Gy[RBE], 4.0-5.0 keV/µm) in patients experiencing fracture (p < 0.1). For example, the p-value for V(30 Gy[RBE], 4.0 keV/um) was 0.069. CONCLUSION In breast cancer patients receiving PBS, a larger volume of chest wall receiving moderate dose and high LETd may result in an increased risk of rib fracture.
Collapse
Affiliation(s)
- Yunze Yang
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
- Department of Radiation OncologyUniversity of MiamiMiamiFloridaUSA
| | - Kimberly R. Gergelis
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
- Department of Radiation OncologyUniversity of Rochester School of Medicine and DentistryRochesterNew YorkUSA
| | - Jiajian Shen
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Arslan Afzal
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Trey C. Mullikin
- Department of Radiation OncologyDuke Cancer InstituteDurhamNorth CarolinaUSA
| | - Robert W. Gao
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Khaled Aziz
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | - Dean A. Shumway
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
| | | | - Wei Liu
- Department of Radiation OncologyMayo ClinicPhoenixArizonaUSA
| | - Robert W. Mutter
- Department of Radiation OncologyMayo ClinicRochesterMinnesotaUSA
- Department of PharmacologyMayo ClinicRochesterMinnesotaSA
| |
Collapse
|
2
|
Ashby BS, Chronholm V, Hajnal DK, Lukyanov A, MacKenzie K, Pim A, Pryer T. Efficient proton transport modelling for proton beam therapy and biological quantification. J Math Biol 2025; 90:47. [PMID: 40214815 PMCID: PMC11992007 DOI: 10.1007/s00285-025-02212-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/04/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
In this work, we present a fundamental mathematical model for proton transport, tailored to capture the key physical processes underpinning Proton Beam Therapy (PBT). The model provides a robust and computationally efficient framework for exploring various aspects of PBT, including dose delivery, linear energy transfer, treatment planning and the evaluation of relative biological effectiveness. Our findings highlight the potential of this model as a complementary tool to more complex and computationally intensive simulation techniques currently used in clinical practice.
Collapse
Affiliation(s)
- Ben S Ashby
- Institute of Mathematical Innovation, University of Bath, Bath, UK
| | | | - Daniel K Hajnal
- Department of Mathematical Sciences, University of Bath, Bath, UK
| | - Alex Lukyanov
- Department of Mathematics and Statistics, University of Reading, Reading, UK
| | | | - Aaron Pim
- Department of Mathematical Sciences, University of Bath, Bath, UK
| | - Tristan Pryer
- Institute of Mathematical Innovation, University of Bath, Bath, UK.
- Department of Mathematical Sciences, University of Bath, Bath, UK.
| |
Collapse
|
3
|
Chen J, Yang Y, Feng H, Liu C, Zhang L, Holmes JM, Liu Z, Lin H, Liu T, Simone CB, Lee NY, Frank SJ, Ma DJ, Patel SH, Liu W. Enabling clinical use of linear energy transfer in proton therapy for head and neck cancer - A review of implications for treatment planning and adverse events study. VISUALIZED CANCER MEDICINE 2025; 6:3. [PMID: 40151417 PMCID: PMC11945436 DOI: 10.1051/vcm/2025001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Proton therapy offers significant advantages due to its unique physical and biological properties, particularly the Bragg peak, enabling precise dose delivery to tumors while sparing healthy tissues. However, the clinical implementation is challenged by the oversimplification of the relative biological effectiveness (RBE) as a fixed value of 1.1, which does not account for the complex interplay between dose, linear energy transfer (LET), and biological endpoints. Lack of heterogeneity control or the understanding of the complex interplay may result in unexpected adverse events and suboptimal patient outcomes. On the other hand, expanding our knowledge of variable tumor RBE and LET optimization may provide a better management strategy for radioresistant tumors. This review examines recent advancements in LET calculation methods, including analytical models and Monte Carlo simulations. The integration of LET into plan evaluation is assessed to enhance plan quality control. LET-guided robust optimization demonstrates promise in minimizing high-LET exposure to organs at risk, thereby reducing the risk of adverse events. Dosimetric seed spot analysis is discussed to show its importance in revealing the true LET-related effect upon the adverse event initialization by finding the lesion origins and eliminating the confounding factors from the biological processes. Dose-LET volume histograms (DLVH) are discussed as effective tools for correlating physical dose and LET with clinical outcomes, enabling the derivation of clinically relevant dose-LET volume constraints without reliance on uncertain RBE models. Based on DLVH, the dose-LET volume constraints (DLVC)-guided robust optimization is introduced to upgrade conventional dose-volume constraints-based robust optimization, which optimizes the joint distribution of dose and LET simultaneously. In conclusion, translating the advances in LET-related research into clinical practice necessitates a better understanding of the LET-related biological mechanisms and the development of clinically relevant LET-related volume constraints directly derived from the clinical outcomes. Future research is needed to refine these models and conduct prospective trials to assess the clinical benefits of LET-guided optimization on patient outcomes.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Yunze Yang
- Department of Radiation Oncology, The University of Miami, Miami, FL 33136, USA
| | - Hongying Feng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
- College of Mechanical and Power Engineering, China Three Gorges University, Yichang, Hubei 443002, PR China
- Department of Radiation Oncology, Guangzhou Concord Cancer Center, Guangzhou, Guangdong 510555, PR China
| | - Chenbin Liu
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518172, PR China
| | - Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei 050023, PR China
| | - Jason M. Holmes
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Zhengliang Liu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | - Haibo Lin
- New York Proton Center, New York, NY 10035, USA
| | - Tianming Liu
- School of Computing, The University of Georgia, Athens, GA 30602, USA
| | | | - Nancy Y. Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Steven J. Frank
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel J. Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Samir H. Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| |
Collapse
|
4
|
Wagenaar D, Langendijk JA, Both S. Linear approximation of variable relative biological effectiveness models for proton therapy. Phys Imaging Radiat Oncol 2025; 33:100691. [PMID: 39885905 PMCID: PMC11780161 DOI: 10.1016/j.phro.2024.100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
The McNamara (MCN) and Wedenberg (WED) RBE weighted dose (DRBE), dose and dose-weighted average LET (LETd) were calculated in twenty brain cancer patients. A linear approximation was made for each RBE model to give best agreement to clinically relevant dosimetric parameters. Additional evaluations were done on twenty head and neck and twenty breast cancer patients.The R2 of the fits was ≥0.94 and ≥0.91 for MCN and WED respectively for α/β values ≥1.0 Gy. The graphs derived in this work can be used to convert RBE-LET slopes derived from clinical data to α/β values in the MCN or WED models.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Johannes A. Langendijk
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stefan Both
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Paganetti H, Simone CB, Bosch WR, Haas-Kogan D, Kirsch DG, Li H, Liang X, Liu W, Mahajan A, Story MD, Taylor PA, Willers H, Xiao Y, Buchsbaum JC. NRG Oncology White Paper on the Relative Biological Effectiveness in Proton Therapy. Int J Radiat Oncol Biol Phys 2025; 121:202-217. [PMID: 39059509 PMCID: PMC11646189 DOI: 10.1016/j.ijrobp.2024.07.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/17/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024]
Abstract
This position paper, led by the NRG Oncology Particle Therapy Work Group, focuses on the concept of relative biologic effect (RBE) in clinical proton therapy (PT), with the goal of providing recommendations for the next-generation clinical trials with PT on the best practice of investigating and using RBE, which could deviate from the current standard proton RBE value of 1.1 relative to photons. In part 1, current clinical utilization and practice are reviewed, giving the context and history of RBE. Evidence for variation in RBE is presented along with the concept of linear energy transfer (LET). The intertwined nature of tumor radiobiology, normal tissue constraints, and treatment planning with LET and RBE considerations is then reviewed. Part 2 summarizes current and past clinical data and then suggests the next steps to explore and employ tools for improved dynamic models for RBE. In part 3, approaches and methods for the next generation of prospective clinical trials are explored, with the goal of optimizing RBE to be both more reflective of clinical reality and also deployable in trials to allow clinical validation and interpatient comparisons. These concepts provide the foundation for personalized biologic treatments reviewed in part 4. Finally, we conclude with a summary including short- and long-term scientific focus points for clinical PT. The practicalities and capacity to use RBE in treatment planning are reviewed and considered with more biological data in hand. The intermediate step of LET optimization is summarized and proposed as a potential bridge to the ultimate goal of case-specific RBE planning that can be achieved as a hypothesis-generating tool in near-term proton trials.
Collapse
Affiliation(s)
- Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Charles B Simone
- New York Proton Center, New York, New York; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walter R Bosch
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Daphne Haas-Kogan
- Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston Children's Hospital, Boston, Massachusetts
| | - David G Kirsch
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Heng Li
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota
| | - Michael D Story
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts; Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts
| | - Ying Xiao
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey C Buchsbaum
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
6
|
Parisi A, Furutani KM, Sato T, Beltran CJ. LET-based approximation of the microdosimetric kinetic model for proton radiotherapy. Med Phys 2024; 51:7589-7605. [PMID: 39153222 DOI: 10.1002/mp.17337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Phenomenological relative biological effectiveness (RBE) models for proton therapy, based on the dose-averaged linear energy transfer (LET), have been developed to address the apparent RBE increase towards the end of the proton range. The results of these phenomenological models substantially differ due to varying empirical assumptions and fitting functions. In contrast, more theory-based approaches are used in carbon ion radiotherapy, such as the microdosimetric kinetic model (MKM). However, implementing microdosimetry-based models in LET-based proton therapy treatment planning systems poses challenges. PURPOSE This work presents a LET-based version of the MKM that is practical for clinical use in proton radiotherapy. METHODS At first, we derived an approximation of the Mayo Clinic Florida (MCF) MKM for relatively-sparsely ionizing radiation such as protons. The mathematical formalism of the proposed model is equivalent to the original MKM, but it maintains some key features of the MCF MKM, such as the determination of model parameters from measurable cell characteristics. Subsequently, we carried out Monte Carlo calculations with PHITS in different simulated scenarios to establish a heuristic correlation between microdosimetric quantities and the dose averaged LET of protons. RESULTS A simple allometric function was found able to describe the relationship between the dose-averaged LET of protons and the dose-mean lineal energy, which includes the contributions of secondary particles. The LET-based MKM was used to model the in vitro clonogenic survival RBE of five human and rodent cell lines (A549, AG01522, CHO, T98G, and U87) exposed to pristine and spread-out Bragg peak (SOBP) proton beams. The results of the LET-based MKM agree well with the biological data in a comparable or better way with respect to the other models included in the study. A sensitivity analysis on the model results was also performed. CONCLUSIONS The LET-based MKM integrates the predictive theoretical framework of the MCF MKM with a straightforward mathematical description of the RBE based on the dose-averaged LET, a physical quantity readily available in modern treatment planning systems for proton therapy.
Collapse
Affiliation(s)
- Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith M Furutani
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Tatsuhiko Sato
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, Japan
- Research Center for Nuclear Physics, Osaka University, Suita, Osaka, Japan
| | - Chris J Beltran
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
7
|
Jeong S, Cheon W, Kim S, Park W, Han Y. Deep-learning-based segmentation using individual patient data on prostate cancer radiation therapy. PLoS One 2024; 19:e0308181. [PMID: 39083552 PMCID: PMC11290636 DOI: 10.1371/journal.pone.0308181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE Organ-at-risk segmentation is essential in adaptive radiotherapy (ART). Learning-based automatic segmentation can reduce committed labor and accelerate the ART process. In this study, an auto-segmentation model was developed by employing individual patient datasets and a deep-learning-based augmentation method for tailoring radiation therapy according to the changes in the target and organ of interest in patients with prostate cancer. METHODS Two computed tomography (CT) datasets with well-defined labels, including contoured prostate, bladder, and rectum, were obtained from 18 patients. The labels of the CT images captured during radiation therapy (CT2nd) were predicted using CT images scanned before radiation therapy (CT1st). From the deformable vector fields (DVFs) created by using the VoxelMorph method, 10 DVFs were extracted when each of the modified CT and CT2nd images were deformed and registered to the fixed CT1st image. Augmented images were acquired by utilizing 110 extracted DVFs and spatially transforming the CT1st images and labels. An nnU-net autosegmentation network was trained by using the augmented images, and the CT2nd label was predicted. A patient-specific model was created for 18 patients, and the performances of the individual models were evaluated. The results were evaluated by employing the Dice similarity coefficient (DSC), average Hausdorff distance, and mean surface distance. The accuracy of the proposed model was compared with those of models trained with large datasets. RESULTS Patient-specific models were developed successfully. For the proposed method, the DSC values of the actual and predicted labels for the bladder, prostate, and rectum were 0.94 ± 0.03, 0.84 ± 0.07, and 0.83 ± 0.04, respectively. CONCLUSION We demonstrated the feasibility of automatic segmentation by employing individual patient datasets and image augmentation techniques. The proposed method has potential for clinical application in automatic prostate segmentation for ART.
Collapse
Affiliation(s)
- Sangwoon Jeong
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Wonjoong Cheon
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sungjin Kim
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Youngyih Han
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Rana S, Manthala Padannayil N, Tran L, Rosenfeld AB, Saeed H, Kasper M. Quantifying the Dosimetric Impact of Proton Range Uncertainties on RBE-Weighted Dose Distributions in Intensity-Modulated Proton Therapy for Bilateral Head and Neck Cancer. Curr Oncol 2024; 31:3690-3697. [PMID: 39057144 PMCID: PMC11275331 DOI: 10.3390/curroncol31070272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND In current clinical practice, intensity-modulated proton therapy (IMPT) head and neck cancer (HNC) plans are generated using a constant relative biological effectiveness (cRBE) of 1.1. The primary goal of this study was to explore the dosimetric impact of proton range uncertainties on RBE-weighted dose (RWD) distributions using a variable RBE (vRBE) model in the context of bilateral HNC IMPT plans. METHODS The current study included the computed tomography (CT) datasets of ten bilateral HNC patients who had undergone photon therapy. Each patient's plan was generated using three IMPT beams to deliver doses to the CTV_High and CTV_Low for doses of 70 Gy(RBE) and 54 Gy(RBE), respectively, in 35 fractions through a simultaneous integrated boost (SIB) technique. Each nominal plan calculated with a cRBE of 1.1 was subjected to the range uncertainties of ±3%. The McNamara vRBE model was used for RWD calculations. For each patient, the differences in dosimetric metrices between the RWD and nominal dose distributions were compared. RESULTS The constrictor muscles, oral cavity, parotids, larynx, thyroid, and esophagus showed average differences in mean dose (Dmean) values up to 6.91 Gy(RBE), indicating the impact of proton range uncertainties on RWD distributions. Similarly, the brachial plexus, brain, brainstem, spinal cord, and mandible showed varying degrees of the average differences in maximum dose (Dmax) values (2.78-10.75 Gy(RBE)). The Dmean and Dmax to the CTV from RWD distributions were within ±2% of the dosimetric results in nominal plans. CONCLUSION The consistent trend of higher mean and maximum doses to the OARs with the McNamara vRBE model compared to cRBE model highlighted the need for consideration of proton range uncertainties while evaluating OAR doses in bilateral HNC IMPT plans.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
- Department of Radiation Oncology, Florida International University, Miami, FL 33199, USA
| | - Noufal Manthala Padannayil
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
| | - Linh Tran
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Hina Saeed
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
- Department of Radiation Oncology, Florida International University, Miami, FL 33199, USA
| | - Michael Kasper
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL 33486, USA
| |
Collapse
|
9
|
Gardner LL, O'Connor JD, McMahon SJ. Benchmarking proton RBE models. Phys Med Biol 2024; 69:085022. [PMID: 38471187 DOI: 10.1088/1361-6560/ad3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective.To biologically optimise proton therapy, models which can accurately predict variations in proton relative biological effectiveness (RBE) are essential. Current phenomenological models show large disagreements in RBE predictions, due to different model assumptions and differences in the data to which they were fit. In this work, thirteen RBE models were benchmarked against a comprehensive proton RBE dataset to evaluate predictions when all models are fit using the same data and fitting techniques, and to assess the statistical robustness of the models.Approach.Model performance was initially evaluated by fitting to the full dataset, and then a cross-validation approach was applied to assess model generalisability and robustness. The impact of weighting the fit and the choice of biological endpoint (either single or multiple survival levels) was also evaluated.Main results.Fitting the models to a common dataset reduced differences between their predictions, however significant disagreements remained due to different underlying assumptions. All models performed poorly under cross-validation in the weighted fits, suggesting that some uncertainties on the experimental data were significantly underestimated, resulting in over-fitting and poor performance on unseen data. The simplest model, which depends linearly on the LET but has no tissue or dose dependence, performed best for a single survival level. However, when fitting to multiple survival levels simultaneously, more complex models with tissue dependence performed better. All models had significant residual uncertainty in their predictions compared to experimental data.Significance.This analysis highlights that poor quality of error estimation on the dose response parameters introduces substantial uncertainty in model fitting. The significant residual error present in all approaches illustrates the challenges inherent in fitting to large, heterogeneous datasets and the importance of robust statistical validation of RBE models.
Collapse
Affiliation(s)
- Lydia L Gardner
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| | - John D O'Connor
- School of Engineering, Ulster University, Belfast, United Kingdom
| | - Stephen J McMahon
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
Liu Y, Zhu K, Peng X, Luo S, Zhu J, Xiao W, He L, Wang X. Proton relative biological effectiveness for the induction of DNA double strand breaks based on Geant4. Biomed Phys Eng Express 2024; 10:035018. [PMID: 38181453 DOI: 10.1088/2057-1976/ad1bb9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Uncertainties in the relative biological effectiveness (RBE) of proton remains a major barrier to the biological optimization of proton therapy. A large amount of experimental data suggest that proton RBE is variable. As an evolving Monte Carlo code toolkit, Geant4-DNA is able to simulate the initial DNA damage caused by particle beams through physical and chemical interactions at the nanometer scale over a short period of time. This contributes to evaluating the radiobiological effects induced by ionizing radiation. Based on the Geant4-DNA toolkit, this study constructed a DNA geometric model containing 6.32Gbp, simulated the relationship between radiochemical yields (G-values) and their corresponding chemical constructors, and calculated a detailed calculation of the sources of damage and the complexity of damage in DNA strand breaks. The damage model constructed in this study can simulate the relative biological effectiveness (RBE) in the proton Bragg peak region. The results indicate that: (1) When the electron energy is below 400 keV, the yield of OH·account for 18.1% to 25.3% of the total water radiolysis yields. (2) Under the influence of histone clearance function, the yield of indirect damage account for over 72.93% of the yield of DNA strand breaks (SBs). When linear energy transfer (LET) increased from 29.79 (keV/μm) to 64.29 (keV/μm), the yield of double strand breaks (DSB) increased from 17.27% to 32.65%. (3) By investigating the effect of proton Bragg peak depth on the yield of direct DSB (DSBdirect) and total DSB (DSBtotal), theRBEDSBtotandRBEDSBdirlevels of cells show that the RBE value of protons reaches 2.2 in the Bragg peak region.
Collapse
Affiliation(s)
- Yuchen Liu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Kun Zhu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China
| | - Xiaoyu Peng
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Siyuan Luo
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Jin Zhu
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Wancheng Xiao
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Lie He
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| | - Xiaodong Wang
- School of Nuclear Science and Technology, University of South China, Hengyang 421001, People's Republic of China
| |
Collapse
|
11
|
Chattaraj A, Selvam TP. Calculation of biological effectiveness of SOBP proton beams: a TOPAS Monte Carlo study. Biomed Phys Eng Express 2024; 10:035004. [PMID: 38377599 DOI: 10.1088/2057-1976/ad2b02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/20/2024] [Indexed: 02/22/2024]
Abstract
Objective.This study aims to investigate the biological effectiveness of Spread-Out Bragg-Peak (SOBP) proton beams with initial kinetic energies 50-250 MeV at different depths in water using TOPAS Monte Carlo code.Approach.The study modelled SOBP proton beams using TOPAS time feature. Various LET-based models and Repair-Misrepair-Fixation model were employed to calculate Relative Biological Effectiveness (RBE) for V79 cell lines at different on-axis depths based on TOPAS. Microdosimetric Kinetic Model and biological weighting function-based models, which utilize microdosimetric distributions, were also used to estimate the RBE. A phase-space-based method was adopted for calculating microdosimetric distributions.Main results.The trend of variation of RBE with depth is similar in all the RBE models, but the absolute RBE values vary based on the calculation models. RBE sharply increases at the distal edge of SOBP proton beams. In the entrance region of all the proton beams, RBE values at 4 Gy i.e. RBE(4 Gy) resulting from different models are in the range of 1.04-1.07, comparable to clinically used generic RBE of 1.1. Moving from the proximal to distal end of the SOBP, RBE(4 Gy) is in the range of 1.15-1.33, 1.13-1.21, 1.11-1.17, 1.13-1.18 and 1.17-1.21, respectively for 50, 100, 150, 200 and 250 MeV SOBP beams, whereas at the distal dose fall-off region, these values are 1.68, 1.53, 1.44, 1.42 and 1.40, respectively.Significance.The study emphasises application of depth-, dose- and energy- dependent RBE values in clinical application of proton beams.
Collapse
Affiliation(s)
- Arghya Chattaraj
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai-400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| | - T Palani Selvam
- Radiological Physics and Advisory Division, Health, Safety and Environment Group, Bhabha Atomic Research Centre, Mumbai-400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400 094, India
| |
Collapse
|
12
|
Bonaccorsi SG, Tessonnier T, Hoeltgen L, Meixner E, Harrabi S, Hörner-Rieber J, Haberer T, Abdollahi A, Debus J, Mairani A. Exploring Helium Ions' Potential for Post-Mastectomy Left-Sided Breast Cancer Radiotherapy. Cancers (Basel) 2024; 16:410. [PMID: 38254899 PMCID: PMC10814201 DOI: 10.3390/cancers16020410] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Proton therapy presents a promising modality for treating left-sided breast cancer due to its unique dose distribution. Helium ions provide increased conformality thanks to a reduced lateral scattering. Consequently, the potential clinical benefit of both techniques was explored. An explorative treatment planning study involving ten patients, previously treated with VMAT (Volumetric Modulated Arc Therapy) for 50 Gy in 25 fractions for locally advanced, node-positive breast cancer, was carried out using proton pencil beam therapy with a fixed relative biological effectiveness (RBE) of 1.1 and helium therapy with a variable RBE described by the mMKM (modified microdosimetric kinetic model). Results indicated that target coverage was improved with particle therapy for both the clinical target volume and especially the internal mammary lymph nodes compared to VMAT. Median dose value analysis revealed that proton and helium plans provided lower dose on the left anterior descending artery (LAD), heart, lungs and right breast than VMAT. Notably, helium therapy exhibited improved ipsilateral lung sparing over protons. Employing NTCP models as available in the literature, helium therapy showed a lower probability of grade ≤ 2 radiation pneumonitis (22% for photons, 5% for protons and 2% for helium ions), while both proton and helium ions reduce the probability of major coronary events with respect to VMAT.
Collapse
Affiliation(s)
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Line Hoeltgen
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Eva Meixner
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Semi Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Amir Abdollahi
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
- Centro Nazionale di Adroterapia Oncologica (CNAO), 27100 Pavia, Italy
| |
Collapse
|
13
|
Smulders B, Stolarczyk L, Seiersen K, Nørrevang O, Sommer Kristensen B, Schut DA, Thomsen K, Lassen-Ramshad Y, Høyer M, Muhic A, Vestergaard A. Prediction of dose-sparing by protons assessed by a knowledge-based planning tool in radiotherapy of brain tumours. Acta Oncol 2023; 62:1541-1545. [PMID: 37793798 DOI: 10.1080/0284186x.2023.2264482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Affiliation(s)
- Bob Smulders
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Liliana Stolarczyk
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Klaus Seiersen
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Ole Nørrevang
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Bente Sommer Kristensen
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Deborah Anne Schut
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Karsten Thomsen
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Yasmin Lassen-Ramshad
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| | - Aida Muhic
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
- Department of Oncology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Anne Vestergaard
- Danish Centre for Particle Therapy (DCPT), Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Sebastián SM, Alejandro C, Ignacio E, Sophia G, Pía VM, Andrea R. Monte Carlo simulations of cell survival in proton SOBP. Phys Med Biol 2023; 68:195024. [PMID: 37673077 DOI: 10.1088/1361-6560/acf752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Objective. The objective of this study is to develop a multi-scale modeling approach that accurately predicts radiation-induced DNA damage and survival fraction in specific cell lines.Approach. A Monte Carlo based simulation framework was employed to make the predictions. The FLUKA Monte Carlo code was utilized to estimate absorbed doses and fluence energy spectra, which were then used in the Monte Carlo Damage Simulation code to compute DNA damage yields in Chinese hamster V79 cell lines. The outputs were converted into cell survival fractions using a previously published theoretical model. To reduce the uncertainties of the predictions, new values for the parameters of the theoretical model were computed, expanding the database of experimental points considered in the previous estimation. Simulated results were validated against experimental data, confirming the applicability of the framework for proton beams up to 230 MeV. Additionally, the impact of secondary particles on cell survival was estimated.Main results. The simulated survival fraction versus depth in a glycerol phantom is reported for eighteen different configurations. Two proton spread out Bragg peaks at several doses were simulated and compared with experimental data. In all cases, the simulations follow the experimental trends, demonstrating the accuracy of the predictions up to 230 MeV.Significance. This study holds significant importance as it contributes to the advancement of models for predicting biological responses to radiation, ultimately contributing to more effective cancer treatment in proton therapy.
Collapse
Affiliation(s)
| | - Carabe Alejandro
- Hampton University Proton Therapy Institute, 40 Enterprise Pkwy Hampton, VA 2366, United States of America
| | - Espinoza Ignacio
- Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Galvez Sophia
- Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Valenzuela María Pía
- Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| | - Russomando Andrea
- Instituto de Física, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| |
Collapse
|
15
|
Gram D, Brodin NP, Björk-Eriksson T, Nysom K, Munck Af Rosenschöld P. The risk of radiation-induced neurocognitive impairment and the impact of sparing the hippocampus during pediatric proton cranial irradiation. Acta Oncol 2023; 62:134-140. [PMID: 36847433 DOI: 10.1080/0284186x.2023.2176253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
BACKGROUND AND PURPOSE Hippocampus is a central component for neurocognitive function and memory. We investigated the predicted risk of neurocognitive impairment of craniospinal irradiation (CSI) and the deliverability and effects of hippocampal sparing. The risk estimates were derived from published NTCP models. Specifically, we leveraged the estimated benefit of reduced neurocognitive impairment with the risk of reduced tumor control. MATERIAL AND METHODS For this dose planning study, a total of 504 hippocampal sparing intensity modulated proton therapy (HS-IMPT) plans were generated for 24 pediatric patients whom had previously received CSI. Plans were evaluated with respect to target coverage and homogeneity index to target volumes, maximum and mean dose to OARs. Paired t-tests were used to compare hippocampal mean doses and normal tissue complication probability estimates. RESULTS The median mean dose to the hippocampus could be reduced from 31.3 GyRBE to 7.3 GyRBE (p < .001), though 20% of these plans were not considered clinically acceptable as they failed one or more acceptance criterion. Reducing the median mean hippocampus dose to 10.6 GyRBE was possible with all plans considered as clinically acceptable treatment plans. By sparing the hippocampus to the lowest dose level, the risk estimation of neurocognitive impairment could be reduced from 89.6%, 62.1% and 51.1% to 41.0% (p < .001), 20.1% (p < .001) and 29.9% (p < .001) for task efficiency, organization and memory, respectively. Estimated tumor control probability was not adversely affected by HS-IMPT, ranging from 78.5 to 80.5% for all plans. CONCLUSIONS We present estimates of potential clinical benefit in terms of neurocognitive impairment and demonstrate the possibility of considerably reducing neurocognitive adverse effects, minimally compromising target coverage locally using HS-IMPT.
Collapse
Affiliation(s)
- Daniel Gram
- Department of Oncology - Section of Radiotherapy, Rigshospitalet, Copenhagen, Denmark.,Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Oncology and Palliative Care, Radiotherapy, Zealand University Hospital, Næstved, Denmark
| | - N Patrik Brodin
- Institute for Onco-Physics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Thomas Björk-Eriksson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Sweden.,Regional Cancer Centre West, Gothenburg, Sweden
| | - Karsten Nysom
- Department of Paediatrics and Adolescent Medicine, The Juliane Marie Center, Rigshospitalet, Copenhagen, Denmark
| | - Per Munck Af Rosenschöld
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,Radiation Physics - Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden.,Medical Radiation Physics, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Jeong S, Cheon W, Cho S, Han Y. Clinical applicability of deep learning-based respiratory signal prediction models for four-dimensional radiation therapy. PLoS One 2022; 17:e0275719. [PMID: 36256632 PMCID: PMC9578620 DOI: 10.1371/journal.pone.0275719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
For accurate respiration gated radiation therapy, compensation for the beam latency of the beam control system is necessary. Therefore, we evaluate deep learning models for predicting patient respiration signals and investigate their clinical feasibility. Herein, long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and the Transformer are evaluated. Among the 540 respiration signals, 60 signals are used as test data. Each of the remaining 480 signals was spilt into training and validation data in a 7:3 ratio. A total of 1000 ms of the signal sequence (Ts) is entered to the models, and the signal at 500 ms afterward (Pt) is predicted (standard training condition). The accuracy measures are: (1) root mean square error (RMSE) and Pearson correlation coefficient (CC), (2) accuracy dependency on Ts and Pt, (3) respiratory pattern dependency, and (4) error for 30% and 70% of the respiration gating for a 5 mm tumor motion for latencies of 300, 500, and 700 ms. Under standard conditions, the Transformer model exhibits the highest accuracy with an RMSE and CC of 0.1554 and 0.9768, respectively. An increase in Ts improves accuracy, whereas an increase in Pt decreases accuracy. An evaluation of the regularity of the respiratory signals reveals that the lowest predictive accuracy is achieved with irregular amplitude patterns. For 30% and 70% of the phases, the average error of the three models is <1.4 mm for a latency of 500 ms and >2.0 mm for a latency of 700 ms. The prediction accuracy of the Transformer is superior to LSTM and Bi-LSTM. Thus, the three models have clinically applicable accuracies for a latency <500 ms for 10 mm of regular tumor motion. The clinical acceptability of the deep learning models depends on the inherent latency and the strategy for reducing the irregularity of respiration.
Collapse
Affiliation(s)
- Sangwoon Jeong
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Wonjoong Cheon
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Sungkoo Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Youngyih Han
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
17
|
Salgado Maldonado S, Russomando A. CONVERSION OF DOSE DISTRIBUTION TO CELL SURVIVAL FRACTION THROUGH DNA DAMAGE: A MONTE CARLO STUDY. RADIATION PROTECTION DOSIMETRY 2022; 198:1462-1470. [PMID: 36138448 DOI: 10.1093/rpd/ncac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/24/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Ionizing radiation plays an important role in cancer treatment. Radiation is able to damage the genetic material of cells, blocking their ability to divide and proliferate further. Since radiation affects both healthy and malignant tissues, for all radiation treatments, the design of an accurate treatment plan is fundamental. Usually, weight factors, such as the relative biological effectiveness, are applied to estimate the impact of the kind of radiation and the irradiated medium on the dose deposition. However, these factors can only provide a partial estimation of the real effect on tissues. In this work, a flexible system that is able to predict cell survival fractions according to the planned dose distribution is presented. Dose deposition and subsequent DNA damage were simulated with a multi-scale modeling approach by first applying the FLUKA Monte Carlo (MC) code to estimate the absorbed doses and fluence energy spectra and then using the MC Damage Simulation code to compute the DNA damage yields. Lastly, the results are converted into cell survival fraction using a theoretical model. The comparisons between the simulated survival fractions with experimental data are reported for a proton spread out Bragg peak at several doses. The presented approach helps to elucidate radiobiological responses along the Bragg curve and has the flexibility to be extended to a wide range of situations of clinical interest.
Collapse
Affiliation(s)
| | - Andrea Russomando
- Instituto de Fisica, Pontificia Universidad Catolica de Chile, 8970117 Santiago, Chile
| |
Collapse
|
18
|
Faught AM, Wilson LJ, Gargone M, Pirlepesov F, Moskvin VP, Hua C. Treatment-planning approaches to intensity modulated proton therapy and the impact on dose-weighted linear energy transfer. J Appl Clin Med Phys 2022; 24:e13782. [PMID: 36161765 PMCID: PMC9859995 DOI: 10.1002/acm2.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 01/26/2023] Open
Abstract
PURPOSE We quantified the effect of various forward-based treatment-planning strategies in proton therapy on dose-weighted linear energy transfer (LETd). By maintaining the dosimetric quality at a clinically acceptable level, we aimed to evaluate the differences in LETd among various treatment-planning approaches and their practicality in minimizing biologic uncertainties associated with LETd. METHOD Eight treatment-planning strategies that are achievable in commercial treatment-planning systems were applied on a cylindrical water phantom and four pediatric brain tumor cases. Each planning strategy was compared to either an opposed lateral plan (phantom study) or original clinical plan (patient study). Deviations in mean and maximum LETd from clinically acceptable dose distributions were compared. RESULTS In the phantom study, using a range shifter and altering the robust scenarios during optimization had the largest effect on the mean clinical target volume LETd, which was reduced from 4.5 to 3.9 keV/μm in both cases. Variations in the intersection angle between beams had the largest effect on LETd in a ring defined 3 to 5 mm outside the target. When beam intersection angles were reduced from opposed laterals (180°) to 120°, 90°, and 60°, corresponding maximum LETd increased from 7.9 to 8.9, 10.9, and 12.2 keV/μm, respectively. A clear trend in mean and maximum LETd variations in the clinical cases could not be established, though spatial distribution of LETd suggested a strong dependence on patient anatomy and treatment geometry. CONCLUSION Changes in LETd from treatment-plan setup follow intuitive trends in a controlled phantom experiment. Anatomical and other patient-specific considerations, however, can preclude generalizable strategies in clinical cases. For pediatric cranial radiation therapy, we recommend using opposed lateral treatment fields to treat midline targets.
Collapse
Affiliation(s)
- Austin M. Faught
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Lydia J. Wilson
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Melissa Gargone
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Fakhriddin Pirlepesov
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Vadim P. Moskvin
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Chia‐Ho Hua
- Department of Radiation OncologySt. Jude Children's Research HospitalMemphisTennesseeUSA
| |
Collapse
|
19
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
20
|
Tattenberg S, Madden TM, Bortfeld T, Parodi K, Verburg J. Range uncertainty reductions in proton therapy may lead to the feasibility of novel beam arrangements which improve organ-at-risk sparing. Med Phys 2022; 49:4693-4704. [PMID: 35362163 DOI: 10.1002/mp.15644] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/09/2022] [Accepted: 03/24/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE In proton therapy, dose distributions are currently often conformed to organs at risk (OARs) using the less sharp dose fall-off at the lateral beam edge to reduce the effects of uncertainties in the in vivo proton range. However, range uncertainty reductions may make greater use of the sharper dose fall-off at the distal beam edge feasible, potentially improving OAR sparing. We quantified the benefits of such novel beam arrangements. METHODS For each of 10 brain or skull base cases, five treatment plans robust to 2 mm setup and 0%-4% range uncertainty were created for the traditional clinical beam arrangement and a novel beam arrangement making greater use of the distal beam edge to conform the dose distribution to the brainstem. Metrics including the brainstem normal tissue complication probability (NTCP) with the endpoint of necrosis were determined for all plans and all setup and range uncertainty scenarios. RESULTS For the traditional beam arrangement, reducing the range uncertainty from the current level of approximately 4% to a potentially achievable level of 1% reduced the brainstem NTCP by up to 0.9 percentage points in the nominal and up to 1.5 percentage points in the worst-case scenario. Switching to the novel beam arrangement at 1% range uncertainty improved these values by a factor of 2, that is, to 1.8 percentage points and 3.2 percentage points, respectively. The novel beam arrangement achieved a lower brainstem NTCP in all cases starting at a range uncertainty of 2%. CONCLUSION The benefits of novel beam arrangements may be of the same magnitude or even exceed the direct benefits of range uncertainty reductions. Indirect effects may therefore contribute markedly to the benefits of reducing proton range uncertainties.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas M Madden
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Impact of DNA Repair Kinetics and Dose Rate on RBE Predictions in the UNIVERSE. Int J Mol Sci 2022; 23:ijms23116268. [PMID: 35682947 PMCID: PMC9181644 DOI: 10.3390/ijms23116268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Accurate knowledge of the relative biological effectiveness (RBE) and its dependencies is crucial to support modern ion beam therapy and its further development. However, the influence of different dose rates of the reference radiation and ion beam are rarely considered. The ion beam RBE-model within our "UNIfied and VERSatile bio response Engine" (UNIVERSE) is extended by including DNA damage repair kinetics to investigate the impact of dose-rate effects on the predicted RBE. It was found that dose-rate effects increase with dose and biological effects saturate at high dose-rates, which is consistent with data- and model-based studies in the literature. In a comparison with RBE measurements from a high dose in-vivo study, the predictions of the presented modification were found to be improved in comparison to the previous version of UNIVERSE and existing clinical approaches that disregard dose-rate effects. Consequently, DNA repair kinetics and the different dose rates applied by the reference and ion beams might need to be considered in biophysical models to accurately predict the RBE. Additionally, this study marks an important step in the further development of UNIVERSE, extending its capabilities in giving theoretical guidance to support progress in ion beam therapy.
Collapse
|
22
|
Qi Y, Mao L, Lu H, Jin S, Huang J, Wang Z, Zhang J, Wang K. Multi-centric analysis of linear energy transfer distribution from clinical proton beam based on TOPAS. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Deycmar S, Mara E, Kerschbaum-Gruber S, Waller V, Georg D, Pruschy M. Ganetespib selectively sensitizes cancer cells for proximal and distal spread-out Bragg peak proton irradiation. Radiat Oncol 2022; 17:72. [PMID: 35410422 PMCID: PMC8996402 DOI: 10.1186/s13014-022-02036-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 03/20/2022] [Indexed: 02/03/2023] Open
Abstract
Objective Hypersensitivity towards proton versus photon irradiation was demonstrated in homologous recombination repair (HRR)-deficient cell lines. Hence, combined treatment concepts targeting HRR provide a rational for potential pharmaceutical exploitation. The HSP90 inhibitor ganetespib (STA-9090) downregulates a multitude of HRR-associated proteins and sensitizes for certain chemotherapeutics. Thus, the radiosensitizing effect of HSP90-inhibiting ganetespib was investigated for reference photon irradiation and proton irradiation at a proximal and distal position in a spread-out Bragg peak (SOBP). Methods A549 and FaDu cells were treated with low-dose (2 nM resp. 1 nM) ganetespib and irradiated with 200 kV photons. Proton irradiation was performed at a proximal and a distal position within a SOBP, with corresponding dose-averaged linear-energy transfer (LETD) values of 2.1 and 4.5 keV/µm, respectively. Cellular survival data was fitted to the linear-quadratic model to calculate relative biological effectiveness (RBE) and the dose-modifying factor (DMF). Additionally, A549 cells were treated with increasing doses of ganetespib and investigated by flow cytometry, immunoblotting, and immunofluorescence microscopy to investigate cell cycle distribution, Rad51 protein levels, and γH2AX foci, respectively. Results Low-dosed ganetespib significantly sensitized both cancer cell lines exclusively for proton irradiation at both investigated LETD, resulting in increased RBE values of 10–40%. In comparison to photon irradiation, the fraction of cells in S/G2/M phase was elevated in response to proton irradiation with 10 nM ganetespib consistently reducing this population. No changes in cell cycle distribution were detected in unirradiated cells by ganetespib alone. Protein levels of Rad51 are downregulated in irradiated A549 cells by 10 nM and also 2 nM ganetespib within 24 h. Immunofluorescence staining demonstrated similar induction and removal of γH2AX foci, irrespective of irradiation type or ganetespib administration. Conclusion Our findings illustrate a proton-specific sensitizing effect of low-dosed ganetespib in both employed cell lines and at both investigated SOBP positions. We provide additional experimental data on cellular response and a rational for future combinatorial approaches with proton radiotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-022-02036-z.
Collapse
|
24
|
Garbacz M, Gajewski J, Durante M, Kisielewicz K, Krah N, Kopeć R, Olko P, Patera V, Rinaldi I, Rydygier M, Schiavi A, Scifoni E, Skóra T, Skrzypek A, Tommasino F, Rucinski A. Quantification of biological range uncertainties in patients treated at the Krakow proton therapy centre. Radiat Oncol 2022; 17:50. [PMID: 35264184 PMCID: PMC8905899 DOI: 10.1186/s13014-022-02022-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/28/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Variable relative biological effectiveness (vRBE) in proton therapy might significantly modify the prediction of RBE-weighted dose delivered to a patient during proton therapy. In this study we will present a method to quantify the biological range extension of the proton beam, which results from the application of vRBE approach in RBE-weighted dose calculation. METHODS AND MATERIALS The treatment plans of 95 patients (brain and skull base patients) were used for RBE-weighted dose calculation with constant and the McNamara RBE model. For this purpose the Monte Carlo tool FRED was used. The RBE-weighted dose distributions were analysed using indices from dose-volume histograms. We used the volumes receiving at least 95% of the prescribed dose (V95) to estimate the biological range extension resulting from vRBE approach. RESULTS The vRBE model shows higher median value of relative deposited dose and D95 in the planning target volume by around 1% for brain patients and 4% for skull base patients. The maximum doses in organs at risk calculated with vRBE was up to 14 Gy above dose limit. The mean biological range extension was greater than 0.4 cm. DISCUSSION Our method of estimation of biological range extension is insensitive for dose inhomogeneities and can be easily used for different proton plans with intensity-modulated proton therapy (IMPT) optimization. Using volumes instead of dose profiles, which is the common method, is more universal. However it was tested only for IMPT plans on fields arranged around the tumor area. CONCLUSIONS Adopting a vRBE model results in an increase in dose and an extension of the beam range, which is especially disadvantageous in cancers close to organs at risk. Our results support the need to re-optimization of proton treatment plans when considering vRBE.
Collapse
Affiliation(s)
- Magdalena Garbacz
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland.
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Marco Durante
- GSI Helmholtzzentrum fur Schwerionenforschung, 64291, Darmstadt, Germany
- The Technical University of Darmstadt, 64289, Darmstadt, Germany
| | - Kamil Kisielewicz
- National Oncology Institute, National Research Institute, Krakow Branch, 31115, Kraków, Poland
| | - Nils Krah
- University of Lyon, CREATIS, CNRS UMR5220, Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, France
- University of Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | - Vincenzo Patera
- INFN - Section of Rome, 00185, Rome, Italy
- Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, 00161, Rome, Italy
| | | | - Marzena Rydygier
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| | | | - Emanuele Scifoni
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, 38123, Povo, Trento, Italy
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, 31115, Kraków, Poland
| | | | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, 38123, Povo, Trento, Italy
- Department of Physics, University of Trento, 38123, Povo, Trento, Italy
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, 31342, Kraków, Poland
| |
Collapse
|
25
|
Koh WYC, Tan HQ, Ng YY, Lin YH, Ang KW, Lew WS, Lee JCL, Park SY. Quantifying Systematic RBE-Weighted Dose Uncertainty Arising from Multiple Variable RBE Models in Organ at Risk. Adv Radiat Oncol 2022; 7:100844. [PMID: 35036633 PMCID: PMC8749202 DOI: 10.1016/j.adro.2021.100844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 10/29/2021] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Relative biological effectiveness (RBE) uncertainties have been a concern for treatment planning in proton therapy, particularly for treatment sites that are near organs at risk (OARs). In such a clinical situation, the utilization of variable RBE models is preferred over constant RBE model of 1.1. The problem, however, lies in the exact choice of RBE model, especially when current RBE models are plagued with a host of uncertainties. This paper aims to determine the influence of RBE models on treatment planning, specifically to improve the understanding of the influence of the RBE models with regard to the passing and failing of treatment plans. This can be achieved by studying the RBE-weighted dose uncertainties across RBE models for OARs in cases where the target volume overlaps the OARs. Multi-field optimization (MFO) and single-field optimization (SFO) plans were compared in order to recommend which technique was more effective in eliminating the variations between RBE models. METHODS Fifteen brain tumor patients were selected based on their profile where their target volume overlaps with both the brain stem and the optic chiasm. In this study, 6 RBE models were analyzed to determine the RBE-weighted dose uncertainties. Both MFO and SFO planning techniques were adopted for the treatment planning of each patient. RBE-weighted dose uncertainties in the OARs are calculated assuming( α β ) x of 3 Gy and 8 Gy. Statistical analysis was used to ascertain the differences in RBE-weighted dose uncertainties between MFO and SFO planning. Additionally, further investigation of the linear energy transfer (LET) distribution was conducted to determine the relationship between LET distribution and RBE-weighted dose uncertainties. RESULTS The results showed no strong indication on which planning technique would be the best for achieving treatment planning constraints. MFO and SFO showed significant differences (P <.05) in the RBE-weighted dose uncertainties in the OAR. In both clinical target volume (CTV)-brain stem and CTV-chiasm overlap region, 10 of 15 patients showed a lower median RBE-weighted dose uncertainty in MFO planning compared with SFO planning. In the LET analysis, 8 patients (optic chiasm) and 13 patients (brain stem) showed a lower mean LET in MFO planning compared with SFO planning. It was also observed that lesser RBE-weighted dose uncertainties were present with MFO planning compared with SFO planning technique. CONCLUSIONS Calculations of the RBE-weighted dose uncertainties based on 6 RBE models and 2 different( α β ) x revealed that MFO planning is a better option as opposed to SFO planning for cases of overlapping brain tumor with OARs in eliminating RBE-weighted dose uncertainties. Incorporation of RBE models failed to dictate the passing or failing of a treatment plan. To eliminate RBE-weighted dose uncertainties in OARs, the MFO planning technique is recommended for brain tumor when CTV and OARs overlap.
Collapse
Affiliation(s)
- Wei Yang Calvin Koh
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Yan Yee Ng
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Yen Hwa Lin
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Khong Wei Ang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Wen Siang Lew
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - James Cheow Lei Lee
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, National University of Singapore, Singapore
| |
Collapse
|
26
|
Loap P, Vitolo V, Barcellini A, De Marzi L, Mirandola A, Fiore MR, Vischioni B, Jereczek-Fossa BA, Girard N, Kirova Y, Orlandi E. Hadrontherapy for Thymic Epithelial Tumors: Implementation in Clinical Practice. Front Oncol 2021; 11:738320. [PMID: 34707989 PMCID: PMC8543015 DOI: 10.3389/fonc.2021.738320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/21/2021] [Indexed: 12/04/2022] Open
Abstract
Radiation therapy is part of recommendations in the adjuvant settings for advanced stage or as exclusive treatment in unresectable thymic epithelial tumors (TETs). However, first-generation techniques delivered substantial radiation doses to critical organs at risk (OARs), such as the heart or the lungs, resulting in noticeable radiation-induced toxicity. Treatment techniques have significantly evolved for TET irradiation, and modern techniques efficiently spare normal surrounding tissues without negative impact on tumor coverage and consequently local control or patient survival. Considering its dosimetric advantages, hadrontherapy (which includes proton therapy and carbon ion therapy) has proved to be worthwhile for TET irradiation in particular for challenging clinical situations such as cardiac tumoral involvement. However, clinical experience for hadrontherapy is still limited and mainly relies on small-size proton therapy studies. This critical review aims to analyze the current status of hadrontherapy for TET irradiation to implement it at a larger scale.
Collapse
Affiliation(s)
- Pierre Loap
- Department of Radiation Oncology, Institut Curie, Paris, France.,Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Viviana Vitolo
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Amelia Barcellini
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Ludovic De Marzi
- Department of Radiation Oncology, Institut Curie, Paris, France.,Institut Curie, Paris Sciences & Lettres (PSL) Research University, University Paris Saclay, laboratoire d'Imagerie Translationnelle en Oncologie, Institut National de la Santé et de la Recherche Médicale (INSERM LITO), Orsay, France
| | - Alfredo Mirandola
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Maria Rosaria Fiore
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Vischioni
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Division of Radiotherapy, Istituto Europeo di Oncologia (IEO) European Institute of Oncology Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Milan, Italy
| | - Nicolas Girard
- Institut du Thorax Curie Montsouris, Paris, France.,Department of Medical Oncology, Institut Curie, Paris, France.,University Paris Saint-Quentin, Versailles, France
| | - Youlia Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadrontherapy (CNAO), Pavia, Italy
| |
Collapse
|
27
|
Mutter RW, Choi JI, Jimenez RB, Kirova YM, Fagundes M, Haffty BG, Amos RA, Bradley JA, Chen PY, Ding X, Carr AM, Taylor LM, Pankuch M, Vega RBM, Ho AY, Nyström PW, McGee LA, Urbanic JJ, Cahlon O, Maduro JH, MacDonald SM. Proton Therapy for Breast Cancer: A Consensus Statement From the Particle Therapy Cooperative Group Breast Cancer Subcommittee. Int J Radiat Oncol Biol Phys 2021; 111:337-359. [PMID: 34048815 PMCID: PMC8416711 DOI: 10.1016/j.ijrobp.2021.05.110] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/23/2022]
Abstract
Radiation therapy plays an important role in the multidisciplinary management of breast cancer. Recent years have seen improvements in breast cancer survival and a greater appreciation of potential long-term morbidity associated with the dose and volume of irradiated organs. Proton therapy reduces the dose to nontarget structures while optimizing target coverage. However, there remain additional financial costs associated with proton therapy, despite reductions over time, and studies have yet to demonstrate that protons improve upon the treatment outcomes achieved with photon radiation therapy. There remains considerable heterogeneity in proton patient selection and techniques, and the rapid technological advances in the field have the potential to affect evidence evaluation, given the long latency period for breast cancer radiation therapy recurrence and late effects. In this consensus statement, we assess the data available to the radiation oncology community of proton therapy for breast cancer, provide expert consensus recommendations on indications and technique, and highlight ongoing trials' cost-effectiveness analyses and key areas for future research.
Collapse
Affiliation(s)
- Robert W Mutter
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota.
| | - J Isabelle Choi
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rachel B Jimenez
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Youlia M Kirova
- Department of Radiation Oncology, Institut Curie, Paris, France
| | - Marcio Fagundes
- Department of Radiation Oncology, Miami Cancer Institute, Miami, Florida
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Richard A Amos
- Proton and Advanced Radiotherapy Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Julie A Bradley
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | - Peter Y Chen
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Antoinette M Carr
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Leslie M Taylor
- Department of Radiation Oncology, Beaumont Health, Royal Oak, Michigan
| | - Mark Pankuch
- Department of Radiation Oncology, Northwestern Medicine Proton Center, Warrenville, Illinois
| | | | - Alice Y Ho
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Petra Witt Nyström
- The Skandion Clinic, Uppsala, Sweden and the Danish Centre for Particle Therapy, Aarhus, Denmark
| | - Lisa A McGee
- Department of Radiation Oncology, Mayo Clinic Hospital, Phoenix, Arizona
| | - James J Urbanic
- Department of Radiation Medicine and Applied Sciences, UC San Diego Health, Encinitas, California
| | - Oren Cahlon
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John H Maduro
- Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shannon M MacDonald
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
28
|
Tattenberg S, Madden TM, Gorissen BL, Bortfeld T, Parodi K, Verburg J. Proton range uncertainty reduction benefits for skull base tumors in terms of normal tissue complication probability (NTCP) and healthy tissue doses. Med Phys 2021; 48:5356-5366. [PMID: 34260085 DOI: 10.1002/mp.15097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Proton therapy allows for more conformal dose distributions and lower organ at risk and healthy tissue doses than conventional photon-based radiotherapy, but uncertainties in the proton range currently prevent proton therapy from making full use of these advantages. Numerous developments therefore aim to reduce such range uncertainties. In this work, we quantify the benefits of reductions in range uncertainty for treatments of skull base tumors. METHODS The study encompassed 10 skull base patients with clival tumors. For every patient, six treatment plans robust to setup errors of 2 mm and range errors from 0% to 5% were created. The determined metrics included the brainstem and optic chiasm normal tissue complication probability (NTCP) with the endpoints of necrosis and blindness, respectively, as well as the healthy tissue volume receiving at least 70% of the prescription dose. RESULTS A range uncertainty reduction from the current level of 4% to a potentially achievable level of 1% reduced the probability of brainstem necrosis by up to 1.3 percentage points in the nominal scenario in which neither setup nor range errors occur and by up to 2.9 percentage points in the worst-case scenario. Such a range uncertainty reduction also reduced the optic chiasm NTCP with the endpoint of blindness by up to 0.9 percentage points in the nominal scenario and by up to 2.2 percentage points in the worst-case scenario. The decrease in the healthy tissue volume receiving at least 70% of the prescription dose ranged from -7.8 to 24.1 cc in the nominal scenario and from -3.4 to 38.4 cc in the worst-case scenario. CONCLUSION The benefits quantified as part of this study serve as a guideline of the OAR and healthy tissue dose benefits that range monitoring techniques may be able to achieve. Benefits were observed between all levels of range uncertainty. Even smaller range uncertainty reductions may therefore be beneficial.
Collapse
Affiliation(s)
- Sebastian Tattenberg
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas M Madden
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bram L Gorissen
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Thomas Bortfeld
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Joost Verburg
- Division of Radiation Biophysics, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Deng W, Yang Y, Liu C, Bues M, Mohan R, Wong WW, Foote RH, Patel SH, Liu W. A Critical Review of LET-Based Intensity-Modulated Proton Therapy Plan Evaluation and Optimization for Head and Neck Cancer Management. Int J Part Ther 2021; 8:36-49. [PMID: 34285934 PMCID: PMC8270082 DOI: 10.14338/ijpt-20-00049.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
In this review article, we review the 3 important aspects of linear-energy-transfer (LET) in intensity-modulated proton therapy (IMPT) for head and neck (H&N) cancer management. Accurate LET calculation methods are essential for LET-guided plan evaluation and optimization, which can be calculated either by analytical methods or by Monte Carlo (MC) simulations. Recently, some new 3D analytical approaches to calculate LET accurately and efficiently have been proposed. On the other hand, several fast MC codes have also been developed to speed up the MC simulation by simplifying nonessential physics models and/or using the graphics processor unit (GPU)–acceleration approach. Some concepts related to LET are also briefly summarized including (1) dose-weighted versus fluence-weighted LET; (2) restricted versus unrestricted LET; and (3) microdosimetry versus macrodosimetry. LET-guided plan evaluation has been clinically done in some proton centers. Recently, more and more studies using patient outcomes as the biological endpoint have shown a positive correlation between high LET and adverse events sites, indicating the importance of LET-guided plan evaluation in proton clinics. Various LET-guided plan optimization methods have been proposed to generate proton plans to achieve biologically optimized IMPT plans. Different optimization frameworks were used, including 2-step optimization, 1-step optimization, and worst-case robust optimization. They either indirectly or directly optimize the LET distribution in patients while trying to maintain the same dose distribution and plan robustness. It is important to consider the impact of uncertainties in LET-guided optimization (ie, LET-guided robust optimization) in IMPT, since IMPT is sensitive to uncertainties including both the dose and LET distributions. We believe that the advancement of the LET-guided plan evaluation and optimization will help us exploit the unique biological characteristics of proton beams to improve the therapeutic ratio of IMPT to treat H&N and other cancers.
Collapse
Affiliation(s)
- Wei Deng
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Yunze Yang
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William W Wong
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Robert H Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Samir H Patel
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
30
|
Shang H, Pu Y, Chen Z, Wang X, Yuan C, Jin X, Liu C. Impact of Multiple Beams on Plan Quality, Linear Energy Transfer Distribution, and Plan Robustness of Intensity Modulated Proton Therapy for Lung Cancer. ACS Sens 2021; 6:408-417. [PMID: 33125211 DOI: 10.1021/acssensors.0c01879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The increase of proton beam number might provide higher degrees of freedom in the optimization of intensity-modulated proton therapy planning. In this study, we aimed to quantitatively explore the potential benefits of the increased beam number, including dose volume histogram (DVH), linear energy transfer volume histogram, and DVH bandwidth metrics. Twelve patients with lung cancer are retrospectively selected. Four plans were created based on internal target volume (ITV) robust optimization for each patient using the RayStation treatment planning system. Four plans were generated using different numbers (three, five, seven, and nine) of evenly separated coplanar beams. The three-beam plan was considered as the reference plan. Biologically equivalent doses were calculated using both constant relative biological effectiveness (RBE) and variable RBE models, respectively. To evaluate plan quality, DVH metrics in the target [ITV: D2%, CI, HI] and organs-at-risk [Lung: V5Gy[RBE], V20Gy[RBE], V30Gy[RBE]; Heart D2%; Spinal cord D2%] were calculated using both RBE models. To evaluate LET distributions, LET volume histogram metrics [ITV LETmean and LET2%; Lung LETmean and LET2%; Heart LET2%; Spinal cord LET2%] were quantified. To evaluate plan robustness, the metrics using DVH bandwidth [ITV: D2%, D99%; Lung: V5Gy[RBE], V20Gy[RBE], V30Gy[RBE]; Heart D2%; Spinal cord D2%] were also reported. For plan quality, the increase of proton beam number resulted in fewer target hot spots, improved target dose conformity, improved target dose homogeneity, lower median-dose lung volume, and fewer hot spots in spinal cord. As to LET distributions, target mean LET increased significantly as the beam number increased to seven or more. Lung LET hot spots were significantly reduced with the increase of proton beams. With respect to plan robustness, the robustness of target dose coverage, target hot spots, and low-dose lung volume were improved, while the robustness of heart hot spots became worse as the beam number increased to nine. The robustness of cord hot spots became worse using five and seven beams compared to that using three beams. As the proton beam number increased, plan quality and LET distributions were comparable or significantly improved. The robustness of target dose coverage, target dose hot spots, and low-dose lung volume were significantly improved.
Collapse
Affiliation(s)
- Haijiao Shang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- RaySearch China, Shanghai, 200120, P. R. China
| | - Yuehu Pu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiling Chen
- Shanghai Advanced Research Institute, Chinese Academy Sciences, Shanghai, 201210, P. R. China
| | - Xuetao Wang
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Cuiyun Yuan
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, P. R. China
| | - Xiance Jin
- Department of Radiation and Medical Oncology, The 1st Affiliated Hospital of Wenzhou Medical University, Wenzhou, 32500, P. R. China
| | - Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, P. R. China
| |
Collapse
|
31
|
McConnell KA, Chang C, Giebeler A, Liu L, Zhu Qu L, Moiseenko V. Double-strand breaks measured along a 160 MeV proton Bragg curve using a novel FIESTA-DNA probe in a cell-free environment. Phys Med Biol 2021; 66:054001. [PMID: 33470972 DOI: 10.1088/1361-6560/abdd89] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Proton radiotherapy treatment planning systems use a constant relative biological effectiveness (RBE) = 1.1 to convert proton absorbed dose into biologically equivalent high-energy photon dose. This method ignores linear energy transfer (LET) distributions, and RBE is known to change as a function of LET. Variable RBE approaches have been proposed for proton planning optimization. Experimental validation of models underlying these approaches is a pre-requisite for their clinical implementation. This validation has to probe every level in the evolution of radiation-induced biological damage leading to cell death, starting from DNA double-strand breaks (DSB). Using a novel FIESTA-DNA probe, we measured the probability of double-strand break (P DSB) along a 160 MeV proton Bragg curve at two dose levels (30 and 60 Gy (RBE)) and compared it to measurements in a 6 MV photon beam. A machined setup that held an Advanced Markus parallel plate chamber for proton dose verification alongside the probes was fabricated. Each sample set consisted of five 10 μl probes suspended inside plastic microcapillary tubes. These were irradiated with protons to 30 Gy (RBE) at depths of 5-17.5 cm and 60 Gy (RBE) at depths of 10-17.2 cm with 1 mm resolution around Bragg peak. Sample sets were also irradiated using 6MV photons to 20, 40, 60, and 80 Gy. For the 30 Gy (RBE) measurements, increases in P DSB/Gy were observed at 17.0 cm followed by decreases at larger depth. For the 60 Gy (RBE) measurements, no increase in P DSB/Gy was observed, but there was a decrease after 17.0 cm. Dose-response for P DSB between 30 and 60 Gy (RBE) showed less than doubling of P DSB when dose was doubled. Proton RBE effect from DSB, RBEP,DSB, was <1 except at the Bragg peak. The experiment showed that the novel probe can be used to perform DNA DSB measurements in a proton beam. To establish relevance to clinical environment, further investigation of the probe's chemical scavenging needs to be performed.
Collapse
Affiliation(s)
- Kristen A McConnell
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, United States of America. California Proton Cancer Therapy Center, San Diego, CA 92121, United States of America
| | | | | | | | | | | |
Collapse
|
32
|
Liu C, Zheng D, Bradley JA, Mailhot Vega RB, Zhang Y, Indelicato DJ, Mendenhall N, Liang X. Incorporation of the LETd-weighted biological dose in the evaluation of breast intensity-modulated proton therapy plans. Acta Oncol 2021; 60:252-259. [PMID: 33063569 DOI: 10.1080/0284186x.2020.1834141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE To evaluate the LETd-weighted biological dose to OARs in proton therapy for breast cancer and to study the relationship of the LETd-weighted biological dose relative to the standard dose (RBE = 1.1) and thereby to provide estimations of the biological dose uncertainties with the standard dose calculations (RBE = 1.1) commonly used in clinical practice. METHOD This study included 20 patients who received IMPT treatment to the whole breast/chest wall and regional lymph nodes. The LETd distributions were calculated along with the physical dose using an open-source Monte Carlo simulation package, MCsquare. Using the McMahon linear model, the LETd-weighted biological dose was computed from the physical dose and LETd. OAR doses were compared between the Dose (RBE = 1.1) and the LETd-weighted biological dose, on brachial plexus, rib, heart, esophagus, and Ipsilateral lung. RESULTS On average, the LETd-weighted biological dose compared to the Dose (RBE = 1.1) was higher by 8% for the brachial plexus D0.1 cc, 13% for the ribs D0.5 cc, 24% for mean heart dose, and 10% for the esophagus D0.1 cc, respectively. The LETd-weighted doses to the Ipsilateral lung V5, V10, and V20 were comparable to the Dose (RBE = 1.1). No statistically significant difference in biological dose enhancement to OARs was observed between the intact breast group and the CW group, with the exception of the ribs: the CW group experienced slightly greater biological dose enhancement (13% vs. 12%, p = 0.04) to the ribs than the intact breast group. CONCLUSION Enhanced biological dose was observed compared to standard dose with assumed RBE of 1.1 for the heart, ribs, esophagus, and brachial plexus in breast/CW and regional nodal IMPT plans. Variable RBE models should be considered in the evaluation of the IMPT breast plans, especially for OARs located near the end of range of a proton beam. Clinical outcome studies are needed to validate model predictions for clinical toxicities.
Collapse
Affiliation(s)
- Chunbo Liu
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
- School of Physical Sciences, University of Science and Technology of China, Hefei, China
| | - Dandan Zheng
- Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Julie A. Bradley
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Raymond B. Mailhot Vega
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Yawei Zhang
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Daniel J. Indelicato
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Nancy Mendenhall
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, University of Florida College of Medicine, Jacksonville, FL, USA
| |
Collapse
|
33
|
Fjæra LF, Indelicato DJ, Ytre-Hauge KS, Muren LP, Lassen-Ramshad Y, Toussaint L, Dahl O, Stokkevåg CH. Spatial Agreement of Brainstem Dose Distributions Depending on Biological Model in Proton Therapy for Pediatric Brain Tumors. Adv Radiat Oncol 2021; 6:100551. [PMID: 33490724 PMCID: PMC7811129 DOI: 10.1016/j.adro.2020.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 11/02/2022] Open
Abstract
Purpose During radiation therapy for pediatric brain tumors, the brainstem is a critical organ at risk, possibly with different radio-sensitivity across its substructures. In proton therapy, treatment planning is currently performed using a constant relative biological effectiveness (RBE) of 1.1 (RBE1.1), whereas preclinical studies point toward spatial variability of this factor. To shed light on this biological uncertainty, we investigated the spatial agreement between isodose maps produced by different RBE models, with emphasis on (smaller) substructures of the brainstem. Methods and Materials Proton plans were recalculated using Monte Carlo simulations in 3 anonymized pediatric patients with brain tumors (a craniopharyngioma, a low-grade glioma, and a posterior fossa ependymoma) to obtain dose and linear energy transfer distributions. Doses and volume metrics for the brainstem and its substructures were calculated using a constant RBE1.1, 4 phenomenological RBE models with varying (α/β)x parameters, and with a simpler linear energy transfer-dependent model. The spatial agreement between the dose distributions of constant RBE1.1 versus the variable RBE models was compared using the Dice similarity coefficient. Results The spatial agreement between the variable RBE dose distributions and RBE1.1 decreased with increasing isodose levels in all patient cases. The patient with ependymoma showed the greatest variation in dose and dose volumes, where V50Gy(RBE) in the brainstem increased from 32% (RBE1.1) to 35% to 49% depending on the applied model, corresponding to a spatial agreement (Dice similarity coefficient) between 0.79 and 0.95. The remaining patients showed similar trends, however, with lower absolute values due to lower brainstem doses. Conclusions All phenomenological RBE models fully enclosed the isodose volumes of the constant RBE1.1, and the volumes based on variable RBE spatially agreed. The spatial agreement was dependent on the isodose level, where higher isodose levels showed larger expansions and less agreement between the variable RBE models and RBE1.1.
Collapse
Affiliation(s)
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, Florida
| | | | - Ludvig P Muren
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| | | | - Laura Toussaint
- Department of Medical Physics, Aarhus University/Aarhus University Hospital, Denmark
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Camilla H Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
34
|
Fjæra LF, Indelicato DJ, Stokkevåg CH, Muren LP, Hsi WC, Ytre-Hauge KS. Implementation of a double scattering nozzle for Monte Carlo recalculation of proton plans with variable relative biological effectiveness. Phys Med Biol 2020; 65. [PMID: 33053524 DOI: 10.1088/1361-6560/abc12d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/14/2020] [Indexed: 11/12/2022]
Abstract
A constant relative biological effectiveness (RBE) of 1.1 is currently used in clinical proton therapy. However, theRBEvaries with factors such as dose level, linear energy transfer (LET) and tissue type. MultipleRBEmodels have been developed to account for this biological variation. To enable recalculation of patients treated with double scattering (DS) proton therapy, includingLETand variableRBE, we implemented and commissioned a Monte Carlo (MC) model of a DS treatment nozzle. The main components from the IBA nozzle were implemented in the FLUKA MC code. We calibrated and verified the following entities to experimental measurements: range of pristine Bragg peaks (PBPs) and spread-out Bragg peaks (SOBPs), energy spread, lateral profiles, compensator range degradation, and absolute dose. We recalculated two patients with different field setups, comparing FLUKA vs. treatment planning system (TPS) dose, also obtainingLETand variableRBEdoses. We achieved good agreement between FLUKA and measurements. The range differences between FLUKA and measurements were for the PBPs within ±0.9 mm (83% ⩽ 0.5 mm), and for SOBPs ±1.6 mm (82% ⩽ 0.5 mm). The differences in modulation widths were below 5 mm (79% ⩽ 2 mm). The differences in the distal dose fall off (D80%-D20%) were below 0.5 mm for all PBPs and the lateral penumbras diverged from measurements by less than 1 mm. The mean dose difference (RBE= 1.1) in the target between the TPS and FLUKA were below 0.4% in a three-field plan and below 1.4% in a four-field plan. A dose increase of 9.9% and 7.2% occurred when using variableRBEfor the two patients, respectively. We presented a method to recalculate DS proton plans in the FLUKA MC code. The implementation was used to obtainLETand variableRBEdose and can be used for investigating variableRBEfor previously treated patients.
Collapse
Affiliation(s)
- Lars Fredrik Fjæra
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Daniel J Indelicato
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, United States of America
| | - Camilla H Stokkevåg
- Department of Physics and Technology, University of Bergen, Bergen, Norway.,Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
| | - Ludvig P Muren
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Wen C Hsi
- Department of Radiation Oncology, University of Florida, Jacksonville, FL, United States of America
| | | |
Collapse
|
35
|
|
36
|
Hahn C, Eulitz J, Peters N, Wohlfahrt P, Enghardt W, Richter C, Lühr A. Impact of range uncertainty on clinical distributions of linear energy transfer and biological effectiveness in proton therapy. Med Phys 2020; 47:6151-6162. [PMID: 33118161 DOI: 10.1002/mp.14560] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Increased radiation response after proton irradiation, such as late radiation-induced toxicity, is determined by high dose and elevated linear energy transfer (LET). Steep dose-averaged LET (LETd ) gradients and elevated LETd occur at the end of proton range and might be particularly sensitive to uncertainties in range prediction. Therefore, this study quantified LETd distributions and the impact of range uncertainty in robust dose-optimized proton treatment plans and assessed the biological effect in normal tissues and tumors of patients. METHODS For each of six cancer patients (two brain, head-and-neck, and prostate), two nominal treatment plans were robustly dose optimized using single- and multi-field optimization, respectively. For each plan, two additional scenarios with ±3.5% range deviation relative to the nominal plan were derived by global rescaling of stopping-power ratios. Dose and LETd distributions were calculated for each scenario using the beam parameters of the corresponding nominal plan. The variability in relative biological effectiveness (RBE) and probability of late radiation-induced brain toxicity (PIC ) was assessed. RESULTS The optimization technique (single- vs multi-field) had a negligible impact on the LETd distributions in the clinical target volume (CTV) and in most organs at risk (OARs). LETd distributions in the CTV were rather homogeneous with arithmetic mean of LETd below 3.2 keV/µm and robust against range deviations. The RBE variability within the CTV induced by range uncertainty was small (≤0.05, 95% confidence interval). In OARs, LETd hotspots (>7 keV/µm) occurred and LETd distributions were inhomogeneous and sensitive to range deviations. LETd hotspots and the impact of range deviations were most prominent in OARs of brain tumor patients which translated in RBE values exceeding 1.1 in all brain OARs. The near-maximum predicted PIC in healthy brain tissue of brain tumor patients was smaller than 5% and occurred adjacent to the CTV. Range deviations induced absolute differences in PIC up to 1.2%. CONCLUSIONS Robust dose optimization generates LETd distributions in the target volume robust against range deviations. The current findings support using a constant RBE within the CTV. The impact of range deviations on the considered probability of late radiation-induced toxicity in brain tissue was limited for robust dose-optimized treatment plans. Incorporation of LETd in robust optimization frameworks may further reduce uncertainty related to the RBE-weighted dose estimation in normal tissues.
Collapse
Affiliation(s)
- Christian Hahn
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Medical Physics and Radiotherapy, Faculty of Physics, TU Dortmund University, Dortmund, Germany
| | - Jan Eulitz
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Nils Peters
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Patrick Wohlfahrt
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Wolfgang Enghardt
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Richter
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin Lühr
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Medical Physics and Radiotherapy, Faculty of Physics, TU Dortmund University, Dortmund, Germany.,Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
37
|
Tan HQ, Koh WYC, Yeo ELL, Ang KW, Poon DJJ, Lim CP, Vajandar SK, Chen CB, Ren M, Osipowicz T, Soo KC, Chua MLK, Park SY. Dosimetric uncertainties impact on cell survival curve with low energy proton. Phys Med 2020; 76:277-284. [PMID: 32738775 DOI: 10.1016/j.ejmp.2020.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022] Open
Abstract
There is an increasing number of radiobiological experiments being conducted with low energy protons (less than 5 MeV) for radiobiological studies due to availability of sub-millimetre focused beam. However, low energy proton has broad microdosimetric spectra which can introduce dosimetric uncertainty. In this work, we quantify the impact of this dosimetric uncertainties on the cell survival curve and how it affects the estimation of the alpha and beta parameters in the LQ formalism. Monte Carlo simulation is used to generate the microdosimetric spectra in a micrometer-sized water sphere under proton irradiation. This is modelled using radiobiological experiment set-up at the Centre of Ion Beam Application (CIBA) in National University of Singapore. Our results show that the microdosimetric spectra can introduce both systematic and random shifts in dose and cell survival; this effect is most pronounced with low energy protons. The alpha and beta uncertainties can be up to 10% and above 30%, respectively for low energy protons passing through thin cell target (about 10 microns). These uncertainties are non-negligible and show that care must be taken in using the cell survival curve and its derived parameters for radiobiological models.
Collapse
Affiliation(s)
- Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore.
| | - Wei Yang Calvin Koh
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | | | - Khong Wei Ang
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | | | - Chu Pek Lim
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Oncology Academic Clinical Programme, Singapore
| | - Saumitra K Vajandar
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Ce-Belle Chen
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Minqin Ren
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Thomas Osipowicz
- Centre for Ion Beam Application, National University of Singapore, Singapore
| | - Khee Chee Soo
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Medical Sciences, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Oncology Academic Clinical Programme, Singapore
| | - Sung Yong Park
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| |
Collapse
|
38
|
Bai X, Lim G, Grosshans D, Mohan R, Cao W. A biological effect-guided optimization approach using beam distal-edge avoidance for intensity-modulated proton therapy. Med Phys 2020; 47:3816-3825. [PMID: 32557747 DOI: 10.1002/mp.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/03/2020] [Accepted: 06/02/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Linear energy transfer (LET)-guided methods have been applied to intensity-modulated proton therapy (IMPT) to improve its biological effect. However, using LET as a surrogate for biological effect ignores the topological relationship of the scanning spot to different structures of interest. In this study, we developed an optimization method that takes advantage of the continuing increase in LET beyond the physical dose Bragg peak. This method avoids placing high biological effect values in critical structures and increases biological effect in the tumor area without compromising target coverage. METHODS We selected the cases of two patients with brain tumors and two patients with head and neck tumors who had been treated with proton therapy at our institution. Three plans were created for each case: a plan based on conventional dose-based optimization (DoseOpt), one based on LET-incorporating optimization (LETOpt), and one based on the proposed distal-edge avoidance-guided optimization method (DEAOpt). In DEAOpt, an L1 -norm sparsity term, in which the penalty of each scanning spot was set according to the topological relationship between the organ positions and the location of the peak scaled LET-weighted dose (c LETxD) was added to a conventional dose-based optimization objective function. All plans were normalized to give the same target dose coverage. Dose (assuming a constant relative biological effectiveness value of 1.1, as in clinical practice), biological effect (c LETxD), and computing time consumption were evaluated and compared among the three optimization approaches for each patient case. RESULTS For all four cases, all three optimization methods generated comparable dose coverage in both target and critical structures. The LETOpt plans and DEAOpt plans reduced biological effect hot spots in critical structures and increased biological effect in the target volumes to a similar extent. For the target, the c LETxD98% and c LETxD2% in the DEAOpt plans were on average 7.2% and 11.74% higher than in the DoseOpt plans, respectively. For the brainstem, the c LETxDmean in the DEAOpt plans was on average 33.38% lower than in the DoseOpt plans. In addition, the DEAOpt method saved 30.37% of the computation cost over the LETOpt method. CONCLUSIONS DEAOpt is an alternative IMPT optimization approach that correlates the location of scanning spots with biological effect distribution. IMPT could benefit from the use of DEAOpt because this method not only delivers comparable biological effects to LETOpt plans, but also is faster.
Collapse
Affiliation(s)
- Xuemin Bai
- Department of Industrial Engineering, University of Houston, Houston, TX, 77004, USA.,Linking Medical Technology, Beijing, 100085, China
| | - Gino Lim
- Department of Industrial Engineering, University of Houston, Houston, TX, 77004, USA
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Radhe Mohan
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wenhua Cao
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
39
|
Cancer risk after breast proton therapy considering physiological and radiobiological uncertainties. Phys Med 2020; 76:1-6. [PMID: 32563956 DOI: 10.1016/j.ejmp.2020.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The reduced normal tissue dose burden from protons can reduce the risk of second cancer for breast cancer patients. Breathing motion and the impact of variable relative biological effectiveness (RBE) are however concerns for proton dose distributions. This study aimed to quantify the impact of these factors on risk predictions from proton and photon therapy. MATERIALS AND METHODS Twelve patients were planned in free breathing with protons and photons to deliver 50 Gy (RBE) in 25 fractions (assuming RBE = 1.1 for protons) to the left breast. Second cancer risk was evaluated with several models for the lungs, contralateral breast, heart and esophagus as organs at risk (OARs). Plans were recalculated on CT-datasets acquired in extreme phases to account for breathing motion. Proton plans were also recalculated assuming variable RBE for a range of radiobiological parameters. RESULTS The OARs received substantially lower doses from protons compared to photons. The highest risks were for the lungs (average second cancer risks of 0.31% and 0.12% from photon and proton plans, respectively). The reduced risk with protons was maintained, even when breathing and/or RBE variation were taken into account. Furthermore, while the total risks from the photon plans were seen to increase with the integral dose, no such correlation was observed for the proton plans. CONCLUSIONS Protons have an advantage over the photons with respect to the induction of cancer. Uncertainties in physiological movements and radiobiological parameters affected the absolute risk estimates, but not the general trend of lower risk associated with proton therapy.
Collapse
|
40
|
Preparation of a radiobiology beam line at the 18 MeV proton cyclotron facility at CNA. Phys Med 2020; 74:19-29. [DOI: 10.1016/j.ejmp.2020.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022] Open
|
41
|
Faller FK, Mein S, Ackermann B, Debus J, Stiller W, Mairani A. Pre-clinical evaluation of dual-layer spectral computed tomography-based stopping power prediction for particle therapy planning at the Heidelberg Ion Beam Therapy Center. ACTA ACUST UNITED AC 2020; 65:095007. [DOI: 10.1088/1361-6560/ab735e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Wagenaar D, Tran LT, Meijers A, Marmitt GG, Souris K, Bolst D, James B, Biasi G, Povoli M, Kok A, Traneus E, van Goethem MJ, Langendijk JA, Rosenfeld AB, Both S. Validation of linear energy transfer computed in a Monte Carlo dose engine of a commercial treatment planning system. Phys Med Biol 2020; 65:025006. [PMID: 31801119 DOI: 10.1088/1361-6560/ab5e97] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The relative biological effectiveness (RBE) of protons is highly variable and difficult to quantify. However, RBE is related to the local ionization density, which can be related to the physical measurable dose weighted linear energy transfer (LETD). The aim of this study was to validate the LETD calculations for proton therapy beams implemented in a commercially available treatment planning system (TPS) using microdosimetry measurements and independent LETD calculations (Open-MCsquare (MCS)). The TPS (RayStation v6R) was used to generate treatment plans on the CIRS-731-HN anthropomorphic phantom for three anatomical sites (brain, nasopharynx, neck) for a spherical target (Ø = 5 cm) with uniform target dose to calculate the LETD distribution. Measurements were performed at the University Medical Center Groningen proton therapy center (Proteus Plus, IBA) using a µ +-probe utilizing silicon on insulator microdosimeters capable of detecting lineal energies as low as 0.15 keV µm-1 in tissue. Dose averaged mean lineal energy [Formula: see text] depth-profiles were measured for 70 and 130 MeV spots in water and for the three treatment plans in water and an anthropomorphic phantom. The [Formula: see text] measurements were compared to the LETD calculated in the TPS and MCS independent dose calculation engine. D · [Formula: see text] was compared to D · LETD in terms of a gamma-index with a distance-to-agreement criteria of 2 mm and increasing dose difference criteria to determine the criteria for which a 90% pass rate was accomplished. Measurements of D · [Formula: see text] were in good agreement with the D · LETD calculated in the TPS and MCS. The 90% passing rate threshold was reached at different D · LETD difference criteria for single spots (TPS: 1% MCS: 1%), treatment plans in water (TPS: 3% MCS: 6%) and treatment plans in an anthropomorphic phantom (TPS: 6% MCS: 1%). We conclude that D · LETD calculations accuracy in the RayStation TPS and open MCSquare are within 6%, and sufficient for clinical D · LETD evaluation and optimization. These findings remove an important obstacle in the road towards clinical implementation of D · LETD evaluation and optimization of proton therapy treatment plans. Novelty and significance The dose weighed linear energy transfer (LETD) distribution can be calculated for proton therapy treatment plans by Monte Carlo dose engines. The relative biological effectiveness (RBE) of protons is known to vary with the LETD distribution. Therefore, there exists a need for accurate calculation of clinical LETD distributions. Previous LETD validations have focused on general purpose Monte Carlo dose engines which are typically not used clinically. We present the first validation of mean lineal energy [Formula: see text] measurements of the LETD against calculations by the Monte Carlo dose engines of the Raystation treatment planning system and open MCSquare.
Collapse
Affiliation(s)
- Dirk Wagenaar
- Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Parisi A, Olko P, Swakoń J, Horwacik T, Jabłoński H, Malinowski L, Nowak T, Struelens L, Vanhavere F. Modeling the radiation-induced cell death in a therapeutic proton beam using thermoluminescent detectors and radiation transport simulations. ACTA ACUST UNITED AC 2020; 65:015008. [DOI: 10.1088/1361-6560/ab491f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Development and Validation of Single Field Multi-Ion Particle Therapy Treatments. Int J Radiat Oncol Biol Phys 2020; 106:194-205. [DOI: 10.1016/j.ijrobp.2019.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/23/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022]
|
45
|
Rabus H, Ngcezu SA, Braunroth T, Nettelbeck H. “Broadscale” nanodosimetry: Nanodosimetric track structure quantities increase at distal edge of spread-out proton Bragg peaks. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2019.108515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Ödén J, Toma‐Dasu I, Witt Nyström P, Traneus E, Dasu A. Spatial correlation of linear energy transfer and relative biological effectiveness with suspected treatment‐related toxicities following proton therapy for intracranial tumors. Med Phys 2019; 47:342-351. [DOI: 10.1002/mp.13911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Jakob Ödén
- Department of Physics Medical Radiation Physics Stockholm University Stockholm171 76Sweden
- RaySearch Laboratories AB Stockholm111 34Sweden
| | - Iuliana Toma‐Dasu
- Department of Physics Medical Radiation Physics Stockholm University Stockholm171 76Sweden
- Department of Oncology and Pathology Medical Radiation Physics Karolinska Institutet Stockholm17176Sweden
| | - Petra Witt Nyström
- The Skandion Clinic Uppsala752 37Sweden
- Danish Centre for Particle Therapy Aarhus8200Denmark
| | | | | |
Collapse
|
47
|
Gutierrez A, Rompokos V, Li K, Gillies C, D’Souza D, Solda F, Fersht N, Chang YC, Royle G, Amos RA, Underwood T. The impact of proton LET/RBE modeling and robustness analysis on base-of-skull and pediatric craniopharyngioma proton plans relative to VMAT. Acta Oncol 2019; 58:1765-1774. [PMID: 31429359 PMCID: PMC6882303 DOI: 10.1080/0284186x.2019.1653496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/04/2019] [Indexed: 11/04/2022]
Abstract
Purpose: Pediatric craniopharyngioma, adult base-of-skull sarcoma and chordoma cases are all regarded as priority candidates for proton therapy. In this study, a dosimetric comparison between volumetric modulated arc therapy (VMAT) and intensity modulated proton therapy (IMPT) was first performed. We then investigated the impact of physical and biological uncertainties. We assessed whether IMPT plans remained dosimetrically superior when such uncertainty estimates were considered, especially with regards to sparing organs at risk (OARs).Methodology: We studied 10 cases: four chondrosarcoma, two chordoma and four pediatric craniopharyngioma. VMAT and IMPT plans were created according to modality-specific protocols. For IMPT, we considered (i) variable RBE modeling using the McNamara model for different values of (α/β)x, and (ii) robustness analysis with ±3 mm set-up and 3.5% range uncertainties.Results: When comparing the VMAT and IMPT plans, the dosimetric advantages of IMPT were clear: IMPT led to reduced integral dose and, typically, improved CTV coverage given our OAR constraints. When physical robustness analysis was performed for IMPT, some uncertainty scenarios worsened the CTV coverage but not usually beyond that achieved by VMAT. Certain scenarios caused OAR constraints to be exceeded, particularly for the brainstem and optical chiasm. However, variable RBE modeling predicted even more substantial hotspots, especially for low values of (α/β)x. Variable RBE modeling often prompted dose constraints to be exceeded for critical structures.Conclusion: For base-of-skull and pediatric craniopharyngioma cases, both physical and biological robustness analyses should be considered for IMPT: these analyses can substantially affect the sparing of OARs and comparisons against VMAT. All proton RBE modeling is subject to high levels of uncertainty, but the clinical community should remain cognizant possible RBE effects. Careful clinical and imaging follow-up, plus further research on end-of-range RBE mitigation strategies such as LET optimization, should be prioritized for these cohorts of proton patients.
Collapse
Affiliation(s)
- A. Gutierrez
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - V. Rompokos
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - K. Li
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - C. Gillies
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - D. D’Souza
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - F. Solda
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - N. Fersht
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Y.-C. Chang
- Department of Clinical Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - G. Royle
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - R. A. Amos
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - T. Underwood
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
48
|
Carante MP, Aricò G, Ferrari A, Kozlowska W, Mairani A, Ballarini F. First benchmarking of the BIANCA model for cell survival prediction in a clinical hadron therapy scenario. Phys Med Biol 2019; 64:215008. [PMID: 31569085 DOI: 10.1088/1361-6560/ab490f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the framework of RBE modelling for hadron therapy, the BIANCA biophysical model was extended to O-ions and was used to construct a radiobiological database describing the survival of V79 cells as a function of ion type (1 ⩽ Z ⩽ 8) and energy. This database allowed performing RBE predictions in very good agreement with experimental data. A method was then developed to construct analogous databases for different cell lines, starting from the V79 database as a reference. Following interface to the FLUKA Monte Carlo radiation transport code, BIANCA was then applied for the first time to predict cell survival in a typical patient treatment scenario, consisting of two opposing fields of range-equivalent protons or C-ions. The model predictions were found to be in good agreement with CHO cell survival data obtained at the Heidelberg ion-beam therapy (HIT) centre, as well as predictions performed by the local effect model (version LEM IV). This work shows that BIANCA can be used to predict cell survival and RBE not only for V79 and AG01522 cells, as shown previously, but also, in principle, for any cell line of interest. Furthermore, following interface to a transport code like FLUKA, BIANCA can provide predictions of 3D biological dose distributions for hadron therapy treatments, thus laying the foundations for future applications in clinics.
Collapse
Affiliation(s)
- M P Carante
- INFN (National Institute of Nuclear Physics), Sezione di Pavia, via Bassi 6, I-27100 Pavia, Italy. Physics Department, University of Pavia, via Bassi 6, I-27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Simulation of a radiobiology facility for the Centre for the Clinical Application of Particles. Phys Med 2019; 65:21-28. [PMID: 31430582 DOI: 10.1016/j.ejmp.2019.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 01/14/2023] Open
Abstract
The Centre for the Clinical Application of Particles' Laser-hybrid Accelerator for Radiobiological Applications (LhARA) facility is being studied and requires simulation of novel accelerator components (such as the Gabor lens capture system), detector simulation and simulation of the ion beam interaction with cells. The first stage of LhARA will provide protons up to 15 MeV for in vitro studies. The second stage of LhARA will use a fixed-field accelerator to increase the energy of the particles to allow in vivo studies with protons and in vitro studies with heavier ions. BDSIM, a Geant4 based accelerator simulation tool, has been used to perform particle tracking simulations to verify the beam optics design done by BeamOptics and these show good agreement. Design parameters were defined based on an EPOCH simulation of the laser source and a series of mono-energetic input beams were generated from this by BDSIM. The tracking results show the large angular spread of the input beam (0.2 rad) can be transported with a transmission of almost 100% whilst keeping divergence at the end station very low (<0.1 mrad). The legacy of LhARA will be the demonstration of technologies that could drive a step-change in the provision of proton and light ion therapy (i.e. a laser source coupled to a Gabor lens capture and a fixed-field accelerator), and a system capable of delivering a comprehensive set of experimental data that can be used to enhance the clinical application of proton and light ion therapy.
Collapse
|
50
|
Mein S, Dokic I, Klein C, Tessonnier T, Böhlen TT, Magro G, Bauer J, Ferrari A, Parodi K, Haberer T, Debus J, Abdollahi A, Mairani A. Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy. Radiat Oncol 2019; 14:123. [PMID: 31296232 PMCID: PMC6624994 DOI: 10.1186/s13014-019-1295-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Helium (4He) ion beam therapy provides favorable biophysical characteristics compared to currently administered particle therapies, i.e., reduced lateral scattering and enhanced biological damage to deep-seated tumors like heavier ions, while simultaneously lessened particle fragmentation in distal healthy tissues as observed with lighter protons. Despite these biophysical advantages, raster-scanning 4He ion therapy remains poorly explored e.g., clinical translational is hampered by the lack of reliable and robust estimation of physical and radiobiological uncertainties. Therefore, prior to the upcoming 4He ion therapy program at the Heidelberg Ion-beam Therapy Center (HIT), we aimed to characterize the biophysical phenomena of 4He ion beams and various aspects of the associated models for clinical integration. METHODS Characterization of biological effect for 4He ion beams was performed in both homogenous and patient-like treatment scenarios using innovative models for estimation of relative biological effectiveness (RBE) in silico and their experimental validation using clonogenic cell survival as the gold-standard surrogate. Towards translation of RBE models in patients, the first GPU-based treatment planning system (non-commercial) for raster-scanning 4He ion beams was devised in-house (FRoG). RESULTS Our data indicate clinically relevant uncertainty of ±5-10% across different model simulations, highlighting their distinct biological and computational methodologies. The in vitro surrogate for highly radio-resistant tissues presented large RBE variability and uncertainty within the clinical dose range. CONCLUSIONS Existing phenomenological and mechanistic/biophysical models were successfully integrated and validated in both Monte Carlo and GPU-accelerated analytical platforms against in vitro experiments, and tested using pristine peaks and clinical fields in highly radio-resistant tissues where models exhibit the greatest RBE uncertainty. Together, these efforts mark an important step towards clinical translation of raster-scanning 4He ion beam therapy to the clinic.
Collapse
Affiliation(s)
- Stewart Mein
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg University, Faculty of Physics, Heidelberg, Germany
| | - Ivana Dokic
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carmen Klein
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Centre François Baclesse, Radiation Oncology, Medical Physics Department, Caen, France
| | - Till Tobias Böhlen
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Villigen, Switzerland
| | - Guiseppe Magro
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| | - Julia Bauer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Alfredo Ferrari
- European Organization for Nuclear Research (CERN), Geneva, Switzerland
| | - Katia Parodi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Ludwig-Maximilians-Universität (LUM Munich), Munich, Germany
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
| | - Jürgen Debus
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Heidelberg University, Faculty of Physics, Heidelberg, Germany
| | - Amir Abdollahi
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- Translational Radiation Oncology, German Cancer Consortium (DKTK) Core Center, German Cancer Research Center (DKFZ), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital (UKHD), Heidelberg, Germany
- National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy
| |
Collapse
|