1
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2025; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
2
|
Avery D, Morandini L, Sheakley L, Alajmi A, Bergey L, Donahue HJ, Martin RK, Olivares-Navarrete R. Obesity prolongs the pro-inflammatory response and attenuates bone healing on titanium implants. Acta Biomater 2025; 192:473-486. [PMID: 39586347 PMCID: PMC11735295 DOI: 10.1016/j.actbio.2024.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Obesity is a metabolic disease resulting from excess body fat accumulation associated with chronic systemic inflammation. Obesity has been shown to impact the function and activity of neutrophils, macrophages, and T cells, contributing to higher circulating levels of pro-inflammatory cytokines. Biomaterial surface properties such as roughness and hydrophilicity can influence the behavior of immune cells in the peri-implant microenvironment. This study aimed to determine how obesity induced by a high-fat diet (HFD) affects the inflammatory response to modified titanium (Ti) implants and subsequent bone formation. Obese mice had significantly more neutrophils, pro-inflammatory macrophages, and T cells and fewer anti-inflammatory macrophages and mesenchymal stem cells (MSCs) in the peri-implant tissue than lean mice. Obesity also increased circulating adipokines and pro-inflammatory cytokines when compared to lean animals. Bone formation around Ti implants was reduced in obese mice compared to controls. Adoptive transfer of bone marrow cells isolated from obese mice into wild-type mice demonstrated the localized impact of obesity on immune cell function and phenotype, promoting a pro-inflammatory peri-implant microenvironment and attenuating bone formation post-implantation. These results show that obesity significantly affects the inflammatory response to modified Ti implants, prolonging the pro-inflammatory response to the implanted biomaterial and compromising bone formation. STATEMENT OF SIGNIFICANCE: Obesity has been shown to significantly alter physiological processes, including the behavior of immune cells, inducing a state of systemic chronic inflammation. Our study demonstrates that obesity-induced via a high-fat diet alters immune cell response to implanted biomaterials, with increased pro-inflammatory response and attenuated immunomodulation that results in decreased biomaterial integration.
Collapse
Affiliation(s)
- Derek Avery
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Lais Morandini
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Luke Sheakley
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Asmaa Alajmi
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Leah Bergey
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Henry J Donahue
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, College of Engineering, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
3
|
Guo Y, Jiang S, Li H, Xie G, Pavel V, Zhang Q, Li Y, Huang C. Obesity induces osteoimmunology imbalance: Molecular mechanisms and clinical implications. Biomed Pharmacother 2024; 177:117139. [PMID: 39018871 DOI: 10.1016/j.biopha.2024.117139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
The notion that obesity can be a protective factor for bone health is a topic of ongoing debate. Increased body weight may have a positive impact on bone health due to its mechanical effects and the production of estrogen by adipose tissue. However, recent studies have found a higher risk of bone fracture and delayed bone healing in elderly obese patients, which may be attributed to the heightened risk of bone immune regulation disruption associated with obesity. The balanced functions of bone cells such as osteoclasts, osteoblasts, and osteocytes, would be subverted by aberrant and prolonged immune responses under obese conditions. This review aims to explore the intricate relationship between obesity and bone health from the perspective of osteoimmunology, elucidate the impact of disturbances in bone immune regulation on the functioning of bone cells, including osteoclasts, osteoblasts, and osteocytes, highlighting the deleterious effects of obesity on various diseases development such as rheumatoid arthritis (RA), osteoarthritis (AS), bone fracture, periodontitis. On the one hand, weight loss may achieve significant therapeutic effects on the aforementioned diseases. On the other hand, for patients who have difficulty in losing weight, the osteoimmunological therapies could potentially serve as a viable approach in halting the progression of these disease. Additional research in the field of osteoimmunology is necessary to ascertain the optimal equilibrium between body weight and bone health.
Collapse
Affiliation(s)
- Yating Guo
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
4
|
Zhang L, Shi X, Chen X, Rui G, Li NA, Akimoto Y, Zhang M, Chen YU, Xu R. Development, Validation and Characterization of a Novel Portable Closed Fracture Device. In Vivo 2024; 38:134-146. [PMID: 38148077 PMCID: PMC10756477 DOI: 10.21873/invivo.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/28/2023]
Abstract
BACKGROUND/AIM As one of the common clinical diseases, fractures have many causes, mechanisms, healing and influencing factors; especially fracture healing is a long-term and complex process. Animal fracture models can simulate the various states of human fractures, and on this basis, the prevention, mechanism, and treatment of fractures can be studied to further guide clinical practice. MATERIALS AND METHODS Here, we developed a novel and portable device to create a closed fracture model in mice. We then compared this novel closed fracture model with the traditional open model in multiple dimensions to evaluate the modelling process of establishment and healing. The two models were evaluated by imaging, immunostaining, and behavioral tests, which fully demonstrated the stability, universality and operability of the modified fracture model in mice. RESULTS Surgical quality assessment revealed that the closed fracture model had a shorter operation time and smaller wound than the open model. X-ray and micro-CT results showed no differences between the two models in the evaluation of radiographic and morphological changes during fracture healing. Histological examination revealed the process of the typical intrachondral osteogenic pathway after fracture. Moreover, animal gait analysis indicated reduced postoperative pain in the closed group compared to the open group. CONCLUSION This study provides a constructive strategy for a closed fracture model in mice and demonstrates the effectiveness and feasibility of the closed fracture model in studying the typical intrachondral osteogenic pathway of fractures from multiple dimensions.
Collapse
Affiliation(s)
- Long Zhang
- School of Medicine, Xiamen University, Xiamen, P.R. China
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Xueqing Shi
- School of Medicine, Xiamen University, Xiamen, P.R. China
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
| | - N A Li
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, P.R. China
| | | | - Mingxia Zhang
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Y U Chen
- School of Medicine, Xiamen University, Xiamen, P.R. China;
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, P.R. China
| | - Ren Xu
- School of Medicine, Xiamen University, Xiamen, P.R. China;
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, P.R. China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, Xiamen, P.R. China
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cell, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, P.R. China
| |
Collapse
|
5
|
Wang Q, Qin H, Deng J, Xu H, Liu S, Weng J, Zeng H. Research Progress in Calcitonin Gene-Related Peptide and Bone Repair. Biomolecules 2023; 13:biom13050838. [PMID: 37238709 DOI: 10.3390/biom13050838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Calcitonin gene-related peptide (CGRP) has 37 amino acids. Initially, CGRP had vasodilatory and nociceptive effects. As research progressed, evidence revealed that the peripheral nervous system is closely associated with bone metabolism, osteogenesis, and bone remodeling. Thus, CGRP is the bridge between the nervous system and the skeletal muscle system. CGRP can promote osteogenesis, inhibit bone resorption, promote vascular growth, and regulate the immune microenvironment. The G protein-coupled pathway is vital for its effects, while MAPK, Hippo, NF-κB, and other pathways have signal crosstalk, affecting cell proliferation and differentiation. The current review provides a detailed description of the bone repair effects of CGRP, subjected to several therapeutic studies, such as drug injection, gene editing, and novel bone repair materials.
Collapse
Affiliation(s)
- Qichang Wang
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- School of Clinical Medicine, Department of Medicine, Shenzhen University, Shenzhen 518061, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| | - Haotian Qin
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jiapeng Deng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huihui Xu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Su Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Jian Weng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Zeng
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Key Laboratory of Orthopaedic Diseases and Biomaterials Research, Shenzhen 518036, China
| |
Collapse
|
6
|
Savadipour A, Palmer D, Ely EV, Collins KH, Garcia-Castorena JM, Harissa Z, Kim YS, Oestrich A, Qu F, Rashidi N, Guilak F. The role of PIEZO ion channels in the musculoskeletal system. Am J Physiol Cell Physiol 2023; 324:C728-C740. [PMID: 36717101 PMCID: PMC10027092 DOI: 10.1152/ajpcell.00544.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023]
Abstract
PIEZO1 and PIEZO2 are mechanosensitive cation channels that are highly expressed in numerous tissues throughout the body and exhibit diverse, cell-specific functions in multiple organ systems. Within the musculoskeletal system, PIEZO1 functions to maintain muscle and bone mass, sense tendon stretch, and regulate senescence and apoptosis in response to mechanical stimuli within cartilage and the intervertebral disc. PIEZO2 is essential for transducing pain and touch sensations as well as proprioception in the nervous system, which can affect musculoskeletal health. PIEZO1 and PIEZO2 have been shown to act both independently as well as synergistically in different cell types. Conditions that alter PIEZO channel mechanosensitivity, such as inflammation or genetic mutations, can have drastic effects on these functions. For this reason, therapeutic approaches for PIEZO-related disease focus on altering PIEZO1 and/or PIEZO2 activity in a controlled manner, either through inhibition with small molecules, or through dietary control and supplementation to maintain a healthy cell membrane composition. Although many opportunities to better understand PIEZO1 and PIEZO2 remain, the studies summarized in this review highlight how crucial PIEZO channels are to musculoskeletal health and point to promising possible avenues for their modulation as a therapeutic target.
Collapse
Affiliation(s)
- Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Daniel Palmer
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Erica V Ely
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Jaquelin M Garcia-Castorena
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Zainab Harissa
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| | - Yu Seon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Arin Oestrich
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Feini Qu
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children - St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
7
|
Ren J, Fok MR, Zhang Y, Han B, Lin Y. The role of non-steroidal anti-inflammatory drugs as adjuncts to periodontal treatment and in periodontal regeneration. J Transl Med 2023; 21:149. [PMID: 36829232 PMCID: PMC9960225 DOI: 10.1186/s12967-023-03990-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
Periodontitis is the sixth most prevalent chronic disease globally and places significant burdens on societies and economies worldwide. Behavioral modification, risk factor control, coupled with cause-related therapy have been the "gold standard" treatment for managing periodontitis. Given that host inflammatory and immunological responses play critical roles in the pathogenesis of periodontitis and impact treatment responses, several adjunctive strategies aimed at modulating host responses and improving the results of periodontal therapy and maintenance have been proposed. Of the many pharmacological host modulators, we focused on non-steroidal anti-inflammatory drugs (NSAIDs), due to their long history and extensive use in relieving inflammation and pain and reducing platelet aggregation. NSAIDs have been routinely indicated for treating rheumatic fever and osteoarthritis and utilized for the prevention of cardiovascular events. Although several efforts have been made to incorporate NSAIDs into the treatment of periodontitis, their effects on periodontal health remain poorly characterized, and concerns over the risk-benefit ratio were also raised. Moreover, there is emerging evidence highlighting the potential of NSAIDs, especially aspirin, for use in periodontal regeneration. This review summarizes and discusses the use of NSAIDs in various aspects of periodontal therapy and regeneration, demonstrating that the benefits of NSAIDs as adjuncts to conventional periodontal therapy remain controversial. More recent evidence suggests a promising role for NSAIDs in periodontal tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jianhan Ren
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Melissa Rachel Fok
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China
| | - Yunfan Zhang
- Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Cranial-Facial Growth and Development Center, Peking University School and Hospital of Stomatology, Beijing, China.
| | - Yifan Lin
- Division of Paediatric Dentistry and Orthodontics, Faculty of Dentistry, the University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Gait Analysis to Monitor Fracture Healing of the Lower Leg. Bioengineering (Basel) 2023; 10:bioengineering10020255. [PMID: 36829749 PMCID: PMC9952799 DOI: 10.3390/bioengineering10020255] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Fracture healing is typically monitored by infrequent radiographs. Radiographs come at the cost of radiation exposure and reflect fracture healing with a time lag due to delayed fracture mineralization following increases in stiffness. Since union problems frequently occur after fractures, better and timelier methods to monitor the healing process are required. In this review, we provide an overview of the changes in gait parameters following lower leg fractures to investigate whether gait analysis can be used to monitor fracture healing. Studies assessing gait after lower leg fractures that were treated either surgically or conservatively were included. Spatiotemporal gait parameters, kinematics, kinetics, and pedography showed improvements in the gait pattern throughout the healing process of lower leg fractures. Especially gait speed and asymmetry measures have a high potential to monitor fracture healing. Pedographic measurements showed differences in gait between patients with and without union. No literature was available for other gait measures, but it is expected that further parameters reflect progress in bone healing. In conclusion, gait analysis seems to be a valuable tool for monitoring the healing process and predicting the occurrence of non-union of lower leg fractures.
Collapse
|
9
|
Zheng B, Zheng Y, Zhang Y, Huang L, Shen X, Zhao F, Yan S. Precedence of Bone Loss Accompanied with Changes in Body Composition and Body Fat Distribution in Patients with Type 2 Diabetes Mellitus. J Diabetes Res 2023; 2023:6753403. [PMID: 37102158 PMCID: PMC10125744 DOI: 10.1155/2023/6753403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2023] Open
Abstract
Methods A total of 596 patients with T2DM, including 308 male and 288 female patients, were included in the follow-up study; the median follow-up time was 2.17 years. We calculated the difference between the endpoint and the baseline of each body composition index and the annual rate. The research participants were divided into the increased body mass index (BMI) group, stable BMI group, and decreased BMI group. Some confounding factors were adjusted, such as BMI, fat mass index (FMI), muscle mass index (MMI), muscle/fat mass ratio (M/F), trunk fat mass index (TFMI), appendicular skeletal muscle mass index (ASMI), and appendicular skeletal muscle mass/trunk fat mass ratio (A/T). Results The linear analysis showed that ΔFMI and ΔTFMI were negatively correlated with the change in femoral neck BMD (ΔFNBMD) and ΔMMI, ΔASMI, ΔM/F, and ΔA/T were positively correlated with ΔFNBMD. The risk of FNBMD reduction in patients with increased BMI was 56.0% lower than that in patients with decreased BMI; also, the risk in patients with stable M/F was 57.7% lower than that in patients with decreased M/F. The risk in the A/T increase group was 62.9% lower than that in the A/T decrease group. Conclusions A reasonable muscle/fat ratio is still beneficial to maintaining bone mass. Maintaining a certain BMI value is conducive to maintaining FNBMD. Simultaneously, increasing the proportion of muscle mass and reducing fat accumulation can also prevent FNBMD loss.
Collapse
Affiliation(s)
- Biao Zheng
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Metabolic Diseases Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yuxin Zheng
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Metabolic Diseases Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Yongze Zhang
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Metabolic Diseases Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Lingning Huang
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Metabolic Diseases Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Ximei Shen
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Metabolic Diseases Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Fengying Zhao
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Metabolic Diseases Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| | - Sunjie Yan
- Department of Endocrinology, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Department of Endocrinology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
- Clinical Research Center for Metabolic Diseases of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Fujian Key Laboratory of Glycolipid and Bone Mineral Metabolism, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Diabetes Research Institute of Fujian Province, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
- Metabolic Diseases Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou 350005, China
| |
Collapse
|
10
|
Individual Concepts in Foot Surgery: A Comparison of Xenogeneic and Autologous Bone Grafts Used in Adults for Lateral Calcaneus-Lengthening Osteotomy According to Evans. J Pers Med 2022; 13:jpm13010095. [PMID: 36675756 PMCID: PMC9863724 DOI: 10.3390/jpm13010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Xenogeneic bone grafts, when compared to autologous grafts, are supposed to provide structural benefits without donor site morbidity. To date, there have been divergent results in the use of xenogeneic grafts in foot surgery, primarily in pediatric patient cohorts. The present study examines the incorporation and maintenance of the achieved correction using autologous and xenogeneic bone grafts in adult patients with a six-month follow-up period. MATERIAL/METHODS In this retrospective study, 31 adult patients (43 feet in total) treated in our clinic by a lateral calcaneus-lengthening osteotomy, according to Evans, between 01/2006 and 12/2020 were included. The patients were assigned to study groups according to the use of xenogeneic or autologous bone grafts. The osseous incorporation following the criteria of Worth et al., correction maintenance by measuring the talo-navicular coverage angle (TNCA), the talo-first metatarsal angle (TFMA), the calcaneal pitch angle (PCA) and necessary revisions six months after surgery were extracted from the medical files retrospectively. Furthermore, the medical files were screened for the relevant comorbidities, nicotine abuse, BMI, sex and age. RESULTS In total, 27 autogenous (iliac crest) and 16 xenogeneic bone grafts of bovine origin were used. The evaluation of the radiographs at follow-up demonstrated that there was a mean incorporation rate of 96.3% for the autologous grafts and 57% for the patients treated with xenogeneic grafts (p = 0.002). Compared to the autologous group, xenogeneic grafts did not increase the loss of hindfoot alignment in the postoperative course, regardless of being incorporated or not. ΔTNCA, ΔTFMA and ΔPCA displayed no significant differences in both groups (p = 0.45, p = 0.42 and p = 0.10). CONCLUSION Despite a significantly lower incorporation rate, the use of xenogeneic grafts was not accompanied with a greater risk of hindfoot alignment loss in the first six months after surgery. Early revision after a postoperative course of six months should not be motivated solely by the radiographic picture of incomplete osseous integration.
Collapse
|
11
|
Issace SJJ, Jagdeb Singh RS, Sisubalasingam N, Tokgöz MA, Jaiman A, Rampal S. Does obesity affect diaphyseal femoral fracture healing treated with intramedullary locking nail? Jt Dis Relat Surg 2022; 34:9-15. [PMID: 36700258 PMCID: PMC9903099 DOI: 10.52312/jdrs.2023.649] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/26/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES This study aims to evaluate the effect of obesity on radiological fracture union in diaphyseal femoral fractures (DFFs) treated with intramedullary nailing (IMN). PATIENTS AND METHODS Between January 2017 and December 2018, a total of 120 patients (101 males, 19 females; mean age: 35.1±3.0 years; range, 18 to 72 years) treated with IMN for closed DFFs were retrospectively analyzed. Data including age, sex, location, weight, height, comorbidities such as diabetes mellitus, hypertension or kidney injury, date of injury, mechanism of injury, type of femoral fractures (AO classification), date of surgery, duration of surgery, IMN length and diameter used, date of radiological fracture union and complications of surgery such as nonunion, delayed union, and infections were recorded. RESULTS Of the patients, 63 had obesity and 57 did not have obesity. There was a statistically significant difference in fracture configuration among patients with obesity; they sustained type B (p=0.001) and type C (p=0.024), the most severe fracture configuration. The nonunion rate was 45%. Obesity had a significant relationship with fracture nonunion with patients with obesity having the highest number of nonunion rates (n=40, 74.1%) compared to those without obesity (n=14, 25.9%) (p=0.001). Fracture union was observed within the first 180 days in 78.9% of patients without obesity, while it developed in the same time interval in only 38.1% of patients with obesity (p=0.001). CONCLUSION Fracture union time for the patients with obesity was longer, regardless of the fracture configuration. Obesity strongly affects fracture union time in DFFs treated with an IMN. Obesity should be considered a relative risk in decision-making in the choice of fixation while treating midshaft femoral fractures.
Collapse
Affiliation(s)
| | | | - Narresh Sisubalasingam
- Department of Health Services, Malaysian Armed Forces Health Services, Kuala Lumpur, Malaysia
| | - Mehmet Ali Tokgöz
- Department of Orthopaedics and Traumatology, Medicine Faculty of Gazi University, Ankara, Türkiye
| | - Ashish Jaiman
- Vardhman Mahavir Medical College and Safdarjung Hospital, Central Institute of Orthopaedics, New Delhi, India
| | - Sanjiv Rampal
- Department of Orthopaedics and Traumatology, Faculty of Medical and Health Sciences, University Putra Malaysia, 43400 Selangor, Malaysia.
| |
Collapse
|
12
|
Lu H, Xiao L, Wang W, Li X, Ma Y, Zhang Y, Wang X. Fibrinolysis Regulation: A Promising Approach to Promote Osteogenesis. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:1192-1208. [PMID: 35442086 DOI: 10.1089/ten.teb.2021.0222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Soon after bone fracture, the initiation of the coagulation cascade results in the formation of a blood clot, which acts as a natural material to facilitate cell migration and osteogenic differentiation at the fracture site. The existence of hematoma is important in early stage of bone healing, but the persistence of hematoma is considered harmful for bone regeneration. Fibrinolysis is recently regarded as a period of critical transition in angiogenic-osteogenic coupling, it thereby is vital for the complete healing of the bone. Moreover, the enhanced fibrinolysis is proposed to boost bone regeneration through promoting the formation of blood vessels, and fibrinolysis system as well as the products of fibrinolysis also play crucial roles in the bone healing process. Therefore, the purpose of this review is to elucidate the fibrinolysis-derived effects on osteogenesis and summarize the potential approaches-improving bone healing by regulating fibrinolysis, with the purpose to further understand the integral roles of fibrinolysis in bone regeneration and to provide theoretical knowledge for potential fibrinolysis-related osteogenesis strategies. Impact statement Fibrinolysis emerging as a new and viable therapeutic intervention to be contained within osteogenesis strategies, however to now, there have been no review articles which collates the information between fibrinolysis and osteogenesis. This review, therefore, focusses on the effects that fibrinolysis exerts on bone healing, with a purpose to provide theoretical reference to develop new strategies to modulate fibrinolysis to accelerate fibrinolysis thus enhancing bone healing.
Collapse
Affiliation(s)
- Haiping Lu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| | - Weiqun Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xuyan Li
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,School of Mechanical, Medical and Process Engineering, Center for Biomedical Technologies, Queensland University of Technology, Brisbane, Queensland, Australia.,The Australia-China Center for Tissue Engineering and Regenerative Medicine, Kelvin Grove, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
In Vivo Application of Silica-Derived Inks for Bone Tissue Engineering: A 10-Year Systematic Review. Bioengineering (Basel) 2022; 9:bioengineering9080388. [PMID: 36004914 PMCID: PMC9404869 DOI: 10.3390/bioengineering9080388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
As the need for efficient, sustainable, customizable, handy and affordable substitute materials for bone repair is critical, this systematic review aimed to assess the use and outcomes of silica-derived inks to promote in vivo bone regeneration. An algorithmic selection of articles was performed following the PRISMA guidelines and PICO method. After the initial selection, 51 articles were included. Silicon in ink formulations was mostly found to be in either the native material, but associated with a secondary role, or to be a crucial additive element used to dope an existing material. The inks and materials presented here were essentially extrusion-based 3D-printed (80%), and, overall, the most investigated animal model was the rabbit (65%) with a femoral defect (51%). Quality (ARRIVE 2.0) and risk of bias (SYRCLE) assessments outlined that although a large majority of ARRIVE items were “reported”, most risks of bias were left “unclear” due to a lack of precise information. Almost all studies, despite a broad range of strategies and formulations, reported their silica-derived material to improve bone regeneration. The rising number of publications over the past few years highlights Si as a leverage element for bone tissue engineering to closely consider in the future.
Collapse
|
14
|
Labusca L. Adipose tissue in bone regeneration - stem cell source and beyond. World J Stem Cells 2022; 14:372-392. [PMID: 35949397 PMCID: PMC9244952 DOI: 10.4252/wjsc.v14.i6.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/30/2021] [Accepted: 05/27/2022] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue (AT) is recognized as a complex organ involved in major home-ostatic body functions, such as food intake, energy balance, immunomodulation, development and growth, and functioning of the reproductive organs. The role of AT in tissue and organ homeostasis, repair and regeneration is increasingly recognized. Different AT compartments (white AT, brown AT and bone marrow AT) and their interrelation with bone metabolism will be presented. AT-derived stem cell populations - adipose-derived mesenchymal stem cells and pluripotent-like stem cells. Multilineage differentiating stress-enduring and dedifferentiated fat cells can be obtained in relatively high quantities compared to other sources. Their role in different strategies of bone and fracture healing tissue engineering and cell therapy will be described. The current use of AT- or AT-derived stem cell populations for fracture healing and bone regenerative strategies will be presented, as well as major challenges in furthering bone regenerative strategies to clinical settings.
Collapse
Affiliation(s)
- Luminita Labusca
- Magnetic Materials and Sensors, National Institute of Research and Development for Technical Physics, Iasi 700050, Romania
- Orthopedics and Traumatology, County Emergency Hospital Saint Spiridon Iasi, Iasi 700050, Romania.
| |
Collapse
|
15
|
McGregor PC, Lyons MM, Wozniak A, Linko K, Fishman F, Cappello T. The Effect of Obesity on Pediatric Tibia Fractures. THE IOWA ORTHOPAEDIC JOURNAL 2022; 42:41-46. [PMID: 35821914 PMCID: PMC9210421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Childhood obesity affects nearly one fifth of all children in the United States. Understanding the unique injury characteristics and treatment of tibia fractures in this population has become increasingly important. This study aims to explore the different injury characteristics between tibia fractures in obese and non-obese children. METHODS 215 skeletally immature children aged 2-18 who sustained tibia fractures between 2007.2019 were retrospectively reviewed. Patients were analyzed by weight group: underweight, normal weight, overweight, and obese as defined by body mass index (BMI) percentile based upon age. Analyses were performed on dichotomized groups: underweight and normal weight versus overweight and obese. Chi-square or Fisher's exact test was used to compare differences in categorical outcome between the 2-category BMI class variables; Wilcoxon test was used to compare continuous outcomes. A multivariate logistic regression model was used to evaluate BMI associations while controlling for age, sex, race, and mechanism of injury. RESULTS Distribution of BMI in the cohort included 6.5% underweight, 45.6% normal weight, 16.7% overweight and 31.2% obese. Overweight and obese children sustained fractures from low energy mechanisms at more than double the rate of normal and underweight children (20.5% versus 9.7%, p=0.028). Overweight and obese children sustained physeal fractures at a rate of 54.4% in comparison with 28.6% in their normal and underweight peers (p<0.0001, OR 2.50 (95% CI, 1.26-4.95)). Overweight and obese children sustained distal 1/3 tibia fractures at a higher rate of 56.9% compared to under and normal weight children at 33.9% (p=0.003, OR 2.24 (95% CI, 1.17-4.30)). Overweight and obese children underwent unplanned changes in treatment at a lower rate than normal and underweight children at 1% versus 8% rates of treatment change, respectively (p=0.013, OR 0.076 (95%CI, 0.009-0.655)). No significant differences were found in the rates of operative treatment, repeat reduction, post treatment complications, or physical therapy. CONCLUSION Overweight children sustain tibia fractures from low energy mechanisms at higher rates than their peers. Similarly, obese and overweight patients have higher rates of physeal injuries and higher rates of distal 1/3 tibia fractures. Complication rates are similar between obese and non-obese children undergoing treatment for tibia fractures. Level of Evidence: III.
Collapse
Affiliation(s)
- Patrick Cole McGregor
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Health System, Maywood, Illinois, USA
| | - Madeline M. Lyons
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Health System, Maywood, Illinois, USA
| | - Amy Wozniak
- Clinical Research Office – Biostatistics, Health Sciences Campus, Loyola University Chicago, Maywood, Illinois, USA
| | - Kristina Linko
- Loyola University Stritch School of Medicine, Maywood, Illinois, USA
| | - Felicity Fishman
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Health System, Maywood, Illinois, USA
| | - Teresa Cappello
- Shriners Hospital for Children – Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Lu V, Zhang J, Patel R, Zhou AK, Thahir A, Krkovic M. Fracture Related Infections and Their Risk Factors for Treatment Failure—A Major Trauma Centre Perspective. Diagnostics (Basel) 2022; 12:diagnostics12051289. [PMID: 35626444 PMCID: PMC9141112 DOI: 10.3390/diagnostics12051289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 12/25/2022] Open
Abstract
Fracture related infections (FRI) are debilitating and costly complications of musculoskeletal trauma surgery that can result in permanent functional loss or amputation. Surgical treatment can be unsuccessful, and it is necessary to determine the predictive variables associated with FRI treatment failure, allowing one to optimise them prior to treatment and identify patients at higher risk. The clinical database at a major trauma centre was retrospectively reviewed between January 2015 and January 2021. FRI treatment failure was defined by infection recurrence or amputation. A univariable logistic regression analysis was performed, followed by a multivariable regression analysis for significant outcomes between groups on univariable analysis, to determine risk factors for treatment failure. In total, 102 patients were identified with a FRI (35 open, 67 closed fractures). FRI treatment failure occurred in 24 patients (23.5%). Risk factors determined by our multivariate logistic regression model were obesity (OR 2.522; 95% CI, 0.259–4.816; p = 0.006), Gustilo Anderson type 3c (OR 4.683; 95% CI, 2.037–9.784; p = 0.004), and implant retention (OR 2.818; 95% CI, 1.588–7.928; p = 0.041). Given that FRI treatment in 24 patients (23.5%) ended up in failure, future management need to take into account the predictive variables analysed in this study, redirect efforts to improve management and incorporate adjuvant technologies for patients at higher risk of failure, and implement a multidisciplinary team approach to optimise risk factors such as diabetes and obesity.
Collapse
Affiliation(s)
- Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (J.Z.); (A.K.Z.)
- Correspondence:
| | - James Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (J.Z.); (A.K.Z.)
| | - Ravi Patel
- Hull York Medical School, University Rd, Heslington, York YO10 5DD, UK;
| | - Andrew Kailin Zhou
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK; (J.Z.); (A.K.Z.)
| | - Azeem Thahir
- Addenbrookes Hospital, Hills Rd, Cambridge CB2 0QQ, UK; (A.T.); (M.K.)
| | - Matija Krkovic
- Addenbrookes Hospital, Hills Rd, Cambridge CB2 0QQ, UK; (A.T.); (M.K.)
| |
Collapse
|
17
|
Knox AM, McGuire AC, Natoli RM, Kacena MA, Collier CD. Methodology, selection, and integration of fracture healing assessments in mice. J Orthop Res 2021; 39:2295-2309. [PMID: 34436797 PMCID: PMC8542592 DOI: 10.1002/jor.25172] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 02/04/2023]
Abstract
Long bone fractures are one of the most common and costly medical conditions encountered after trauma. Characterization of the biology of fracture healing and development of potential medical interventions generally involves animal models of fracture healing using varying genetic or treatment groups, then analyzing relative repair success via the synthesis of diverse assessment methodologies. Murine models are some of the most widely used given their low cost, wide variety of genetic variants, and rapid breeding and maturation. This review addresses key concerns regarding fracture repair investigations in mice and may serve as a guide in conducting and interpreting such studies. Specifically, this review details the procedures, highlights relevant parameters, and discusses special considerations for the selection and integration of the major modalities used for quantifying fracture repair in such studies, including X-ray, microcomputed tomography, histomorphometric, biomechanical, gene expression and biomarker analyses.
Collapse
Affiliation(s)
- Adam M. Knox
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Anthony C. McGuire
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Roman M. Natoli
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, IN, USA
- Richard L. Roudebush VA Medical Center, IN, USA
| | | |
Collapse
|
18
|
Newman H, Shih YV, Varghese S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications. Biomaterials 2021; 277:121114. [PMID: 34488119 DOI: 10.1016/j.biomaterials.2021.121114] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/10/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022]
Abstract
Impaired bone healing occurs in 5-10% of cases following injury, leading to a significant economic and clinical impact. While an inflammatory response upon injury is necessary to facilitate healing, its resolution is critical for bone tissue repair as elevated acute or chronic inflammation is associated with impaired healing in patients and animal models. This process is governed by important crosstalk between immune cells through mediators that contribute to resolution of inflammation in the local healing environment. Approaches modulating the initial inflammatory phase followed by its resolution leads to a pro-regenerative environment for bone regeneration. In this review, we discuss the role of inflammation in bone repair, the negative impact of dysregulated inflammation on bone tissue regeneration, and how timely resolution of inflammation is necessary to achieve normal healing. We will discuss applications of biomaterials to treat large bone defects with a specific focus on resolution of inflammation to modulate the immune environment following bone injury, and their observed functional benefits. We conclude the review by discussing future strategies that could lead to the realization of anti-inflammatory therapeutics for bone tissue repair.
Collapse
Affiliation(s)
- Hunter Newman
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA
| | - Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Shyni Varghese
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27710, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
19
|
ElHawary H, Baradaran A, Abi-Rafeh J, Vorstenbosch J, Xu L, Efanov JI. Bone Healing and Inflammation: Principles of Fracture and Repair. Semin Plast Surg 2021; 35:198-203. [PMID: 34526868 PMCID: PMC8432998 DOI: 10.1055/s-0041-1732334] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bones comprise a significant percentage of human weight and have important physiologic and structural roles. Bone remodeling occurs when healthy bone is renewed to maintain bone strength and maintain calcium and phosphate homeostasis. It proceeds through four phases: (1) cell activation, (2) resorption, (3) reversal, and (4) bone formation. Bone healing, on the other hand, involves rebuilding bone following a fracture. There are two main types of bone healing, primary and secondary. Inflammation plays an integral role in both bone remodeling and healing. Therefore, a tightly regulated inflammatory response helps achieve these two processes, and levels of inflammation can have detrimental effects on bone healing. Other factors that significantly affect bone healing are inadequate blood supply, biomechanical instability, immunosuppression, and smoking. By understanding the different mechanisms of bone healing and the factors that affect them, we may have a better understanding of the underlying principles of bony fixation and thereby improve patient care.
Collapse
Affiliation(s)
- Hassan ElHawary
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Aslan Baradaran
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jad Abi-Rafeh
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Joshua Vorstenbosch
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Liqin Xu
- Division of Plastic and Reconstructive Surgery, McGill University Health Centre, Montreal, Quebec, Canada
| | - Johnny Ionut Efanov
- Division of Plastic and Reconstructive Surgery, Centre Hospitalier de l'Université de Montréal, Quebec, Canada
| |
Collapse
|
20
|
Ryan G, Magony R, Gortler H, Godbout C, Schemitsch EH, Nauth A. Systemically impaired fracture healing in small animal research: A review of fracture repair models. J Orthop Res 2021; 39:1359-1367. [PMID: 33580554 DOI: 10.1002/jor.25003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex process requiring mechanical stability, an osteoconductive matrix, and osteoinductive and osteogenic biology. This intricate process is easily disrupted by various patient factors such as chronic disease and lifestyle. As the medical complexity and age of patients with fractures continue to increase, the importance of developing relevant experimental models is becoming paramount in preclinical research. The objective of this review is to describe the most common small animal models of systemically impaired fracture healing used in the orthopedic literature including osteoporosis, diabetes mellitus, smoking, alcohol use, obesity, and ageing. This review will provide orthopedic researchers with a summary of current models of systemically impaired fracture healing used in small animals and present an overview of the methods of induction for each condition.
Collapse
Affiliation(s)
- Gareth Ryan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Richard Magony
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Hilary Gortler
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Charles Godbout
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Emil H Schemitsch
- Department of Surgery, Division of Orthopaedic Surgery, University of Western Ontario, London, Ontario, Canada
| | - Aaron Nauth
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada.,Department of Surgery, Division of Orthopaedic Surgery, St. Michael's Hospital - Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Liu D, He S, Chen S, Yang L, Yang J, Bao Q, Qin H, Zhao Y, Zong Z. Wnt/β-catenin signalling promotes more effective fracture healing in aged mice than in adult mice by inducing angiogenesis and cell differentiation. Sci Prog 2021; 104:368504211013223. [PMID: 33950750 PMCID: PMC10358591 DOI: 10.1177/00368504211013223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To investigate whether activating the Wnt/β-catenin signalling pathway differentially promotes fracture healing in aged and adult individuals. CatnbTM2Kem, Catnblox(ex3) and wild-type adult and aged mice were used in this study. The femur was electroporated through a hole with a diameter of 0.6 mm. On the 7th, 14th and 21st days after fracture establishment, repair of the femoral diaphyseal bone was examined using X-ray and CT, the levels of mRNAs related to Wnt/β-catenin signalling were detected using real-time polymerase chain reaction (RT-PCR), and angiogenesis and cell differentiation were observed using immunohistochemistry. The numbers of osteoclasts were determined by TRAP staining. Wnt/β-catenin activation accelerated fracture healing in adult mice, with more pronounced effects on aged mice. Compared with wild-type mice at the corresponding ages, Wnt/β-catenin signalling activation induced higher levels of angiogenesis and cell differentiation in aged mice than in adult mice and promoted fracture healing. The administration of medications targeting Wnt/β-catenin signalling to aged patients may accelerate fracture healing to a greater extent.
Collapse
Affiliation(s)
| | - Sihao He
- Army Medical University, Chongqing, China
| | - Sixu Chen
- Army Medical University, Chongqing, China
| | - Lei Yang
- Army Medical University, Chongqing, China
| | | | | | - Hao Qin
- Army Medical University, Chongqing, China
| | | | | |
Collapse
|
22
|
Martyniak K, Wei F, Ballesteros A, Meckmongkol T, Calder A, Gilbertson T, Orlovskaya N, Coathup MJ. Do polyunsaturated fatty acids protect against bone loss in our aging and osteoporotic population? Bone 2021; 143:115736. [PMID: 33171312 DOI: 10.1016/j.bone.2020.115736] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023]
Abstract
Age-related bone loss is inevitable in both men and women and there will soon be more people of extreme old age than ever before. Osteoporosis is a common chronic disease and as the proportion of older people, rate of obesity and the length of life increases, a rise in age-related degenerating bone diseases, disability, and prolonged dependency is projected. Fragility fractures are one of the most severe complications associated with both primary and secondary osteoporosis and current treatment strategies target weight-bearing exercise and pharmacological intervention, both with limited long-term success. Obesity and osteoporosis are intimately interrelated, and diet is a variable that plays a significant role in bone regeneration and repair. The Western Diet is characterized by its unhealthy components, specifically excess amounts of saturated fat intake. This review examines the impact of saturated and polyunsaturated fatty acid consumption on chronic inflammation, osteogenesis, bone architecture, and strength and explores the hypothesis that dietary polyunsaturated fats have a beneficial effect on osteogenesis, reducing bone loss by decreasing chronic inflammation, and activating bone resorption through key cellular and molecular mechanisms in our aging population. We conclude that aging, obesity and a diet high in saturated fatty acids significantly impairs bone regeneration and repair and that consumption of ω-3 polyunsaturated fatty acids is associated with significantly increased bone regeneration, improved microarchitecture and structural strength. However, ω-6 polyunsaturated fatty acids were typically pro-inflammatory and have been associated with an increased fracture risk. This review suggests a potential role for ω-3 fatty acids as a non-pharmacological dietary method of reducing bone loss in our aging population. We also conclude that contemporary amendments to the formal nutritional recommendations made by the Food and Nutrition Board may be necessary such that our aging population is directly considered.
Collapse
Affiliation(s)
- Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Amelia Ballesteros
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of General Surgery, Nemours Children's Hospital, Orlando, FL, United States
| | - Ashley Calder
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Timothy Gilbertson
- Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States
| | - Melanie J Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL, United States; Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States.
| |
Collapse
|
23
|
Lewis JW, Edwards JR, Naylor AJ, McGettrick HM. Adiponectin signalling in bone homeostasis, with age and in disease. Bone Res 2021; 9:1. [PMID: 33414405 PMCID: PMC7790832 DOI: 10.1038/s41413-020-00122-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 01/29/2023] Open
Abstract
Adiponectin is the most abundant circulating adipokine and is primarily involved in glucose metabolism and insulin resistance. Within the bone, osteoblasts and osteoclasts express the adiponectin receptors, however, there are conflicting reports on the effects of adiponectin on bone formation and turnover. Many studies have shown a pro-osteogenic role for adiponectin in in vivo murine models and in vitro: with increased osteoblast differentiation and activity, alongside lower levels of osteoclastogenesis. However, human studies often demonstrate an inverse relationship between adiponectin concentration and bone activity. Moreover, the presence of multiple isoforms of adiponectin and multiple receptor subtypes has the potential to lead to more complex signalling and functional consequences. As such, we still do not fully understand the importance of the adiponectin signalling pathway in regulating bone homeostasis and repair in health, with age and in disease. In this review, we explore our current understanding of adiponectin bioactivity in the bone; the significance of its different isoforms; and how adiponectin biology is altered in disease. Ultimately, furthering our understanding of adiponectin regulation of bone biology is key to developing pharmacological and non-pharmacological (lifestyle) interventions that target adiponectin signalling to boost bone growth and repair in healthy ageing, following injury or in disease.
Collapse
Affiliation(s)
- Jonathan W Lewis
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - James R Edwards
- Ageing & Regeneration Research Group, Botnar Research Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - Amy J Naylor
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK
| | - Helen M McGettrick
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
24
|
Regeneration during Obesity: An Impaired Homeostasis. Animals (Basel) 2020; 10:ani10122344. [PMID: 33317011 PMCID: PMC7763812 DOI: 10.3390/ani10122344] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Regeneration represents the biological processes that allow cells and tissues to renew and develop. During obesity, a variety of changes and reactions are seen. This includes inflammation and metabolic disorders. These obesity-induced changes do impact the regeneration processes. Such impacts that obesity has on regeneration would affect tissues and organs development and would also have consequences on the outcomes of therapies that depend on cells regeneration (such as burns, radiotherapy and leukemia) given to patients suffering from obesity. Therefore, a particular attention should be given to patients suffering from obesity in biological, therapeutic and clinical contexts that depend on regeneration ability. Abstract Obesity is a health problem that, in addition to the known morbidities, induces the generation of a biological environment with negative impacts on regeneration. Indeed, factors like DNA damages, oxidative stress and inflammation would impair the stem cell functions, in addition to some metabolic and development patterns. At the cellular and tissulaire levels, this has consequences on growth, renewal and restoration which results into an impaired regeneration. This impaired homeostasis concerns also key metabolic tissues including muscles and liver which would worsen the energy balance outcome towards further development of obesity. Such impacts of obesity on regeneration shows the need of a specific care given to obese patients recovering from diseases or conditions requiring regeneration such as burns, radiotherapy and leukemia. On the other hand, since stem cells are suggested to manage obesity, this impaired regeneration homeostasis needs to be considered towards more optimized stem cells-based obesity therapies within the context of precision medicine.
Collapse
|
25
|
Xu J, Wang J, Chen X, Li Y, Mi J, Qin L. The Effects of Calcitonin Gene-Related Peptide on Bone Homeostasis and Regeneration. Curr Osteoporos Rep 2020; 18:621-632. [PMID: 33030684 DOI: 10.1007/s11914-020-00624-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are two folds: (1) to describe the recent understandings on the roles of calcitonin gene-related peptide-α (CGRP) in bone homeostasis and the underlying mechanisms of related neuronal regulation and (2) to propose innovative CGRP-modulated approaches for enhancing bone regeneration in challenging bone disorders. RECENT FINDINGS CGRP is predominantly produced by the densely distributed sensory neuronal fibers in bone, declining with age. Under mechanical and biochemical stimulations, CGRP releases and exerts either physiological or pathophysiological roles. CGRP at physiological level orchestrates the communications of bone cells with cells of other lineages, affecting not only osteogenesis, osteoclastogenesis, and adipogenesis but also angiogenesis, demonstrating with pronounced anabolic effect, thus is essential for maintaining bone homeostasis, with tuned nerve-vessel-bone network. In addition, its effects on immunity and cell recruitment are also crucial for bone fracture healing. Binding to the G protein-coupled receptor composited by calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1) on cellular surface, CGRP triggers various intracellular signaling cascades involving cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Peaking at early stage post-fracture, CGRP promotes bone formation, displaying with larger callus. Then CGRP gradually decreases over time, allowing normal or physiological bone remodeling. By elevating CGRP at early stage, low-intensity pulsed ultrasound (LIPUS), electrical stimulation, and magnesium-based bio-mineral products may promisingly accelerate bone regeneration experimentally in medical conditions like osteoporosis, osteoporotic fracture, and spine fusion. Excess CGRP expression is commonly observed in pathological conditions including cancer metastatic lesions in bone and fracture delayed- or non-healing, resulting in persistent chronic pain. To date, these discoveries have largely been limited to animal models. Clinical applications are highly desirable. Compelling evidence show the anabolic effects of CGRP on bone in animals. However, further validation on the role of CGRP and the underlying mechanisms in human skeletons is required. It remains unclear if it is type H vessel connecting neuronal CGRP to osteogenesis, and if there is only specific rather than all osteoprogenitors responsible to CGRP. Clear priority should be put to eliminate these knowledge gaps by integrating with high-resolution 3D imaging of transparent bulk bone and single-cell RNA-sequencing. Last but not the least, given that small molecule antagonists such as BIBN4096BS can block the beneficial effects of CGRP on bone, concerns on the potential side effects of humanized CGRP-neutralizing antibodies when systemically administrated to treat migraine in clinics are arising.
Collapse
Affiliation(s)
- Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
26
|
Hellwinkel JE, Miclau T, Provencher MT, Bahney CS, Working ZM. The Life of a Fracture: Biologic Progression, Healing Gone Awry, and Evaluation of Union. JBJS Rev 2020; 8:e1900221. [PMID: 32796195 PMCID: PMC11147169 DOI: 10.2106/jbjs.rvw.19.00221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
New knowledge about the molecular biology of fracture-healing provides opportunities for intervention and reduction of risk for specific phases that are affected by disease and medications. Modifiable and nonmodifiable risk factors can prolong healing, and the informed clinician should optimize each patient to provide the best chance for union. Techniques to monitor progression of fracture-healing have not changed substantially over time; new objective modalities are needed.
Collapse
Affiliation(s)
- Justin E Hellwinkel
- Department of Orthopedic Surgery, New York Presbyterian Hospital, Columbia University Irving Medical Center, New York, NY
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Theodore Miclau
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Matthew T Provencher
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
| | - Chelsea S Bahney
- Center for Regenerative Sports Medicine, The Steadman Clinic and Steadman Philippon Research Institute, Vail, Colorado
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
| | - Zachary M Working
- Orthopaedic Trauma Institute, University of California, San Francisco (UCSF) and Zuckerberg San Francisco General Hospital (ZSFG), San Francisco, California
- Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
27
|
Khajuria DK, Soliman M, Elfar JC, Lewis GS, Abraham T, Kamal F, Elbarbary RA. Aberrant structure of fibrillar collagen and elevated levels of advanced glycation end products typify delayed fracture healing in the diet-induced obesity mouse model. Bone 2020; 137:115436. [PMID: 32439570 PMCID: PMC7938873 DOI: 10.1016/j.bone.2020.115436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/17/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Impaired fracture healing in patients with obesity-associated type 2 diabetes (T2D) is a significant unmet clinical problem that affects millions of people worldwide. However, the underlying causes are poorly understood. Additionally, limited clinical information is available on how pre-diabetic hyperglycemia in obese individuals impacts bone healing. Here, we use the diet-induced obesity (DIO) mouse (C57BL/6J) model to study the impact of obesity-associated pre-diabetic hyperglycemia on bone healing and fibrillar collagen organization as healing proceeds from one phase to another. We show that DIO mice exhibit defective healing characterized by reduced bone mineral density, bone volume, and bone volume density. Differences in the healing pattern between lean and DIO mice occur early in the healing process as evidenced by faster resorption of the fibrocartilaginous callus in DIO mice. However, the major differences between lean and DIO mice occur during the later phases of endochondral ossification and bone remodeling. Comprehensive analyses of fibrillar collagen microstructure and expression pattern during these phases, using a set of complementary techniques that include histomorphometry, immunofluorescence staining, and second harmonic generation microscopy, demonstrate significant defects in DIO mice. Defects include strikingly sparse and disorganized collagen fibers, as well as pathological accumulation of unfolded collagen triple helices. We also demonstrate that DIO-associated changes in fibrillar collagen structure are attributable, at least in part, to the accumulation of advanced glycation end products, which increase the collagen-fiber crosslink density. These major changes impair fibrillar collagens functions, culminating in defective callus mineralization, remodeling, and strength. Our data extend the understanding of mechanisms by which obesity and its associated hyperglycemia impair fracture healing and underline defective fibrillar collagen microstructure as a novel and important contributor.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Marwa Soliman
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Gregory S Lewis
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Thomas Abraham
- Microscopy Imaging Facility, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Neural and Behavioural Sciences, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fadia Kamal
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Reyad A Elbarbary
- Department of Orthopaedics and Rehabilitation, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for Orthopaedic Research and Translational Science (CORTS), The Pennsylvania State University College of Medicine, Hershey, PA, USA; Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
28
|
Cui K, Chen Y, Zhong H, Wang N, Zhou L, Jiang F. Transplantation of IL-10-Overexpressing Bone Marrow-Derived Mesenchymal Stem Cells Ameliorates Diabetic-Induced Impaired Fracture Healing in Mice. Cell Mol Bioeng 2020; 13:155-163. [PMID: 32175028 DOI: 10.1007/s12195-019-00608-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022] Open
Abstract
Background Diabetes mellitus is characterized by hyperglycemia which displays insufficiency or resistance to insulin. One of the complications of diabetes is the increased risk of fracture and the impairment of bone repair and regulation. There have been evidences from previous studies that mesenchymal stem cells (MSCs) from bone marrow promote cartilage and callous formation. In addition, IL-10, an anti-inflammatory cytokine, has been observed to relieve inflammation-related complications in diabetes. Methods In this study, the role of IL-10-overexpressing bone marrow-derived MSCs (BM-MSCs) was examined in the diabetic mice model with femur fracture. MSCs were isolated from the BALB/c mice and IL-10 over expression was conducted with lentivirus transduction. The streptozotocin (STZ)-induced diabetes model with femoral fracture was established. BM-MSCs with IL-10 over expression were transplanted into the fracture area. The expressions of inflammatory factors IL-6, TNF-α and INF-γ were examined by qPCR and immunoblot; the biomechanical strength of the fracture site of the mice was examined and evaluated. Results Data showed that IL-10 overexpressed BM-MSCs transplantation decreased inflammatory response, promoted bone formation, and increased the strength of the fracture site in STZ-induced diabetic mice with femoral fracture. Conclusion IL-10 overexpressed BM-MSCs transplantation accelerated fracture repair in STZ-induced diabetic mice, which in turn provides potential clinical application prospects.
Collapse
Affiliation(s)
- Keze Cui
- Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Hainan, 570311 China
| | - Yuanliang Chen
- Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Hainan, 570311 China
| | - Haibo Zhong
- Haikou Orthopedic and Diabetes Hospital of Shanghai Sixth People's Hospital, Hainan, 570311 China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People's Hospital, Ningbo, 315700 Zhejiang China
| | - Fusong Jiang
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 200233 China
| |
Collapse
|
29
|
Liu D, Qin H, Yang J, Yang L, He S, Chen S, Bao Q, Zhao Y, Zong Z. Different effects of Wnt/β-catenin activation and PTH activation in adult and aged male mice metaphyseal fracture healing. BMC Musculoskelet Disord 2020; 21:110. [PMID: 32075627 PMCID: PMC7031971 DOI: 10.1186/s12891-020-3138-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Background Fractures in older men are not uncommon and need to be healed as soon as possible to avoid related complications. Anti-osteoporotic drugs targeting Wnt/β-catenin and PTH (parathyroid hormone) to promote fracture healing have become an important direction in recent years. The study is to observe whether there is a difference in adult and aged situations by activating two signal paths. Methods A single cortical hole with a diameter of 0.6 mm was made in the femoral metaphysis of Catnblox(ex3) mice and wild-type mice. The fracture healing effects of CA (Wnt/β-catenin activation) and PTH (activated by PTH (1–34) injections) were assessed by X-ray and CT imaging on days 7, 14, and 21 after fracture. The mRNA levels of β-catenin, PTH1R(Parathyroid hormone 1 receptor), and RUNX2(Runt-related transcription factor 2) in the fracture defect area were detected using RT-PCR. Angiogenesis and osteoblasts were observed by immunohistochemistry and osteoclasts were observed by TRAP (Tartrate-resistant Acid Phosphatase). Result Adult CA mice and adult PTH mice showed slightly better fracture healing than adult wild-type (WT) mice, but there was no statistical difference. Aged CA mice showed better promotion of angiogenesis and osteoblasts and better fracture healing than aged PTH mice. Conclusion The application of Wnt/β-catenin signaling pathway drugs for fracture healing in elderly patients may bring better early effects than PTH signaling pathway drugs, but the long-term effects need to be observed.
Collapse
Affiliation(s)
- Daocheng Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Hao Qin
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Jiazhi Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Lei Yang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Sihao He
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Sixu Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Quanwei Bao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Yufeng Zhao
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China
| | - Zhaowen Zong
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of War Wound Rescue Skills Training, Base of Army Health Service Training, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
30
|
Skaria T, Mitchell KJ, Vogel O, Wälchli T, Gassmann M, Vogel J. Blood Pressure Normalization-Independent Cardioprotective Effects of Endogenous, Physical Activity-Induced αCGRP (α Calcitonin Gene-Related Peptide) in Chronically Hypertensive Mice. Circ Res 2019; 125:1124-1140. [PMID: 31665965 DOI: 10.1161/circresaha.119.315429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
RATIONALE αCGRP (α calcitonin gene-related peptide), one of the strongest vasodilators, is cardioprotective in hypertension by reducing the elevated blood pressure. OBJECTIVE However, we hypothesize that endogenous, physical activity-induced αCGRP has blood pressure-independent cardioprotective effects in chronic hypertension. METHODS AND RESULTS Chronically hypertensive (one-kidney-one-clip surgery) wild-type and αCGRP-/- sedentary or voluntary wheel running mice were treated with vehicle, αCGRP, or the αCGRP receptor antagonist CGRP8-37. Cardiac function and myocardial phenotype were evaluated echocardiographically and by molecular, cellular, and histological analysis, respectively. Blood pressure was similar among all hypertensive experimental groups. Endogenous αCGRP limited pathological remodeling and heart failure in sedentary, chronically hypertensive wild-type mice. In these mice, voluntary wheel running significantly improved myocardial phenotype and function, which was abolished by CGRP8-37 treatment. In αCGRP-/- mice, αCGRP treatment, in contrast to voluntary wheel running, improved myocardial phenotype and function. Specific inhibition of proliferation and myofibroblast differentiation of primary, murine cardiac fibroblasts by αCGRP suggests involvement of these cells in αCGRP-dependent blunting of pathological cardiac remodeling. CONCLUSIONS Endogenous, physical activity-induced αCGRP has blood pressure-independent cardioprotective effects and is crucial for maintaining cardiac function in chronic hypertension. Consequently, inhibiting endogenous αCGRP signaling, as currently approved for migraine prophylaxis, could endanger patients with hypertension.
Collapse
Affiliation(s)
- Tom Skaria
- From the Institute of Veterinary Physiology (T.S., O.V., M.G., J.V.), Vetsuisse Faculty, University of Zürich, Switzerland.,Zürich Center for Integrative Human Physiology (ZIHP), Switzerland (T.S., M.G., J.V.)
| | - Katharyn Jean Mitchell
- Clinic for Equine Internal Medicine, Equine Department (K.J.M.), Vetsuisse Faculty, University of Zürich, Switzerland
| | - Olga Vogel
- From the Institute of Veterinary Physiology (T.S., O.V., M.G., J.V.), Vetsuisse Faculty, University of Zürich, Switzerland
| | - Thomas Wälchli
- Group of CNS Angiogenesis and Neurovascular Link, Institute for Regenerative Medicine, Neuroscience Center Zürich (T.W.), University Hospital Zürich, Switzerland.,Division of Neurosurgery (T.W.), University Hospital Zürich, Switzerland.,Group of Brain Vasculature and Neurovascular Unit, Division of Neurosurgery, Department of Clinical Neurosciences, University Hospital Geneva, Switzerland (T.W.).,Department of Fundamental Neurobiology, Krembil Research Institute (T.W.), University Health Network, University of Toronto, Canada.,Division of Neurosurgery, Department of Surgery, Toronto Western Hospital (T.W.), University Health Network, University of Toronto, Canada
| | - Max Gassmann
- From the Institute of Veterinary Physiology (T.S., O.V., M.G., J.V.), Vetsuisse Faculty, University of Zürich, Switzerland.,Zürich Center for Integrative Human Physiology (ZIHP), Switzerland (T.S., M.G., J.V.).,Universidad Peruana Cayetano Heredia (UPCH), Lima, Peru (M.G.)
| | - Johannes Vogel
- From the Institute of Veterinary Physiology (T.S., O.V., M.G., J.V.), Vetsuisse Faculty, University of Zürich, Switzerland.,Zürich Center for Integrative Human Physiology (ZIHP), Switzerland (T.S., M.G., J.V.)
| |
Collapse
|