1
|
Liu Y, Lan S, Duan Z. circ-TTC17 Promotes Esophagus Squamous Cell Carcinoma Cell Growth, Metastasis, and Inhibits Autophagy-Mediated Radiosensitivity Through miR-145-5p/SIRT1 Axis. Thorac Cancer 2025; 16:e15494. [PMID: 39621506 PMCID: PMC11729993 DOI: 10.1111/1759-7714.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Circular RNA (circRNA) plays a significant role in esophagus squamous cell carcinoma (ESCC) progression. Nevertheless, circ-TTC17 roles in ESCC have not fully understood. METHODS The levels of circ-TTC17, miR-145-5p and sirtuin 1 (SIRT1) were determined using qRT-PCR. ESCC cell functions were examined by CCK8 assay, flow cytometry, transwell assay and colony formation assay. The relative protein levels of autophagy marker and SIRT1 were determined by western blot (WB). The interactions among circ-TTC17, miR-145-5p, and SIRT1 were verified by dual-luciferase reporter assay and RIP assay. RESULTS circ-TTC17 was overexpressed and miR-145-5p was underexpressed in ESCC. circ-TTC17 knockdown restrained ESCC cell proliferation and metastasis, while enhance apoptosis and autophagy-mediated radiosensitivity. Circ-TTC17 could sponge miR-145-5p, and its inhibitor reversed the inhibitory effect of circ-TTC17 knockdown on ESCC cell progression. Additionally, SIRT1 was targeted by miR-145-5p, and SIRT1 overexpression abolished miR-145-5p-mediated the suppressive effect on ESCC cell progression. Also, circ-TTC17 interference reduced ESCC tumor growth via miR-145-5p/SIRT1 axis. CONCLUSION circ-TTC17 promoted ESCC cell growth, metastasis and inhibited autophagy-mediated radiosensitivity by miR-145-5p/SIRT1 axis.
Collapse
Affiliation(s)
- Ying Liu
- Department of Head and Neck Radiotherapy CombinedShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Shengmin Lan
- Department of Head and Neck Radiotherapy CombinedShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| | - Zhihui Duan
- Department of Thoracic SurgeryShanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
2
|
Yang X, Li S, Xu C, Liu S, Zhang X, Lian B, Li M. Sirtuin1 (sirt1) regulates the glycolysis pathway and decreases cisplatin chemotherapeutic sensitivity to esophageal squamous cell carcinoma. Cancer Biol Ther 2024; 25:2365449. [PMID: 38865161 PMCID: PMC11174053 DOI: 10.1080/15384047.2024.2365449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
We aimed to evaluate the influence of sirtuin1 (sirt1) on the ESCC chemotherapeutic sensitivity to cisplatin. We used ESCC cell ablation sirt1 for establishing a xenograft mouse tumor model. The tumor volume was then detected. sirt1 was over-expressed significantly in ESCC patients and cells. Moreover, sirt1 knockdown raised ESCC sensitivity to cisplatin. Besides, glycolysis was associated with ESCC cell chemotherapy resistance to cisplatin. Furthermore, sirt1 increased ESCC cells' cisplatin chemosensitivity through HK2. Sirt1 enhanced in vivo ESCC chemosensitivity to cisplatin. Overall, these findings suggested that sirt1 knockdown regulated the glycolysis pathway and raised the ESCC chemotherapeutic sensitivity.
Collapse
Affiliation(s)
- Xuewen Yang
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Shisen Li
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Chunsheng Xu
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Shushang Liu
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Xiang Zhang
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Bo Lian
- Clinical Nutrition Department, The First Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| | - Mengbin Li
- Gastrointestinal Surgery Department, The First Affiliated Hospital of Air Force Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
3
|
Morishita H, Otsuka R, Toyozumi T, Matsumoto Y, Sekino N, Okada K, Shiraishi T, Kamata T, Iida S, Makiyama T, Nishioka Y, Yamada M, Matsubara H. Correlation Between Serum and Tissue SIRT1 Levels in Patients With Esophageal Squamous Cell Carcinoma. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:762-768. [PMID: 39502604 PMCID: PMC11534044 DOI: 10.21873/cdp.10393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 11/08/2024]
Abstract
Background/Aim Identifying prognostic and molecular markers as therapeutic targets for esophageal squamous cell carcinoma (ESCC) could enhance the efficacy of multidisciplinary treatments. While tissue expression of sirtuin 1 (SIRT1) has been linked to tumor progression in ESCC, prognostic significance of serum SIRT1 levels and their correlation with tissue SIRT1 remains unexplored. This study aimed to investigate the correlation between serum and tissue SIRT1 levels in patients with ESCC. Patients and Methods A total of 38 patients diagnosed with ESCC who were untreated preoperatively were recruited for this study. SIRT1 expression in the surgical specimens was assessed through immunostaining, while serum SIRT1 levels were measured using an enzyme-linked immunosorbent assay. We analyzed the association between tissue and serum SIRT1 levels, clinicopathological features, and patient prognosis. Results Positive SIRT1 expression in tissue was significantly associated with deeper tumor depth (p=0.020). It was also significantly associated with poorer overall survival (OS) and relapse-free survival (RFS) (p=0.041 and p=0.012, respectively). Elevated serum SIRT1 levels were significantly correlated with increased tumor depth and weight loss (p=0.012 and p=0.030). While higher serum SIRT1 levels tended to be associated with poorer OS (p=0.069), no significant correlation was found between SIRT1 expression in tissue and its concentration in serum. Conclusion SIRT1 tissue expression may be a valuable prognostic marker in ESCC. However, the clinical significance of serum SIRT1 levels appears to differ from that of its tissue expression. Future research is required to clarify the role of serum SIRT1 in ESCC.
Collapse
Affiliation(s)
- Hiroki Morishita
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Koichiro Okada
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadashi Shiraishi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Toshiki Kamata
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Iida
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tenshi Makiyama
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuri Nishioka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masanari Yamada
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
4
|
Morishita H, Otsuka R, Murakami K, Endo S, Toyozumi T, Matsumoto Y, Shiraishi T, Iida S, Makiyama T, Nishioka Y, Hu J, Maiyulan A, Matsubara H. SIRT1 Promotes Chemoradiotherapy Resistance in Esophageal Squamous Cell Carcinoma. Oncology 2024; 102:960-968. [PMID: 38972308 DOI: 10.1159/000540247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Identifying accurate biomarkers for predicting response to chemoradiotherapy (CRT) in patients with esophageal squamous cell carcinoma (ESCC) is a critical challenge. The protein SIRT1, recognized for its implications in longevity, has been associated with tumor promotion in ESCC. However, data regarding its correlation with CRT sensitivity remain unreported. Therefore, in this study, we aimed to investigate the relationship between SIRT1 expression and CRT sensitivity and concurrently assess the effect of SIRT1 knockdown on CRT sensitivity in ESCC. METHODS This study included 73 patients who underwent radical esophagectomy after CRT. SIRT1 expression in pre-treatment endoscopic biopsies was assessed through immunostaining, followed by a comparative analysis of CRT effects on surgical specimens. Small interfering RNA was used to attenuate SIRT1 expression in TE5 and TE10 cells, which were then subjected to cisplatin treatment at varying doses and concentrations and irradiation with X-rays, respectively. RESULTS High SIRT1 tissue expression was significantly associated with CRT resistance. Multivariate analysis identified high SIRT1 expression as an independent biomarker for poor CRT response. In TE-5 and TE-10 cells, SIRT1 knockdown significantly decreased cell viability and increased sensitivity to cisplatin and radiation treatment compared to that of the negative control. CONCLUSION Our study results demonstrate the potential of SIRT1 as a predictive biomarker for CRT response in ESCC, highlighting the heightened sensitivity to CRT upon the transcriptional inactivation of SIRT1. Targeting SIRT1 emerges as a promising strategy for enhancing the efficacy of CRT for ESCC.
Collapse
Affiliation(s)
- Hiroki Morishita
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Endo
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tadashi Shiraishi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shinichiro Iida
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tenshi Makiyama
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuri Nishioka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jie Hu
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Abula Maiyulan
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
5
|
Zhao W, Feng S, Wang J, Zhang Z, Chen L, Jiang L, Li M, Wang T. Benserazide, a cystathionine beta-synthase (CBS) inhibitor, potentially enhances the anticancer effects of paclitaxel via inhibiting the S-sulfhydration of SIRT1 and the HIF1-α/VEGF pathway. Front Pharmacol 2024; 15:1404532. [PMID: 38828455 PMCID: PMC11143879 DOI: 10.3389/fphar.2024.1404532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024] Open
Abstract
Cancer targeted therapy is essential to minimize damage to normal cells and improve treatment outcomes. The elevated activity of Cystathionine beta-synthase (CBS), an enzyme responsible for producing endogenous hydrogen sulfide (H2S), plays a significant role in promoting tumor growth, invasiveness, and metastatic potential. Consequently, the selective inhibition of CBS could represent a promising therapeutic strategy for cancer. Currently, there is much interest in combining paclitaxel with other drugs for cancer treatment. This study aimed to investigate the efficacy of combining benserazide, a CBS inhibitor, with paclitaxel in treating tumors. Firstly, we demonstrated CBS is indeed involved in the progression of multiple cancers. Then it was observed that the total binding free energy between the protein and the small molecule is -98.241 kJ/mol. The release of H2S in the group treated with 100 μM benserazide was reduced by approximately 90% compared to the negative control, and the thermal denaturation curve of the complex protein shifted to the right, suggesting that benserazide binds to and blocks the CBS protein. Next, it was found that compared to paclitaxel monotherapy, the combination of benserazide with paclitaxel demonstrated stronger antitumor activity in KYSE450, A549, and HCT8 cells, accompanied by reduced cell viability, cell migration and invasion, as well as diminished angiogenic and lymphangiogenic capabilities. In vivo studies showed that the combined administration of benserazide and paclitaxel significantly reduced the volume and weight of axillary lymph nodes in comparison to the control group and single administration group. Further mechanistic studies revealed that the combination of benserazide and paclitaxel significantly suppressed the S-sulfhydration of SIRT1 protein, thereby inhibiting the expression of SIRT1 protein and activating SIRT1 downstream Notch1/Hes1 signaling pathway in KYSE450, A549, and HCT8 cells. Meanwhile, we observed that benserazide combined with paclitaxel induced a more significant downregulation of HIF-1α, VEGF-A, VEGF-C, and VEGF-D proteins expression levels in KYSE450, A549, and HCT8 cells compared to paclitaxel alone. These findings indicated that benserazide enhances the anticancer effects of paclitaxel via inhibiting the S-sulfhydration of SIRT1 and down-regulating HIF-1α/VEGF signaling pathway. This study suggests that benserazide may have potential as a chemosensitizer in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ming Li
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| | - Tianxiao Wang
- School of Pharmacy, Henan University, Kaifeng, Henan, China
| |
Collapse
|
6
|
Heywood HK, Thorpe SD, Jeropoulos RM, Caton PW, Lee DA. Modulation of sirtuins during monolayer chondrocyte culture influences cartilage regeneration upon transfer to a 3D culture environment. Front Bioeng Biotechnol 2022; 10:971932. [PMID: 36561039 PMCID: PMC9763269 DOI: 10.3389/fbioe.2022.971932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
This study examined the role of sirtuins in the regenerative potential of articular chondrocytes. Sirtuins (SIRT1-7) play a key role in regulating cartilage homeostasis. By inhibiting pro-inflammatory pathways responsible for cartilage degradation and promoting the expression of key matrix components, sirtuins have the potential to drive a favourable balance between anabolic and catabolic processes critical to regenerative medicine. When subjected to osmolarity and glucose concentrations representative of the in vivo niche, freshly isolated bovine chondrocytes exhibited increases in SIRT1 but not SIRT3 gene expression. Replicating methods adopted for the in vitro monolayer expansion of chondrocytes for cartilage regenerative therapies, we found that SIRT1 gene expression declined during expansion. Manipulation of sirtuin activity during in vitro expansion by supplementation with the SIRT1-specific activator SRT1720, nicotinamide mononucleotide, or the pan-sirtuin inhibitor nicotinamide, significantly influenced cartilage regeneration in subsequent 3D culture. Tissue mass, cellularity and extracellular matrix content were reduced in response to sirtuin inhibition during expansion, whilst sirtuin activation enhanced these measures of cartilage tissue regeneration. Modulation of sirtuin activity during monolayer expansion influenced H3K27me3, a heterochromatin mark with an important role in development and differentiation. Unexpectedly, treatment of primary chondrocytes with sirtuin activators in 3D culture reduced their matrix synthesis. Thus, modulating sirtuin activity during the in vitro monolayer expansion phase may represent a distinct opportunity to enhance the outcome of cartilage regenerative medicine techniques.
Collapse
Affiliation(s)
- Hannah K. Heywood
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Stephen D. Thorpe
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom,UCD School of Medicine, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland,Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
| | - Renos M. Jeropoulos
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul W. Caton
- Department of Diabetes, School of Life Course Sciences, King’s College London, London, United Kingdom
| | - David A. Lee
- School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom,*Correspondence: David A. Lee,
| |
Collapse
|
7
|
Ravegnini G, Nannini M, Indio V, Serrano C, Gorini F, Astolfi A, Di Vito A, Morroni F, Pantaleo MA, Hrelia P, Angelini S. miRNA Expression May Have Implications for Immunotherapy in PDGFRA Mutant GISTs. Int J Mol Sci 2022; 23:ijms232012248. [PMID: 36293105 PMCID: PMC9603477 DOI: 10.3390/ijms232012248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/05/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) harboring mutations in the PDGFRA gene occur in only about 5-7% of patients. The most common PDGFRA mutation is exon 18 D842V, which is correlated with specific clinico-pathological features compared to the other PDGFRA mutated GISTs. Herein, we present a miRNA expression profile comparison of PDGFRA D842V mutant GISTs and PDGFRA with mutations other than D842V (non-D842V). miRNA expression profiling was carried out on 10 patients using a TLDA miRNA array. Then, miRNA expression was followed by bioinformatic analysis aimed at evaluating differential expression, pathway enrichment, and miRNA-mRNA networks. We highlighted 24 differentially expressed miRNAs between D842V and non-D842V GIST patients. Pathway enrichment analysis showed that deregulated miRNAs targeted genes that are mainly involved in the immune response pathways. The miRNA-mRNA networks highlighted a signature of miRNAs/mRNA that could explain the indolent behavior of the D842V mutated GIST. The results highlighted a different miRNA fingerprint in PDGFRA D842V GISTs compared to non-D842Vmutated patients, which could explain the different biological behavior of this GIST subset.
Collapse
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Margherita Nannini
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, 40164 Ozzano, Italy
| | - Cesar Serrano
- Sarcoma Translational Research Laboratory, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Hospital Campus, C/ Natzaret 115-117, 08035 Barcelona, Spain
- Department of Medical Oncology, Vall d’Hebron University Hospital, P/Vall d’Hebron 119, 08035 Barcelona, Spain
| | - Francesca Gorini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Astolfi
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Aldo Di Vito
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Maria Abbondanza Pantaleo
- Department of Specialized, Experimental and Diagnostic Medicine, Sant’Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Division of Oncology, IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
- Inter-Departmental Center for Health Sciences & Technologies, CIRI-SDV, Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
- Correspondence:
| |
Collapse
|
8
|
Otsuka R, Hayano K, Matsubara H. Role of sirtuins in esophageal cancer: Current status and future prospects. World J Gastrointest Oncol 2022; 14:794-807. [PMID: 35582109 PMCID: PMC9048530 DOI: 10.4251/wjgo.v14.i4.794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) is a malignant cancer that still has a poor prognosis, although its prognosis has been improving with the development of multidisciplinary treatment modalities such as surgery, chemotherapy and radiotherapy. Therefore, identifying specific molecular markers that can be served as biomarkers for the prognosis and treatment response of EC is highly desirable to aid in the personalization and improvement of the precision of medical treatment. Sirtuins are a family of nicotinamide adenine dinucleotide (NAD+)-dependent proteins consisting of seven members (SIRT1-7). These proteins have been reported to be involved in the regulation of a variety of biological functions including apoptosis, metabolism, stress response, senescence, differentiation and cell cycle progression. Given the variety of functions of sirtuins, they are speculated to be associated in some manner with cancer progression. However, while the role of sirtuins in cancer progression has been investigated over the past few years, their precise role remains difficult to characterize, as they have both cancer-promoting and cancer-suppressing properties, depending on the type of cancer. These conflicting characteristics make research into the nature of sirtuins all the more fascinating. However, the role of sirtuins in EC remains unclear due to the limited number of reports concerning sirtuins in EC. We herein review the current findings and future prospects of sirtuins in EC.
Collapse
Affiliation(s)
- Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Koichi Hayano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| |
Collapse
|
9
|
Zhang YL, Chen P, Guo Y, Zhang YJ. Clinical value of SIRT1 as a prognostic biomarker in esophageal squamous cell carcinoma, a systematic meta-analysis. Open Med (Wars) 2022; 17:527-535. [PMID: 35350833 PMCID: PMC8924434 DOI: 10.1515/med-2022-0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/05/2022] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Several studies reported that the expression of SIRT1 was associated with the clinical features of patients with esophageal squamous cell carcinoma (ESCC), but the function remains inconsistent. We conducted this study to illustrate the clinical value of SIRT1 expression in the early diagnosis and prediction of prognosis of ESCC. In this study, PubMed, Embase, and Web of Science were searched by two independent researchers and STATA14.0 software was used to conduct meta-analysis. The odds ratio with 95% confidence interval was used to estimate the pooled effect. Egger's test and Begg's funnel were used to assess publication bias. Sensitivity analysis was used to evaluate the reliability and stability of meta-analysis results. According to the inclusion and exclusion criteria, six studies were enrolled, including 811 cases of ESCC. Results of the meta-analysis indicated that SIRT1 was overexpressed in ESCC and the SIRT1 expression was closely related to the clinicopathological features of ESCC, such as tumor infiltration, tumor node metastasis (TNM) stage, and lymph node metastasis. In the survival analysis, high expression of SIRT1 represented a poor prognosis in ESCC patients. Our study demonstrated that SIRT1 was overexpressed in ESCC, and it might be a potential biomarker for progress of ESCC.
Collapse
Affiliation(s)
- Yu-ling Zhang
- Department of Public Health, Jiangsu College of Nursing, Huai’an, Jiangsu Province, China
| | - Pei Chen
- Department of Basic Medicine, Jiangsu College of Nursing, Qing Jiang pu District, Huai’an, Jiangsu Province, 223005, China
| | - Ying Guo
- Department of Medical Laboratory, Huai’an Maternal and Child Health Hospital, Jiangsu Province, China
| | - Yan-jun Zhang
- Department of Basic Medicine, Jiangsu College of Nursing, Qing Jiang pu District, Huai’an, Jiangsu Province, 223005, China
| |
Collapse
|
10
|
Otsuka R, Sakata H, Murakami K, Kano M, Endo S, Toyozumi T, Matsumoto Y, Suito H, Takahashi M, Sekino N, Hirasawa S, Kinoshita K, Sasaki T, Matsubara H. SIRT1 Expression Is a Promising Prognostic Biomarker in Esophageal Squamous Cell Carcinoma: A Systematic Review and Meta-analysis. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:126-133. [PMID: 35399170 PMCID: PMC8962800 DOI: 10.21873/cdp.10086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM Several articles have assessed the prognostic significance of the expression of sirtuin 1 (SIRT1) in esophageal squamous cell carcinoma (ESCC). However, evidence in this field is insufficient. Thus, we conducted a meta-analysis to investigate the prognostic and clinical impact of SIRT1 expression in ESCC. MATERIALS AND METHODS We searched the PubMed, Cochrane Library, and Web of Science databases for articles on the expression of SIRT1 and clinicopathological features in patients with ESCC. A meta-analysis was conducted. RESULTS Four studies with 429 patients were included. The meta-analysis revealed a significant relationship between the high expression of SIRT1 and higher T-stage (odds ratio=2.39. 95% confidence interval=1.12-5.13, p=0.02), more advanced TNM stage (odds ratio=2.35. 95% confidence interval=1.20-4.60, p=0.01), and a poor overall survival (hazard ratio=1.90, 95% confidence interval=1.45-2.47, p<0.00001). CONCLUSION SIRT1 expression may be a promising prognostic biomarker for patients with ESCC.
Collapse
Affiliation(s)
- Ryota Otsuka
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Haruhito Sakata
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kentaro Murakami
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Kano
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Endo
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Suito
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Takahashi
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Nobufumi Sekino
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Soichiro Hirasawa
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuma Sasaki
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
11
|
Liu Y, Pan L, Li Y, Deng Y, Han X, Fu H, Wang T. Cystathionine-β-synthase (CBS)/H2S System Promotes Lymph Node Metastasis of Esophageal Squamous Cell Carcinoma (ESCC) by Activating SIRT1. Carcinogenesis 2022; 43:382-392. [PMID: 34994384 DOI: 10.1093/carcin/bgac002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 11/14/2022] Open
Abstract
Lymph node metastasis is a key factor of death and prognosis in patients with esophageal squamous cell carcinoma (ESCC). Previous studies have demonstrated that Cystathionine-β-synthase (CBS)/H2S system plays important roles in progression of various cancer. However, the function and mechanism of CBS/H2S system in lymph node metastasis of ESCC remains unclear. Here, we found that CBS was highly expressed in human ESCC tissues and closely associated with lymph node metastasis in ESCC patients. Functional studies demonstrated that CBS could significantly promote lymph node metastasis of ESCC tumor cells. In vitro, CBS knockdown inhibited tumor cell proliferation, migration and invasion, while CBS overexpression produced the opposite results. In vivo, downregulation of CBS distinctly inhibited ESCC tumor growth and lymphatic metastasis, as evidenced by the decreased size and weight of tumor and popliteal lymph node. Meanwhile, we also found high expression of CBS induced ESCC angiogenesis and lymphangiogenesis in vitro and in vivo by upregulating VEGF, VEGF-C and VEGF-D. Mechanistically, CBS up-regulated the expression of SIRT1 and thus interrupted the Notch1/Hes1 axis, which plays a crucial role in lymph node metastasis of ESCC. Moreover, it was demonstrated that H2S derived from CBS activated SIRT1 via increasing the NAD +/NADH ratio and promoting the phosphorylation of SIRT1. In addition, H2S derived from CBS also enhanced SIRT1 protein stability. Taken together, these data show that the high expression of CBS/H2S system promotes ESCC lymph node metastasis via activating SIRT1 signaling pathway and CBS could serve as a potential therapeutic target for clinical intervention in ESCC.
Collapse
Affiliation(s)
- Ya Liu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Limin Pan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yuxi Li
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yuying Deng
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xue Han
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Han Fu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tianxiao Wang
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
12
|
Duan L, Cao L, Zhang R, Niu L, Yang W, Feng W, Zhou W, Chen J, Wang X, Li Y, Zhang Y, Liu J, Zhao Q, Fan D, Hong L. Development and validation of a survival model for esophageal adenocarcinoma based on autophagy-associated genes. Bioengineered 2021; 12:3434-3454. [PMID: 34252349 PMCID: PMC8806464 DOI: 10.1080/21655979.2021.1946235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a highly conserved catabolic process which has been implicated in esophageal adenocarcinoma (EAC). We sought to investigate the biological functions and prognostic value of autophagy-related genes (ARGs) in EAC. A total of 21 differentially expressed ARGs were identified between EAC and normal samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were then applied for the differentially expressed ARGs in EAC, and the protein-protein interaction (PPI) network was established. Cox survival analysis and Lasso regression analysis were performed to establish a prognostic prediction model based on nine overall survival (OS)-related ARGs (CAPN1, GOPC, TBK1, SIRT1, ARSA, BNIP1, ERBB2, NRG2, PINK1). The 9-gene prognostic signature significantly stratified patient outcomes in The Cancer Genome of Atlas (TCGA)-EAC cohort and was considered as an independently prognostic predictor for EAC patients. Moreover, Gene set enrichment analysis (GSEA) analyses revealed several important cellular processes and signaling pathways correlated with the high-risk group in EAC. This prognostic prediction model was confirmed in an independent validation cohort (GSE13898) from The Gene Expression Omnibus (GEO) database. We also developed a nomogram with a concordance index of 0.78 to predict the survival possibility of EAC patients by integrating the risk signature and clinicopathological features. The calibration curves substantiated favorable concordance between actual observation and nomogram prediction. Last but not least, Erb-B2 Receptor Tyrosine Kinase 2 (ERBB2), a member of the prognostic gene signature, was identified as a potential therapeutic target for EAC patients. To sum up, we established and verified a novel prognostic prediction model based on ARGs which could optimize the individualized survival prediction in EAC.
Collapse
Affiliation(s)
- Lili Duan
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Lu Cao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Rui Zhang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Liaoran Niu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Wanli Yang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Weibo Feng
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Wei Zhou
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Junfeng Chen
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaoqian Wang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yiding Li
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yujie Zhang
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jinqiang Liu
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Qingchuan Zhao
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Daiming Fan
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Liu Hong
- Division of Digestive Surgery, State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
13
|
Wang Y, Wang J, Liu C, Li M. Silent Information Regulator 1 Promotes Proliferation, Migration, and Invasion of Cervical Cancer Cells and Is Upregulated by Human Papillomavirus 16 E7 Oncoprotein. Gynecol Obstet Invest 2021; 87:22-29. [PMID: 34808628 DOI: 10.1159/000520642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Silent information regulator 1 (SIRT1), an NAD+-dependent III class histone deacetylase, plays crucial roles in cell proliferation, apoptosis, senescence, metabolism, and stress responses. Nevertheless, the role of SIRT1 in tumorigenesis remains unclear. METHODS In the present study, we measured expression levels of SIRT1 and HPV16 E7 protein in cervical cancer (CC) tissue and calculated their correlations. We measured the effect of silencing SIRT1 on the proliferation, migration, invasion, and apoptosis in human CC SiHa cells. RESULTS Immunohistochemistry results revealed that the expression of SIRT1 was upregulated with progression from CIN II-III to CC, but was not expressed in normal cervical tissues and CIN I. There was a positive correlation between SIRT1 expression and HPV16 E7 expression in CC tissues, and silencing of HPV16 E7 downregulated the expression of SIRT1. Depletion of SIRT1 downregulated SIRT1 expression, and inhibited proliferation, migration, and invasion of SiHa cells, inducing apoptosis. CONCLUSIONS Taken together, the data suggest that SIRT1 promotes CC carcinogenesis. SIRT1 inhibition is a potential treatment strategy for CC.
Collapse
Affiliation(s)
- Yujing Wang
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China,
| | - Jing Wang
- Qingdao Municipal Hospital, Qingdao, China
| | - Chunmei Liu
- Qingdao Research and Development Center of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao, China
| | - Min Li
- Department of Gynecology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
14
|
Lee GJ, Jung YH, Kim TJ, Chong Y, Jeong SW, Lee IK, Woo IS. Surtuin 1 as a potential prognostic biomarker in very elderly patients with colorectal cancer. Korean J Intern Med 2021; 36:S235-S244. [PMID: 32605336 PMCID: PMC8009171 DOI: 10.3904/kjim.2019.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/01/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND/AIMS Colorectal cancer (CRC) rate increases with aging. Aging-related proteins, such as sirtuins (SIRTs) may be a potential therapeutic target in the elderly patients with CRC. The clinical implications of SIRT1 and SIRT2 have not been reported for elderly patients with cancer. The aim of this study was to evaluate the impact of expression of SIRT1 and SIRT2 on clinical outcome in two extreme age groups of patients with CRC. METHODS The expression of SIRT1 and SIRT2 were evaluated in CRC tissues of 101 patients aged ≥ 80 years and 29 patients aged ≤ 40 years by immunohistochemistry. We defined the patients aged ≥ 80 years as the very elderly and patients aged ≤ 40 years as the young patients. Correlations between the expression of these proteins and clinicopathological features were analyzed. RESULTS The prognosis for the very elderly patients with high expressions of SIRT1 was significantly worse than that for patients showing low expression (median survival, 24.9 months vs. 38.6 months, p = 0.027) whereas high expression of SIRT2 better prognosis (median survival, 37.9 months vs. 17.3 months, p = 0.006). However, the young patients did not show any difference in prognosis according to expression of SIRT1 and SIRT2. In multivariate analysis, high SIRT1 expression retained statistical significance as a poor prognostic factor in the very elderly patients with CRC. CONCLUSION The results suggest that high SIRT1 expression could be predictive of a poor outcome for very elderly patients with CRC.
Collapse
Affiliation(s)
- Guk Jin Lee
- Division of Medical Oncology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Korea
| | - Yun Hwa Jung
- Division of Medical Oncology, Department of Internal Medicine, Daejeon Sun Medical Center, Daejeon, Korea
| | - Tae-Jung Kim
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yosep Chong
- Department of Hospital Pathology, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seo-Won Jeong
- Institute of Clinical Medical Research, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Kyu Lee
- Department of Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Sook Woo
- Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to In Sook Woo, M.D. Division of Medical Oncology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea Tel: +82-2-3779-1574 Fax: +82-2-780-3132 E-mail:
| |
Collapse
|
15
|
Zhu L, Dong L, Feng M, Yang F, Jiang W, Huang Z, Liu F, Wang L, Wang G, Li Q. Profiles of autophagy-related genes in esophageal adenocarcinoma. BMC Cancer 2020; 20:943. [PMID: 32998713 PMCID: PMC7528598 DOI: 10.1186/s12885-020-07416-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Background Several studies have demonstrated autophagy was involved in the process of esophageal adenocarcinoma (EAC). The aim of this study was to explore autophagy-related genes (ARGs) correlated with overall survival (OS) in EAC patients. Methods Expressions of ARGs in EAC and normal samples were downloaded from TCGA database. GO and KEGG enrichment analyses were used to investigate the ARGs bioinformatics functions. Univariate and multivariate cox regressions were performed to identify prognostic ARGs and the independent risk factors. ROC curve was established to evaluate the feasibility to predict the prognosis. Finally, the correlations between ARGs and clinical features were further explored. In addition, significantly different ARGs were verified in EAC specimens and normal esophageal mucosal tissues. Results Thirty significantly different ARGs were selected from EAC and normal tissues. Functional enrichments showed these ARGs were mainly related apoptosis. Multivariate cox regression analyses demonstrated eight ARGs were significantly associated with OS. Among these eight genes, BECN1 (HR = 0.321, P = 0.046), DAPK1 (HR = 0.636, P = 0.025) and CAPN1 (HR = 0.395, P = 0.004) played protective roles in survival. Gender (HR = 0.225, P = 0.032), stage (HR = 5.841, P = 0.008) and risk score (HR = 1.131, P < 0.001) were independent prognostic risk factors. ROC curves showed better efficacy to predict survival using the risk score. Additionally, we found BECN1, DAPK1, VAMP7 and SIRT1 genes were correlated significantly with survival status, gender, primary tumor and tumor stage (all P < 0.05). The experimental results confirmed the BIRC5 was overexpressed and the ITPR1, PRKN were downregulated in the EAC tissues compared with the normal esophageal mucosal tissues (all P < 0.05). Conclusion Our findings suggested that autophagy was involved in the process of EAC. Several ARGs probably could serve as diagnostic and prognostic biomarkers and may help facilitate therapeutic targets in EAC patients.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lin Dong
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Minghao Feng
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Fugui Yang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Wenhao Jiang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Zhiyuan Huang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Fabing Liu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai, 200080, China
| | - Lingwei Wang
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| | - Qinchuan Li
- Department of Thoracic Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China. .,Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
16
|
Choubey A, Girdhar K, Kar AK, Kushwaha S, Yadav MK, Ghosh D, Mondal P. Low-dose naltrexone rescues inflammation and insulin resistance associated with hyperinsulinemia. J Biol Chem 2020; 295:16359-16369. [PMID: 32943552 DOI: 10.1074/jbc.ra120.013484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/14/2020] [Indexed: 11/06/2022] Open
Abstract
The incidence of diabetes, obesity, and metabolic diseases has reached an epidemic status worldwide. Insulin resistance is a common link in the development of these conditions, and hyperinsulinemia is a central hallmark of peripheral insulin resistance. However, how hyperinsulinemia leads to systemic insulin resistance is less clear. We now provide evidence that hyperinsulinemia promotes the release of soluble pro-inflammatory mediators from macrophages that lead to systemic insulin resistance. Our observations suggest that hyperinsulinemia induces sirtuin1 (SIRT1) repression and stimulates NF-κB p65 nuclear translocation and transactivation of NF-κB to promote the extracellular release of pro-inflammatory mediators. We further showed that low-dose naltrexone (LDN) abrogates hyperinsulinemia-mediated SIRT1 repression and prevents NF-κB p65 nuclear translocation. This, in turn, attenuates the hyperinsulinemia-induced release of pro-inflammatory cytokines and reinstates insulin sensitivity both in in vitro and in vivo diet-induced hyperinsulinemic mouse model. Notably, our data indicate that Sirt1 knockdown or inhibition blunts the anti-inflammatory properties of LDN in vitro Using numerous complementary in silico and in vitro experimental approaches, we demonstrated that LDN can bind to SIRT1 and increase its deacetylase activity. Together, these data support a critical role of SIRT1 in inflammation and insulin resistance in hyperinsulinemia. LDN improves hyperinsulinemia-induced insulin resistance by reorienting macrophages toward anti-inflammation. Thus, LDN treatment may provide a novel therapeutic approach against hyperinsulinemia-associated insulin resistance.
Collapse
Affiliation(s)
- Abhinav Choubey
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India; BioX Centre, Indian Institute of Technology Mandi, Mandi, India
| | - Khyati Girdhar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India; BioX Centre, Indian Institute of Technology Mandi, Mandi, India
| | - Aditya K Kar
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Shaivya Kushwaha
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Manoj Kumar Yadav
- Department of Bioinformatics, SRM University, Delhi-NCR, Sonipat, Haryana, India
| | - Debabrata Ghosh
- CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| | - Prosenjit Mondal
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India; BioX Centre, Indian Institute of Technology Mandi, Mandi, India.
| |
Collapse
|
17
|
Yan L, Zhao Q, Liu L, Jin N, Wang S, Zhan X. Expression of SIRT1 and survivin correlates with poor prognosis in esophageal squamous cell carcinoma. Medicine (Baltimore) 2020; 99:e21645. [PMID: 32846774 PMCID: PMC7447426 DOI: 10.1097/md.0000000000021645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study assessed the association of sirtuin type 1 (SIRT1) and survivin expression with the clinicopathological features and survival of esophageal squamous cell carcinoma (ESCC) patients after concurrent chemoradiotherapy.SIRT1 and survivin proteins were immunohistochemically stained in 93 ESCC tissue specimens.SIRT1 was expressed in ESCC (80.6% vs 25.8% in normal mucosae) and survivin was expressed in 67.7% of ESCC vs 19.4% normal tissues (P < .01), and SIRT1 expression was associated with survivin expression (r = 0.39, P < .05). Furthermore, expression of both SIRT1 and survivin was associated with tumor size, depth of tumor invasion, tumor differentiation, lymph node metastasis, advanced clinical stage, and chemoradiotherapy (P < .05) as well as poor progression-free survival (PFS; P < .05) of ESCC patients after concurrent chemoradiotherapy (P < .05). Patient age, chemotherapy, tumor size, clinical stage, lymph node metastasis, and SIRT1 and survivin expression were independent PFS predictors (P < .05).Expression of both SIRT1 and survivin was associated with poor ESCC PFS.
Collapse
Affiliation(s)
- Li Yan
- Departments of Oncology, Linyi People's Hospital, Linyi
- Department of Cell Biology, Shandong University, Jinan
| | - Qilong Zhao
- Departments of Oncology, Linyi People's Hospital, Linyi
| | - Lili Liu
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Ning Jin
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Shuxia Wang
- Departments of Oncology, Linyi People's Hospital, Linyi
| | - Xuemei Zhan
- Department of Pathology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
18
|
Epigenetic Alterations in Oesophageal Cancer: Expression and Role of the Involved Enzymes. Int J Mol Sci 2020; 21:ijms21103522. [PMID: 32429269 PMCID: PMC7278932 DOI: 10.3390/ijms21103522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.
Collapse
|
19
|
Chen Y, Xie T, Ye Z, Wang F, Long D, Jiang M, Fang J, Lin Q, Li K, Wang Z, Fu Z. ADC correlation with Sirtuin1 to assess early chemoradiotherapy response of locally advanced esophageal carcinoma patients. Radiat Oncol 2019; 14:192. [PMID: 31684999 PMCID: PMC6829857 DOI: 10.1186/s13014-019-1393-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Aims To determine the biological correlation between apparent diffusion coefficient (ADC) values and Sirtuin1 (SIRT1) levels of tumour tissues in patients with esophageal carcinoma (EC), and to ascertain the treatment biomarker of ADC in predicting the early response of patients undergoing definitive chemoradiotherapy (CRT). Methods A total of 66 patients were enrolled, and the specimens of tumour tissues were collected before treatment to perform immunohistochemical (IHC) examinations and quantify the levels of SIRT1. Then all patients were given two esophageal magnetic resonance imaging (MRI) examinations with diffused weighed imaging (DWI) including pretreatment and intra-treatment (1~2 weeks after the start of radiotherapy). The regions of interest (ROIs) were contoured according to the stipulated rules in advance using off-line software, and the values of the ADC in the ROIs were generated automatically. Then, the values of the ADC at baseline and intra-treatment were labeled as pre-ADC and intra-ADC respectively, and ΔADC, ADCratio were calculated. Pearson’s correlation coefficients were acquired to estimate the correlation between each of ADC values and SIRT1 levels. Spearman’s rank correlation coefficients were acquired to estimate the correlation between early response and the values of each ADC. Receptor operation characteristics (ROC) curves were constructed to estimate the accuracy of the ADC in predicting the early response of CRT. Results The findings of this study showed different correlations between ADC values and the levels of SIRT1 (ΔADC: r = − 0.943, P = 0.002; ADCratio: r = − 0.911, P = 0.000; intra-ADC: r = − 0.748, P = 0.002; pre-ADC: r = 0.109, P = 0.558). There was a positive correlation between ΔADC and early response to treatment (ρ = 0.615, P = 0.023), and multivariable logistic regression revealed that ΔADC was significantly associated with short-term response of CRT in esophageal carcinoma patients. Conclusions In summary, early increases in ADC may facilitate the predication of early CRT response in patients with esophageal squamous cell carcinoma (ESCC), which may be attributed to the different correlation between ADC changes and SIRT1 expression.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, No. 1 Banshan East Road, Hangzhou, People's Republic of China, 310022.,Department of Radiation Oncology, Zhejiang Cancer Hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Tieming Xie
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, People's Republic of China, 310022.,Department of Radiology, Zhejiang Cancer hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Zhimin Ye
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China. .,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, No. 1 Banshan East Road, Hangzhou, People's Republic of China, 310022. .,Department of Radiation Oncology, Zhejiang Cancer Hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022.
| | - Fangzheng Wang
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, No. 1 Banshan East Road, Hangzhou, People's Republic of China, 310022.,Department of Radiation Oncology, Zhejiang Cancer Hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Dan Long
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, People's Republic of China, 310022.,Department of Radiology, Zhejiang Cancer hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Mingxiang Jiang
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, People's Republic of China, 310022.,Department of Radiology, Zhejiang Cancer hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Jun Fang
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, No. 1 Banshan East Road, Hangzhou, People's Republic of China, 310022.,Department of Radiation Oncology, Zhejiang Cancer Hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Qingren Lin
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, No. 1 Banshan East Road, Hangzhou, People's Republic of China, 310022.,Department of Radiation Oncology, Zhejiang Cancer Hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Kai Li
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiology, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, People's Republic of China, 310022.,Department of Radiology, Zhejiang Cancer hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Zhun Wang
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China.,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, No. 1 Banshan East Road, Hangzhou, People's Republic of China, 310022.,Department of Radiation Oncology, Zhejiang Cancer Hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022
| | - Zhenfu Fu
- Institute of Cancer and Basic Medine (ICBM), Chinese Academy of Sciences, Hangzhou, People's Republic of China. .,Department of Radiation Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, No. 1 Banshan East Road, Hangzhou, People's Republic of China, 310022. .,Department of Radiation Oncology, Zhejiang Cancer Hospital, No.1 of Banshan East Road, Hangzhou, People's Republic of China, 310022.
| |
Collapse
|
20
|
Wu Y, Xin D, Liu C, Wang F. [SIRT1 participates in epithelial-mesenchymal transition of EC-9706 and Eca-109 cells in vitro by regulating Snail expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:1325-1330. [PMID: 30514680 DOI: 10.12122/j.issn.1673-4254.2018.11.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To explore the role of SIRT1 in the occurrence of epithelial-mesenchymal transition (EMT) in EC-9706 and Eca-109 cells and the possible mechanism. METHODS Three chemically synthesized siRNA targeting SIRT1 were transfected into EC-9706 and Eca-109 cells with the non-transfected cells and cells transfected with the negative siRNAs as controls. Real-time PCR and Western blotting were used to detect the expressions of SIRT1, E-cadherin, vimentin, Snail, Twist1 and ZEB in the cells. Transwell invasion assay and wounding healing assay were used to examine the changes in the invasion and metastasis abilities of the cells after transfection. RESULTS EC-9706 and Eca-109 cells transfected with SIRT1 siRNA1 and SIRT1 siRNA3 showed significantly decreased mRNA and protein expressions of SIRT1 (P < 0.05). Transwell invasion assay and wounding healing assay showed that transfection with SIRT1 siRNA1 and SIRT1 siRNA3 caused significantly lowered invasion and metastasis abilities in EC-9706 and Eca-109 cells (P < 0.05). In EC-9706 and Eca-109 cells transfected with SIRT1 siRNA1 and SIRT1 siRNA3, the expression level of E-cadherin was significantly increased while the expressions of vimentin, Snail and Twist were significantly lowered (P < 0.05). CONCLUSIONS SIRT1 participates in the invasion and metastasis of EC-9706 and Eca- 109 cells probably by inducing EMT via regulating the expression of Snail.
Collapse
Affiliation(s)
- Yuxiang Wu
- Department of Oncology, First Affiliated Hospital of Nanyang Medical College, Nanyang 473058, China
| | - Dao Xin
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Can Liu
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng Wang
- Department of Oncology, First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|