1
|
Shi W, Li Q, Li X, Luo L, Gan J, Ma Y, Wang J, Chen T, Zhang Y, Su P, Ma X, Guo J, Huang L. Transcriptome Analysis of Stephania yunnanensis and Functional Validation of CYP80s Involved in Benzylisoquinoline Alkaloid Biosynthesis. Molecules 2025; 30:259. [PMID: 39860129 PMCID: PMC11767795 DOI: 10.3390/molecules30020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
The medicinal plant Stephania yunnanensis is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of S. yunnanensis and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported. In this study, based on the differences in the content of crebanine and several other BIAs in different tissues, we conducted transcriptome sequencing of roots, stems, and leaves. We then identified candidate genes through functional annotation and sequence alignment and further analyzed them in combination with the genome. Based on this analysis, we identified three CYP80 enzymes (SyCYP80Q5-1, SyCYP80Q5-3, and SyCYP80G6), which exhibited different activities toward (S)- and (R)-configured substrates in S. yunnanensis and demonstrated strict stereoselectivity enroute to aporphine. This study provides metabolomic and transcriptomic information on the biosynthesis of BIAs in S. yunnanensis, offers valuable insights into the elucidation of BIA biosynthesis, and lays the foundation for the complete analysis of pathways for more aporphine alkaloids.
Collapse
Affiliation(s)
- Wenlong Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Qishuang Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Xinyi Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Linglong Luo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Jingyi Gan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Ying Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Jian Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Tong Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Yifeng Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Xiaohui Ma
- Yunnan Key Laboratory of Southern Medicinal Utilization, College of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China;
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (W.S.); (Q.L.); (X.L.); (L.L.); (J.G.); (Y.M.); (J.W.); (T.C.); (Y.Z.); (P.S.); (L.H.)
| |
Collapse
|
2
|
Ning K, Huai H, Li M, Xu Y, Wei F, Chen Z, Wang Y, Huang P, Yu Y, Chen S, Dong L. Transcriptomics and metabolomics revealed the molecular basis of the color formation in the roots of Panax notoginseng. Heliyon 2024; 10:e37532. [PMID: 39381219 PMCID: PMC11459398 DOI: 10.1016/j.heliyon.2024.e37532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
Panax notoginseng is a traditional Chinese medicine rich in many pharmacological components. The root of the 'Miaoxiang Sanqi No. 2' is yellow or greenish yellow, while a novel cultivar-'Wenyuan Ziqi No. 1' shows purple root and is thought to have high medicinal value. Little information is available about the anthocyanin biosynthesis in P. notoginseng root. In this study, we compared the 'Miaoxiang Sanqi No. 2' and 'Wenyuan Ziqi No. 1' in morphological, transcriptional and metabolic levels. The results showed that purple rich in the periderm, rhizome and phloem around cambium of the 'Wenyuan Ziqi No. 1' root and cyanidin 3-O-galactoside was the main anthocyanin causing purple. Moreover, 'Wenyuan Ziqi No. 1' highly accumulated in 155 metabolites, including flavones, phenylpropanoids and lipids. Transcriptome data showed that phenylpropanoid biosynthesis pathway genes are highly expressed in 'Wenyuan Ziqi No. 1'. Conjoint analysis showed that anthocyanin biosynthesis pathway substances were highly accumulated in 'Wenyuan Ziqi No. 1', and the expression level of structural genes involved in anthocyanin biosynthesis pathway was higher in 'Wenyuan Ziqi No. 1'. Meanwhile, eight R2R3-MYB genes that might be involved in anthocyanin biosynthesis were identified. The comprehensive analysis of two cultivars provides new insights into the understanding of root coloration in P. notoginseng.
Collapse
Affiliation(s)
- Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hao Huai
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, 443002, Yichang, China
| | - Mengzhi Li
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Yuli Xu
- Zhangzhou Pianzaihuang Pharmaceutical Co., Ltd., 363099, Fujian, China
| | - Fugang Wei
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., 663000, Wenshan, China
| | - Zhongjian Chen
- Institute of Sanqi Research, Wenshan University, 663000, Wenshan, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, 663000, Wenshan, China
| | - Pengcheng Huang
- Zhangzhou Pianzaihuang Pharmaceutical Co., Ltd., 363099, Fujian, China
| | - Yuqi Yu
- Wenshan Miaoxiang Notoginseng Technology, Co., Ltd., 663000, Wenshan, China
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| |
Collapse
|
3
|
Zhou Y, Bai YH, Han FX, Chen X, Wu FS, Liu Q, Ma WZ, Zhang YQ. Transcriptome sequencing and metabolome analysis reveal the molecular mechanism of Salvia miltiorrhiza in response to drought stress. BMC PLANT BIOLOGY 2024; 24:446. [PMID: 38778268 PMCID: PMC11112794 DOI: 10.1186/s12870-024-05006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan-Hong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng-Xia Han
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fu-Sheng Wu
- Shandong Provincial Center of Forest and Grass, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Jinan, China.
| | - Wen-Zhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Yong-Qing Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
4
|
Wu Y, Leng F, Liao M, Yu Y, Chen Z, Wei S, Yang Z, Wu Q. Characterization of the physiological parameters, effective components, and transcriptional profiles of Polygonum multiflorum Thunb. Under pH stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108279. [PMID: 38128226 DOI: 10.1016/j.plaphy.2023.108279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/05/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Polygonum multiflorum Thunb. is a traditional Chinese medicine with extensive distribution and robust adaptability, but comprehensive research on its acid and alkali resistance is presently lacking. This study aimed to analyze the effects of 5 months of continuous pH stress on the physiological and photosynthetic parameters of P. multiflorum, and the content of effective components. Results revealed that pH stress significantly influenced the normal growth, physiological functions, and photosynthetic indicators of P. multiflorum. At soil pH 4.5, the tubers of P. multiflorum exhibited the highest levels of 2,3,5,4'-tetrahydroxy stilbene-2-O-β-d-glucoside (THSG) and total anthraquinones at 5.41% and 0.38%, respectively. However, increased soil pH significantly reduced the content of THSG and total anthraquinones. Reference-free transcriptome analysis was further conducted on P. multiflorum treated at pH 4.5 and 9.5, generating a total of 47,305 unigenes with an N50 of 2118 bp, of which 31,058 (65.65%) were annotated. Additionally, 2472 differentially expressed genes (DEGs) were identified. Among them, 17 DEGs associated with the biosynthesis of THSG and anthraquinones were screened. A comprehensive analysis of differential gene expression and effective component content demonstrated a significant positive correlation between the content of effective components and the 14 DEGs' expression but a negative correlation with soil pH. This study highlighted the influence of varying soil pH values on the effective component content of P. multiflorum. Specific acidic conditions proved beneficial for the synthesis and accumulation of THSG and total anthraquinones in P. multiflorum, thereby enhancing the quality of the medicinal material.
Collapse
Affiliation(s)
- Yichao Wu
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Fen Leng
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Mingli Liao
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Yan Yu
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Zhenyong Chen
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Shuhong Wei
- College of Life Science, China West Normal University, Nanchong 637002, PR China
| | - Zaijun Yang
- College of Life Science, China West Normal University, Nanchong 637002, PR China.
| | - Qi Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, College of Food and Biological Engineering, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
5
|
Liu X, Aimaier A, Wang W, Dong Y, Han P, He J, Mu L, Wang X, Li J. Quality variation and biosynthesis of anti-inflammatory compounds for Capparis spinosa based on the metabolome and transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1224073. [PMID: 37528974 PMCID: PMC10388242 DOI: 10.3389/fpls.2023.1224073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/26/2023] [Indexed: 08/03/2023]
Abstract
Introduction Capparis spinosa L. fruits as edible and medicinal plant, has anti-inflammatory activities. The different morphological characteristics of C. spinosa fruits from Ili, Turpan, and Karamay may affect their anti-inflammatory components and functions. Methods The anti-inflammatory activity of C. spinosa fruit was assessed using an LPS-induced inflammatory cell model. Furthermore, the differences in anti-inflammatory compounds were analyzed by metabolome and RNA-seq. Additionally, the anti-inflammatory mechanism was elucidated using network pharmacology. Results In the study, we found that the 95% ethanol extracts (CSE) obtained from the three kinds of fruits showed remarkable anti-inflammatory effects both in vivo and in vitro. However, the CSE derived from Ili fruits significantly reduced CD86 levels on DCs. As a result of metabolomic analysis, the metabolic profiles of Ili fruits differed significantly from those of the other two habitats, which were consistent with transcriptome analysis. A total of 15 compounds exhibiting anti-inflammatory activity were subjected to screening, revealing a greater accumulation of flavonoids in the Turpan and Karamay districts. Notably, phenolic compounds were identified as the principal anti-inflammatory components in C. spinosa. Conclusion There were significant differences in the morphology, metabolites, transcriptional levels, and anti-inflammatory activity of C. spinosa from the three districts.
Collapse
Affiliation(s)
- Xiaoying Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Alimu Aimaier
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Weilan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Yuliang Dong
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Peng Han
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jiang He
- Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Lihong Mu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Xinhui Wang
- College of Ecology and Environment, Xinjiang University, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, China
| |
Collapse
|
6
|
Pan X, Chang Y, Li C, Qiu X, Cui X, Meng F, Zhang S, Li X, Lu S. Chromosome-level genome assembly of Salvia miltiorrhiza with orange roots uncovers the role of Sm2OGD3 in catalyzing 15,16-dehydrogenation of tanshinones. HORTICULTURE RESEARCH 2023; 10:uhad069. [PMID: 37293533 PMCID: PMC10244880 DOI: 10.1093/hr/uhad069] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 04/07/2023] [Indexed: 06/10/2023]
Abstract
Salvia miltiorrhiza is well known for its clinical practice in treating heart and cardiovascular diseases. Its roots, used for traditional Chinese medicine materials, are usually brick-red due to accumulation of red pigments, such as tanshinone IIA and tanshinone I. Here we report a S. miltiorrhiza line (shh) with orange roots. Compared with the red roots of normal S. miltiorrhiza plants, the contents of tanshinones with a single bond at C-15,16 were increased, whereas those with a double bond at C-15,16 were significantly decreased in shh. We assembled a high-quality chromosome-level genome of shh. Phylogenomic analysis showed that the relationship between two S. miltiorrhiza lines with red roots was closer than the relationship with shh. It indicates that shh could not be the mutant of an extant S. miltiorrhiza line with red roots. Comparative genomic and transcriptomic analyses showed that a 1.0 kb DNA fragment was deleted in shh Sm2OGD3m. Complementation assay showed that overexpression of intact Sm2OGD3 in shh hairy roots recovered furan D-ring tanshinone accumulation. Consistently, in vitro protein assay showed that Sm2OGD3 catalyzed the conversion of cyptotanshinone, 15,16-dihydrotanshinone I and 1,2,15,16-tetrahydrotanshinone I into tanshinone IIA, tanshinone I and 1,2-dihydrotanshinone I, respectively. Thus, Sm2OGD3 functions as tanshinone 15,16-dehydrogenase and is a key enzyme in tanshinone biosynthesis. The results provide novel insights into the metabolic network of medicinally important tanshinone compounds.
Collapse
Affiliation(s)
- Xian Pan
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Yujie Chang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Caili Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xiaoxiao Qiu
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xinyun Cui
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Fanqi Meng
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Sixuan Zhang
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | - Xian’en Li
- Key Lab of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People' s Republic of China, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource, Ministry of Education, Beijing 100193, China
| | | |
Collapse
|
7
|
Lin C, Zhang L, Zhang X, Wang X, Wang C, Zhang Y, Wang J, Li X, Song Z. Spatiotemporal and Transcriptional Characterization on Tanshinone Initial Synthesis in Salvia miltiorrhiza Roots. Int J Mol Sci 2022; 23:ijms232113607. [PMID: 36362395 PMCID: PMC9655840 DOI: 10.3390/ijms232113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Tanshinones are the bioactive constituents of Danshen (Salvia miltiorrhiza Bunge), which is used in Traditional Chinese Medicine to treat cardiovascular and other diseases, and they synthesize and accumulate in the root periderm of S. miltiorrhiza. However, there is no relevant report on the initial stage of tanshinone synthesis, as well as the root structure and gene expression characteristics. The present study aims to provide new insights into how these bioactive principles begin to synthesize by characterizing possible differences in their biosynthesis and accumulation during early root development from both spatial and temporal aspects. The morphological characteristics and the content of tanshinones in roots of S. miltiorrhiza were investigated in detail by monitoring the seedlings within 65 days after germination (DAGs). The ONT transcriptome sequencing was applied to investigate gene expression patterns. The periderm of the S. miltiorrhiza storage taproot initially synthesized tanshinone on about 30 DAGs. Three critical stages of tanshinone synthesis were preliminarily determined: preparation, the initial synthesis, and the continuous rapid synthesis. The difference of taproots in the first two stages was the smallest, and the differentially expressed genes (DEGs) were mainly enriched in terpene synthesis. Most genes involved in tanshinone synthesis were up regulated during the gradual formation of the red taproot. Plant hormone signal transduction and ABC transport pathways were widely involved in S. miltiorrhiza taproot development. Five candidate genes that may participate in or regulate tanshinone synthesis were screened according to the co-expression pattern. Moreover, photosynthetic ferredoxin (FD), cytochrome P450 reductase (CPR), and CCAAT binding transcription factor (CBF) were predicted to interact with the known downstream essential enzyme genes directly. The above results provide a necessary basis for analyzing the initial synthesis and regulation mechanism of Tanshinones.
Collapse
Affiliation(s)
- Caicai Lin
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Lin Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xia Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Xin Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Chaoyang Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Yufeng Zhang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| | - Jianhua Wang
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Xingfeng Li
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| | - Zhenqiao Song
- Agronomy College, Shandong Agricultural University, Tai’an 271018, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (X.L.); (Z.S.)
| |
Collapse
|
8
|
Xiao Q, Mu X, Liu J, Li B, Liu H, Zhang B, Xiao P. Plant metabolomics: a new strategy and tool for quality evaluation of Chinese medicinal materials. Chin Med 2022; 17:45. [PMID: 35395803 PMCID: PMC8990502 DOI: 10.1186/s13020-022-00601-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/26/2022] [Indexed: 11/24/2022] Open
Abstract
The present quality control method of Chinese medicinal materials (CMM) has obvious deficiency, which cannot be compatible with the multi-target and multi-component characteristics and production process of CMM. Plant metabolomics with a huge impetus to comprehensively characterize the metabolites and clarify the complexity and integrity of CMM, has been widely used in the research of CMM. This article comprehensively reviewed the application of plant metabolomics in the quality control of CMM. It introduced the concept, technique, and application examples, discussed the prospects, limitations, improvements of plant metabolomics. MS and NMR, as important techniques for plant metabolomics, are mainly highlighted in the case references. The purpose of this article is to clarify the advantage of plants metabolomics for promoting the optimization of the CMM quality control system and proposing a system approach to realize the overall quality control of CMM based on plant metabolomics combined with multidisciplinary method.
Collapse
Affiliation(s)
- Qi Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Xinlu Mu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Jiushi Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Bin Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Haitao Liu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China.
| | - Bengang Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| | - Peigen Xiao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine (Peking Union Medical College), Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
9
|
Guo Y, Shao YY, Zhao YN, Zhang X, Chang ZP, Sun YF, Liu JJ, Gao J, Hou RG. Pharmacokinetics, distribution and excretion of inulin-type fructan CPA after oral or intravenous administration to mice. Food Funct 2022; 13:4130-4141. [PMID: 35316828 DOI: 10.1039/d1fo04327g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aim of this work has been to establish and validate a simple and efficient method to detect the concentration of inulin-type fructan CPA from the roots of Codonopsis pilosula (Franch.) Nannf. in biosamples, and then apply it to evaluate the pharmacokinetics behavior, distribution character in tissue and excretion in mice. In this work, fluorescein isothiocyanate (FITC) was used to label CPA. Then FCPA was intravenously and orally administered to mice at different doses. In both i.v and p.o administration, FCPA concentration slowly declined in the circulatory system with a much longer T1/2 and MRT. After p.o administration, the area under the time curve (AUC0-∞) was dose-dependently increased. Taken together, FCPA showed poor absorption and wide tissue distribution. These pharmacokinetic results yield helpful insights into the pharmacological actions of FCPA.
Collapse
Affiliation(s)
- Yao Guo
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yun-Yun Shao
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yi-Nan Zhao
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Xiao Zhang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Zhuang-Peng Chang
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Yi-Fan Sun
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Jun-Jin Liu
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Jianping Gao
- School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| | - Rui-Gang Hou
- Department of Pharmacy, Second Hospital of Shanxi Medical University, Shanxi 030000, China. .,School of Pharmaceutical, Shanxi Medical University, Shanxi 030000, China
| |
Collapse
|
10
|
Yuan Y, Zuo J, Zhang H, Li R, Yu M, Liu S. Integration of Transcriptome and Metabolome Provides New Insights to Flavonoids Biosynthesis in Dendrobium huoshanense. FRONTIERS IN PLANT SCIENCE 2022; 13:850090. [PMID: 35360302 PMCID: PMC8964182 DOI: 10.3389/fpls.2022.850090] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 05/12/2023]
Abstract
Dendrobium huoshanense is both a traditional herbal medicine and a plant of high ornamental and medicinal value. We used transcriptomics and metabolomics to investigate the effects of growth year on the secondary metabolites of D. huoshanense stems obtained from four different years of cultivation. In this study, a total of 428 differentially accumulated metabolites (DAMs) and 1802 differentially expressed genes (DEGs) were identified. The KEGG enrichment analysis of DEGs and DAMs revealed significant differences in "Flavonoid biosynthesis", "Phenylpropanoid biosynthesis" and "Flavone and flavonol biosynthesis". We summarize the biosynthesis pathway of flavonoids in D. huoshanense, providing new insights into the biosynthesis and regulation mechanisms of flavonoids in D. huoshanense. Additionally, we identified two candidate genes, FLS (LOC110107557) and F3'H (LOC110095936), which are highly involved in flavonoid biosynthesis pathway, by WGCNA analysis. The aim of this study is to investigate the effects of growth year on secondarily metabolites in the plant and provide a theoretical basis for determining a reasonable harvesting period for D. huoshanense.
Collapse
Affiliation(s)
- Yingdan Yuan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- *Correspondence: Yingdan Yuan,
| | - Jiajia Zuo
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Hanyue Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Runze Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Maoyun Yu
- Anhui Tongjisheng Biotechnology Co., Ltd, Lu’an, China
- Maoyun Yu,
| | - Sian Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
11
|
Zhou J, Liu R, Shuai M, Yan ZY, Chen X. Comparative transcriptome analyses of different Salvia miltiorrhiza varieties during the accumulation of tanshinones. PeerJ 2021; 9:e12300. [PMID: 34721983 PMCID: PMC8541307 DOI: 10.7717/peerj.12300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
Salvia miltiorrhiza (Labiatae) is an important medicinal plant in traditional Chinese medicine. Tanshinones are one of the main active components of S. miltiorrhiza. It has been found that the intraspecific variation of S. miltiorrhiza is relatively large and the content of tanshinones in its roots of different varieties is also relatively different. To investigate the molecular mechanisms that responsible for the differences among these varieties, the tanshinones content was determined and comparative transcriptomics analysis was carried out during the tanshinones accumulation stage. A total of 52,216 unigenes were obtained from the transcriptome by RNA sequencing among which 23,369 genes were differentially expressed among different varieties, and 2,016 genes including 18 diterpenoid biosynthesis-related genes were differentially expressed during the tanshinones accumulation stage. Functional categorization of the differentially expressed genes (DEGs) among these varieties revealed that the pathway related to photosynthesis, oxidative phosphorylation, secondary metabolite biosynthesis, diterpenoid biosynthesis, terpenoid backbone biosynthesis, sesquiterpenoid and triterpenoid biosynthesis are the most differentially regulated processes in these varieties. The six tanshinone components in these varieties showed different dynamic changes in tanshinone accumulation stage. In addition, combined with the analysis of the dynamic changes, 277 DEGs (including one dehydrogenase, three CYP450 and 24 transcription factors belonging to 12 transcription factor families) related to the accumulation of tanshinones components were obtained. Furthermore, the KEGG pathway enrichment analysis of these 277 DEGs suggested that there might be an interconnection between the primary metabolic processes, signaling processes and the accumulation of tanshinones components. This study expands the vision of intraspecific variation and gene regulation mechanism of secondary metabolite biosynthesis pathways in medicinal plants from the “omics” perspective.
Collapse
Affiliation(s)
- Jingwen Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Rui Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Min Shuai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Zhu-Yun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Xin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Malangisha GK, Li C, Yang H, Mahmoud A, Ali A, Wang C, Yang Y, Yang J, Hu Z, Zhang M. Permissive action of H 2O 2 mediated ClUGT75 expression for auxin glycosylation and Al 3+- tolerance in watermelon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:77-90. [PMID: 34340025 DOI: 10.1016/j.plaphy.2021.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/04/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Although Al3+-toxicity is one of the limiting factors for crop production in acidic soils, little is known about the Al3+-tolerance mechanism in watermelon, a fairly acid-tolerant crop. This work aimed to identify the interaction between the H2O2 scavenging pathway and auxin glycosylation relevant to watermelon Al3+-tolerance. By analyzing expressions of hormone-related ClUGTs and antioxidant enzyme genes in Al3+-tolerant (ZJ) and Al3+-sensitive (NBT) cultivars, we identified ClUGT75s (B1, B2, and D1) and ClSOD1-2-ClCAT as crucial components associated with Al3+-tolerance. Al3+-stress significantly increased H2O2 content by 92.7% in NBT and 42.3% in ZJ, accompanied by less Al3+-, auxin (IAA and IBA), and MDA contents in ZJ than NBT. These findings coincided with significant ClSOD1-2 expression and stable dismutation activity in NBT than ZJ. Hence, higher H2O2 content in the root apex of NBT than ZJ correlated with a significant increase in auxin content and ClSOD1-2 up-regulation. Moreover, Al3+-activated ClUGT75D1 and ClUGT75B2 in ZJ coincided with no considerable change in IBA content, suggesting that glycosylation-mediated changes in IBA content might be relevant to Al3+-tolerance in watermelon. Furthermore, exogenous H2O2 and IBA indicated ClUGT75D1 modulating IBA is likely dependent on H2O2 background. We hypothesize that a higher H2O2 level in NBT represses ClUGT75, resulting in increased auxin than those in ZJ roots. Thus, excess in both H2O2 and auxin aggravated the inhibition of root elongation under Al3+-stress. Our findings provide insights on the permissive action of H2O2 in the mediation of auxin glycosylation by ClUGT75 in root apex for Al3+-tolerance in watermelon.
Collapse
Affiliation(s)
- Guy Kateta Malangisha
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China; Faculté des Sciences Agronomiques, Université de Lubumbashi, /UNILU, Lubumbashi, République Démocratique Du Congo/PO Box 1825, PR China
| | - Cheng Li
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyang Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Ahmed Mahmoud
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Abid Ali
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China
| | - Chi Wang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Yubin Yang
- Agriculture, Rural Development and Water Conservancy Bureau of Wenling, Wenling, 317500, PR China
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China.
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, PR China; Hainan Institute of Zhejiang University, Yazhou District, Sanya, 572025, PR China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, PR China
| |
Collapse
|
13
|
Yu Y, Jiang Y, Wang L, Wu Y, Liao J, Zhong M, Yang R, Chen X, Li Q, Zhang L. Comparative transcriptome analysis reveals key insights into male sterility in Salvia miltiorrhiza Bunge. PeerJ 2021; 9:e11326. [PMID: 33987012 PMCID: PMC8086568 DOI: 10.7717/peerj.11326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/31/2021] [Indexed: 11/20/2022] Open
Abstract
Background Large-scale heterosis breeding depends upon stable, inherited male sterility lines. We accidentally discovered a male sterility line (SW-S) in the F1progeny of a Salvia miltiorrhiza Bunge from Shandong, China (purple flowers) crossed with a S. miltiorrhiza f. alba from Sichuan, China (white flowers). We sought to provide insights into the pollen development for male sterility in S. miltiorrhiza. Methods The phenotypic and cytological features of the SW-S and fertile control SW-F were observed using scanning electron microscopy and paraffin sections to identify the key stage of male sterility. Transcriptome profiles were recorded for anthers at the tetrad stage of SW-S and SW-F using Illumina RNA-Seq. Results The paraffin sections showed that sterility mainly occurred at the tetrad stage of microspore development, during which the tapetum cells in the anther compartment completely fell off and gradually degraded in the sterile line. There was little-to-no callose deposited around the microspore cells. The tetrad microspore was shriveled and had abnormal morphology. Therefore, anthers at the tetrad stage of SW-S and fertile control SW-F were selected for comparative transcriptome analysis. In total, 266,722,270 clean reads were obtained from SW-S and SW-F, which contained 36,534 genes. There were 2,571 differentially expressed genes (DEGs) in SW-S and SW-F, of which 63.5% were downregulated. Gene Ontology (GO) enrichment analysis indicated that the differentially expressed genes were enriched in 56 functional groups (GO terms); of these, all DEGs involved in microgametogenesis and developmental maturation were downregulated in SW-S. These results were confirmed by quantitative RT-PCR. The two GO terms contained 18 DEGs, among which eight DEGs (namely: GPAT3, RHF1A, phosphatidylinositol, PFAS, MYB96, MYB78, Cals5, and LAT52) were related to gamete development. There were 10 DEGs related to development and maturation, among which three genes were directly related to pollen development (namely: ACT3, RPK2, and DRP1C). Therefore, we believe that these genes are directly or indirectly involved in the pollen abortion of SW-S. Our study provides insight into key genes related to sterility traits in S. miltiorrhiza, and the results can be further exploited in functional and mechanism studies.
Collapse
Affiliation(s)
- Yan Yu
- College of Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China.,College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Yuanyuan Jiang
- College of Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Long Wang
- College of Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Yichao Wu
- College of Life Science, China West Normal University, Nanchong, Sichuan, China
| | - Jinqiu Liao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Mingzhi Zhong
- College of Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Ruiwu Yang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Xingfu Chen
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Qingmiao Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, Sichuan, China
| | - Li Zhang
- College of Sciences, Sichuan Agricultural University, Ya'an, Sichuan, China
| |
Collapse
|
14
|
Sun X, Wang G, Xiao H, Jiang J, Xiao D, Xing B, Li A, Zhang Y, Sun K, Xu Y, Guo L, Yang D, Ma M. Strepimidazoles A-G from the Plant Endophytic Streptomyces sp. PKU-EA00015 with Inhibitory Activities against a Plant Pathogenic Fungus. JOURNAL OF NATURAL PRODUCTS 2020; 83:2246-2254. [PMID: 32663025 DOI: 10.1021/acs.jnatprod.0c00362] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Seven new 4-acyl-2-aminoimidazoles, designated strepimidazoles A-G (1-7), were discovered from the endophytic Streptomyces sp. PKU-EA00015 isolated from Salvia miltiorrhiza Bunge, whose dry root "Danshen" is one of the most widely used traditional Chinese medicines. The resonance signals of the 2-aminoimidazole moiety in 1-7 were absent in the NMR spectra due to tautomerization, and the structures of 1-7 were identified after preparation of their acetylation products 1a-7a, respectively. Compounds 1-7 represent a new family of 2-aminoimidazole-containing natural products, enriching the structural diversity of natural products from endophytic origin. Compounds 1-7 showed different degrees of inhibitory activities against the plant pathogenic fungus Verticillium dahliae V991, revealing structure-activity relationships on the acyl moieties. The plant pathogenic fungus V. dahliae has been confirmed to cause serious chlorosis of cultivated S. miltiorrhiza Bunge in China. This study opens the door for further investigation of mutualistic relationships between S. miltiorrhiza Bunge and their endophytic actinomycetes and for possible antifungal agent development for biological control of V. dahliae in the future.
Collapse
Affiliation(s)
- Xiaoxu Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Guiyang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Hua Xiao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Jingyi Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dongliang Xiao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Baiying Xing
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Annan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Yingtao Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Kai Sun
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Donghui Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | - Ming Ma
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Haidian District, Beijing 100191, China
| |
Collapse
|
15
|
Yang YY, Wu ZY, Zhang H, Yin SJ, Xia FB, Zhang Q, Wan JB, Gao JL, Yang FQ. LC-MS-based multivariate statistical analysis for the screening of potential thrombin/factor Xa inhibitors from Radix Salvia Miltiorrhiza. Chin Med 2020; 15:38. [PMID: 32351617 PMCID: PMC7183602 DOI: 10.1186/s13020-020-00320-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/20/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The dry root and rhizome of Salvia miltiorrhiza Bunge, or Danshen, is a well-known traditional Chinese medicine with anticoagulant activity. Taking into account that thrombin (THR) and factor Xa (FXa) play crucial roles in the coagulation cascade, it is reasonable and meaningful to screening THR and/or FXa inhibitors from Danshen. METHODS Four extracts [butanol (BA), ethyl acetate (EA) and remained extract (RE) from 75% ethanol extract, and water extract (WE)] of Danshen were prepared, and their THR/FXa inhibitory activities were assessed in vitro. Then, the active EA extract was further separated by silica-gel column chromatography (SC), and its fractions (SC1-SC5) were analyzed by LC-MS. The principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were employed for predicting the specific marker compounds. The chemical structures of targeted compounds were identified by LC-MS/MS and their interactions with THR/FXa were analyzed by the molecular docking analysis. RESULTS Danshen EA extract showed strong activity against THR and FXa, and its fractions (SC1-SC5) exhibited obvious difference in inhibitory activity against these two enzymes. Furthermore, four marker compounds with potential THR/FXa inhibitory activity were screened by PCA and OPLS-DA, and were identified as cryptotanshinone, tanshinone I, dihydrotanshinone I and tanshinone IIA. The molecular docking study showed that all these four tanshinones can interact with some key amino acid residues of the THR/FXa active cavities, such as HIS57 and SER195, which were considered to be promising candidates targeting THR and/or FXa with low binding energy (< - 7 kcal mol-1). CONCLUSIONS LC-MS combined with multivariate statistical analysis can effectively screen potential THR/FXa inhibitory components in Danshen.
Collapse
Affiliation(s)
- Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Zhao-Yu Wu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Hao Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Shi-Jun Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Fang-Bo Xia
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People’s Republic of China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, People’s Republic of China
| | - Jian-Li Gao
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053 People’s Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| |
Collapse
|
16
|
Chen L, Wu Q, He T, Lan J, Ding L, Liu T, Wu Q, Pan Y, Chen T. Transcriptomic and Metabolomic Changes Triggered by Fusarium solani in Common Bean ( Phaseolus vulgaris L.). Genes (Basel) 2020; 11:E177. [PMID: 32046085 PMCID: PMC7073522 DOI: 10.3390/genes11020177] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/25/2020] [Accepted: 02/03/2020] [Indexed: 12/29/2022] Open
Abstract
Common bean (Phaseolus vulgaris L.) is a major legume and is frequently attacked by fungal pathogens, including Fusarium solani f. sp. phaseoli (FSP), which cause Fusarium root rot. FSP substantially reduces common bean yields across the world, including China, but little is known about how common bean plants defend themselves against this fungal pathogen. In the current study, we combined next-generation RNA sequencing and metabolomics techniques to investigate the changes in gene expression and metabolomic processes in common bean infected with FSP. There were 29,722 differentially regulated genes and 300 differentially regulated metabolites between control and infected plants. The combined omics approach revealed that FSP is perceived by PAMP-triggered immunity and effector-triggered immunity. Infected seedlings showed that common bean responded by cell wall modification, ROS generation, and a synergistic hormone-driven defense response. Further analysis showed that FSP induced energy metabolism, nitrogen mobilization, accumulation of sugars, and arginine and proline metabolism. Importantly, metabolic pathways were most significantly enriched, which resulted in increased levels of metabolites that were involved in the plant defense response. A correspondence between the transcript pattern and metabolite profile was observed in the discussed pathways. The combined omics approach enhances our understanding of the less explored pathosystem and will provide clues for the development of common bean cultivars' resistant to FSP.
Collapse
Affiliation(s)
- Limin Chen
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Quancong Wu
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Tianjun He
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Jianjun Lan
- Plant Protection Station of Songyang County, Lishui 323400, China;
| | - Li Ding
- Weihai Academy of Agricultural Sciences, No. 411, Tongyi Road, Weihai 311300, China;
| | - Tingfu Liu
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Qianqian Wu
- School of Agricultural and Food Science, Zhejiang A&F University, Hangzhou 311300, China;
| | - Yiming Pan
- Integrated Plant Protection Center, Lishui Institute of Agricultural and Forestry Sciences, 827 Liyang Stress, Lishui 323000, China; (L.C.); (T.H.); (T.L.); (Y.P.)
| | - Tingting Chen
- College of Ecology, Lishui University, Lishui, Zhejiang 323000, China;
| |
Collapse
|