1
|
Long D, Mao C, Zhang W, Zhu Y, Xu Y. Natural products for the treatment of ulcerative colitis: focus on the JAK/STAT pathway. Front Immunol 2025; 16:1538302. [PMID: 40078988 PMCID: PMC11897526 DOI: 10.3389/fimmu.2025.1538302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease with an incompletely understood pathogenesis. The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway plays a key role in immune response and inflammation. More and more studies demonstrated that JAK/STAT signaling pathway is associated with the pathogenesis of UC. The JAK/STAT pathway affects UC in multiple ways by regulating intestinal inflammatory response, affecting intestinal mucosal barrier, modulating T cell homeostasis, and regulating macrophages. Encouragingly, natural products are promising candidates for the treatment of UC. Natural products have the advantage of being multi-targeted and rich in therapeutic modalities. This review summarized the research progress of JAK/STAT pathway-mediated UC. Furthermore, the latest studies on natural products targeting the JAK/STAT pathway for the treatment of UC were systematically summarized, including active ingredients such as arbutin, aloe polysaccharide, berberine, matrine, curcumin, Ginsenoside Rh2, and so on. The aim of this paper is to provide new ideas for drug development to regulate JAK/STAT signaling for treating UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
2
|
Ding XR, Zheng RF, Kaderyea K, Han YL, Wang SB, Xu L, Zeng X, Su WL, Wu LH, Xing JG. Chinese herbal formula Regan Saibisitan alleviates airway inflammation of chronic bronchitis via inhibiting the JAK2/STAT3 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119336. [PMID: 39788165 DOI: 10.1016/j.jep.2025.119336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Regan Saibisitan (RGS) is a classic prescription used to treat cough, pneumonia, and other respiratory infections in Uygur medicine. It is a granule composed of 12 kinds of medicinal materials. However, the mechanism by which RGS regulates lung disease remains unclear. AIM OF THE STUDY Chronic bronchitis (CB) is characterized by persistent, non-specific inflammation in the trachea, bronchial mucosa, and surrounding tissues mainly resulting from infectious or non-infectious factors. This study aimed to explore the function of RGS in alleviating airway inflammation associated with chronic bronchitis, and to examine the mechanisms by which RGS exerts its effects via the JAK 2/STAT 3 signaling pathway. MATERIALS AND METHODS The CB mouse model was established by cigarette smoking (CS) and intranasal administration of lipopolysaccharide (LPS, 20 μg), histological changes of bronchial epithelium, collagen deposition, mucus secretion in lung tissue and inflammatory factors were assayed. Transcriptomics analysis was performed to detect the differentially regulated genes in lung tissue of CB mice treated with RGS. The effect of RGS on JAK 2/STAT 3 pathway was investigated in CB mice and NCI-H292 cells treated with PMA using western blotting, ELISA, and immunohistochemical analysis. RESULTS RGS treatment significantly improved the thickening of bronchial epithelium, decreased collagen deposition and secretion of mucus, and the levels of inflammatory factors in CB mice. Transcriptomics analysis showed that most of 402 differentially expressed genes in RGS-treated CB mice were related to inflammatory response. The results in CB mice and NCI-H292 cells showed that RGS reduced the phosphorylation level of JAK 2 and STAT 3. In addition, the use of JAK 2 inhibitor AG490 confirmed that JAK 2/STAT 3 pathway played a key role in the effects of RGS on CB. CONCLUSIONS RGS suppresses inflammation and improves chronic bronchitis in NCI-H292 cells and CB mice, at least in part, via inhibiting the JAK 2/STAT 3 pathway. This study demonstrated that RGS could be a potential drug in treating CB disease.
Collapse
Affiliation(s)
- Xiao-Rui Ding
- Pharmacy School, Shihezi University, Xinjiang, 832000, China; Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China
| | - Rui-Fang Zheng
- Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China
| | - Kader Kaderyea
- Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China
| | - Yu-Lin Han
- Hetian Uygur Pharmaceutical Co., Ltd, 142 Hanggui Road, Hetian District, 848200, China
| | - Shou-Bao Wang
- Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China; Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Lei Xu
- Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China
| | - Xin Zeng
- Pharmacy School, Shihezi University, Xinjiang, 832000, China; Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China
| | - Wen-Ling Su
- Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China.
| | - Le-He Wu
- Hetian Uygur Pharmaceutical Co., Ltd, 142 Hanggui Road, Hetian District, 848200, China.
| | - Jian-Guo Xing
- Pharmacy School, Shihezi University, Xinjiang, 832000, China; Xinjiang Key Laboratory of Uygur Medicine, Xinjiang Institute of Materia Medica, Xinjiang, 830000, China.
| |
Collapse
|
3
|
Huang H, Guan J, Feng C, Feng J, Ao Y, Lu C. Fluid volume status detection model for patients with heart failure based on machine learning methods. Heliyon 2025; 11:e41127. [PMID: 39811339 PMCID: PMC11729653 DOI: 10.1016/j.heliyon.2024.e41127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Backgroud Fluid volume abnormalities are a major cause of exacerbations in heart failure patients. However, there is few efficient, rapid, or cost-effective clinical approach for determining volume status, resulting in inadequate or unsatisfactory treatment. The aim was to develop an early fluid volume detection model for heart failure patients utilizing a machine learning stratification. Methods The training set data collected by Tianjin Chest Hospital on heart failure patients from December 2016 to December 2021, included 2056 samples and 97 medical characteristics. The minimum Redundancy Maximum Relevance(mRMR) feature selection method was utilized to filter features that were strongly related to the patient's fluid volume status. Four machine learning classification models were used to predict patients' fluid volume status, and their effectiveness was measured using the receiver operating characteristic (ROC) area under the curve (AUC), calibration curve, accuracy, precision, recall, F1 score, specificity, and sensitivity. Data from 186 heart failure patients collected between January 2022 and July 2022 were employed as an external validation set to investigate the effects of model training. SHapley Additive exPlanations (SHAP) were used to interpret the ML models. Results Thirty features were selected for model development, and the area under the ROC curve AUC (95 % CI) for the four machine learning models in the testing set was 0.75 (0.73-0.77), 0.77 (0.74-0.79), 0.70 (0.67-0.73), and 0.76 (0.73-0.78), and the AUC (95 % CI) in the external validation set was 0.74 (0.71-0.76), 0.70 (0.67-0.73), 0.64 (0.59-0.68), and 0.67 (0.63-0.71). Logistic regression models were globally interpreted using SHAP-based summary plots. Conclusions Machine learning methods are effective in detecting fluid volume status in heart failure patients and can assist physicians with assisted diagnosis, thus helping clinicians to tailor precise management.
Collapse
Affiliation(s)
- Haozhe Huang
- School of Mathematics, Tianjin University, Tianjin, 300350, China
| | - Jing Guan
- School of Mathematics, Tianjin University, Tianjin, 300350, China
| | - Chao Feng
- Department of Cardiology, Tianjin University Chest Hospital, Tianjin, 300222, China
| | - Jinping Feng
- Tianjin Key Laboratory of Cardiovascular Emergencies and Critical Diseases, Tianjin, 300222, China
| | - Ying Ao
- Chest Clinical College of Tianjin Medical University, Tianjin, 300270, China
| | - Chen Lu
- Chest Clinical College of Tianjin Medical University, Tianjin, 300270, China
| |
Collapse
|
4
|
Yao Q, Wen J, Chen S, Wang Y, Wen X, Wang X, Li C, Zheng C, Li J, Ma Z, Zhan X, Xiao X, Bai Z. Shuangdan Jiedu Decoction improved LPS-induced acute lung injury by regulating both cGAS-STING pathway and inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118661. [PMID: 39159837 DOI: 10.1016/j.jep.2024.118661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangdan Jiedu Decoction (SJD) is a formula composed of six Chinese herbs with heat-removing and detoxifying, antibacterial, and anti-inflammatory effects, which is clinically used in the therapy of various inflammatory diseases of the lungs including COVID-19, but the therapeutic material basis of its action as well as its molecular mechanism are still unclear. AIM OF THE STUDY The study attempted to determine the therapeutic effect of SJD on LPS-induced acute lung injury (ALI), as well as to investigate its mechanism of action and assess its therapeutic potential for the cure of inflammation-related diseases in the clinical setting. MATERIALS AND METHODS We established an ALI model by tracheal drip LPS, and after the administration of SJD, we collected the bronchoalveolar lavage fluid (BALF) and lung tissues of mice and examined the expression of inflammatory factors in them. In addition, we evaluated the effects of SJD on the cyclic guanosine monophosphate-adenosine monophosphate synthase -stimulator of interferon genes (cGAS-STING) and inflammasome by immunoblotting and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS We demonstrated that SJD was effective in alleviating LPS-induced ALI by suppressing the levels of pro-inflammatory cytokines in the BALF, improving the level of lung histopathology and the number of neutrophils, as well as decreasing the inflammatory factor-associated gene expression. Importantly, we found that SJD could inhibit multiple stimulus-driven activation of cGAS-STING and inflammasome. Further studies showed that the Chinese herbal medicines in SJD had no influence on the cGAS-STING pathway and inflammasome alone at the formulated dose. By increasing the concentration of these herbs, we observed inhibitory effects on the cGAS-STING pathway and inflammasome, and the effect exerted was maximal when the six herbs were combined, indicating that the synergistic effects among these herbs plays a crucial role in the anti-inflammatory effects of SJD. CONCLUSIONS Our research demonstrated that SJD has a favorable protective effect against ALI, and its mechanism of effect may be associated with the synergistic effect exerted between six Chinese medicines to inhibit the cGAS-STING and inflammasome abnormal activation. These results are favorable for the wide application of SJD in the clinic as well as for the development of drugs for ALI from herbal formulas.
Collapse
Affiliation(s)
- Qing Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Jincai Wen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Simin Chen
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Yan Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xinru Wen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Xianling Wang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Chengwei Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Congyang Zheng
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Junjie Li
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China
| | - Zhijie Ma
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, PR China
| | - Xiaoyan Zhan
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Xiaohe Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| | - Zhaofang Bai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, PR China; Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing, 100700, PR China; National Key Laboratory of Kidney Diseases, Beijing 100005, PR China.
| |
Collapse
|
5
|
Zhou C, Peng B, Zhang M, Yang Y, Yi Z, Wu Y. Ganjiang Huangqin Huanglian Renshen Decoction protects against ulcerative colitis by modulating inflammation, oxidative stress, and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156172. [PMID: 39471735 DOI: 10.1016/j.phymed.2024.156172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a disease that is difficult to treat and has been associated with high rates of recurrence. Moreover, the current medications for UC induce serious side effects following prolonged use. Ganjiang Huangqin Huanglian Renshen Decoction (GJHQHLRSD), has been traditionally used to treat UC. However, its protective mechanisms have not been fully studied. PURPOSE In this study the mechanisms by which GJHQHLRSD treats UC was investigated. METHODS The GJHQHLRSD and GJHQHLRSD drug-containing serum (GJHQHLRSD-DS) were characterized using LC-MS/MS. The therapeutic effect of GJHQHLRSD on dextran sodium sulfate (DSS)-induced UC was explored by assessing various parameters including intestinal flora 16S rRNA, intestinal barrier function, oxidative stress (OS) response, inflammatory cytokines, colonic histopathological injury, colon length, disease activity index (DAI) and body weight. RESULTS Treatment with GJHQHLRSD increased body weight, ameliorated colon length shortening and edema, reduced the DAI score, improved the pathological injury, down-regulated the levels of IL-1β, IL-6, IL-8, TNF-α, LPS, LDH, TLR4, and NLRP3, and up-regulated the ZO-1 and Occludin levels in UC mice. It also decreased intestinal oxidative stress in UC mice and improved mitogenic activity by modulating mitochondrial ultrastructure as well as the expression level of PINK1, LC3-II/Ⅰ, Beclin-1, p62, and Parkin proteins. In addition, we found that the effects of GJHQHLRSD on UC mice were inhibited by 3-MA.GJHQHLRSD treatment reduced the imbalance of intestinal flora in UC mice, by regulating the inflammation and oxidative stress. CONCLUSION These findings suggested that GJHQHLRSD effectively attenuated inflammatory responses, inhibited the TLR4/NF-κB/NLRP3 signalling, oxidative stress, and modulated the gut microbiota, and alleviated the DSS-induced UC symptoms, making it a promising and innovative therapeutic option for the treatment of UC.
Collapse
Affiliation(s)
- Ce Zhou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Bo Peng
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Mingxing Zhang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yang Yang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Zelin Yi
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yinghua Wu
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| |
Collapse
|
6
|
Zhou M, Chen Y, Jin W, Li P, Hu J, Guo X. Traditional Chinese Medicine: A Promising Treatment Option for Intestinal Fibrosis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:2107-2129. [PMID: 39581857 DOI: 10.1142/s0192415x24500812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Intestinal fibrosis, a common complication of inflammatory bowel disease, in particular in Crohn's disease, arises from chronic inflammation, leading to intestinal narrowing, structural damage, and functional impairment that significantly impact patients' quality of life. Current treatment options for intestinal fibrosis are limited, with surgery being the primary intervention. Traditional Chinese Medicine (TCM) has emerged as a promising approach in preventing and treating intestinal fibrosis. However, there is a scarcity of literature summarizing the mechanisms underlying TCM's efficacy in this context. To address this gap, we conducted a comprehensive review, uncovering multiple mechanisms through which TCM mitigates intestinal fibrosis. These mechanisms include immune cell balance regulation, suppression of inflammatory responses, reduction of inflammatory mediators, alleviation of colon tissue damage, restoration of intestinal function, modulation of growth factors to inhibit fibroblast activation, dynamic regulation of TIMPs and MMPs to reduce extracellular matrix deposition, inhibition of epithelial-mesenchymal transition and endothelial-mesenchymal transition, autophagy modulation, maintenance of the intestinal mucosal barrier, prevention of tissue damage by harmful factors, and regulation of cell proliferation and apoptosis. This study aims to bridge existing knowledge gaps by presenting recent evidence supporting the utilization of TCM in both clinical and experimental research settings.
Collapse
Affiliation(s)
- Meng'en Zhou
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Yan Chen
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wenqi Jin
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Peng Li
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Jie Hu
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Xiutian Guo
- Department of Anorectal, Shanghai Municipal, Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
7
|
Jin Z, Lan Y, Li J, Wang P, Xiong X. The role of Chinese herbal medicine in the regulation of oxidative stress in treating hypertension: from therapeutics to mechanisms. Chin Med 2024; 19:150. [PMID: 39468572 PMCID: PMC11520704 DOI: 10.1186/s13020-024-01022-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Although the pathogenesis of essential hypertension is not clear, a large number of studies have shown that oxidative stress plays an important role in the occurrence and development of hypertension and target organ damage. PURPOSE This paper systematically summarizes the relationship between oxidative stress and hypertension, and explores the potential mechanisms of Chinese herbal medicine (CHM) in the regulation of oxidative stress in hypertension, aiming to establish a scientific basis for the treatment of hypertension with CHM. METHODS To review the efficacy and mechanism by which CHM treat hypertension through targeting oxidative stress, data were searched from PubMed, EMBASE, the Cochrane Central Register of Controlled Trials, the Chinese National Knowledge Infrastructure, the VIP Information Database, the Chinese Biomedical Literature Database, and the Wanfang Database from their inception up to January 2024. NPs were classified and summarized by their mechanisms of action. RESULTS In hypertension, the oxidative stress pathway of the body is abnormally activated, and the antioxidant system is inhibited, leading to the imbalance between the oxidative and antioxidative capacity. Meanwhile, excessive production of reactive oxygen species can lead to endothelial damage and vascular dysfunction, resulting in inflammation and immune response, thereby promoting the development of hypertension and damaging the heart, brain, kidneys, blood vessels, and other target organs. Numerous studies suggested that inhibiting oxidative stress may be the potential therapeutic target for hypertension. In recent years, the clinical advantages of traditional Chinese medicine (TCM) in the treatment of hypertension have gradually attracted attention. TCM, including active ingredients of CHM, single Chinese herb, TCM classic formula and traditional Chinese patent medicine, can not only reduce blood pressure, improve clinical symptoms, but also improve oxidative stress, thus extensively affect vascular endothelium, renin-angiotensin-aldosterone system, sympathetic nervous system, target organ damage, as well as insulin resistance, hyperlipidemia, hyperhomocysteinemia and other pathological mechanisms and hypertension related risk factors. CONCLUSIONS CHM display a beneficial multi-target, multi-component, overall and comprehensive regulation characteristics, and have potential value for clinical application in the treatment of hypertension by regulating the level of oxidative stress.
Collapse
Affiliation(s)
- Zixuan Jin
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Yu Lan
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Junying Li
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China
| | - Pengqian Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingjiang Xiong
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, No.5 Beixian Ge, Xicheng District, Beijing, 100053, China.
| |
Collapse
|
8
|
Yu G, Cheng W, Tu X, Zhang M, Li H, Nie J. [Therapeutic mechanism of Cynanchum wilfordii for ulcerative colitis: an analysis using UPLC-QE-MS, network pharmacology and metabolomics]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1485-1496. [PMID: 39276044 PMCID: PMC11378042 DOI: 10.12122/j.issn.1673-4254.2024.08.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To explore the targets and pathways of Cynanchum wilfordii for treatment of ulcerative colitis (UC). METHODS UPLC-QE-MS was used to identify the components of Cynanchum wilfordii ethanol extract, and their targets were screened using public databases for construction of the core protein-protein interaction (PPI) network and GO and KEGG enrichment analyses. Forty male C57 mice were randomized into normal control group, model group, mesalazine group and Cynanchum wilfordii group (n=10), and in the latter 3 groups, mouse UC models were established by treatment with 2.5% DSS and the latter 2 groups drug interventions by gavage. The therapeutic effect was evaluated by recording body weight changes and DAI score. Pathological changes of the colon tissue were observed with HE and AB-PAS staining, and JAK2 and STAT3 protein expressions were detected with Western blotting. The metabolites and metabolic pathways were identified by metabonomics analysis. RESULTS We identified 240 chemical components in Cynanchum wilfordii alcoholic extracts, including 19 steroids. A total of 177 Cynanchum wilfordii targets, 5406 UC genes, and 117 intersection genes were obtained. JAK2 and STAT3 were the core targets and significantly enriched in lipid and atherosclerosis pathways. Cynanchum wilfordii treatment significantly increased the body weight and decreased DAI score of UC mice (P < 0.05), alleviated intestinal pathologies, and decreased JAK2 and STAT3 protein expressions in the colon tissues. Most of the 83 intersecting differential metabolites between the control, model and Cynanchum wilfordii groups were identified as glycerophospholipids, arachidonic acid, and amino acids involving glycerophospholipid metabolism and other pathways. Correlation analysis suggested that the core targets of Cynanchum wilfordii for UC participated in regulation of the metabolites. CONCLUSION Cynanchum wilfordii alleviates lipid and amino acid metabolism disorders to lessen UC in mice by regulating the core targets including JAK2 and STAT3 and the levels of endogenous metabolites.
Collapse
Affiliation(s)
- G Yu
- Chinese Medicinal Materials Products Quality Supervision and Inspection Center in Wuling Mountainous Area, Hubei Minzu University, Enshi 445000, China
- Health Science Center, Hubei Minzu University, Enshi 445000, China
| | - W Cheng
- Health Science Center, Hubei Minzu University, Enshi 445000, China
| | - X Tu
- Chinese Medicinal Materials Products Quality Supervision and Inspection Center in Wuling Mountainous Area, Hubei Minzu University, Enshi 445000, China
| | - M Zhang
- Health Science Center, Hubei Minzu University, Enshi 445000, China
| | - H Li
- Chinese Medicinal Materials Products Quality Supervision and Inspection Center in Wuling Mountainous Area, Hubei Minzu University, Enshi 445000, China
- Health Science Center, Hubei Minzu University, Enshi 445000, China
| | - J Nie
- Health Science Center, Hubei Minzu University, Enshi 445000, China
| |
Collapse
|
9
|
Cui Y, Cui M, Wang L, Wang N, Chen Y, Lv S, Zhang L, Chen C, Yang Y, Wang F, Wang L, Cui H. Huanglian Jiedu decoction alleviates ischemia-induced cerebral injury in rats by mitigating NET formation and activiting GABAergic synapses. J Cell Mol Med 2024; 28:e18528. [PMID: 39099086 PMCID: PMC11298410 DOI: 10.1111/jcmm.18528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 08/06/2024] Open
Abstract
Huanglian Jiedu decoction (HLJD) has been used to treat ischemic stroke in clinic. However, the detailed protective mechanisms of HLJD on ischemic stroke have yet to be elucidated. The aim of this study is to elucidate the underlying pharmacological mechanisms of HLJD based on the inhibition of neuroinflammation and the amelioration of nerve cell damage. A middle cerebral artery occlusion reperfusion (MCAO/R) model was established in rats and received HLJD treatment. Effects of HLJD on neurological function was assessed based on Bederson's score, postural reflex test and asymmetry score. 2, 3, 5-Triphenyltetrazolium chloride (TTC) staining, Hematein and eosin (HE) and Nissl staining were used to observe the pathological changes in brain. Then, transcriptomics was used to screen the differential genes in brain tissue in MCAO/R model rats following HLJD intervention. Subsequently, the effects of HLJD on neutrophil extracellular trap (NET) formation-related neuroinflammation, gamma-aminobutyric acid (GABA)ergic synapse activation, nerve cell damage and proliferation were validated using immunofluorescence, western blot and enzyme-linked immunosorbent assay (ELISA). Our results showed that HLJD intervention reduced the Bederson's score, postural reflex test score and asymmetry score in MCAO/R model rats. Pathological staining indicated that HLJD treatment decreased the cerebral infarction area, mitigated neuronal damage and increased the numbers of Nissl bodies. Transcriptomics suggested that HLJD affected 435 genes in MCAO/R rats. Among them, several genes involving in NET formation and GABAergic synapses pathways were dysregulated. Subsequent experimental validation showed that HLJD reduced the MPO+CitH3+ positive expression area, reduced the protein expression of PAD4, p-P38/P38, p-ERK/ERK and decreased the levels of IL-1β, IL-6 and TNF-α, reversed the increase of Iba1+TLR4+, Iba1+p65+ and Iba1+NLRP3+ positive expression area in brain. Moreover, HLJD increased GABA levels, elevated the protein expression of GABRG1 and GAT3, decreased the TUNEL positive expression area and increased the Ki67 positive expression area in brain. HLJD intervention exerts a multifaceted positive impact on ischemia-induced cerebral injury in MCAO/R rats. This intervention effectively inhibits neuroinflammation by mitigating NET formation, and concurrently improves nerve cell damage and fosters nerve cell proliferation through activating GABAergic synapses.
Collapse
Affiliation(s)
- Youxiang Cui
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Mingyue Cui
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Leilei Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Ning Wang
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Yao Chen
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| | - Shuquan Lv
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Limin Zhang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Congai Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Yanwen Yang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Feng Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Lichun Wang
- Key Laboratory of Neurological RehabilitationCangzhou Hospital of Integrated Traditional Chinese Medicine and Western MedicineCangzhouChina
| | - Huantian Cui
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| |
Collapse
|
10
|
Xie Y, Gong S, Wang L, Yang Z, Yang C, Li G, Zha H, Lv S, Xiao B, Chen X, Di Z, He Q, Wang J, Weng Q. Unraveling the treatment effects of huanglian jiedu decoction on drug-induced liver injury based on network pharmacology, molecular docking and experimental validation. BMC Complement Med Ther 2024; 24:219. [PMID: 38849824 PMCID: PMC11157734 DOI: 10.1186/s12906-024-04517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Huanglian Jiedu Decoction (HJD) is a well-known Traditional Chinese Medicine formula that has been used for liver protection in thousands of years. However, the therapeutic effects and mechanisms of HJD in treating drug-induced liver injury (DILI) remain unknown. In this study, a total of 26 genes related to both HJD and DILI were identified, which are corresponding to a total of 41 potential active compounds in HJD. KEGG analysis revealed that Tryptophan metabolism pathway is particularly important. The overlapped genes from KEGG and GO analysis indicated the significance of CYP1A1, CYP1A2, and CYP1B1. Experimental results confirmed that HJD has a protective effect on DILI through Tryptophan metabolism pathway. In addition, the active ingredients Corymbosin, and Moslosooflavone were found to have relative strong intensity in UPLC-Q-TOF-MS/MS analysis, showing interactions with CYP1A1, CYP1A2, and CYP1B1 through molecule docking. These findings could provide insights into the treatment effects of HJD on DILI.
Collapse
Affiliation(s)
- Yaochen Xie
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Shuchen Gong
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingkun Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Zhaoxu Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Chen Yang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Guilin Li
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Huiyan Zha
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Shuying Lv
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Boneng Xiao
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyu Chen
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
| | - Zhenning Di
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China
- ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, Zhejiang, China
- Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jincheng Wang
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China.
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China.
- Beijing Life Science Academy, Beijing, 102200, China.
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, Zhejiang Province Key Laboratory of Anti- Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310007, China.
- Taizhou Institute of Zhejiang University, Taizhou, 318000, China.
- ZJU-Xinchang Joint Innovation Center (TianMu Laboratory), Gaochuang Hi-Tech Park, Xinchang, 312500, Zhejiang, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Wen C, Chen D, Zhong R, Peng X. Animal models of inflammatory bowel disease: category and evaluation indexes. Gastroenterol Rep (Oxf) 2024; 12:goae021. [PMID: 38634007 PMCID: PMC11021814 DOI: 10.1093/gastro/goae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024] Open
Abstract
Inflammatory bowel disease (IBD) research often relies on animal models to study the etiology, pathophysiology, and management of IBD. Among these models, rats and mice are frequently employed due to their practicality and genetic manipulability. However, for studies aiming to closely mimic human pathology, non-human primates such as monkeys and dogs offer valuable physiological parallels. Guinea pigs, while less commonly used, present unique advantages for investigating the intricate interplay between neurological and immunological factors in IBD. Additionally, New Zealand rabbits excel in endoscopic biopsy techniques, providing insights into mucosal inflammation and healing processes. Pigs, with their physiological similarities to humans, serve as ideal models for exploring the complex relationships between nutrition, metabolism, and immunity in IBD. Beyond mammals, non-mammalian organisms including zebrafish, Drosophila melanogaster, and nematodes offer specialized insights into specific aspects of IBD pathology, highlighting the diverse array of model systems available for advancing our understanding of this multifaceted disease. In this review, we conduct a thorough analysis of various animal models employed in IBD research, detailing their applications and essential experimental parameters. These include clinical observation, Disease Activity Index score, pathological assessment, intestinal barrier integrity, fibrosis, inflammatory markers, intestinal microbiome, and other critical parameters that are crucial for evaluating modeling success and drug efficacy in experimental mammalian studies. Overall, this review will serve as a valuable resource for researchers in the field of IBD, offering insights into the diverse array of animal models available and their respective applications in studying IBD.
Collapse
Affiliation(s)
- Changlin Wen
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Dan Chen
- Acupuncture and Moxibustion School of Teaching, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, P. R. China
| | - Rao Zhong
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| | - Xi Peng
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
12
|
Wang T, Liu X, Zhang W, Wang J, Wang T, Yue W, Ming L, Cheng J, Sun J. Traditional Chinese medicine treats ulcerative colitis by regulating gut microbiota, signaling pathway and cytokine: Future novel method option for pharmacotherapy. Heliyon 2024; 10:e27530. [PMID: 38501018 PMCID: PMC10945194 DOI: 10.1016/j.heliyon.2024.e27530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Background Ulcerative colitis (UC) is a chronic non-specific inflammatory disease with intestinal tract as the main site. The pathogenic of UC has not yet been clarified, and multiple mechanisms can lead to the pathogenesis of UC. Traditional Chinese medicine (TCM) offers an opportunity for UC treatment. TCM has become the preferred treatment for UC with characteristics of multiple targets, multiple pathways and high safety. This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for UC treatment and discussed their pathogenesis based on analyzing the UC-related gut microbiota, signaling pathway and cytokine. In order to provide more systematic and diverse reference for TCM in the prevention and treatment of UC, and provide theoretical reference for clinical treatment of UC. Materials and methods The information was acquired from different databases, including Web of Science, PubMed, CNKI, Wanfang, and VIP databases. We then focused on the recent research progress in UC treatment by TCM. Finally, the deficiencies and future perspectives are proposed. Results Modern pharmacological studies have shown that the compound prescriptions (strengthening spleen, clearing heat and removing dampness, clearing heat and removing toxin), single Chinese herbs (replenishing Qi, clearing heat, tonifying blood, etc.), and active ingredients (alkaloids, polysaccharides, flavonoids, polyphenols, terpenes, etc.) have an efficiency in UC treatment by regulating gut microbiota, signaling pathway and cytokine. Conclusions TCM can achieve its purpose of UC prevention and treatment by acting in multiple ways, and TCM deserves further research and development in this field.
Collapse
Affiliation(s)
- Tiancheng Wang
- College of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xinyue Liu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Weijie Zhang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Jing Wang
- Department of Accounting, Hongshan College, Nanjing University of Finance and Economics, Nanjing, 210003, China
| | - Tingting Wang
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Wei Yue
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Lan Ming
- Yancheng Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, 224000, China
| | - Jun Cheng
- Department of Infectious Diseases, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Juan Sun
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| |
Collapse
|
13
|
Han J, Wu P, Xu Z, Liu C, Chen Q, Zhang F, Tao H, Luo D, Zhou L, Wang B, Gao Z, Shen T, Wen Y, Yu H. The anti-cholestatic effects of Coptis chinensis Franch. alone and combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley: dual effects on fecal metabolism and microbial diversity. Front Pharmacol 2024; 15:1372527. [PMID: 38523644 PMCID: PMC10957555 DOI: 10.3389/fphar.2024.1372527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: Drug dosages and combinations are the main factors that affect the efficacy of pleiotropic traditional Chinese medicine (TCM). Coptis chinensis Franch. (CF) is a representative TCM with multiple effects and is often combined with Tetradium ruticarpum (A. Jussieu) T. G. Hartley (TR) to treat cholestasis. The present study assessed the influence of CF dose and its combination with TR on the efficacy of CF in cholestasis treatment, including their effects on fecal metabolism and fecal microorganisms. Methods: Rats with α-naphthylisothiocyanate (ANIT, 50 mg/kg)-induced cholestasis were administered low (0.3 g/kg) and high (0.6 g/kg) doses of CF, as well as CF combined with TR at doses of 0.6 g/kg and 0.9 g/kg, respectively. The anti-cholestatic effects of these treatments were assessed by determining their anti-inflammatory, hypolipidemic, and anti-oxidative stress properties. Additionally, fecal metabolomics and fecal microorganisms were analyzed. Results: Low dose CF had a more potent hypolipidemic effect than high dose CF, whereas high dose CF had more potent anti-inflammatory and anti-oxidative stress effects. Combination with TR enhanced the hypolipidemic effect, but antagonized the anti-inflammatory effect, of CF. Analyses of fecal metabolomics and fecal microorganisms showed differences in the regulation of lipid- and amino acid metabolism-related pathways, including pathways of linoleic acid, tyrosine, and arachidonic acid metabolism, and amino acid biosynthesis between different doses of CF as well as between different doses of CF in combination with TR. These differences may contribute to differences in the anti-cholestatic effects of these preparations. Conclusion: CF dose influences its anti-cholestatic efficacy. The combination with TR had synergistic or antagonistic effects on the properties of CF, perhaps by altering fecal metabolism and fecal microbial homeostasis.
Collapse
Affiliation(s)
- Jun Han
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peijie Wu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongying Xu
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chao Liu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Chen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fenghua Zhang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Tao
- Cangxi Traditional Chinese Medicine Hospital, Guangyuan, China
| | - Dan Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bo Wang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhe Gao
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueqiang Wen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Han Yu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
14
|
He YX, Li YY, Wu YQ, Ren LZ, Wang Y, Wang YM, Yu Y. Huanglian Ganjiang decoction alleviates ulcerative colitis by restoring gut barrier via APOC1-JNK/P38 MAPK signal pathway based on proteomic analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116994. [PMID: 37541400 DOI: 10.1016/j.jep.2023.116994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a kind of chronic intestinal inflammation accompanied with abdominal pain, diarrhea and hematochezia. Huanglian Ganjiang decoction (HGD) derived from "Beiji Qianjin Yao Fang" was used for UC patients clinically. However, the specific mechanism of HGD in treating UC remain unclear. AIM OF STUDY Our study devoted to demonstrating the therapeutic effect of HGD for colitis and clarifying the underlying mechanism. MATERIALS AND METHODS UPLC-MS was carried out to identify the ingredients of HGD. UC mice were induced by giving 3% dextran sulfate sodium (DSS) solution for one week and treated by HGD for another week. Body weight fluctuation, disease activity index (DAI), colon length and pathological change of colon tissues were observed to evaluate therapeutical effect of HGD. ELISA and qPCR were carried out to estimate the inflammatory state. Western blot, qPCR and immunofluorescence were used to access the expression of tight junction proteins. Tandem mass tag (TMT)-Based proteomics and network pharmacology was launched to screen and predict the potential targets and pathway regulated by HGD. RESULTS Based on the UPLC-MS/MS analysis, 100 components were identified in HGD. After 7-day treatment, HGD significantly alleviated colitis-associated symptoms including body weight loss, shorted colon, increase of DAI score, histopathologic lesions. HGD also reduced inflammatory cytokines IL-6 and IL-1β levels, increased the number of goblet cells and restored tight junction proteins Occludin, Claudin-1 in colon. Network pharmacology study predicted that tight junction and MAPK pathway might be affected by HGD in colitis mice. APOC1 was screened out as key target in HGD-treated mice using TMT-based proteomics study. Further Western blot results showed that HGD reduced expressions of APOC1, p-P38 and p-JNK. CONCLUSION HGD improves general symptoms of colitis mice at medium and high doses, which may be associated with restoring tight junction and intestinal barrier integrity and function through suppression of APOC1-JNK/P38 MAPK signal pathway.
Collapse
Affiliation(s)
- Yue-Xian He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yan-Yang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ye-Qun Wu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Ling-Zhi Ren
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yi Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China
| | - Yu-Mei Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong Province, China.
| |
Collapse
|
15
|
Duan B, Hu Q, Ding F, Huang F, Wang W, Yin N, Liu Z, Zhang S, He D, Lu Q. The effect and mechanism of Huangqin-Baishao herb pair in the treatment of dextran sulfate sodium-induced ulcerative colitis. Heliyon 2023; 9:e23082. [PMID: 38144295 PMCID: PMC10746484 DOI: 10.1016/j.heliyon.2023.e23082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/03/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Background The haungqing (Scutellariae Radix) and baishao (Paeoniae Radix Alba) herb pair (HBHP) is a common prescribed herbal formula or is added to other traditional Chinese medicine (TCM) prescriptions to treat ulcerative colitis (UC). However, the underlying mechanism is unclear. Purpose Elucidate the efficacy and potential mechanism of HBHP against UC. Methods First, The UC model of mice induced by dextran sulfate sodium (DSS) was established. The mice were randomly divided into Control group, DSS group, SASP group (390 mg/kg), and HPHP group (1.95 g/kg), with 8 mice per group. Drugs were administrated via oral gavage for 7 days. Then, Disease activity index (DAI), length of the colon, histopathology, and changes in inflammatory cytokines in colonic tissues were analyzed to assess the effect of HBHP on UC. Besides, Network pharmacology was applied to identify the active compounds, core targets of HBHP in the treatment of UC, and the corresponding signaling pathways to explore the underlying mechanisms. Finally, Western blot (WB), immunohistochemistry (IHC) and molecular docking were performed to validate the results. Results HBHP significantly reduced DAI score and decreased colon length shortening in DSS-induced UC mice. The administration of HBHP was able to effectively alleviated mucosal ulceration and epithelial destruction. In addition, HBHP treatment obviously - reduced the expressions of TNF-α, IL-6, and IL-1β in colon tissues (p < 0.05 or p < 0.01). 35 bioactive compounds and 290 HBHP targets related to UC were obtained. Among them 3 key active compounds (baicalein, panicolin, and norwogonin) with higher degree values in the drug-compound-target network and 21 hub genes (STAT3, JAK2, SRC, AKT1, PIK3CA, and VEGFA, etc.) were identified. KEGG enrichment analysis suggested that HBHP's mechanisms mainly involve the JAK-STAT pathway. Abnormal activation of JAK/STAT signaling is believed to be involved in the pathogeneses of UC. Notably, WB and IHC showed that HBHP significantly down-regulated the protein expression levels of p-JAK2 (p < 0.05) and p-STAT3 (p < 0.05 or p < 0.01). JAK2 and STAT3 might be core targets for the action of HBHP; this possibility was also supported by molecular docking. Conclusions HBHP could alleviate DSS-induced UC, reduce tissue inflammation, and its mechanism might primarily be achieved by inhibiting JAK2/STAT3 signaling pathway. Meanwhile, our work revealed that network pharmacology combined with experimental verification is a cogent means of studying the mechanism of TCM.
Collapse
Affiliation(s)
- Bailu Duan
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qiong Hu
- First People's Hospital of Jiangxia District, Wuhan City & Union Jiangnan Hospital, HUST, Wuhan, 430200, China
| | - Fengmin Ding
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Wei Wang
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- Department of Orthopedics, Hubei Provincial Hospital of TCM Affiliated to Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Nina Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhe Liu
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Song Zhang
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| | - Dongchu He
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| | - Qiping Lu
- Postdoctoral Research Station, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
- Department of General Surgery, General Hospital of Central Theater Command of PLA, Wuhan, 430070, China
| |
Collapse
|
16
|
Xu M, Yue Y, Huang J. Efficacy evaluation and metabolomics analysis of Huanglian Jiedu decoction in combination with donepezil for Alzheimer's disease treatment. J Pharm Biomed Anal 2023; 235:115610. [PMID: 37542831 DOI: 10.1016/j.jpba.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Alzheimer's disease (AD) is a progressive disease with continuous brain changes and has caused a severe burden on families and society. Huanglian Jiedu Decoction (HLJD) is a classic traditional Chinese medicine formula that can improve AD animals' cognitive impairment. This study recruited 50 AD patients who were divided into two groups, one receiving donepezil (DON) treatment and the other receiving DON + HLJD treatment for 3 months. The curative effect, inflammatory and oxidative stress levels were analyzed. The PES-D/11, MMSE, and ADL scales were used to evaluate traditional Chinese medicine syndrome elements, cognitive function, mental state, and life ability. There were no significant differences between the two groups in baseline characteristics and vital sign indicators. After drug treatment, the results showed that AD patients with HLJD combined with DON treatment didn't increase the adverse effects and had good compliance. HLJD combined with DON could improve the disease syndrome, making the differences in PES-D/11, MMSE, and ADL scores before and after the intervention larger. Furthermore, both DON and DON+HLJD treatment inhibited the levels of IL-6, IL-1β, TNF-α, and MDA, raised SOD level, and HLJD enhances the inhibitory effect of DON on inflammation and oxidative stress. IL-6, IL-1β, TNF-α, and MDA levels were significantly correlated with curative effect. Moreover, this study found 107 (206) up-regulated metabolites and 1430 (145) down-regulated metabolites in urine (serum) and conducted differential metabolite screening and correlation analysis suggesting that HLJD may interfere with oxidative stress and inflammation in AD by regulating lipid metabolism and glutamic acid metabolism. Arachidonic acid, diaminopimelic acid, and 1-Aminocyclopropanecarboxylic acid may play an important role in HLJD to improve AD.
Collapse
Affiliation(s)
- Manfei Xu
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang 310000, China.
| | - Yuebing Yue
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang 310000, China.
| | - Jie Huang
- Department of Geriatrics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No. 318 Chaowang Road, Hangzhou, Zhejiang 310000, China.
| |
Collapse
|
17
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
18
|
Xu YY, Zhu M, Wu J, Luo LB, Dong SJ, Zhang MG, Liu X, Wang K, Luo H, Jing WH, Wang L, Wang SC. A mannitol-modified emodin nano-drug restores the intestinal barrier function and alleviates inflammation in a mouse model of DSS-induced ulcerative colitis. Chin Med 2023; 18:98. [PMID: 37568235 PMCID: PMC10416390 DOI: 10.1186/s13020-023-00801-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/14/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is an inflammatory disease of the colon that is characterized by mucosal ulcers. Given its increasing prevalence worldwide, it is imperative to develop safe and effective drugs for treating UC. Emodin, a natural anthraquinone derivative present in various medicinal herbs, has demonstrated therapeutic effects against UC. However, low bioavailability due to poor water solubility limits its clinical applications. METHODS Emodin-borate nanoparticles (EmB) were synthesized to improve drug solubility, and they modified with oligomeric mannitol into microgels (EmB-MO) for targeted delivery to intestinal macrophages that express mannose receptors. UC was induced in a mouse model using dextran sulfate sodium (DSS), and different drug formulations were administered to the mice via drinking water. The levels of inflammation-related factors in the colon tissues and fecal matter were measured using enzyme-linked immunosorbent assay. Intestinal permeability was evaluated using fluorescein isothiocyanate dextran. HE staining, in vivo imaging, real-time PCR, and western blotting were performed to assess intestinal barrier dysfunction. RESULTS Both EmB and EmB-MO markedly alleviated the symptoms of UC, including body weight loss, stool inconsistency, and bloody stools and restored the levels of pro- and anti-inflammatory cytokines. However, the therapeutic effects of EmB-MO on the macroscopic and immunological indices were stronger than those of EmB and similar to those of 5-aminosalicylic acid. Furthermore, EmB-MO selectively accumulated in the inflamed colon epithelium and restored the levels of the gut barrier proteins such as ZO-1 and Occludin. CONCLUSIONS EmB-MO encapsulation significantly improved water solubility, which translated to greater therapeutic effects on the immune balance and gut barrier function in mice with DSS-induced UC. Our findings provide novel insights into developing emodin-derived drugs for the management of UC.
Collapse
Affiliation(s)
- Yin-Yue Xu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Min Zhu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Jiang Wu
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Long-Biao Luo
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Si-jing Dong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Meng-Gai Zhang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Xue Liu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
| | - Hua Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wang-Hui Jing
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| | - Lin Wang
- College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100 Shaanxi China
- State Key Laboratory of Molecular Engineering of Polymers (Fudan University), Shanghai, 200438 China
| | - Si-Cen Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, 710061 China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening and Analysis, Xi’an, 710061 China
| |
Collapse
|
19
|
Gan F, Lin Z, Tang J, Chen X, Huang K. Deoxynivalenol at No-Observed Adverse-Effect Levels Aggravates DSS-Induced Colitis through the JAK2/STAT3 Signaling Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4144-4152. [PMID: 36847760 DOI: 10.1021/acs.jafc.3c00252] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The etiology of inflammatory bowel diseases (IBDs) involves complex genetic and environmental factors such as mycotoxin contamination. Deoxynivalenol (DON), a well-known mycotoxin, contaminates food and feed and can induce intestinal injury and inflammatory response. The dose of DON in many foods is also below the limit, although the dose of DON exceeds the limit. The present study aims to evaluate the effects of the nontoxic dose of DON on colitis induced by dextran sodium sulfate (DSS) and the mechanism in mice. The results showed a nontoxic dose of DON at 50 μg/kg bw per day exacerbated DSS-induced colitis in mice as demonstrated by increased disease activity index, decreased colon length, increased morphological damage, decreased occludin and mucoprotein 2 expression, increased IL-1β and TNF-α expression, and decreased IL-10 expression. DON at 50 μg/kg bw per day enhanced JAK2/STAT3 phosphorylation induced by DSS. Adding JAK2 inhibitor AG490 attenuated the aggravating effects of DON on DSS-induced colitis by reversing the morphological damage, occludin and mucoprotein 2 expression increased, IL-1β and TNF-α expression increased, and IL-10 expression decreased. Taken together, a nontoxic dose of DON could aggravate DSS-induced colitis via the JAK2/STAT3 signaling pathway. This suggests that DON, below the standard limit dose, is also a risk for IBD and may be harmful to the health of humans and animals, which could provide the basis for establishing limits for DON.
Collapse
Affiliation(s)
- Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Ziman Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Jiangyu Tang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095 Jiangsu Province, China
| |
Collapse
|
20
|
Song Y, Lin W, Zhu W. Traditional Chinese medicine for treatment of sepsis and related multi-organ injury. Front Pharmacol 2023; 14:1003658. [PMID: 36744251 PMCID: PMC9892725 DOI: 10.3389/fphar.2023.1003658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a common but critical illness in patients admitted to the intensive care unit and is associated with high mortality. Although there are many treatments for sepsis, specific and effective therapies are still lacking. For over 2,000 years, traditional Chinese medicine (TCM) has played a vital role in the treatment of infectious diseases in Eastern countries. Both anecdotal and scientific evidence show that diverse TCM preparations alleviate organ dysfunction caused by sepsis by inhibiting the inflammatory response, reducing oxidative stress, boosting immunity, and maintaining cellular homeostasis. This review reports on the efficacy and mechanism of action of various TCM compounds, herbal monomer extracts, and acupuncture, on the treatment of sepsis and related multi-organ injury. We hope that this information would be helpful to better understand the theoretical basis and empirical support for TCM in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Zeng H, Zhao B, Zhang D, Rui X, Hou X, Chen X, Zhang B, Yuan Y, Deng H, Ge G. Viola yedoensis Makino formula alleviates DNCB-induced atopic dermatitis by activating JAK2/STAT3 signaling pathway and promoting M2 macrophages polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154228. [PMID: 35689898 DOI: 10.1016/j.phymed.2022.154228] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Atopic dermatitis (AD), a common inflammatory skin disorder, severely affects the life quality of patients and renders heavy financial burden on patient's family. The Chinese medicine Viola yedoensis Makino formula (VYAC) has been widely used for treating various skin disorders. Previous studies have reported that VYAC is effective in relieving DNCB-induced AD and inflammation. However, the anti-inflammatory mechanism of VYAC is still ill-defined and poorly understood. This study aims to investigate the therapeutic effects of VYAC on DNCB-induced AD and to elucidate the underlying anti-inflammatory mechanisms. METHODOLOGY VYAC were extracted with 70% ethanol and lyophilized for use. AD mice were established by DNCB. The therapeutic effects of VYAC were evaluated by oral administration VYAC (150, 300 and 600 mg/kg) daily in vivo. The histopathological and immunohistochemistry were used to analyze skin lesion and macrophages infiltration, RT-qPCR and Elisa were used to analyze the inflammatory factors in skin tissues and serum. To explore the underlying mechanism of VYAC against AD in vitro. RAW264.7 cells and bone-marrow-derived macrophages (BMDMs) were employed for macrophage polarization analysis. Flow cytometer, immunofluorescence and western blot were used to analyze M2 macrophages markers. STAT3 siRNA were transfected into both cells to validate the effects of VYAC-induced macrophages M2 polarization via JAK2/STAT3 signaling pathway. RESULTS VYAC ameliorated skin lesion of DNCB-induced AD mice by decreased clinical scores and epidermal thickness, decreased the level of pro-inflammatory factors (IL-1β, TNF-α and IL-18) and enhanced IL-10 anti-inflammatory factor level, inhibited macrophages infiltration and promoted M2 macrophages polarization in vivo. VYAC significantly promoted M2 macrophages polarization in vitro. It is observed that VYAC not only inhibited the phosphorylation of JAK2 and STAT3 in RAW264.7 cells and BMDMs, but also accelerated the translocation to the nucleus. What's more, VYAC reduced the polarization of M2 macrophage by activating JAK2/STAT3 signaling pathway was observed in both cells. CONCLUSIONS Our findings demonstrate that VYAC significantly ameliorates skin lesion of DNCB-induced AD mice and reduces the levels of inflammatory factors by activating JAK2/STAT3 signaling pathway and promoting M2 macrophages polarization.
Collapse
Affiliation(s)
- Hairong Zeng
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bei Zhao
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Die Zhang
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Xin Rui
- Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xudong Hou
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xingxing Chen
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Benrui Zhang
- Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yi Yuan
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| | - Hongping Deng
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
22
|
Zhang S, Luo H, Tan D, Peng B, Zhong Z, Wang Y. Holism of Chinese herbal medicine prescriptions for inflammatory bowel disease: A review based on clinical evidence and experimental research. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154202. [PMID: 35665678 DOI: 10.1016/j.phymed.2022.154202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronic nonspecific inflammatory disease that causes a heavy burden and lacks effective treatments. Chinese herbal medicine prescriptions (CHMPs), which are characterized by a synergistic usage of herbs, are widely used in the management of IBD. The molecular mechanisms of action of CHMP are still ambiguous as the canonical "one-compound-one-target" approach has difficulty describing the dynamic bioreactions among CHMP objects. It seems more flexible to define the holism of CHMP for IBD by employing high-throughput analysis. However, studies that discuss the development of CHMP in treating IBD in a holistic view are still lacking. PURPOSE This review appraised preclinical and clinical research to fully describe the anti-IBD capacity of CHMPs and discussed CHMPs' holistic characteristics that can contribute to better management of IBD. METHODS & RESULTS We screened clinical and preclinical references of CHMP being used as treatments for IBD. We discussed the complexity of IBD and the development of CHMP to present the sophistication of CHMP treatments. To describe the clinical effectiveness of CHMPs against IBD, we performed an umbrella review of CHMP-associated META analyses, in which 1174 records were filtered down to 12 references. Then, we discussed 14 kinds of CHMPs that had a long history of use and analyzed their mechanisms of action. Representative herbs were employed to provide a subordinate explanation for the whole prescription. As holism is the dominant characteristic of CHMPs, we explored applications of CHMPs for IBD with the help of omics, gut microbiome, and network pharmacology, which are potential approaches to a dynamic figure of bioactions of CHMPs. CONCLUSION This review is the first to discuss the potential of CHMPs to manage IBD in a holistic context and will provide inspiring explanations for CHMP applications for further product transformation and application to other diseases.
Collapse
Affiliation(s)
- Siyuan Zhang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Dechao Tan
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Bo Peng
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| |
Collapse
|
23
|
Yuan S, Wang Q, Li J, Xue JC, Li Y, Meng H, Hou XT, Nan JX, Zhang QG. Inflammatory bowel disease: an overview of Chinese herbal medicine formula-based treatment. Chin Med 2022; 17:74. [PMID: 35717380 PMCID: PMC9206260 DOI: 10.1186/s13020-022-00633-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/02/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the intestine, including Crohn's disease (CD) and ulcerative colitis (UC), whose etiology and pathogenesis have not been fully understood. Due to its prolonged course and chronic recurrence, IBD imposes a heavy economic burden and psychological stress on patients. Traditional Chinese Herbal Medicine has unique advantages in IBD treatment because of its symptomatic treatment. However, the advantages of the Chinese Herbal Medicine Formula (CHMF) have rarely been discussed. In recent years, many scholars have conducted fundamental studies on CHMF to delay IBD from different perspectives and found that CHMF may help maintain intestinal integrity, reduce inflammation, and decrease oxidative stress, thus playing a positive role in the treatment of IBD. Therefore, this review focuses on the mechanisms associated with CHMF in IBD treatment. CHMF has apparent advantages. In addition to the exact composition and controlled quality of modern drugs, it also has multi-component and multi-target synergistic effects. CHMF has good prospects in the treatment of IBD, but its multi-agent composition and wide range of targets exacerbate the difficulty of studying its treatment of IBD. Future research on CHMF-related mechanisms is needed to achieve better efficacy.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin China
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Qi Wang
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Jiao Li
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002 Jilin China
| | - Jia-Chen Xue
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002 Jilin China
| | - You Li
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Huan Meng
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Xiao-Ting Hou
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002 Jilin China
- Present Address: Chronic Disease Research Center, Medical College, Dalian University, Dalian, 116622 Liaoning China
- Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, 133002 Jilin China
| |
Collapse
|
24
|
Xiang S, Huang R, He Q, Xu L, Wang C, Wang Q. Arginine regulates inflammation response-induced by Fowl Adenovirus serotype 4 via JAK2/STAT3 pathway. BMC Vet Res 2022; 18:189. [PMID: 35590365 PMCID: PMC9118595 DOI: 10.1186/s12917-022-03282-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 05/06/2022] [Indexed: 12/15/2022] Open
Abstract
Background Fowl Adenovirus serotype 4 (FAdV-4) infection causes severe inflammatory response leading to hepatitis-hydropericardium syndrome (HHS) in poultry. As an essential functional amino acid of poultry, arginine plays a critical role in anti-inflammatory and anti-oxidative stress. Results In this study, the differential expression genes (DEGs) were screened by transcriptomic techniques, and the DEGs in gene networks of inflammatory response-induced by FAdV-4 in broiler’s liver were analyzed by Kyoto encyclopedia of genes and genomes (KEGG) enrichment. The results showed that the cytokines pathway and JAK/STAT pathway were significantly enriched, in which the DEGs levels of IL-6, IL-1β, IFN-α, JAK and STAT were significantly up-regulated after FAdV-4 infection. It was further verified with real-time fluorescence quantitative polymerase chain reaction (Real-time qPCR) and Western blotting (WB) in vitro and in vivo. The findings demonstrated that FAdV-4 induced inflammatory response and activated JAK2/STAT3 pathway. Furthermore, we investigated whether arginine could alleviate the liver inflammation induced by FAdV-4. After treatment with 1.92% arginine level diet to broilers or 300 μg/mL arginine culture medium to LMH cell line with FAdV-4 infection at the same time, we found that the mRNA levels of IL-6, IL-1β, IFN-α and the protein levels of p-JAK2, p-STAT3 were down-regulated, compared with FAdV-4 infection group. Furthermore, we confirmed that the inflammation induced by FAdV-4 was ameliorated by pre-treatment with JAK inhibitor AG490 in LMH cells, and it was further alleviated in LMH cells treatment with AG490 and ARG. Conclusions These above results provide new insight that arginine protects hepatocytes against inflammation induced by FAdV-4 through JAK2/STAT3 signaling pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03282-9.
Collapse
Affiliation(s)
- Silin Xiang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Ruiling Huang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Qing He
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Lihui Xu
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China
| | - Changkang Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China.
| | - Quanxi Wang
- College of Animal Science (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China. .,Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, 350002, P.R. China. .,University Key Laboratory for Integrated Chinese Traditional and Western Veterinary Medicine and Animal Healthcare in Fujian Province, Fujian Agriculture and Forestry Univesity, Fuzhou, 350002, P.R. China.
| |
Collapse
|
25
|
Molecular mechanisms of Huanglian jiedu decoction on ulcerative colitis based on network pharmacology and molecular docking. Sci Rep 2022; 12:5526. [PMID: 35365737 PMCID: PMC8972650 DOI: 10.1038/s41598-022-09559-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC using network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are very important to the PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had a good binding ability with the Hub gene. This study systematically elucidates the “multi-component, multi-target, multi-pathway” mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.
Collapse
|
26
|
Benefit Effect of Dendrobium officinale Ultrafine Powder on DSS-Induced Ulcerative Colitis Rats by Improving Colon Mucosal Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2021:9658638. [PMID: 35003313 PMCID: PMC8736692 DOI: 10.1155/2021/9658638] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/26/2021] [Accepted: 10/09/2021] [Indexed: 12/14/2022]
Abstract
Materials and Methods After intragastric administration of DOFP for 3 weeks, the rat UC model was made by the administration of 4% oral DSS solution for one week, and the drug was given at the same time. During the experiment, the disease activity index (DAI) score of the rats was regularly computed. At the end of the experiment, the blood routine indexes of rats were obtained. The histopathological changes in the colon were monitored by hematoxylin-eosin (H&E) and PAS staining and observation of ultrastructural changes in the colon by transmission electron microscope. Occludin expression in the colon was monitored by Western blot, the expression of claudin-1 and ZO-1 in the colon was detected by immunofluorescence, and the expression of TNF-α, IL-6, and IL-1β in the colon was detected by immunohistochemistry. Results The results firstly indicated that DOFP could significantly alleviate the signs and symptoms of the DSS-induced rats UC model, which manifested as improvement of body weight loss, increase of colon length, and improvement of the symptoms of diarrhea and hematochezia. Then, results from histopathology, blood routine examination, and transmission electron microscope analysis further implied that DOFP could dramatically reduce inflammatory cell infiltration and restore intestinal epithelial barrier integrity. In addition, the experiments of Western Blot analysis, immunofluorescence, and PAS staining also further confirmed that DOFP could markedly increase related protein expressions of the intestinal barrier and mucus barrier, as the expression of occludin, claudin-1, and ZO-1 in the colon significantly decreased. The experiments of immunohistochemistry confirmed that DOFP could markedly decrease protein expression levels of inflammatory cytokines TNF-α, IL-6, and IL-1β. Conclusion DOFP notably alleviated inflammatory lesions, repaired the colon mucosa damage by promoting the expression of tight junction proteins occludin, claudin-1, and ZO-1 and inhibiting the release of inflammatory factors TNF-α, IL-6, and IL-1β, and finally achieved the purpose of treating UC.
Collapse
|
27
|
Efficacy and Safety of Modified Huang-Lian-Jie-Du Decoction Cream on Cancer Patients with Skin Side Effects Caused by EGFR Inhibition. Processes (Basel) 2021. [DOI: 10.3390/pr9071081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
(1) Background: The epidermal growth factor inhibitors (EGFRIs)/tyrosine kinase inhibitors (TKIs) are effective for cancer target therapy, but acneiform rashes or so-called inflammatory papulopustular exanthemas are common (50% to 90%). The conventional therapy for EGFRIs/TKIs-induced skin toxicity is steroids and antibacterial drugs, but it is still ineffective for some patients, and EGFRIs/TKIs dose reduction/interruption may be needed. In this study, a modified Chinese herbal medicine, Huang-Lian-Jie-Du decoction cream with Yin-Cold (YC) medicine characteristic, was investigated for the effect on patients suffering EGFRIs/TKIs-induced skin toxicity. (2) Methods: The modified Huang-Lian-Jie-Du (mHLJD) decoction cream was made from 10 herbal medicines, including 4 major medicines (Huanglian, Huangqin, Huangbo, and Zhizi) in traditional HLJD decoction. Patients with EGFRIs/TKIs-induced skin toxicity were enrolled. Patients were excluded if they also used other cream for skin toxicity. Skin conditions were monitored by follow up every 2 weeks. The patients’ characteristics, the skin toxicities, treatment response, and adverse events were recorded and analyzed until skin problems resolved or the study ended. (3) Results: The mHLJD decoction cream and its sub-packages were stored at 4 °C before use. Thirty-four patients who had grade 1–3 skin toxicities after receiving EGFRIs/TKIs were enrolled. Seven patients withdrew or were excluded. Finally, data from 27 patients were analyzed. The mean grade of rash acneiform was significantly decreased from 2.19 (ranged 1 to 3) to 0.88 (ranged 0 to 2) after mHLJD decoction cream treatment for 4 weeks and to 0.55 (ranged 0 to 2) after mHLJD decoction cream treatment for 8 weeks. Additionally, the mean grade of dry skin was also significantly decreased from 1.57 (ranged 1 to 2) to 0.71 (ranged 0 to 1) after mHLJD decoction cream treatment for 4 weeks. The changes of skin toxicity were significant, with no obvious adverse events. (4) Conclusions: In summary, the mHLJD decoction cream provides benefits for alleviation of EGFRIs/TKIs-induced skin rash acneiform and dry skin. Additionally, no obvious side effects were found in patients using mHLJD decoction cream.
Collapse
|
28
|
Molecular Targets and Mechanisms of Scutellariae radix- Coptidis rhizoma Drug Pair for the Treatment of Ulcerative Colitis Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9929093. [PMID: 34149863 PMCID: PMC8195671 DOI: 10.1155/2021/9929093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/28/2021] [Indexed: 12/15/2022]
Abstract
This study aims to analyze the targets of the effective active ingredients of Scutellariae radix-Coptidis rhizoma drug pair (SCDP) in ulcerative colitis (UC) by network pharmacology and molecular docking and to explore the associated therapeutic mechanism. The effective active ingredients and targets of SCDP were determined from the TCMSP database, and the drug ingredient-target network was constructed using the Cytoscape software. The disease targets related to UC were searched in GeneCards, DisGeNET, OMIM, and DrugBank databases. Then, the drug ingredient and disease targets were intersected to construct a protein-protein interaction network through the STRING database. The Metascape database was used for the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the predicted targets of SCDP for UC. The Autodock software was used for molecular docking between the main active ingredient and the core target to evaluate the binding ability. SCDP has 43 effective active ingredients and 134 intersection targets. Core targets included AKT1, TP53, IL-6, VEGFA, CASP3, JUN, TNF, MYC, EGFR, and PTGS2. GO functional enrichment analysis showed that biological process was mainly associated with a cytokine-mediated signaling pathway, response to an inorganic substance, response to a toxic substance, response to lipopolysaccharide, reactive oxygen species metabolic process, positive regulation of cell death, apoptotic signaling pathway, and response to wounding. KEGG enrichment analysis showed main pathway concentrations were related to pathways in cancer, AGE-RAGE signaling pathway in diabetic complications, bladder cancer, IL-17 signaling pathway, apoptosis, p53 signaling pathway, and PI3K-Akt signaling pathway. The drug active ingredient-core target-key pathway network contains 41 nodes and 108 edges, of which quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol are important active ingredients; PTGS2, CASP3, TP53, IL-6, TNF, and AKT1 are important targets; and the pathways involved in UC treatment include pathways in cancer, PI3K-Akt signaling pathway, AGE-RAGE signaling pathway in diabetic, apoptosis, IL-17 signaling pathway and herpes simplex infection. The active ingredient has a good binding capacity to the core target. SCDP key active ingredients are mainly quercetin, wogonin, baicalein, acacetin, oroxylin A, and beta-sitosterol, which function mainly by regulating targets, such as PTGS2, CASP3, TP53, IL-6, TNF, and AKT1, and are associated with multiple signaling pathways as pathways in cancer, PI3K-Akt signaling pathway, apoptosis, IL-17 signaling pathways.
Collapse
|
29
|
Antibacterial efficacy and molecular docking analysis of Huang-Lian-Jie-Du Decoction against the phytopathogenic bacteria P. carotovorum PC1. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Shi Y, Qiao CM, Zhou Y, Wu J, Cui C, Hong H, Jia XB, Huang SB, Yao L, Zhao WJ, Shen YQ. Protective effects of prucalopride in MPTP-induced Parkinson's disease mice: Neurochemistry, motor function and gut barrier. Biochem Biophys Res Commun 2021; 556:16-22. [PMID: 33836343 DOI: 10.1016/j.bbrc.2021.03.109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Evidence suggests constipation precedes motor dysfunction and is the most common gastrointestinal symptom in Parkinson's disease (PD). 5-HT4 receptor (5-HT4R) agonist prucalopride has been approved to treat chronic constipation. Here, we reported intraperitoneal injection of prucalopride for 7 days increased dopamine and decreased dopamine turnover. Prucalopride administration improved motor deficits in 1-methyl-4-phenyl-1,2,3,6-tetrathydropyridine (MPTP)-induced PD mouse models. Prucalopride treatment also ameliorated intestinal barrier impairment and increased IL-6 release in PD model mice. However, prucalopride treatment exerted no impact on JAK2/STAT3 pathway, suggesting that prucalopride may stimulate IL-6 via JAK2/STAT3-independent pathway. In conclusion, prucalopride exerted beneficial effects in MPTP-induced Parkinson's disease mice by attenuating the loss of dopamine, improving motor dysfunction and intestinal barrier.
Collapse
Affiliation(s)
- Yun Shi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chen-Meng Qiao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yu Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Ji Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Chun Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Hong
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Xue-Bing Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Shu-Bing Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Li Yao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan-Qin Shen
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China; Department of Neurodegeneration and Injury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
31
|
An N, Li Y, Huang X, Chen C, Xie Y. Huanglian Jiedu Decoction for treatment of multiple myeloma: A protocol for a systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22378. [PMID: 33371054 PMCID: PMC7748179 DOI: 10.1097/md.0000000000022378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Multiple myeloma can lead to lots of clinical problems including pain, fatigue, anemia, infections, renal failure, and so on. Huanglian Jiedu Decoction is a common conservative treatment for this disease in China. Therefore, we conducted a systematic review and meta-analysis to explore the efficacy of Huanglian Jiedu Decoction in the treatment of multiple myeloma. METHODS A systematic literature search for studies will be performed in 8 databases, including PubMed, Web of Science, Embase, the Cochrane library, ClinicalTrials.gov databases, Chinese National Knowledge Infrastructure Database, Wanfang database, and VIP database. The methodological quality of the included studies using the risk bias assessment tool of Cochrane. And the level of evidence for results is assessed by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method. Statistical analysis is conducted with Revman 5.3. RESULTS This systematic review and meta-analysis will provide a synthesis of existed evidences for Huanglian Jiedu Decoction on multiple myeloma. CONCLUSION The conclusion of this study will provide evidence to assess effectiveness of Huanglian Jiedu Decoction on multiple myeloma, which can further guide clinical decision-making. INPLASY REGISTRATION NUMBER INPLASY202060094.
Collapse
|
32
|
Wei Y, Jiang N, Liu T, Liu C, Xiao W, Liang L, Li T, Yu Y. The comparison of extraction methods of ganjiang decoction based on fingerprint, quantitative analysis and pharmacodynamics. Chin Med 2020; 15:81. [PMID: 32774446 PMCID: PMC7409467 DOI: 10.1186/s13020-020-00355-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Background Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease of the colon and rectum with unknown etiology, and its symptoms include bloody diarrhea, abdominal pain, and hematochezia. Traditional Chinese medicine compound has a good therapeutic, multi-target effect on UC. Ganjiang decoction (GD), which is a traditional classic prescription in China, contains Zingiberis Rhizoma, Angelicae Sinensis Radix, Coptidis Rhizoma, Phellodendri Chinensis Cortex, Sanguisorbae Radix, Granati Pericarpium, and Asini Corii Colla and could be used to treat symptoms of UC. This study aimed to conduct a preliminary study before GD colon-targeted preparation, to explore the relationship between extraction method and efficacy of GD. Methods High-performance liquid chromatography (HPLC) was used for the fingerprinting of five preparation methods of GD. HPLC and gas chromatography were used to quantitatively analyze the important chemical components of GD and compare their differences. Mice with UC induced by dextran sulphate sodium salt received the extracts from the five preparation methods of GD via gavage. Disease activity index (DAI) score, colonic length, relative weight of spleen, pathological analysis results, inflammatory factors, therapeutic effect of the five preparation methods of GD, and their relationship with extraction process were compared. Results Cluster analysis revealed that the content of the components extracted by traditional extraction methods was significantly different from the other four methods. The third and fifth preparation methods extracted Coptidis Rhizoma and Phellodendri Chinensis Cortex with 50% ethanol to obtain more alkaloids. In the fourth and fifth methods, more volatile oils were detected by adding Zingiberis Rhizoma and Angelicae Sinensis Radix fine powder. According to DAI score, colonic length, relative weight of spleen, pathological analysis results, and inflammatory factors, the third method showed a good therapeutic effect, while the fifth method had the best therapeutic effect. Conclusions The results showed that the difference of the five extracts of GD in the efficacy of DSS-induced UC in mice was closely related to the extraction method. Our study improved the extraction process of GD and provided a foundation for the process of enteric-soluble preparations and a new idea for traditional Chinese medicine compound preparation. ![]()
Collapse
Affiliation(s)
- Yanyan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Ning Jiang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Tuo Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Chang Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Wen Xiao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Likeng Liang
- The Second Affiliated Hospital of Guangzhou, University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Tongming Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Yang Yu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| |
Collapse
|