1
|
Bevilacqua JA, Al-Salti AM, Al Madani A, Alves da Fonseca A, Durmus H, Chai J, Alshehri A, Ribeiro MG, Sgobbi P, Nikitin SS, Vargas S, Furtado A, Thibault N, Araujo R, Daba N. Detection of gene variants associated with recessive limb-girdle muscular weakness and Pompe disease in a global cohort of patients through the application of next-generation sequencing analysis. Front Genet 2024; 15:1477291. [PMID: 39678382 PMCID: PMC11638199 DOI: 10.3389/fgene.2024.1477291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Hereditary myopathies arise due to numerous pathogenic variants occurring in distinct genes, which amount to several hundred. Limb-girdle muscular dystrophies (LGMDs) constitute a heterogeneous group of neuromuscular disorders involving more than 30 genes. Clinically, LGMD is characterized by limb-girdle muscular weakness (LGMW). Late-onset Pompe disease is an important disorder with a differential diagnosis for LGMD, where next-generation sequencing (NGS) plays a crucial role in accurate and prompt diagnosis. The sensitivity and specificity of a 10-gene NGS panel have been previously evaluated for the prevalent forms of recessive LGMD (LGMD-R) and Pompe disease in Latin American patients with LGMW of unknown cause. This project aims to identify the regional relative prevalence of frequent LGMD-R subtypes and Pompe disease in a larger geographic area and to diagnose patients with LGMW by identifying genetic variants of LGMD-R and Pompe disease. Methods and Results This 21-country multicentric analysis enrolled 2,372 patients with LGMW from 2017 to 2018. Sequencing analysis was performed using the Illumina NextSeq 500 system, and variant interpretation was performed according to the American College of Medical Genetics and Genomics guidelines. Pathogenic or likely pathogenic variants were seen in 11% of patients (n = 261). Among the positive cases, NGS effectively diagnosed 86.2% and 13.8% of patients with LGMD and Pompe disease, respectively. The most prevalent pathogenic acid α-glucosidase (GAA) variant identified was c.-32-13T > G. Conclusion The study adds to the knowledge of the relative occurrence of various subtypes of LGMD worldwide. The inclusion of GAA in the NGS panel to investigate patients with LGMW is a powerful diagnostic approach to screen for late-onset Pompe disease.
Collapse
Affiliation(s)
- Jorge Alfredo Bevilacqua
- Department of Neurology and Neurosurgery, Hospital Clínico Universidad de Chile, Santiago, Chile
| | | | - Abubaker Al Madani
- Department of Neurology, Rashid Hospital, Mohammed Bin Rashid University, Dubai, United Arab Emirates
| | | | - Hacer Durmus
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Josiah Chai
- Department of Neurology, National Neuroscience Institute (TTSH Campus), Singapore, Singapore
| | - Ali Alshehri
- Neuromuscular Integrated Practice Unit, Neuroscience Center, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Márcia Gonçalves Ribeiro
- Department of Pediatrics, Medical Consulting Sector of Personalized Medicine, DLE Laboratory, Rio de Janeiro, Brazil
| | - Paulo Sgobbi
- Department of Neurology and Neurosurgery, Federal University of São Paulo, São Paulo, Brazil
| | - Sergey S. Nikitin
- Department of Genetics of Neurological Diseases, Research Centre for Medical Genetics, Moscow, Russia
| | - Steven Vargas
- Department of Genetics of Neurological Diseases, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Adriana Furtado
- Department of Global Rare Disease Scientific Affairs & Diagnostics, Sanofi, São Paulo, Brazil
| | - Nathan Thibault
- Sanofi Global Medical Affairs Rare Diseases, Sanofi, Cambridge, MA, United States
| | - Roberto Araujo
- Department of Evidence Generation Strategy for Rare Diseases, Sanofi, Cambridge, MA, United States
| | - Nadia Daba
- Sanofi Global Medical Affairs Rare Diseases, Sanofi, Cambridge, MA, United States
| |
Collapse
|
2
|
Velasco HM, Bertoli-Avella A, Jaramillo CJ, Cardona DS, González LA, Vanegas MN, Arango JPV, Buitrago CA, González JAG, Marcello J, Bauer P, Moncada JE. Facing the challenges to shorten the diagnostic odyssey: first Whole Genome Sequencing experience of a Colombian cohort with suspected rare diseases. Eur J Hum Genet 2024; 32:1327-1337. [PMID: 38909121 PMCID: PMC11499989 DOI: 10.1038/s41431-024-01609-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 06/24/2024] Open
Abstract
Exome and genome sequencing (ES/GS) are routinely used for the diagnosis of genetic diseases in developed countries. However, their implementation is limited in countries from Latin America. We aimed to describe the results of GS in patients with suspected rare genetic diseases in Colombia. We studied 501 patients from 22 healthcare sites from January to December 2022. GS was performed in the index cases using dried blood spots on filtercards. Ancestry analysis was performed under iAdmix. Multiomic testing was performed when needed (biomarker, enzymatic activity, RNA-seq). All tests were performed at an accredited genetic laboratory. Ethnicity prediction data confirmed that 401 patients (80%) were mainly of Amerindian origin. A genetic diagnosis was established for 142 patients with a 28.3% diagnostic yield. The highest diagnostic yield was achieved for pathologies with a metabolic component and syndromic disorders (p < 0.001). Young children had a median of 1 year of diagnostic odyssey, while the median time for adults was significantly longer (15 years). Patients with genetic syndromes have spent more than 75% of their life without a diagnosis, while for patients with neurologic and neuromuscular diseases, the time of the diagnostic odyssey tended to decrease with age. Previous testing, specifically karyotyping or chromosomal microarray were significantly associated with a longer time to reach a definitive diagnosis (p < 0.01). Furthermore, one out of five patients that had an ES before could be diagnosed by GS. The Colombian genome project is the first Latin American study reporting the experience of systematic use of diagnostic GS in rare diseases.
Collapse
Affiliation(s)
- Harvy Mauricio Velasco
- Personalized Medicine Group, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia.
| | | | - Carolina Jaramillo Jaramillo
- Sura Omics Science Center, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | - Danny Styvens Cardona
- Data Science Department, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | - Leonel Andrés González
- Personalized Medicine Group, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | - Melisa Naranjo Vanegas
- Medical Imaging & AI in Health SURA, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | | | - Cesar Augusto Buitrago
- Personalized Medicine Group, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| | | | | | - Peter Bauer
- CENTOGENE GmbH, Rostock, Germany
- University Hospital of Rostock, Hematology, Oncology, and Palliative Medicine, Rostock, Germany
| | - Juliana Espinosa Moncada
- Sura Omics Science Center, Unidad de Bioentendimiento, Bioscience Center, Ayudas Diagnósticas SURA, Medellín, Colombia
| |
Collapse
|
3
|
Banerjee S, Radotra BD, Luthra-Guptasarma M, Goyal MK. Identification of novel pathogenic variants of Calpain-3 gene in limb girdle muscular dystrophy R1. Orphanet J Rare Dis 2024; 19:140. [PMID: 38561828 PMCID: PMC10983654 DOI: 10.1186/s13023-024-03158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/28/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Limb Girdle Muscular Dystrophy R1 (LGMDR1) is an autosomal recessive neuromuscular disease caused by mutations in the calpain-3 (CAPN3) gene. As clinical and pathological features may overlap with other types of LGMD, therefore definite molecular diagnosis is required to understand the progression of this debilitating disease. This study aims to identify novel variants of CAPN3 gene in LGMDR1 patients. RESULTS Thirty-four patients with clinical and histopathological features suggestive of LGMD were studied. The muscle biopsy samples were evaluated using Enzyme histochemistry, Immunohistochemistry, followed by Western Blotting and Sanger sequencing. Out of 34 LGMD cases, 13 patients were diagnosed as LGMDR1 by immunoblot analysis, demonstrating reduced or absent calpain-3 protein as compared to controls. Variants of CAPN3 gene were also found and pathogenicity was predicted using in-silico prediction tools. The CAPN3 gene variants found in this study, included, two missense variants [CAPN3: c.1189T > C, CAPN3: c.2338G > C], one insertion-deletion [c.1688delinsTC], one splice site variant [c.2051-1G > T], and one nonsense variant [c.1939G > T; p.Glu647Ter]. CONCLUSIONS We confirmed 6 patients as LGMDR1 (with CAPN3 variants) from our cohort and calpain-3 protein expression was significantly reduced by immunoblot analysis as compared to control. Besides the previously known variants, our study found two novel variants in CAPN3 gene by Sanger sequencing-based approach indicating that genetic variants in LGMDR1 patients may help to understand the etiology of the disease and future prognostication.
Collapse
Affiliation(s)
- Sukanya Banerjee
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| | - Bishan Dass Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India.
| | - Manni Luthra-Guptasarma
- Department of Immunopathology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| | - Manoj K Goyal
- Department of Neurology, Post Graduate Institute of Medical Education and Research, 160012, Chandigarh, India
| |
Collapse
|
4
|
Choi WJ, Kim SH, Lee SR, Oh SH, Kim SW, Shin HY, Park HJ. Global carrier frequency and predicted genetic prevalence of patients with pathogenic sequence variants in autosomal recessive genetic neuromuscular diseases. Sci Rep 2024; 14:3806. [PMID: 38361118 PMCID: PMC10869705 DOI: 10.1038/s41598-024-54413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Genetic neuromuscular diseases are clinically and genetically heterogeneous genetic disorders that primarily affect the peripheral nerves, muscles, and neuromuscular junctions. This study aimed to identify pathogenic variants, calculate carrier frequency, and predict the genetic prevalence of autosomal recessive neuromuscular diseases (AR-NMDs). We selected 268 AR-NMD genes and analyzed their genetic variants sourced from the gnomAD database. After identifying the pathogenic variants using an algorithm, we calculated the carrier frequency and predicted the genetic prevalence of AR-NMDs. In total, 10,887 pathogenic variants were identified, including 3848 literature verified and 7039 manually verified variants. In the global population, the carrier frequency of AR-NMDs is 32.9%, with variations across subpopulations ranging from 22.4% in the Finnish population to 36.2% in the non-Finnish European population. The predicted genetic prevalence of AR-NMDs was estimated to be 24.3 cases per 100,000 individuals worldwide, with variations across subpopulations ranging from 26.5 to 41.4 cases per 100,000 individuals in the Latino/Admixed American and the Ashkenazi Jewish populations, respectively. The AR-NMD gene with the highest carrier frequency was GAA (1.3%) and the variant with the highest allele frequency was c.-32-13 T>G in GAA with 0.0033 in the global population. Our study revealed a higher-than-expected frequency of AR-NMD carriers, constituting approximately one-third of the global population, highlighting ethnic heterogeneity in genetic susceptibility.
Collapse
Affiliation(s)
- Won-Jun Choi
- CHA University School of Medicine, Seongnam, Republic of Korea
| | - Soo-Hyun Kim
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Sung Rok Lee
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea
| | - Seung-Hun Oh
- Department of Neurology, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Seung Woo Kim
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, 211 Eonju-Ro, Gangnam-Gu, Seoul, 06273, Republic of Korea.
- Rehabilitation Institute of Neuromuscular Disease, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Cheung A, Audhya IF, Szabo SM, Friesen M, Weihl CC, Gooch KL. Patterns of Clinical Progression Among Patients With Autosomal Recessive Limb-Girdle Muscular Dystrophy: A Systematic Review. J Clin Neuromuscul Dis 2023; 25:65-80. [PMID: 37962193 DOI: 10.1097/cnd.0000000000000461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
OBJECTIVES As the clinical course of autosomal recessive limb-girdle muscular dystrophy (LGMDR) is highly variable, this study characterized the frequency of loss of ambulation (LOA) among patients by subtype (LGMDR1, LGMDR2, LGMDR3-6, LGMDR9, LGMDR12) and progression to cardiac and respiratory involvement among those with and without LOA. METHODS Systematic literature review. RESULTS From 2929 abstracts screened, 418 patients were identified with ambulatory status data (LOA: 265 [63.4%]). Cardiac and/or respiratory function was reported for 142 patients (34.0%; all with LOA). Among these, respiratory involvement was most frequent in LGMDR3-6 (74.1%; mean [SD] age 23.9 [11.0] years) and cardiac in LGMDR9 (73.3%; mean [SD] age 23.7 [17.7] years). Involvement was less common in patients without LOA except in LGMDR9 (71.4% respiratory and 52.4% cardiac). CONCLUSIONS This study described the co-occurrence of LOA, cardiac, and respiratory involvement in LGMDR and provides greater understanding of the clinical progression of LGMDR.
Collapse
Affiliation(s)
| | | | | | | | - Conrad C Weihl
- Department of Neurology, Hope Center for Neurological Diseases, Washington University School of Medicine, St. Louis, MO
| | | |
Collapse
|
6
|
Akbar F, Saleem SM, Khalid E, Ibrahim S, Afroze B, Kirmani S, Khan S. The spectrum of hereditary neuromuscular disorders in the Pakistani population. Am J Med Genet A 2023; 191:2536-2550. [PMID: 37366078 DOI: 10.1002/ajmg.a.63332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/21/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Hereditary neuromuscular disorders (NMDs) are a broad group of clinically heterogeneous disorders with varying inheritance patterns, that are associated with over 500 implicated genes. In the context of a highly consanguineous Pakistani population, we expect that autosomal recessive NMDs may have a higher prevalence compared with patients of European descent. This is the first study to offer a detailed description of the spectrum of genes causing hereditary NMDs in the Pakistani population using NGS testing. To study the clinical and genetic profiles of patients presenting for evaluation of a hereditary neuromuscular disorder. This is a retrospective chart review of patients seen in the Neuromuscular Disorders Clinic and referred to the Genetics Clinic with a suspected hereditary neuromuscular disorder, between 2016 and 2020 at the Aga Khan University Hospital, Karachi and Mukhtiar A. Sheikh Hospital, Multan, Pakistan. The genetic testing for these patients included NGS-based single gene sequencing, NGS-based multi-gene panel and whole exome sequencing. In a total of 112 patients studied, 35 (31.3%) were female. The mean age of onset in all patients was 14.6 years (SD ±12.1 years), with the average age at presentation to the clinic of 22.4 years (SD ±14.10 years). Forty-seven (41.9%) patients had a positive genetic test result, 53 (47.3%) had one or more variants of uncertain significance (VUS), and 12 (10.7%) had a negative result. Upon further genotype-phenotype correlation and family segregation analysis, the diagnostic yield improved, with 59 (52.7%) patients reaching a diagnosis of a hereditary NMD. We also report probable founder variants in COL6A2, FKTN, GNE, and SGCB, previously reported in populations that have possible shared ancestry with the Pakistani population. Our findings reemphasizes that the rate of VUSs can be reduced by clinical correlation and family segregation studies.
Collapse
Affiliation(s)
- Fizza Akbar
- Division of Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | | | | | - Shahnaz Ibrahim
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Bushra Afroze
- Department of Paediatrics and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Salman Kirmani
- Division of Women and Child Health, The Aga Khan University, Karachi, Pakistan
| | - Sara Khan
- Department of Neurology, The Aga Khan University, Karachi, Pakistan
| |
Collapse
|
7
|
Lorenzoni PJ, Kay CSK, Ducci RDP, Fustes OJH, Rodrigues PRDVP, Hrysay NMC, Arndt RC, Werneck LC, Scola RH. Single-centre experience with autosomal recessive limb-girdle muscular dystrophy: case series and literature review. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:922-933. [PMID: 37852290 PMCID: PMC10631857 DOI: 10.1055/s-0043-1772833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 04/28/2023] [Indexed: 10/20/2023]
Abstract
Limb-girdle muscular dystrophy (LGMD) is a group of myopathies that lead to progressive muscle weakness, predominantly involving the shoulder and pelvic girdles; it has a heterogeneous genetic etiology, with variation in the prevalence of subtypes according to the ethnic backgrounds and geographic origins of the populations. The aim of the present study was to analyze a series of patients with autosomal recessive LGMD (LGMD-R) to contribute to a better characterization of the disease and to find the relative proportion of the different subtypes in a Southern Brazil cohort. The sample population consisted of 36 patients with LGMD-R. A 9-gene targeted next-generation sequencing panel revealed variants in 23 patients with LGMD (64%), and it identified calpainopathy (LGMD-R1) in 26%, dysferlinopathy (LGMD-R2) in 26%, sarcoglycanopathies (LGMD-R3-R5) in 13%, telethoninopathy (LGMD-R7) in 18%, dystroglicanopathy (LGMD-R9) in 13%, and anoctaminopathy (LGMD-R12) in 4% of the patients. In these 23 patients with LGMD, there were 27 different disease-related variants in the ANO5, CAPN3, DYSF, FKRP, SGCA, SGCB, SGCG, and TCAP genes. There were different causal variants in different exons of these genes, except for the TCAP gene, for which all patients carried the p.Gln53* variant, and the FKRP gene, which showed recurrence of the p.Leu276Ile variant. We analyzed the phenotypic, genotypic and muscle immunohistochemical features of this Southern Brazilian cohort.
Collapse
Affiliation(s)
- Paulo José Lorenzoni
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| | - Cláudia Suemi Kamoi Kay
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| | - Renata Dal-Pra Ducci
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| | - Otto Jesus Hernandez Fustes
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| | - Paula Raquel do Vale Pascoal Rodrigues
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| | - Nyvia Milicio Coblinski Hrysay
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| | - Raquel Cristina Arndt
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| | - Lineu Cesar Werneck
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| | - Rosana Herminia Scola
- Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Clínica Médica, Serviço de Neurologia, Serviço de Doenças Neuromusculares, Curitiba PR, Brazil.
| |
Collapse
|
8
|
Sniderman King L, Pan Y, Nallamilli BRR, Hegde M, Jagannathan L, Ramachander V, Lucas A, Markind J, Colzani R. Pompe disease ascertained through The Lantern Project, 2018-2021: Next-generation sequencing and enzymatic testing to overcome obstacles to diagnosis. Mol Genet Metab 2023; 139:107565. [PMID: 37087815 DOI: 10.1016/j.ymgme.2023.107565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/25/2023]
Abstract
The Lantern Project is an ongoing complimentary diagnostic program for patients in the United States sponsored by Sanofi and implemented by PerkinElmer Genomics. It combines specific enzymatic, biomarker, and genetic testing to facilitate rapid, accurate laboratory diagnosis of Pompe disease and several other lysosomal storage diseases, and a multigene next-generation sequencing panel including Pompe disease, LGMD, and other neuromuscular disorders. This article reports data for Pompe disease collected from October 2018 through December 2021, including acid α-glucosidase (GAA) enzyme assay and GAA sequencing (standard or expedited for positive newborn screening [NBS] to rule out infantile-onset Pompe disease [IOPD]) and the Focused Neuromuscular Panel, which includes GAA. One hundred forty patients (12 received only GAA enzyme testing, 128 had GAA sequencing alone or in addition to enzyme assay) have been confirmed with Pompe disease in this project. Eight of the 140 had a variant of unknown significance, but GAA activity ≤2.10 μmol/L/h, thus were confirmed with Pompe disease. Three diagnosed patients 0-2 years old had cross-reactive immunologic material (CRIM)-negative GAA variants and thus IOPD. One additional infant with presumptive IOPD had a homozygous frameshift c.1846del, likely CRIM-negative; symptoms were not provided. Among the 128 patients with molecular results, the c.-32-13T>G splice variant was homozygous in 11, compound-heterozygous in 98, and absent in 19. Proximal muscle weakness (58 patients) was the most common sign reported at testing; elevated creatine kinase (29 patients) was the most common laboratory result. The most common symptom categories were muscular (73 patients), musculoskeletal (13 patients), and respiratory (23 patients). Clinical information was not available for 42 samples, and 17 infants had only "abnormal NBS" or "low GAA" reported. Cardiac symptoms in 7 included potentially age-related conditions in five c.-32-13T>G-compound-heterozygous adults (myocardial infarction, heart murmur/palpitations, congestive heart failure: 1 each; 2 with atrial fibrillation) and hypertrophic cardiomyopathy in 2 children (1 and 2 years old) with presumptive IOPD. One novel GAA variant was observed in a patient with enzyme activity 0.31 μmol/L/h: c.1853_1854ins49, a frameshift pathogenic variant. The Lantern Project demonstrates the combinatorial utility of enzyme assay, targeted single-gene testing, and a focused neuromuscular next-generation sequencing panel in diagnosing Pompe disease.
Collapse
|
9
|
Tanboon J, Nishino I. Autosomal Recessive Limb-Girdle Muscular Dystrophies. CURRENT CLINICAL NEUROLOGY 2023:93-121. [DOI: 10.1007/978-3-031-44009-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Cerino M, González-Hormazábal P, Abaji M, Courrier S, Puppo F, Mathieu Y, Trangulao A, Earle N, Castiglioni C, Díaz J, Campero M, Hughes R, Vargas C, Cortés R, Kleinsteuber K, Acosta I, Urtizberea JA, Lévy N, Bartoli M, Krahn M, Jara L, Caviedes P, Gorokhova S, Bevilacqua JA. Genetic Profile of Patients with Limb-Girdle Muscle Weakness in the Chilean Population. Genes (Basel) 2022; 13:genes13061076. [PMID: 35741838 PMCID: PMC9223019 DOI: 10.3390/genes13061076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/04/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
Hereditary myopathies are a group of genetically determined muscle disorders comprising more than 300 entities. In Chile, there are no specific registries of the distinct forms of these myopathies. We now report the genetic findings of a series of Chilean patients presenting with limb-girdle muscle weakness of unknown etiology. Eighty-two patients were explored using high-throughput sequencing approaches with neuromuscular gene panels, establishing a definite genetic diagnosis in 49 patients (59.8%) and a highly probable genetic diagnosis in eight additional cases (9.8%). The most frequent causative genes identified were DYSF and CAPN3, accounting for 22% and 8.5% of the cases, respectively, followed by DMD (4.9%) and RYR1 (4.9%). The remaining 17 causative genes were present in one or two cases only. Twelve novel variants were identified. Five patients (6.1%) carried a variant of uncertain significance in genes partially matching the clinical phenotype. Twenty patients (24.4%) did not carry a pathogenic or likely pathogenic variant in the phenotypically related genes, including five patients (6.1%) presenting an autoimmune neuromuscular disorder. The relative frequency of the different forms of myopathy in Chile is like that of other series reported from different regions of the world with perhaps a relatively higher incidence of dysferlinopathy.
Collapse
Affiliation(s)
- Mathieu Cerino
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
| | - Patricio González-Hormazábal
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (P.G.-H.); (A.T.); (L.J.)
| | - Mario Abaji
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
| | - Sebastien Courrier
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
| | - Francesca Puppo
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
| | - Yves Mathieu
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
| | - Alejandra Trangulao
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (P.G.-H.); (A.T.); (L.J.)
- Unidad Neuromuscular, Departamento Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago 8380492, Chile; (M.C.); (R.H.)
- Unidad de Patología Neuromuscular, Departamento de Neurología y Neurocirugía, Clínica Dávila, Santiago 8431657, Chile; (N.E.); (I.A.)
- Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago 8380456, Chile
| | - Nicholas Earle
- Unidad de Patología Neuromuscular, Departamento de Neurología y Neurocirugía, Clínica Dávila, Santiago 8431657, Chile; (N.E.); (I.A.)
| | - Claudia Castiglioni
- Unidad de Neurología, Departamento de Pediatría, Clínica Las Condes, Santiago 7591047, Chile; (C.C.); (R.C.); (K.K.)
| | - Jorge Díaz
- Centro de Imagenología, Hospital Clínico Universidad de Chile, Santiago 8380492, Chile;
| | - Mario Campero
- Unidad Neuromuscular, Departamento Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago 8380492, Chile; (M.C.); (R.H.)
| | - Ricardo Hughes
- Unidad Neuromuscular, Departamento Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago 8380492, Chile; (M.C.); (R.H.)
| | - Carmen Vargas
- Neurología Pediátrica Hospital Roberto del Río, Universidad de Chile, Santiago 8380492, Chile;
| | - Rocío Cortés
- Unidad de Neurología, Departamento de Pediatría, Clínica Las Condes, Santiago 7591047, Chile; (C.C.); (R.C.); (K.K.)
- Neurología Pediátrica Hospital Roberto del Río, Universidad de Chile, Santiago 8380492, Chile;
| | - Karin Kleinsteuber
- Unidad de Neurología, Departamento de Pediatría, Clínica Las Condes, Santiago 7591047, Chile; (C.C.); (R.C.); (K.K.)
- Neurología Pediátrica Hospital Roberto del Río, Universidad de Chile, Santiago 8380492, Chile;
| | - Ignacio Acosta
- Unidad de Patología Neuromuscular, Departamento de Neurología y Neurocirugía, Clínica Dávila, Santiago 8431657, Chile; (N.E.); (I.A.)
| | | | - Nicolas Lévy
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
- Department of Medical Genetics, Hôpital Timone Enfants, APHM, 13385 Marseille, France
| | - Marc Bartoli
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
| | - Martin Krahn
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
- Department of Medical Genetics, Hôpital Timone Enfants, APHM, 13385 Marseille, France
| | - Lilian Jara
- Programa de Genética Humana, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile; (P.G.-H.); (A.T.); (L.J.)
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago 8380492, Chile;
- Centro de Biotecnología y Bioingeniería (CeBiB), Departamento de Ingeniería Química, Biotecnología y Biomateriales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago 8380492, Chile
| | - Svetlana Gorokhova
- Marseille Medical Genetics Université, INSERM, U 1251, Aix-Marseille Université, 13005 Marseille, France; (M.C.); (M.A.); (S.C.); (F.P.); (Y.M.); (N.L.); (M.B.); (M.K.); (S.G.)
- Department of Medical Genetics, Hôpital Timone Enfants, APHM, 13385 Marseille, France
| | - Jorge A. Bevilacqua
- Unidad Neuromuscular, Departamento Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Santiago 8380492, Chile; (M.C.); (R.H.)
- Unidad de Patología Neuromuscular, Departamento de Neurología y Neurocirugía, Clínica Dávila, Santiago 8431657, Chile; (N.E.); (I.A.)
- Departamento de Anatomía y Medicina Legal, Facultad de Medicina, Universidad de Chile, Santiago 8380456, Chile
- Correspondence:
| |
Collapse
|
11
|
Savostyanov K, Pushkov A, Zhanin I, Mazanova N, Trufanov S, Pakhomov A, Alexeeva A, Sladkov D, Asanov A, Fisenko A. The prevalence of Fabry disease among 1009 unrelated patients with hypertrophic cardiomyopathy: a Russian nationwide screening program using NGS technology. Orphanet J Rare Dis 2022; 17:199. [PMID: 35578305 PMCID: PMC9109305 DOI: 10.1186/s13023-022-02319-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 04/09/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There is a vast number of screening studies described in the literature from the beginning of the twenty-first century to the present day. Many of these studies are related to the estimation of Fabry disease (FD) morbidity among patients from high-risk groups, including adult patients with hypertrophic cardiomyopathy (HCM) and left ventricular hypertrophy (LVH). These studies show diverse detection frequencies (0-12%) depending on the methodology. Our study is the only example of large-scale selective FD screening based on the implementation of next-generation sequencing technology (NGS) as a first-level test to estimate FD morbidity in the Russian population over 18 years of age burdened with HCM. METHODS The study included 1009 patients (578 males and 431 females), with a median age of 50 years, who were diagnosed with HCM according to current clinical guidelines. In the first stage of screening, all patients underwent molecular genetic testing (NGS method) of target regions. These regions included the coding sequences of 17 genes and mutations that can lead to the development of HCM. Lysosomal globotriaosylsphingosine (lyso-Gb3) concentrations and α-galactosidase A (α-gal A) enzyme activity were measured in the second stage of screening to reveal pathogenic or likely pathogenic variants in the GLA gene. RESULTS We revealed 8 (0.8%) patients (3 (37.5%) males and 5 (62.5%) females) with an average age of 59 ± 13.3 years who had pathogenic, likely pathogenic variants and variants of uncertain significance (VUS) in the GLA gene (NM_000169.2) as a result of selective screening of 1009 Russian patients with HCM. FD was confirmed via biochemical tests in a male with the pathogenic variant c.902G > A, p.R301Q as well as in two females with likely pathogenic variants c.897C > A, p.D299E and c.1287_1288dup, p.*430Fext*?. These tests showed reduced enzymatic activity and increased substrate concentration. However, a female with the pathogenic variant c.416A > G, p.N139S and with normal enzymatic activity only had increased substrate concentrations. The revealed nucleotide variants and high values of biochemical indicators (lyso-Gb3) in these 4 patients allowed us to estimate the FD diagnosis among 1009 Russian patients with HCM. Mild extracardiac manifestations were observed in these four patients; however, both biochemical values within the reference range in females with the c.971T > G, p.L324W (VUS) variant. α-gal A activity and lyso-Gb3 concentrations were also within the normal range in two males with hemizygous variants, c.546T > C, p.D182D and c.640-794_640-791del (we regarded them as VUS), and in one female with the c.427G > A, p.A143T variant (with conflicting interpretations of pathogenicity). CONCLUSION The prevalence rate of FD among 1,009 adult Russian patients with HCM was 0.4%. We recommend FD screening among adult patients of both sexes with HCM and an undefined genetic cause via NGS method with subsequent analysis of α-gal A activity and lyso-Gb3 concentration in patients with pathogenic, likely pathogenic variants, and VUS. This strategy identifies patients with an atypical form of FD that is characterized by high residual activity of α-gal A, low concentrations of lyso-Gb3, and minor extracardiac manifestations.
Collapse
Affiliation(s)
- K Savostyanov
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia.
| | - A Pushkov
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - I Zhanin
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - N Mazanova
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - S Trufanov
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Pakhomov
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Alexeeva
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - D Sladkov
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - A Asanov
- Federal State Autonomous Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - A Fisenko
- Federal State Autonomous Institution, "National Medical Research Center for Children's Health" of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
12
|
Hou H, Wang X, Ding W, Xiao C, Cai X, Lv W, Tu Y, Zhao W, Yao J, Yang C. Whole-genome sequencing reveals the artificial selection and local environmental adaptability of pigeons ( Columba livia). Evol Appl 2022; 15:603-617. [PMID: 35505885 PMCID: PMC9046921 DOI: 10.1111/eva.13284] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 12/16/2022] Open
Abstract
To meet human needs, domestic pigeons (Columba livia) with various phenotypes have been bred to provide genetic material for our research on artificial selection and local environmental adaptation. Seven pigeon breeds were resequenced and can be divided into commercial varieties (Euro-pigeon, Shiqi, Shen King, Taishen, and Silver King), ornamental varieties (High Fliers), and local varieties (Tarim pigeon). Phylogenetic analysis based on population resequencing showed that one group contained local breeds and ornamental pigeons from China, whereas all commercial varieties were clustered together. It is revealed that the traditional Chinese ornamental pigeon is a branch of Tarim pigeon. Runs of homozygosity (ROH) and linkage disequilibrium (LD) analyses revealed significant differences in the genetic diversity of the three types of pigeons. Genome sweep analysis revealed that the selected genes of commercial breeds were related to body size, reproduction, and plumage color. The genomic imprinting genes left by the ornamental pigeon breeds were mostly related to special human facial features and muscular dystrophy. The Tarim pigeon has evolved genes related to chemical ion transport, photoreceptors, oxidative stress, organ development, and olfaction in order to adapt to local environmental stress. This research provides a molecular basis for pigeon genetic resource evaluation and genetic improvement and suggests that the understanding of adaptive evolution should integrate the effects of various natural environmental characteristics.
Collapse
Affiliation(s)
- Haobin Hou
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xiaoliang Wang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Weixing Ding
- Shanghai Academy of Agricultural SciencesShanghaiChina
| | - Changfeng Xiao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Xia Cai
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Wenwei Lv
- National Poultry Engineer Research CenterShanghaiChina
| | - Yingying Tu
- National Poultry Engineer Research CenterShanghaiChina
| | - Weimin Zhao
- Shanghai Jinhuang Pigeon CompanyShanghaiChina
| | - Junfeng Yao
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| | - Changsuo Yang
- Shanghai Academy of Agricultural SciencesShanghaiChina
- National Poultry Engineer Research CenterShanghaiChina
| |
Collapse
|
13
|
Alonso-Pérez J, González-Quereda L, Bruno C, Panicucci C, Alavi A, Nafissi S, Nilipour Y, Zanoteli E, de Augusto Isihi LM, Melegh B, Hadzsiev K, Muelas N, Vílchez JJ, Dourado ME, Kadem N, Kutluk G, Umair M, Younus M, Pegorano E, Bello L, Crawford TO, Suárez-Calvet X, Töpf A, Guglieri M, Marini-Bettolo C, Gallano P, Straub V, Díaz-Manera J. Clinical and genetic spectrum of a large cohort of patients with δ-sarcoglycan muscular dystrophy. Brain 2021; 145:596-606. [PMID: 34515763 PMCID: PMC9014751 DOI: 10.1093/brain/awab301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict diseasés severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 pediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty seven percent of the patients had consanguineous parents. Ninety one percent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in 5 patients (21.7%) and 4 patients (17.4%) required non-invasive ventilation. Sixty percent of patients were wheelchair-bound since early teens (median age of 12.0 years old). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.
Collapse
Affiliation(s)
- Jorge Alonso-Pérez
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Lidia González-Quereda
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Claudio Bruno
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Chiara Panicucci
- Center of Translational and Experimental Myology, IRCSS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 13871, Iran
| | - Shahriar Nafissi
- Department of Neurology, Neuromuscular research center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, 14117, Iran
| | - Yalda Nilipour
- Pediatric Pathology Research Center, Research Institute for Children Health, Shahid Beheshti University of Medical Sciences, Tehran, 14117, Iran
| | - Edmar Zanoteli
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Lucas Michielon de Augusto Isihi
- Department of Neurology, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo, 05403, Brazil
| | - Béla Melegh
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, and Szentagothai Research Center, University of Pecs, School of Medicine, Pecs, 07522, Hungary
| | - Nuria Muelas
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,Neuromuscular Diseases Unit, Neurology Department, Hospital Universitari I Politècnic La Fe, Neuromuscular Reference Centre, ERN-EURO-NMD, Valencia, 46026, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Juan J Vílchez
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| | - Mario Emilio Dourado
- Department of Integrative Medicine, Federal University of Rio Grande do Norte, Campus Universitário Lagoa Nova, 59012-300 Natal, RN, Brazil
| | - Naz Kadem
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Gultekin Kutluk
- University of Health Sciences, Antalya Research and Training Hospital, Department of Paediatric Neurology, Antalya, 07100, Turkey
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, 14611, Saudi Arabia.,Department of Life Sciences, School of Science, University of Management and Technology (UMT), Lahore, 54770, Pakistan
| | - Muhammad Younus
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Beijing 100871, China
| | - Elena Pegorano
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Luca Bello
- Department of Neuroscience, University of Padova, Padova, 35112, Italy
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain
| | - Ana Töpf
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Michela Guglieri
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Chiara Marini-Bettolo
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Pia Gallano
- Genetics Department, IIB Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Departament of Medicine, Barcelona, 08041, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Spain.,The John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
14
|
Molecular Diagnosis of Pompe Disease in the Genomic Era: Correlation with Acid Alpha-Glucosidase Activity in Dried Blood Spots. J Clin Med 2021; 10:jcm10173868. [PMID: 34501319 PMCID: PMC8432085 DOI: 10.3390/jcm10173868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022] Open
Abstract
Measurement of alpha-glucosidase activity on dried blood spots has been the main method to screen for Pompe disease, but a paradigm shift has been observed in recent years with the incorporation of gene panels and exome sequencing in molecular diagnostic laboratories. An 89-gene panel has been available to Canadian physicians since 2017 and was analyzed in 2030 patients with a suspected muscle disease. Acid alpha-glucosidase activity was measured in parallel in dried blood spots from 1430 patients. Pompe disease was diagnosed in 14 patients, representing 0.69% of our cohort. In 7 other patients, low enzyme activities overlapping those of Pompe disease cases were attributable to the presence of pseudodeficiency alleles. Only two other patients had enzymatic activity in the Pompe disease range, and a single heterozygous pathogenic variant was identified. It is possible that a second variant could have been missed; we suggest that RNA analysis should be considered in such cases. With gene panel testing increasingly being performed as a first-tier analysis of patients with suspected muscle disorders, our study supports the relevance of performing reflex enzymatic activity assay in selected patients, such as those with a single GAA variant identified and those in whom the observed genotype is of uncertain clinical significance.
Collapse
|
15
|
Abstract
The limb-girdle muscular dystrophies (LGMD) are a collection of genetic diseases united in their phenotypical expression of pelvic and shoulder area weakness and wasting. More than 30 subtypes have been identified, five dominant and 26 recessive. The increase in the characterization of new genotypes in the family of LGMDs further adds to the heterogeneity of the disease. Meanwhile, better understanding of the phenotype led to the reconsideration of the disease definition, which resulted in eight old subtypes to be no longer recognized officially as LGMD and five new diseases to be added to the LGMD family. The unique variabilities of LGMD stem from genetic mutations, which then lead to protein and ultimately muscle dysfunction. Herein, we review the LGMD pathway, starting with the genetic mutations that encode proteins involved in muscle maintenance and repair, and including the genotype–phenotype relationship of the disease, the epidemiology, disease progression, burden of illness, and emerging treatments.
Collapse
|
16
|
Zaganas I, Mastorodemos V, Spilioti M, Mathioudakis L, Latsoudis H, Michaelidou K, Kotzamani D, Notas K, Dimitrakopoulos K, Skoula I, Ioannidis S, Klothaki E, Erimaki S, Stavropoulos G, Vassilikos V, Amoiridis G, Efthimiadis G, Evangeliou A, Mitsias P. Genetic cause of heterogeneous inherited myopathies in a cohort of Greek patients. Mol Genet Metab Rep 2020; 25:100682. [PMID: 33304817 PMCID: PMC7711282 DOI: 10.1016/j.ymgmr.2020.100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/13/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Inherited muscle disorders are caused by pathogenic changes in numerous genes. Herein, we aimed to investigate the etiology of muscle disease in 24 consecutive Greek patients with myopathy suspected to be genetic in origin, based on clinical presentation and laboratory and electrophysiological findings and absence of known acquired causes of myopathy. Of these, 16 patients (8 females, median 24 years-old, range 7 to 67 years-old) were diagnosed by Whole Exome Sequencing as suffering from a specific type of inherited muscle disorder. Specifically, we have identified causative variants in 6 limb-girdle muscular dystrophy genes (6 patients; ANO5, CAPN3, DYSF, ISPD, LAMA2, SGCA), 3 metabolic myopathy genes (4 patients; CPT2, ETFDH, GAA), 1 congenital myotonia gene (1 patient; CLCN1), 1 mitochondrial myopathy gene (1 patient; MT-TE) and 3 other myopathy-associated genes (4 patients; CAV3, LMNA, MYOT). In 6 additional family members affected by myopathy, we reached genetic diagnosis following identification of a causative variant in an index patient. In our patients, genetic diagnosis ended a lengthy diagnostic process and, in the case of Multiple acyl-CoA dehydrogenase deficiency and Pompe's disease, it enabled specific treatment to be initiated. These results further expand the genotypic and phenotypic spectrum of inherited myopathies.
Collapse
Affiliation(s)
- Ioannis Zaganas
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | | | - Martha Spilioti
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lambros Mathioudakis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Helen Latsoudis
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Kleita Michaelidou
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Dimitra Kotzamani
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Konstantinos Notas
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Irene Skoula
- Neurogenetics Laboratory, Medical School, University of Crete, Heraklion, Crete, Greece
| | - Stefanos Ioannidis
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Eirini Klothaki
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
| | - Sophia Erimaki
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Stavropoulos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vassilios Vassilikos
- Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Amoiridis
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
| | - Georgios Efthimiadis
- AHEPA General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanasios Evangeliou
- Papageorgiou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Mitsias
- Neurology Department, University Hospital of Crete, Heraklion, Crete, Greece
- Neurophysiology Unit, University Hospital of Crete, Heraklion, Crete, Greece
- Department of Neurology, Henry Ford Hospital/Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
17
|
Mroczek M, Sanchez MG. Genetic modifiers and phenotypic variability in neuromuscular disorders. J Appl Genet 2020; 61:547-558. [PMID: 32918245 DOI: 10.1007/s13353-020-00580-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/31/2020] [Accepted: 09/06/2020] [Indexed: 12/13/2022]
Abstract
Neuromuscular disorders are mostly rare diseases with autosomal dominant, recessive, or X-linked inheritance. Interestingly, among patients carrying the same mutations, a range of phenotypic severity is reported. This phenotypic variability in neuromuscular disorders is still not fully understood. This review will focus on genetic modifiers and will briefly describe metabolic pathways, in which they are involved. Genetic modifiers are variants in the same or other genes that modulate the phenotype. Proteins encoded by genetic modifiers in neuromuscular diseases are taking part in different metabolic processes, most commonly in inflammation, growth and regeneration, endoplasmic reticulum metabolism, and cytoskeletal activities. Recent advances in omics technologies, development of computational algorithms, and establishing large international consortia intensified discovery sped up investigation of genetic modifiers. As more individuals affected by neuromuscular disorders are tested, it is often suggested that classic models of genetic causation cannot explain phenotypic variability. There is a growing interest in their discovery and identifying shared metabolic pathways can contribute to design targeted therapies. We provide an update on variants acting as genetic modifiers in neuromuscular disorders and strategies used for their discovery.
Collapse
Affiliation(s)
- Magdalena Mroczek
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK.
| | - Maria Gabriela Sanchez
- Molecular Biology Department, Simon Bolivar University, Sartenejas Valley, Caracas, Venezuela
| |
Collapse
|
18
|
Libell EM, Richardson JA, Lutz KL, Ng BY, Mockler SRH, Laubscher KM, Stephan CM, Zimmerman BM, Edens ER, Reinking BE, Mathews KD. Cardiomyopathy in limb girdle muscular dystrophy R9, FKRP related. Muscle Nerve 2020; 62:626-632. [PMID: 32914449 PMCID: PMC7693230 DOI: 10.1002/mus.27052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 11/08/2022]
Abstract
Introduction Reported frequencies of cardiomyopathy in limb girdle muscular dystrophy R9 (LGMDR9) vary. We describe the frequency and age at onset of cardiomyopathy in an LDMDR9 cohort. Methods Echocardiograms from 56 subjects (157 echocardiograms) with LGMDR9 were retrospectively reviewed. The cumulative probability of having an abnormal echocardiogram as a function of age was assessed by survival analysis for interval‐censored data by genotype. Correlations between cardiac and clinical function were evaluated. Results Twenty‐five (45%) participants had cardiomyopathy. The median age at first abnormal echocardiogram for subjects homozygous for the c.826C>A variant was 54.2 y compared to 18.1 y for all other fukutin‐related protein (FKRP) genotypes (P < .0001). There was a weak correlation between ejection fraction and 10‐Meter Walk Test speed (r = 0.25), but no correlation with forced vital capacity (r = 0.08). Discussion Cardiomyopathy is prevalent among those with LGMDR9 and occurs later in subjects homozygous for the c.826C>A mutation. These data will help to guide surveillance and management.
Collapse
Affiliation(s)
- Eric M Libell
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Julia A Richardson
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katie L Lutz
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Benton Y Ng
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Shelley R H Mockler
- Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Katie M Laubscher
- Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, Iowa, USA
| | - Carrie M Stephan
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Bridget M Zimmerman
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Erik R Edens
- Children's Heart Center, Children's Minnesota, Minneapolis, Minnesota, USA
| | - Benjamin E Reinking
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Katherine D Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
19
|
La Cognata V, Guarnaccia M, Polizzi A, Ruggieri M, Cavallaro S. Highlights on Genomics Applications for Lysosomal Storage Diseases. Cells 2020; 9:E1902. [PMID: 32824006 PMCID: PMC7465195 DOI: 10.3390/cells9081902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are a heterogeneous group of rare multisystem genetic disorders occurring mostly in infancy and childhood, characterized by a gradual accumulation of non-degraded substrates inside the lysosome. Although the cellular pathogenesis of LSDs is complex and still not fully understood, the approval of disease-specific therapies and the rapid emergence of novel diagnostic methods led to the implementation of extensive national newborn screening (NBS) programs in several countries. In the near future, this will help the development of standardized workflows aimed to more timely diagnose these conditions. Hereby, we report an overview of LSD diagnostic process and treatment strategies, provide an update on the worldwide NBS programs, and discuss the opportunities and challenges arising from genomics applications in screening, diagnosis, and research.
Collapse
Affiliation(s)
- Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| | - Agata Polizzi
- Chair of Pediatrics, Department of Educational Sciences, University of Catania, Via Casa Nutrizione, 39, 95124 Catania, Italy;
| | - Martino Ruggieri
- Unit of Rare Diseases of the Nervous System in Childhood, Department of Clinical and Experimental Medicine, Section of Pediatrics and Child Neuropsychiatry, AOU “Policlinico”, PO “G. Rodolico”, Via S. Sofia, 78, 95123 Catania, Italy;
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via P. Gaifami 18, 95126 Catania, Italy; (V.L.C.); (M.G.)
| |
Collapse
|
20
|
Taverna S, Cammarata G, Colomba P, Sciarrino S, Zizzo C, Francofonte D, Zora M, Scalia S, Brando C, Curto AL, Marsana EM, Olivieri R, Vitale S, Duro G. Pompe disease: pathogenesis, molecular genetics and diagnosis. Aging (Albany NY) 2020; 12:15856-15874. [PMID: 32745073 PMCID: PMC7467391 DOI: 10.18632/aging.103794] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Pompe disease (PD) is a rare autosomal recessive disorder caused by mutations in the GAA gene, localized on chromosome 17 and encoding for acid alpha-1,4-glucosidase (GAA). Currently, more than 560 mutations spread throughout GAA gene have been reported. GAA catalyzes the hydrolysis of α-1,4 and α-1,6-glucosidic bonds of glycogen and its deficiency leads to lysosomal storage of glycogen in several tissues, particularly in muscle. PD is a chronic and progressive pathology usually characterized by limb-girdle muscle weakness and respiratory failure. PD is classified as infantile and childhood/adult forms. PD patients exhibit a multisystemic manifestation that depends on age of onset. Early diagnosis is essential to prevent or reduce the irreversible organ damage associated with PD progression. Here, we make an overview of PD focusing on pathogenesis, clinical phenotypes, molecular genetics, diagnosis, therapies, autophagy and the role of miRNAs as potential biomarkers for PD.
Collapse
Affiliation(s)
- Simona Taverna
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giuseppe Cammarata
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Serafina Sciarrino
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Carmela Zizzo
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Daniele Francofonte
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Marco Zora
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Simone Scalia
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Chiara Brando
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Alessia Lo Curto
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Emanuela Maria Marsana
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Roberta Olivieri
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Silvia Vitale
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| | - Giovanni Duro
- Institute for Biomedical Research and Innovation (IRIB-CNR), National Research Council of Italy, Palermo, Italy
| |
Collapse
|
21
|
Casas-Fraile L, Cornelis FM, Costamagna D, Rico A, Duelen R, Sampaolesi MM, López de Munain A, Lories RJ, Sáenz A. Frizzled related protein deficiency impairs muscle strength, gait and calpain 3 levels. Orphanet J Rare Dis 2020; 15:119. [PMID: 32448375 PMCID: PMC7245871 DOI: 10.1186/s13023-020-01372-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023] Open
Abstract
Background Limb-girdle muscular dystrophy recessive 1 calpain3-related (LGMDR1), previously known as LGMD2A, is a disease caused by mutations in the CAPN3 gene. It is characterized by progressive weakness and muscle degeneration. Frizzled related protein (FRZB), upregulated in LGMDR1, was identified as a key regulator of the crosstalk between Wnt and integrin signalling pathways. FRZB gene silencing showed a recovery in the expression of some of the costamere protein levels in myotubes. Results Here, we performed a comprehensive characterization of Frzb−/− mice muscles to study the absence of Frzb in skeletal muscle and eventual links with the molecular characteristics of LGMDR1 patient muscles. Frzb−/− mice showed reduced muscle size and strength. Gait analysis showed that Frzb−/− mice moved more slowly but no impaired regeneration capacity was observed after muscle injury. Additionally, Frzb−/− mice muscle showed an increased number of mesoangioblasts. Lack of Frzb gene in Frzb−/− mice and its increased expression in LGMDR1 patients, showed contrary regulation of Rora, Slc16a1, Tfrc and Capn3 genes. The reciprocal regulation of Frzb and Capn3 genes further supports this axis as a potential target for LGMDR1 patients. Conclusions Our data confirm a role for Frzb in the regulation of Rora, Slc16a1, Tfrc, and Capn3 genes in muscle cells. In vivo, reduced muscle strength and gait in the Frzb−/− mice are intriguing features. The reciprocal relationship between FRZB and CAPN3 further supports a key role for this axis in patients with LGMDR1.
Collapse
Affiliation(s)
- Leire Casas-Fraile
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Frederique M Cornelis
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium
| | - Domiziana Costamagna
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Anabel Rico
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain
| | - Robin Duelen
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium
| | - Maurilio M Sampaolesi
- Department of Development and Regeneration, Stem Cell Institute, Laboratory of Translational Cardiomyology, KU Leuven, Leuven, Belgium.,Department of Public Health, Experimental and Forensic Medicine, Human Anatomy Unit, University of Pavia, Pavia, Italy
| | - Adolfo López de Munain
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain.,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.,Department of Neurology, Donostia University Hospital, Donostia, Spain.,Department of Neurosciences, University of the Basque Country, Leioa, Spain
| | - Rik J Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Leuven, Belgium.,Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| | - Amets Sáenz
- Biodonostia Health Research Institute, Neurosciences Area, San Sebastian, Spain. .,Spanish Ministry of Economy & Competitiveness, Carlos III Health Institute, CIBER, Madrid, Spain.
| |
Collapse
|