1
|
Tesla R, Guhl C, Werthmann GC, Dixon D, Cenik B, Addepalli Y, Liang J, Fass DM, Rosenthal Z, Haggarty SJ, Williams NS, Posner BA, Ready JM, Herz J. Benzoxazole-derivatives enhance progranulin expression and reverse the aberrant lysosomal proteome caused by GRN haploinsufficiency. Nat Commun 2024; 15:6125. [PMID: 39033178 PMCID: PMC11271458 DOI: 10.1038/s41467-024-50076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous loss-of-function mutations in the GRN gene are a major cause of hereditary frontotemporal dementia. The mechanisms linking frontotemporal dementia pathogenesis to progranulin deficiency are not well understood, and there is currently no treatment. Our strategy to prevent the onset and progression of frontotemporal dementia in patients with GRN mutations is to utilize small molecule positive regulators of GRN expression to boost progranulin levels from the remaining functional GRN allele, thus restoring progranulin levels back to normal within the brain. This work describes a series of blood-brain-barrier-penetrant small molecules which significantly increase progranulin protein levels in human cellular models, correct progranulin protein deficiency in Grn+/- mouse brains, and reverse lysosomal proteome aberrations, a phenotypic hallmark of frontotemporal dementia, more efficiently than the previously described small molecule suberoylanilide hydroxamic acid. These molecules will allow further elucidation of the cellular functions of progranulin and its role in frontotemporal dementia and will also serve as lead structures for further drug development.
Collapse
Affiliation(s)
- Rachel Tesla
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gordon C Werthmann
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Danielle Dixon
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Basar Cenik
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Translational Neurodegeneration Research, Dallas, TX, USA
| | - Yesu Addepalli
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jue Liang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel M Fass
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Rosenthal
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Stephen J Haggarty
- Chemical Neurobiology Laboratory, Center for Genomic Medicine, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Center for Translational Neurodegeneration Research, Dallas, TX, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Katz ML, Cook J, Vite CH, Campbell RS, Coghill LM, Lyons LA. Beta-mannosidosis in a domestic cat associated with a missense variant in MANBA. Gene 2024; 893:147941. [PMID: 37913889 PMCID: PMC10841995 DOI: 10.1016/j.gene.2023.147941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
A 6-month-old cat of unknown ancestry presented for a neurologic evaluation due to progressive motor impairment. Complete physical and neurologic examinations suggested the disorder was likely to be hereditary, although the signs were not consistent with any previously described inherited disorders in cats. Due to the progression of disease signs including severely impaired motor function and cognitive decline, the cat was euthanized at approximately 10.5 months of age. Whole genome sequence analysis identified a homozygous missense variant c.2506G > A in MANBA that predicts a p.Gly836Arg alteration in the encoded lysosomal enzyme β -mannosidase. This variant was not present in the whole genome or whole exome sequences of any of the 424 cats represented in the 99 Lives Cat Genome dataset. β -Mannosidase enzyme activity was undetectable in brain tissue homogenates from the affected cat, whereas α-mannosidase enzyme activities were elevated compared to an unaffected cat. Postmortem examination of brain and retinal tissues revealed massive accumulations of vacuolar inclusions in most cells, similar to those reported in animals of other species with hereditary β -mannosidosis. Based on these findings, the cat likely suffered from β -mannosidosis due to the abolition of β -mannosidase activity associated with the p.Gly836Arg amino acid substitution. p.Gly836 is located in the C-terminal region of the protein and was not previously known to be involved in modulating enzyme activity. In addition to the vacuolar inclusions, some cells in the brain of the affected cat contained inclusions that exhibited lipofuscin-like autofluorescence. Electron microscopic examinations suggested these inclusions formed via an autophagy-like process.
Collapse
Affiliation(s)
- Martin L Katz
- Neurodegenerative Diseases Research Laboratory, University of Missouri, Columbia, MO 65212, USA.
| | - James Cook
- Specialists in Companion Animal Neurology, Clearwater, FL 33765, USA
| | - Charles H Vite
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Rebecca S Campbell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Lyndon M Coghill
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Leslie A Lyons
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA; Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Plevova P, Indrakova J, Savige J, Kuhnova P, Tvrda P, Cerna D, Hilscherova S, Kudrejova M, Polendova D, Jaklova R, Langova M, Jahnova H, Lastuvkova J, Dusek J, Gut J, Vlckova M, Solarova P, Kreckova G, Kantorova E, Soukalova J, Slavkovsky R, Zapletalova J, Tichy T, Thomasova D. A founder COL4A4 pathogenic variant resulting in autosomal recessive Alport syndrome accounts for most genetic kidney failure in Romani people. Front Med (Lausanne) 2023; 10:1096869. [PMID: 36844206 PMCID: PMC9948603 DOI: 10.3389/fmed.2023.1096869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Romani people have a high prevalence of kidney failure. This study examined a Romani cohort for pathogenic variants in the COL4A3, COL4A4, and COL4A5 genes that are affected in Alport syndrome (AS), a common cause of genetic kidney disease, characterized by hematuria, proteinuria, end-stage kidney failure, hearing loss, and eye anomalies. Materials and methods The study included 57 Romani from different families with clinical features that suggested AS who underwent next-generation sequencing (NGS) of the COL4A3, COL4A4, and COL4A5 genes, and 83 family members. Results In total, 27 Romani (19%) had autosomal recessive AS caused by a homozygous pathogenic c.1598G>A, p.Gly533Asp variant in COL4A4 (n = 20) or a homozygous c.415G>C, p.Gly139Arg variant in COL4A3 (n = 7). For p.Gly533Asp, 12 (80%) had macroscopic hematuria, 12 (63%) developed end-stage kidney failure at a median age of 22 years, and 13 (67%) had hearing loss. For p.Gly139Arg, none had macroscopic hematuria (p = 0.023), three (50%) had end-stage kidney failure by a median age of 42 years (p = 0.653), and five (83%) had hearing loss (p = 0.367). The p.Gly533Asp variant was associated with a more severe phenotype than p.Gly139Arg, with an earlier age at end-stage kidney failure and more macroscopic hematuria. Microscopic hematuria was very common in heterozygotes with both p.Gly533Asp (91%) and p.Gly139Arg (92%). Conclusion These two founder variants contribute to the high prevalence of kidney failure in Czech Romani. The estimated population frequency of autosomal recessive AS from these variants and consanguinity by descent is at least 1:11,000 in Czech Romani. This corresponds to a population frequency of autosomal dominant AS from these two variants alone of 1%. Romani with persistent hematuria should be offered genetic testing.
Collapse
Affiliation(s)
- Pavlina Plevova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia,Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czechia,*Correspondence: Pavlina Plevova,
| | - Jana Indrakova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Judy Savige
- Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Royal Melbourne Hospital, Melbourne, Australia
| | - Petra Kuhnova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Petra Tvrda
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Dita Cerna
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Sarka Hilscherova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Monika Kudrejova
- Department of Clinical and Molecular Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
| | - Daniela Polendova
- Department of Medical Genetics, Faculty of Medicine in Plzeň, Charles University and University Hospital Plzeň, Plzeň, Czechia
| | - Radka Jaklova
- Department of Medical Genetics, Faculty of Medicine in Plzeň, Charles University and University Hospital Plzeň, Plzeň, Czechia
| | - Martina Langova
- Department of Medical Genetics, Thomayer University Hospital, Prague, Czechia
| | - Helena Jahnova
- Department of Pediatrics, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czechia
| | - Jana Lastuvkova
- Department of Medical Genetics, Krajská zdravotní, a.s., Masaryk Hospital in Ústí nad Labem, Ústí nad Labem, Czechia
| | - Jiri Dusek
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Josef Gut
- Department of Pediatrics, Hospital Česká Lípa, Česká Lípa, Czechia
| | - Marketa Vlckova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Pavla Solarova
- Department of Medical Genetics, University Hospital Hradec Králové, Hradec Králové, Czechia
| | | | - Eva Kantorova
- Department of Medical Genetics, Hospital České Budějovice a.s., České Budějovice, Czechia
| | - Jana Soukalova
- Department of Medical Genetics and Genomics, University Hospital Brno, Brno, Czechia
| | - Rastislav Slavkovsky
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Jana Zapletalova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Tomas Tichy
- Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czechia
| | - Dana Thomasova
- Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| |
Collapse
|
4
|
Galano M, Ezzat S, Papadopoulos V. SCP2 variant is associated with alterations in lipid metabolism, brainstem neurodegeneration, and testicular defects. Hum Genomics 2022; 16:32. [PMID: 35996156 PMCID: PMC9396802 DOI: 10.1186/s40246-022-00408-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The detoxification of very long-chain and branched-chain fatty acids and the metabolism of cholesterol to form bile acids occur largely through a process called peroxisomal β-oxidation. Mutations in several peroxisomal proteins involved in β-oxidation have been reported, resulting in diseases characterized by neurological defects. The final step of the peroxisomal β-oxidation pathway is catalyzed by sterol carrier protein-x (SCPx), which is encoded by the SCP2 gene. Previously, there have been two reports of SCPx deficiency, which resulted from a homozygous or compound heterozygous SCP2 mutation. We report herein the first patient with a heterozygous SCP2 mutation leading to SCPx deficiency. RESULTS Clinical presentations of the patient included progressive brainstem neurodegeneration, cardiac dysrhythmia, muscle wasting, and azoospermia. Plasma fatty acid analysis revealed abnormal values of medium-, long-, and very long-chain fatty acids. Protein expression of SCPx and other enzymes involved in β-oxidation were altered between patient and normal fibroblasts. RNA sequencing and lipidomic analyses identified metabolic pathways that were altered between patient and normal fibroblasts including PPAR signaling, serotonergic signaling, steroid biosynthesis, and fatty acid degradation. Treatment with fenofibrate or 4-hydroxytamoxifen increased SCPx levels, and certain fatty acid levels in patient fibroblasts. CONCLUSIONS These findings suggest that the patient's SCP2 mutation resulted in decreased protein levels of SCPx, which may be associated with many metabolic pathways. Increasing SCPx levels through pharmacological interventions may reverse some effects of SCPx deficiency. Collectively, this work provides insight into many of the clinical consequences of SCPx deficiency and provides evidence for potential treatment strategies.
Collapse
Affiliation(s)
- Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA
| | - Shereen Ezzat
- Department of Medicine, University of Toronto and Princess Margaret Cancer Center, Toronto, ON, M5G 2C1, Canada
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Resmerita I, Cozma RS, Popescu R, Radulescu LM, Panzaru MC, Butnariu LI, Caba L, Ilie OD, Gavril EC, Gorduza EV, Rusu C. Genetics of Hearing Impairment in North-Eastern Romania-A Cost-Effective Improved Diagnosis and Literature Review. Genes (Basel) 2020; 11:genes11121506. [PMID: 33333757 PMCID: PMC7765194 DOI: 10.3390/genes11121506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022] Open
Abstract
Background: We have investigated the main genetic causes for non-syndromic hearing impairment (NSHI) in the hearing impairment individuals from the North-Eastern Romania and proposed a cost-effective diagnosis protocol. Methods: MLPA followed by Sanger Sequencing were used for all 291 patients included in this study. Results: MLPA revealed abnormal results in 141 cases (48.45%): 57 (40.5%) were c.35delG homozygous, 26 (18.44%) were c.35delG heterozygous, 14 (9.93%) were compound heterozygous and 16 (11.35%) had other types of variants. The entire coding region of GJB2 was sequenced and out of 150 patients with normal results at MLPA, 29.33% had abnormal results: variants in heterozygous state: c.71G>A (28%), c.457G>A (20%), c.269T>C (12%), c.109G>A (12%), c.100A>T (12%), c.551G>C (8%). Out of 26 patients with c.35delG in heterozygous state, 38.46% were in fact compound heterozygous. Conclusions: We identified two variants: c.109G>A and c.100A>T that have not been reported in any study from Romania. MLPA is an inexpensive, rapid and reliable technique that could be a cost-effective diagnosis method, useful for patients with hearing impairment. It can be adaptable for the mutation spectrum in every population and followed by Sanger sequencing can provide a genetic diagnosis for patients with different degrees of hearing impairment.
Collapse
Affiliation(s)
- Irina Resmerita
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
- Correspondence: or (I.R.); (R.S.C.); Tel.: +40-0741195689 (I.R.)
| | - Romica Sebastian Cozma
- Department of Otorhinolaryngology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania;
- Correspondence: or (I.R.); (R.S.C.); Tel.: +40-0741195689 (I.R.)
| | - Roxana Popescu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Luminita Mihaela Radulescu
- Department of Otorhinolaryngology, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania;
| | - Monica Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Lacramioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Ovidiu-Dumitru Ilie
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University, Carol I Avenue, No 20A, 700505 Iasi, Romania;
| | - Eva-Cristiana Gavril
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| | - Cristina Rusu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania; (R.P.); (M.C.P.); (L.I.B.); (L.C.); (E.-C.G.); (E.V.G.); (C.R.)
| |
Collapse
|