1
|
Zeng Z, Liu T, Zeng P, Xie Y, Li L, Tan J, Wang H, Liu S, Bian Q, Xiao H, Liang S, Chen J, Chen Y, Lu L. Enhancing vascular implants with heparin-polylysine-copper nanozyme coating for synergistic anticoagulation and antirestenotic activity. Int J Biol Macromol 2025; 309:143048. [PMID: 40216105 DOI: 10.1016/j.ijbiomac.2025.143048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/18/2025]
Abstract
Re-establishing blood flow through vascular implants, such as stents, faces significant challenges, including late stent thrombosis (LST) and in-stent restenosis (ISR). Strategies to overcome these issues focus on enhancing stent surfaces with anticoagulant, pro-endothelialization, and anti-neointimal hyperplasia (NIH) properties. However, achieving all of these functionalities typically requires complex surface modifications. In this study, we developed nanozyme particles by assembling heparin, polylysine (PLL) and copper ions, which catalytically release nitric oxide (NO) in situ. A functional coating was then formed on pre-deposited polydopamine (PDA) transition layer. Our nanozyme coating not only exhibits robust anticoagulant activity but also enables sustained, in situ release of NO, a critical gas molecule for maintaining vascular health and patency. In vitro results showed that the coating significantly inhibited platelet aggregation, remarkably prolonged activated partial thromboplastin time (APTT), and selectively promoted endothelial cell growth over smooth muscle cells. Ex vivo blood circulation models confirmed its superior anti-thrombotic efficacy, while in vivo experiments further validated its ability to facilitate endothelial regeneration and suppress NIH. This technology offers significant potential for improving the safety and outcomes of cardiovascular implants.
Collapse
Affiliation(s)
- Zheng Zeng
- The Fourth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China; Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Liu
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Peiying Zeng
- The Fourth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinhong Xie
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Huanran Wang
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China
| | - Hongkai Xiao
- The Fourth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Siyu Liang
- The Fourth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China.
| | - Yin Chen
- The Fourth Affiliated Hospital, School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, China.
| | - Lei Lu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Li X, Xu SJ, Jin B, Lu HS, Zhao SK, Ding XF, Xu LL, Li HJ, Liu SC, Chen J, Chen G. Heparanase inhibitor OGT 2115 induces prostate cancer cell apoptosis via the downregulation of MCL‑1. Oncol Lett 2024; 27:83. [PMID: 38249815 PMCID: PMC10797316 DOI: 10.3892/ol.2024.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024] Open
Abstract
Heparanase (HPSE), an endo-β-D-glucuronidase, cleaves heparan sulfate and serves an important role in the tumor microenvironment and thus in tumorigenesis. HPSE is known to promote tumor cell evasion of apoptosis. However, the underlying mechanism of this requires further study. In the present study, the results demonstrated that myeloid cell leukemia-1 (MCL-1), an antiapoptotic protein, and HPSE were upregulated in prostate cancer tissues compared with adjacent normal tissues. In addition, the HPSE inhibitor, OGT 2115, inhibited PC-3 and DU-145 prostate cancer cell viability in a dose-dependent manner, with IC50 values of 20.2 and 97.2 µM, respectively. Furthermore, annexin V/PI double-staining assays demonstrated that OGT 2115 induced apoptosis in prostate cancer cells. OGT 2115 treatment markedly decreased MCL-1 protein expression levels, whereas RNA interference-mediated downregulation of MCL-1 and OGT 2115 drug treatment synergistically induced apoptosis in PC-3 and DU-145 cells. In vivo, OGT 2115 40 mg/kg (ig) significantly inhibited PC-3 cell xenograft growth in nude mice and increased the positive TUNEL staining rate of xenograft tissues. It was therefore hypothesized that MCL-1 was an important signaling molecule in OGT 2115-induced apoptosis. The results of the present study also demonstrated that the proteasome inhibitor, MG-132, markedly inhibited the downregulation of MCL-1 protein expression levels induced by OGT 2115. However, the protein synthesis inhibitor, cycloheximide, did not affect the role of OGT 2115 in regulating MCL-1. In summary, the results of the present study demonstrated that the proapoptotic activity of OGT 2115 was achieved by downregulating MCL-1.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Shuai-Jun Xu
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Bin Jin
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Hong-Sheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Shan-Kun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Xiao-Fei Ding
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Hai-Jun Li
- Department of Neurology, Taizhou Second People's Hospital, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Shuang-Chun Liu
- Laboratory Department, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jie Chen
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Guang Chen
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
3
|
Kim S, Fuselier J, Latoff A, Manges J, Jazwinski SM, Zsombok A. Upregulation of extracellular proteins in a mouse model of Alzheimer's disease. Sci Rep 2023; 13:6998. [PMID: 37117484 PMCID: PMC10147640 DOI: 10.1038/s41598-023-33677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/17/2023] [Indexed: 04/30/2023] Open
Abstract
Various risk factors of Alzheimer's disease (AD) are known, such as advanced age, possession of certain genetic variants, accumulation of toxic amyloid-β (Aβ) peptides, and unhealthy lifestyle. An estimate of heritability of AD ranges from 0.13 to 0.25, indicating that its phenotypic variation is accounted for mostly by non-genetic factors. DNA methylation is regarded as an epigenetic mechanism that interfaces the genome with non-genetic factors. The Tg2576 mouse model has been insightful in AD research. These transgenic mice express a mutant form of human amyloid precursor protein linked to familial AD. At 9-13 months of age, these mice show elevated levels of Aβ peptides and cognitive impairment. The current literature lacks integrative multiomics of the animal model. We applied transcriptomics and DNA methylomics to the same brain samples from ~ 11-month-old transgenic mice. We found that genes involved in extracellular matrix structures and functions are transcriptionally upregulated, and genes involved in extracellular protein secretion and localization are differentially methylated in the transgenic mice. Integrative analysis found enrichment of GO terms related to memory and synaptic functionability. Our results indicate a possibility of transcriptional modulation by DNA methylation underlying AD neuropathology.
Collapse
Affiliation(s)
- Sangkyu Kim
- Tulane Center for Aging and Deming Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA.
- Deming Department of Medicine, Tulane University Health Sciences Center, 1430 Tulane Ave., MBC 8513, New Orleans, LA, 70112, USA.
| | - Jessica Fuselier
- Tulane Center for Aging and Deming Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
- Data Science Department, Catalytic Data Science, Charleston, SC, USA
| | - Anna Latoff
- Tulane Center for Aging and Deming Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Justin Manges
- Tulane Center for Aging and Deming Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging and Deming Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Andrea Zsombok
- Tulane Center for Aging and Department of Physiology, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
4
|
Li N, Pang Q, Zhang Y, Lin J, Li H, Li Z, Liu Y, Fang X, An Y, Bai H, Li D, Cao Z, Liu J, Yang Q, Hu S. Ginsenoside ompound K reduces neuronal damage and improves neuronal synaptic dysfunction by targeting Aβ. Front Pharmacol 2023; 14:1103012. [PMID: 36873999 PMCID: PMC9977807 DOI: 10.3389/fphar.2023.1103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Background: Alzheimer's disease (AD) is the most common neurodegenerative condition worldwide, with amyloid ß (Aβ) fibrils presenting as its main pathological feature. This study investigated whether Ginsenoside Compound K (CK) has activity against Aβ and its mechanism in reducing synaptic damage and cognitive impairment. Methods: The binding capacity of CK to Aβ42 and Nrf2/Keap1 was determined using molecular docking. Transmission electron microscopy was used to monitor CK-mediated degradation of Aβ fibrils. The effect of CK on the survival of Aβ42-damaged HT22 cells was determined using a CCK-8 assay. The therapeutic efficacy of CK in a scopoletin hydrobromide (SCOP) induced cognitive dysfunction mouse model was measured using a step-down passive avoidance test. GO enrichment analysis of mouse brain tissue was peformed using Genechip. Hydroxyl radical scavenging and reactive oxygen species assays were performed to verify the antioxidant activity of CK. The effects of CK on the expression of Aβ42, the Nrf2/Keap1 signaling pathway, and other proteins were determined by western blotting, immunofluorescence, and immunohistochemistry. Results: Molecular docking results showed that CK interacts with Lys16 and Glu3 of Aβ42. CK reduced the aggregation of Aβ42 as observed using transmission electron microscopy. CK increased the level of insulin-degrading enzyme and decreased the levels ß-secretase and γ-secretase; therefore, it can potentially inhibit the accumulation of Aβ in neuronal extracellular space in vivo. CK improved cognitive impairment and increased postsynaptic density protein 95 and synaptophysin expression levels in mice with SCOP-induced cognitive dysfunction. Further, CK inhibited the expression of cytochrome C, Caspase-3, and cleaved Caspase-3. Based on Genechip data, CK was found to regulate molecular functions such as oxygen binding, peroxidase activity, hemoglobin binding, and oxidoreductase activity, thus affecting the production of oxidative free radicals in neurons. Further, CK regulated the expression of the Nrf2/Keap1 signaling pathway through its interaction with the Nrf2/Keap1 complex. Conclusion: Our findings show that CK regulates the balance between Aβ monomers production and clearance, CK binds to Aβ monomer to inhibits the accumulation of Aβ, increases the level of Nrf2 in neuronal nuclei, reduces oxidative damage of neurons, improves synaptic function, thus ultimately protecting neurons.
Collapse
Affiliation(s)
- Na Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Qihang Pang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yanhong Zhang
- Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Lin
- Changchun University of Chinese Medicine, Changchun, China
| | - Hui Li
- Department of General Surgery, Qian Wei Hospital of Jilin Province, Changchun, China
| | - Zhen Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Yaxin Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Xingyu Fang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yu An
- Changchun University of Chinese Medicine, Changchun, China
| | - Haonan Bai
- Changchun University of Chinese Medicine, Changchun, China
| | - Dianyu Li
- Changchun University of Chinese Medicine, Changchun, China
| | - Zhanhong Cao
- Changchun University of Chinese Medicine, Changchun, China
| | - Jian Liu
- Changchun University of Chinese Medicine, Changchun, China
| | - Qing Yang
- Changchun University of Chinese Medicine, Changchun, China
| | - Shaodan Hu
- Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
5
|
Huang W, Xia Q, Zheng F, Zhao X, Ge F, Xiao J, Liu Z, Shen Y, Ye K, Wang D, Li Y. Microglia-Mediated Neurovascular Unit Dysfunction in Alzheimer's Disease. J Alzheimers Dis 2023; 94:S335-S354. [PMID: 36683511 PMCID: PMC10473143 DOI: 10.3233/jad-221064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2022] [Indexed: 01/21/2023]
Abstract
The neurovascular unit (NVU) is involved in the pathological changes in Alzheimer's disease (AD). The NVU is a structural and functional complex that maintains microenvironmental homeostasis and metabolic balance in the central nervous system. As one of the most important components of the NVU, microglia not only induce blood-brain barrier breakdown by promoting neuroinflammation, the infiltration of peripheral white blood cells and oxidative stress but also mediate neurovascular uncoupling by inducing mitochondrial dysfunction in neurons, abnormal contraction of cerebral vessels, and pericyte loss in AD. In addition, microglia-mediated dysfunction of cellular components in the NVU, such as astrocytes and pericytes, can destroy the integrity of the NVU and lead to NVU impairment. Therefore, we review the mechanisms of microglia-mediated NVU dysfunction in AD. Furthermore, existing therapeutic advancements aimed at restoring the function of microglia and the NVU in AD are discussed. Finally, we predict the role of pericytes in microglia-mediated NVU dysfunction in AD is the hotspot in the future.
Collapse
Affiliation(s)
- Wenhao Huang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaying Xiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Zijie Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yingying Shen
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yanze Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Medical Science Academy, Harbin, Heilongjiang Province, China
- Translational Medicine Center of Northern China, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
6
|
Wang D, Wang T, Zhu M, Sun J, Zhou Z, Chen J, Teng L. A Preliminary Study on the Relationship between Serum Heparan Sulfate and Cancer-Related Cognitive Impairment: The Moderating Role of Oxidative Stress in Patients with Colorectal Cancer. Curr Oncol 2022; 29:2681-2694. [PMID: 35448193 PMCID: PMC9025203 DOI: 10.3390/curroncol29040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer-related cognitive impairment (CRCI) has been frequently reported in colorectal cancer survivors. Heparan sulfate (HS) was gradually considered to be related to cognitive disorders. The effect and potential mechanism of HS on CRCI in colorectal cancer patients were unexplored. In this study, all participants were divided into a cognitive impaired group and a cognitive normal group. The concentrations of oxidative stress factors and HS in serum were detected. Associations among HS, oxidative stress factors and CRCI were evaluated. Participants with cognitive impairment exhibited increased levels of HS, GSH, SOD and MDA, compared to the patients with normal cognitive performance. The independent significant association was found between HS and CRCI after controlling for various covariates. The higher concentrations of HS were related to the decreased cognitive performance among survivors who reported higher levels of GSH (β = 0.080, p = 0.002). Moreover, the nonlinear association between the level of HS and cognitive scores was confirmed using the restricted cubic splines (p < 0.001). These results indicated that the increased concentrations of circulating HS had a nonlinear negative connection with cognitive performance in colorectal cancer survivors, which was moderated by GSH. HS might be a new biomolecule for the identification and management of patients with CRCI.
Collapse
Affiliation(s)
- Danhui Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
| | - Teng Wang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi 214122, China;
| | - Min Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
| | - Jun Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
| | - Zhou Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
| | - Jinghua Chen
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, China;
| | - Liping Teng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China; (D.W.); (M.Z.); (J.S.); (Z.Z.)
- Correspondence:
| |
Collapse
|
7
|
Mehla J, Singh I, Diwan D, Nelson JW, Lawrence M, Lee E, Bauer AQ, Holtzman DM, Zipfel GJ. STAT3 inhibitor mitigates cerebral amyloid angiopathy and parenchymal amyloid plaques while improving cognitive functions and brain networks. Acta Neuropathol Commun 2021; 9:193. [PMID: 34911575 PMCID: PMC8672532 DOI: 10.1186/s40478-021-01293-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Previous reports indicate a potential role for signal transducer and activator of transcription 3 (STAT3) in amyloid-β (Aβ) processing and neuritic plaque pathogenesis. In the present study, the impact of STAT3 inhibition on cognition, cerebrovascular function, amyloid pathology, oxidative stress, and neuroinflammation was studied using in vitro and in vivo models of Alzheimer's disease (AD)-related pathology. For in vitro experiments, human brain vascular smooth muscle cells (HBVSMC) and human brain microvascular endothelial cells (HBMEC) were used, and these cultured cells were exposed to Aβ peptides followed by measurement of activated forms of STAT3 expression and reactive oxygen species (ROS) generation. Further, 6 months old 5XFAD/APOE4 (5XE4) mice and age-matched negative littermates were used for in vivo experiments. These mice were treated with STAT3 specific inhibitor, LLL-12 for 2 months followed by neurobehavioral and histopathological assessment. In vitro experiments showed exposure of cerebrovascular cells to Aβ peptides upregulated activated forms of STAT3 and produced STAT3-mediated vascular oxidative stress. 5XE4 mice treated with the STAT3-specific inhibitor (LLL-12) improved cognitive functions and functional connectivity and augmented cerebral blood flow. These functional improvements were associated with a reduction in neuritic plaques, cerebral amyloid angiopathy (CAA), oxidative stress, and neuroinflammation. Reduction in amyloid precursor protein (APP) processing and attenuation of oxidative modification of lipoprotein receptor related protein-1 (LRP-1) were identified as potential underlying mechanisms. These results demonstrate the broad impact of STAT3 on cognitive functions, parenchymal and vascular amyloid pathology and highlight the therapeutic potential of STAT3 specific inhibition for treatment of AD and CAA.
Collapse
Affiliation(s)
- Jogender Mehla
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Itender Singh
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - James W. Nelson
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Molly Lawrence
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Eunjae Lee
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Adam Q. Bauer
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - David M. Holtzman
- Hope Center for Neurologic Disease, Washington University School of Medicine, St. Louis, MO 63110 USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Gregory J. Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
- Hope Center for Neurologic Disease, Washington University School of Medicine, St. Louis, MO 63110 USA
- Charles F. and Joanne Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
8
|
Chen Z, Schwulst SJ, Mentis AFA. APOE4-mediated Alzheimer disease and "Vascular"-"Meningeal Lymphatic" components: towards a novel therapeutic era? Mol Psychiatry 2021; 26:5472-5474. [PMID: 34376823 PMCID: PMC8354095 DOI: 10.1038/s41380-021-01242-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 01/21/2023]
Abstract
A three-dimensional graphic design representation of the potential role of meningeal vessels in Alzheimer disease. Although there are major differences between APOE4(+) and APOE4(−) Alzheimer disease cases (described in detail in the Comment article by Mentis and colleagues), the figure depicts the clearance of macromolecules and other solutes from meningeal lymphatic vessels. Cover image: Ella Maru Studio.
Collapse
Affiliation(s)
- Zhangying Chen
- Division of Trauma and Critical Care, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Steven J Schwulst
- Division of Trauma and Critical Care, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexios-Fotios A Mentis
- University Research Institute of Maternal and Child Health & Precision Medicine, Athens, Greece.
- UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
| |
Collapse
|
9
|
Sun Y, Xu S, Jiang M, Liu X, Yang L, Bai Z, Yang Q. Role of the Extracellular Matrix in Alzheimer's Disease. Front Aging Neurosci 2021; 13:707466. [PMID: 34512308 PMCID: PMC8430252 DOI: 10.3389/fnagi.2021.707466] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/04/2021] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with complex pathological characteristics, whose etiology and pathogenesis are still unclear. Over the past few decades, the role of the extracellular matrix (ECM) has gained importance in neurodegenerative disease. In this review, we describe the role of the ECM in AD, focusing on the aspects of synaptic transmission, amyloid-β-plaque generation and degradation, Tau-protein production, oxidative-stress response, and inflammatory response. The function of ECM in the pathological process of AD will inform future research on the etiology and pathogenesis of AD.
Collapse
Affiliation(s)
- Yahan Sun
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Sen Xu
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Ming Jiang
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Xia Liu
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Liang Yang
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Zhantao Bai
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| | - Qinghu Yang
- College of Life Sciences and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, China
| |
Collapse
|
10
|
Prieto-Fernández E, Egia-Mendikute L, Vila-Vecilla L, Bosch A, Barreira-Manrique A, Lee SY, García-Del Río A, Antoñana-Vildosola A, Jiménez-Lasheras B, Moreno-Cugnon L, Jiménez-Barbero J, Berra E, Ereño-Orbea J, Palazon A. Hypoxia reduces cell attachment of SARS-CoV-2 spike protein by modulating the expression of ACE2, neuropilin-1, syndecan-1 and cellular heparan sulfate. Emerg Microbes Infect 2021; 10:1065-1076. [PMID: 34013835 PMCID: PMC8183554 DOI: 10.1080/22221751.2021.1932607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A main clinical parameter of COVID-19 pathophysiology is hypoxia. Here we show that hypoxia decreases the attachment of the receptor-binding domain (RBD) and the S1 subunit (S1) of the spike protein of SARS-CoV-2 to epithelial cells. In Vero E6 cells, hypoxia reduces the protein levels of ACE2 and neuropilin-1 (NRP1), which might in part explain the observed reduction of the infection rate. In addition, hypoxia inhibits the binding of the spike to NCI-H460 human lung epithelial cells by decreasing the cell surface levels of heparan sulfate (HS), a known attachment receptor of SARS-CoV-2. This interaction is also reduced by lactoferrin, a glycoprotein that blocks HS moieties on the cell surface. The expression of syndecan-1, an HS-containing proteoglycan expressed in lung, is inhibited by hypoxia on a HIF-1α-dependent manner. Hypoxia or deletion of syndecan-1 results in reduced binding of the RBD to host cells. Our study indicates that hypoxia acts to prevent SARS-CoV-2 infection, suggesting that the hypoxia signalling pathway might offer therapeutic opportunities for the treatment of COVID-19.
Collapse
Affiliation(s)
- Endika Prieto-Fernández
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Leire Egia-Mendikute
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Laura Vila-Vecilla
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Alexandre Bosch
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Adrián Barreira-Manrique
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - So Young Lee
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Ana García-Del Río
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Asier Antoñana-Vildosola
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Borja Jiménez-Lasheras
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Leire Moreno-Cugnon
- Cancer Cell Signaling and Metabolism Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio, Spain.,Department of Organic Chemistry II, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Edurne Berra
- Cancer Cell Signaling and Metabolism Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain.,CIBERONC (Centro de Investigación Biomédica en Red de Cáncer), Madrid, Spain
| | - June Ereño-Orbea
- Chemical Glycobiology Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 800, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Asis Palazon
- Cancer Immunology and Immunotherapy Lab, Centre for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, Derio, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
11
|
Liu Y, Li H, Wang J, Xue Q, Yang X, Kang Y, Li M, Xu J, Li G, Li C, Chang HC, Su KP, Wang F. Association of Cigarette Smoking With Cerebrospinal Fluid Biomarkers of Neurodegeneration, Neuroinflammation, and Oxidation. JAMA Netw Open 2020; 3:e2018777. [PMID: 33006621 PMCID: PMC7532384 DOI: 10.1001/jamanetworkopen.2020.18777] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Cigarette smoking has been associated with risk of neurodegenerative disorders, such as Alzheimer disease. The association between smoking and biomarkers of changes in human cerebrospinal fluid (CSF) is not fully understood. OBJECTIVE To investigate the association of cigarette smoking with CSF biomarkers of neurodegeneration, neuroinflammation, oxidation, and neuroprotection. DESIGN, SETTING, AND PARTICIPANTS In this case-control study of 191 adult men in China, biomarkers in the CSF of participants with and without significant cigarette exposure were examined. Participants who did not smoke and had no history of substance use disorder or dependence were assigned to the nonsmoking group. The active smoking group included participants who consumed at least 10 cigarettes per day for 1 year. Five-milliliter samples of CSF were obtained from routine lumbar puncture conducted before anterior cruciate ligament reconstruction surgery. Data collection took place from September 2014 to January 2016, and analysis took place from January to February 2016. EXPOSURES Cigarette smoking. MAIN OUTCOMES AND MEASURES CSF levels of β-amyloid 42 (Aβ42), which has diagnostic specificity for Alzheimer disease, tumor necrosis factor alpha (TNFα), brain-derived neurotrophic factor (BDNF), total superoxide dismutase (SOD), and nitric oxide synthase (NOS) were measured. Sociodemographic data and history of smoking were obtained. RESULTS Of 191 participants, 87 (45.5%) were included in the active smoking group and 104 (54.4%) in the nonsmoking group. Compared with the active smoking group, the nonsmoking group was younger (mean [SD] age, 34.4 [10.5] years vs 29.6 [9.5] years; P = .01), had more education (mean [SD] duration of education, 11.9 [3.1] years vs 13.2 [2.6] years; P = .001), and had lower body mass index (mean [SD], 25.9 [3.6] vs 24.9 [4.0]; P = .005). Comparing the nonsmoking group with the smoking group, mean (SD) CSF levels of Aβ42 (38.0 [25.9] pg/mL vs 52.8 [16.5] pg/mL; P < .001) and TNFα (23.0 [2.5] pg/mL vs 28.0 [2.0] pg/mL; P < .001) were significantly lower, while BDNF (23.1 [3.9] pg/mL vs 13.8 [2.7] pg/mL; P < .001), total SOD (15.7 [2.6] U/L vs 13.9 [2.4] U/L; P < .001), total NOS (28.3 [7.2] U/L vs 14.7 [5.6] U/L; P < .001), inducible NOS (16.0 [5.4] U/L vs 10.3 [2.7] U/L; P < .001), and constitutive NOS (12.4 [6.9] U/mL vs 4.4 [3.9] U/mL) were higher. In addition, in participants in the smoking group who were aged 40 years or older, total SOD levels were negatively correlated with Aβ42 levels (r = -0.57; P = .02). In those who smoked at least 20 cigarettes per day, TNFα levels were positively correlated with Aβ42 levels (r = 0.51; P = .006). The association of TNFα with Aβ42 production was stronger than that of total SOD with Aβ42 production (z = -4.38; P < .001). CONCLUSIONS AND RELEVANCE This case-control study found that cigarette smoking was associated with at-risk biomarkers for Alzheimer disease, as indicated by higher Aβ42 levels, excessive oxidative stress, neuroinflammation, and impaired neuroprotection found in the CSF of participants in the active smoking group.
Collapse
Affiliation(s)
- Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- College of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Jian Wang
- Department of Psychology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Xue
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | | | - Yimin Kang
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Mengjie Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
- Sleep Medicine Center, Peking University International Hospital, Beijing, China
| | - Jinzhong Xu
- Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Guohua Li
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Cunbao Li
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
| | - Hui-Chih Chang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry and Mind-Body Interface Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Pin Su
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry and Mind-Body Interface Laboratory, China Medical University Hospital, Taichung, Taiwan
- College of Medicine, China Medical University, Taichung, Taiwan
- An-Nan Hospital, China Medical University, Tainan, Taiwan
| | - Fan Wang
- Xinjiang Key Laboratory of Neurological Disorder Research, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Psychosomatic Medicine Research Division, Inner Mongolia Medical University, Huhhot, China
- Beijing Hui-Long-Guan Hospital, Peking University, Beijing, China
| |
Collapse
|
12
|
Vellimana AK, Aum DJ, Diwan D, Clarke JV, Nelson JW, Lawrence M, Han BH, Gidday JM, Zipfel GJ. SIRT1 mediates hypoxic preconditioning induced attenuation of neurovascular dysfunction following subarachnoid hemorrhage. Exp Neurol 2020; 334:113484. [PMID: 33010255 DOI: 10.1016/j.expneurol.2020.113484] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Vasospasm and delayed cerebral ischemia (DCI) contribute significantly to the morbidity/mortality associated with aneurysmal subarachnoid hemorrhage (SAH). While considerable research effort has focused on preventing or reversing vasospasm, SAH-induced brain injury occurs in response to a multitude of concomitantly acting pathophysiologic mechanisms. In this regard, the pleiotropic epigenetic responses to conditioning-based therapeutics may provide an ideal SAH therapeutic strategy. We previously documented the ability of hypoxic preconditioning (PC) to attenuate vasospasm and neurological deficits after SAH, in a manner that depends on the activity of endothelial nitric oxide synthase. The present study was undertaken to elucidate whether the NAD-dependent protein deacetylase sirtuin isoform SIRT1 is an upstream mediator of hypoxic PC-induced protection, and to assess the efficacy of the SIRT1-activating polyphenol Resveratrol as a pharmacologic preconditioning therapy. METHODS Wild-type C57BL/6J mice were utilized in the study and subjected to normoxia or hypoxic PC. Surgical procedures included induction of SAH via endovascular perforation or sham surgery. Multiple endpoints were assessed including cerebral vasospasm, neurobehavioral deficits, SIRT1 expression via quantitative real-time PCR for mRNA, and western blot for protein quantification. Pharmacological agents utilized in the study include EX-527 (SIRT1 inhibitor), and Resveratrol (SIRT1 activator). RESULTS Hypoxic PC leads to rapid and sustained increase in cerebral SIRT1 mRNA and protein expression. SIRT1 inhibition blocks the protective effects of hypoxic PC on vasospasm and neurological deficits. Resveratrol pretreatment dose-dependently abrogates vasospasm and attenuates neurological deficits following SAH - beneficial effects that were similarly blocked by pharmacologic inhibition of SIRT1. CONCLUSION SIRT1 mediates hypoxic preconditioning-induced protection against neurovascular dysfunction after SAH. Resveratrol mimics this neurovascular protection, at least in part, via SIRT1. Activation of SIRT1 is a promising, novel, pleiotropic therapeutic strategy to combat DCI after SAH.
Collapse
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Diane J Aum
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Julian V Clarke
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - James W Nelson
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Molly Lawrence
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Byung Hee Han
- Department of Pharmacology, A.T. Still University of Health Sciences, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | - Jeffrey M Gidday
- Departments of Ophthalmology, Physiology, Biochemistry, and Neuroscience, Louisiana State University, New Orleans, Louisiana, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
13
|
Austin SA, Katusic ZS. Partial loss of endothelial nitric oxide leads to increased cerebrovascular beta amyloid. J Cereb Blood Flow Metab 2020; 40:392-403. [PMID: 30614363 PMCID: PMC7370614 DOI: 10.1177/0271678x18822474] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is present in over half of the elderly population and in 80-90% of Alzheimer's disease (AD) patients. CAA is defined by the deposition of beta amyloid (Aβ) in small cerebral arteries and capillaries. Cardiovascular risk factors are associated with an increased incidence of CAA. We utilized 18-month-old endothelial nitric oxide synthase (eNOS) heterozygous knockout (+/-) mice, a clinically relevant model of endothelial dysfunction, to examine the role of endothelial nitric oxide (NO) in vascular Aβ accumulation. eNOS+/- mice had significantly higher vascular levels of Aβ40 (P < 0.05). Aβ42 was not detected. There was no difference in Aβ in brain tissue. Amyloid precursor protein and β-site APP cleavage enzyme 1 protein levels were unaltered, while levels of the α-secretase enzyme, a disintegrin and metalloproteinase 10, were significantly lower in eNOS + /- microvascular tissue (P < 0.05). Insulin degrading enzyme and low-density lipoprotein receptor-related protein 1 were significantly increased in eNOS+/- microvascular tissue, most likely an adaptive response to locally higher Aβ concentrations. Lastly, catalase and CuZn superoxide dismutase were significantly elevated in eNOS+/- microvascular tissue (P < 0.05). These data demonstrate decreased availability of endothelial NO leads to increased cerebrovascular concentration of Aβ along with compensatory mechanisms to protect the vasculature.
Collapse
Affiliation(s)
- Susan A Austin
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
14
|
Gao N, Liu H, Li S, Tu X, Tian S, Liu J, Li G, Ma Y. Volatile Oil from Acorus gramineus Ameliorates the Injury Neurons in the Hippocampus of Amyloid Beta 1-42 Injected Mice. Anat Rec (Hoboken) 2019; 302:2261-2270. [PMID: 31443117 DOI: 10.1002/ar.24236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/24/2019] [Accepted: 05/29/2019] [Indexed: 11/06/2022]
Abstract
In recent years, the extraction fraction of volatile oil from Acorus gramineus has significant effects on anti-dementia and improving the learning and memory of animals. To date, limited studies have determined whether volatile oil from A. gramineus has the protective effect on neuronal damage. The aim of this study was to investigate the protective effects of volatile oil from A. gramineus on Alzheimer's disease (AD) mice, by means of behavior test, immunohistochemistry and western blot methods. In this study, mice were injected with Aβ1-42 in the bilateral hippocampus to establish the AD model. On the seventh day after modeling, the mice with cognitive dysfunction were selected by the novel object recognition task. Subsequently, the volatile oil treatment groups underwent intragastric administration for per 10 g body weight 2.5 or 5 μL volatile oil from A. gramineus for 3 weeks. The control group and the AD group were given the same amount of saline. Our results showed that after treatment of volatile oil from A. gramineus, the number of Doublecortin and Nestin positive cells increased significantly, suggesting that the volatile oil from A. gramineus may induce the regeneration of hippocampal neurons in mice, and promote the growth of hippocampal neurons by upregulation of brain-derived neurotrophic factor, tyrosine protein kinase B, and neurotrophin-3 expression. These results might provide more experimental evidences for underlying mechanism about the neuroprotective effects of volatile oil from A. gramineus against AD relevant symptoms. Anat Rec, 302:2261-2270, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Ningxin Gao
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | | | - Shiqi Li
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xing Tu
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sumin Tian
- Department of Physiology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Liu
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guoying Li
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yuxin Ma
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
15
|
Bejoy J, Song L, Wang Z, Sang QX, Zhou Y, Li Y. Neuroprotective Activities of Heparin, Heparinase III, and Hyaluronic Acid on the A β42-Treated Forebrain Spheroids Derived from Human Stem Cells. ACS Biomater Sci Eng 2018; 4:2922-2933. [PMID: 30533518 PMCID: PMC6286050 DOI: 10.1021/acsbiomaterials.8b00021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) components of the brain play complex roles in neurodegenerative diseases. The study of microenvironment of brain tissues with Alzheimer's disease revealed colocalized expression of different ECM molecules such as heparan sulfate proteoglycans (HSPGs), chondroitin sulfate proteoglycans (CSPGs), matrix metal-loproteinases (MMPs), and hyaluronic acid. In this study, both cortical and hippocampal populations were generated from human-induced pluripotent stem cell-derived neural spheroids. The cultures were then treated with heparin (competes for Aβ affinity with HSPG), heparinase III (digests HSPGs), chondroitinase (digests CSPGs), hyaluronic acid, and an MMP-2/9 inhibitor (SB-3CT) together with amyloid β (Aβ42) oligomers. The results indicate that inhibition of HSPG binding to Aβ42 using either heparinase III or heparin reduces Aβ42 expression and increases the population of β-tubulin III+ neurons, whereas the inhibition of MMP2/9 induces more neurotoxicity. The results should enhance our understanding of the contribution of ECMs to the Aβ-related neural cell death.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
| | - Liqing Song
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
| | - Zhe Wang
- Department of Chemistry and Biochemistry
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Yi Zhou
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering; FAMU-FSU College of Engineering
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
16
|
Hur J, Mateo V, Amalric N, Babiak M, Béréziat G, Kanony-Truc C, Clerc T, Blaise R, Limon I. Cerebrovascular β-amyloid deposition and associated microhemorrhages in a Tg2576 Alzheimer mouse model are reduced with a DHA-enriched diet. FASEB J 2018; 32:4972-4983. [PMID: 29620941 DOI: 10.1096/fj.201800200r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cerebral amyloid angiopathy (CAA) is a major contributor to Alzheimer's disease (AD) pathogenesis. Like AD, CAA is often accompanied by marked inflammation, aggravating associated vasculopathies. No evidence-based prevention or treatment strategies are available. Here, we evaluate the possible beneficial effect of a diet enriched with docosahexaenoic acid (DHA), which is known to attenuate inflammation in CAA. Tg2576 mice, a transgenic model of AD/CAA, were fed a DHA-enriched diet starting at 2 mo of age and ending at 10, 14, or 18 mo of age. β-Amyloid (Aβ)-peptide deposition and bleeding were visualized by immunohistochemistry or histochemistry on coronal sections of the brain. DHA, arachidonic acid, and eicosanoid levels were measured by liquid chromatography/mass spectrometry or GC-MS. DHA-enriched diet throughout aging limits the accumulation of vascular Aβ peptide deposits as well as the likelihood of microhemorrhages. There is a strong correlation between systemic 12-hydroxyeicosatetraenoic acid (HETE) levels and the size of the area affected by both vascular amyloid deposits and hemorrhages. The lowest levels of 12-HETE, a lipid-derived proinflammatory product of 12-lipoxygenase (LOX), were found in DHA-fed mice. In vitro experiments performed on amyloid vascular smooth muscle cells showed that a 12-LOX inhibitor almost completely blocked the Aβ1-40 peptide-induced apoptosis of these cells. This study yet again highlights the important role of inflammation in CAA pathogenesis and identifies potential new targets for preventive care.-Hur, J., Mateo, V., Amalric, N., Babiak, M., Béréziat, G., Kanony-Truc, C., Clerc, T., Blaise, R., Limon, I. Cerebrovascular β-amyloid deposition and associated microhemorrhages in a Tg2576 Alzheimer mouse model are reduced with a DHA-enriched diet.
Collapse
Affiliation(s)
- Justine Hur
- Biological Institute of Paris-Seine (IBPS), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8256 Biological Adaptation and Aging, UMR-Scientifique CR7-INSERM Unité 1135, Sorbonne University, Paris, France
| | - Véronique Mateo
- Center for Immunology and Infectious Diseases, Immune Intervention and Biotherapies, UMR-Scientifique CR7-INSERM Unité 1135, Sorbonne University, Paris, France
| | | | - Mégane Babiak
- Biological Institute of Paris-Seine (IBPS), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8256 Biological Adaptation and Aging, UMR-Scientifique CR7-INSERM Unité 1135, Sorbonne University, Paris, France
| | - Gilbert Béréziat
- Biological Institute of Paris-Seine (IBPS), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8256 Biological Adaptation and Aging, UMR-Scientifique CR7-INSERM Unité 1135, Sorbonne University, Paris, France
| | - Claire Kanony-Truc
- Pierre Fabre Center for Research and Development, Pierre Fabre Research Institute, Toulouse, France
| | - Thierry Clerc
- Pierre Fabre Center for Research and Development, Pierre Fabre Research Institute, Toulouse, France
| | - Régis Blaise
- Biological Institute of Paris-Seine (IBPS), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8256 Biological Adaptation and Aging, UMR-Scientifique CR7-INSERM Unité 1135, Sorbonne University, Paris, France
| | - Isabelle Limon
- Biological Institute of Paris-Seine (IBPS), Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8256 Biological Adaptation and Aging, UMR-Scientifique CR7-INSERM Unité 1135, Sorbonne University, Paris, France
| |
Collapse
|
17
|
Yan Y, Song L, Bejoy J, Zhao J, Kanekiyo T, Bu G, Zhou Y, Li Y. Modeling Neurodegenerative Microenvironment Using Cortical Organoids Derived from Human Stem Cells. Tissue Eng Part A 2018; 24:1125-1137. [PMID: 29361890 DOI: 10.1089/ten.tea.2017.0423] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders and causes cognitive impairment and memory deficits of the patients. The mechanism of AD is not well known, due to lack of human brain models. Recently, mini-brain tissues called organoids have been derived from human induced pluripotent stem cells (hiPSCs) for modeling human brain development and neurological diseases. Thus, the objective of this research is to model and characterize neural degeneration microenvironment using three-dimensional (3D) forebrain cortical organoids derived from hiPSCs and study the response to the drug treatment. It is hypothesized that the 3D forebrain organoids derived from hiPSCs with AD-associated genetic background may partially recapitulate the extracellular microenvironment in neural degeneration. To test this hypothesis, AD-patient derived hiPSCs with presenilin-1 mutation were used for cortical organoid generation. AD-related inflammatory responses, matrix remodeling and the responses to DAPT, heparin (completes with heparan sulfate proteoglycans [HSPGs] to bind Aβ42), and heparinase (digests HSPGs) treatments were investigated. The results indicate that the cortical organoids derived from AD-associated hiPSCs exhibit a high level of Aβ42 comparing with healthy control. In addition, the AD-derived organoids result in an elevated gene expression of proinflammatory cytokines interleukin-6 and tumor necrosis factor-α, upregulate syndecan-3, and alter matrix remodeling protein expression. Our study demonstrates the capacity of hiPSC-derived organoids for modeling the changes of extracellular microenvironment and provides a potential approach for AD-related drug screening.
Collapse
Affiliation(s)
- Yuanwei Yan
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Liqing Song
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Julie Bejoy
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| | - Jing Zhao
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Takahisa Kanekiyo
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Guojun Bu
- 2 Department of Neuroscience, Alzheimer's Disease Research Center , Mayo Clinic, Jacksonville, Florida
| | - Yi Zhou
- 3 Department of Biomedical Sciences, College of Medicine, Florida State University , Tallahassee, Florida
| | - Yan Li
- 1 Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University , Tallahassee, Florida
| |
Collapse
|
18
|
Zhao N, Liu CC, Qiao W, Bu G. Apolipoprotein E, Receptors, and Modulation of Alzheimer's Disease. Biol Psychiatry 2018; 83:347-357. [PMID: 28434655 PMCID: PMC5599322 DOI: 10.1016/j.biopsych.2017.03.003] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 12/31/2022]
Abstract
Apolipoprotein E (apoE) is a lipid carrier in both the peripheral and the central nervous systems. Lipid-loaded apoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and injury repair in the brain. Considering prevalence and relative risk magnitude, the ε4 allele of the APOE gene is the strongest genetic risk factor for late-onset Alzheimer's disease (AD). ApoE4 contributes to AD pathogenesis by modulating multiple pathways, including but not limited to the metabolism, aggregation, and toxicity of amyloid-β peptide, tauopathy, synaptic plasticity, lipid transport, glucose metabolism, mitochondrial function, vascular integrity, and neuroinflammation. Emerging knowledge on apoE-related pathways in the pathophysiology of AD presents new opportunities for AD therapy. We describe the biochemical and biological features of apoE and apoE receptors in the central nervous system. We also discuss the evidence and mechanisms addressing differential effects of apoE isoforms and the role of apoE receptors in AD pathogenesis, with a particular emphasis on the clinical and preclinical studies related to amyloid-β pathology. Finally, we summarize the current strategies of AD therapy targeting apoE, and postulate that effective strategies require an apoE isoform-specific approach.
Collapse
Affiliation(s)
- Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Wenhui Qiao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
19
|
Thormodsson FR, Olafsson IH, Vilhjalmsson DT. Preparation and Culturing of Human Primary Vascular Cells. Methods Mol Biol 2018; 1779:355-369. [PMID: 29886543 DOI: 10.1007/978-1-4939-7816-8_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cerebral amyloid angiopathy (CAA) results from amyloid accumulation within arteries of the cerebral cortex and leptomeninges. This condition is age-related, especially prevalent in Alzheimer's disease (AD), and the main feature of certain hereditary disorders (i.e., HCHWA-I). The vascular smooth muscle cells (VSMCs) appear to play a vital role in the development of CAA, which makes them well suited as an experimental model to study the disease and screen for possible remedies. We describe two different methods for isolating and culturing human VSMCs: First, using the human umbilical cord as an easy source of robust cells, and secondly, using brain tissue that provides the proper cerebral VSMCs, but is more problematic to work with. The umbilical cord also provides human umbilical vascular endothelial cells (HUVEC), useful primary cells for vascular research. Finally, the maintenance, preservation, and characterization of the isolated vascular cells are described.
Collapse
|
20
|
Nastase MV, Janicova A, Wygrecka M, Schaefer L. Signaling at the Crossroads: Matrix-Derived Proteoglycan and Reactive Oxygen Species Signaling. Antioxid Redox Signal 2017; 27:855-873. [PMID: 28510506 DOI: 10.1089/ars.2017.7165] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Proteoglycans (PGs), besides their structural contribution, have emerged as dynamic components that mediate a multitude of cellular events. The various roles of PGs are attributed to their structure, spatial localization, and ability to act as ligands and receptors. Reactive oxygen species (ROS) are small mediators that are generated in physiological and pathological conditions. Besides their reactivity and ability to induce oxidative stress, a growing body of data suggests that ROS signaling is more relevant than direct radical damage in development of human pathologies. Recent Advances: Cell surface transmembrane PGs (syndecans, cluster of differentiation 44) represent receptors in diverse and complex transduction networks, which involve redox signaling with implications in cancer, fibrosis, renal dysfunction, or Alzheimer's disease. Through NADPH oxidase (NOX)-dependent ROS, the extracellular PG, hyaluronan is involved in osteoclastogenesis and cancer. The ROS sources, NOX1 and NOX4, increase biglycan-induced inflammation, while NOX2 is a negative regulator. CRITICAL ISSUES The complexity of the mechanisms that bring ROS into the light of PG biology might be the foundation of a new research area with significant promise for understanding health and disease. Important aspects need to be investigated in PG/ROS signaling: the discovery of specific targets of ROS, the precise ROS-induced chemical modifications of these targets, and the study of their pathological relevance. FUTURE DIRECTIONS As we become more and more aware of the interactions between PG and ROS signaling underlying intracellular communication and cell fate decisions, it is quite conceivable that this field will allow to identify new therapeutic targets.-Antioxid. Redox Signal. 27, 855-873.
Collapse
Affiliation(s)
- Madalina-Viviana Nastase
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany .,2 National Institute for Chemical-Pharmaceutical Research and Development , Bucharest, Romania
| | - Andrea Janicova
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- 3 Department of Biochemistry, Faculty of Medicine, Justus Liebig University , Giessen, Germany
| | - Liliana Schaefer
- 1 Pharmazentrum Frankfurt, Institut für Allgemeine Pharmakologie und Toxikologie, Klinikum der Goethe Universität , Frankfurt am Main, Germany
| |
Collapse
|
21
|
Lucena SV, Moura GEDD, Rodrigues T, Watashi CM, Melo FH, Icimoto MY, Viana GM, Nader HB, Monteiro HP, Tersariol ILS, Ogata FT. Heparan sulfate proteoglycan deficiency up-regulates the intracellular production of nitric oxide in Chinese hamster ovary cell lines. J Cell Physiol 2017; 233:3176-3194. [PMID: 28833096 DOI: 10.1002/jcp.26160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/17/2017] [Indexed: 01/01/2023]
Affiliation(s)
| | | | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas (CCNH)-UFABC; Santo André São Paulo Brazil
| | - Carolina M. Watashi
- Centro de Ciências Naturais e Humanas (CCNH)-UFABC; Santo André São Paulo Brazil
| | - Fabiana H. Melo
- Faculdade de Ciências Médicas da Santa Casa de São Paulo; São Paulo São Paulo Brazil
| | | | | | - Helena B. Nader
- Departamento de Bioquímica-UNIFESP; São Paulo São Paulo Brazil
| | | | - Ivarne L. S. Tersariol
- Departamento de Bioquímica-UNIFESP; São Paulo São Paulo Brazil
- Centro Interdisciplinar de Investigação Bioquímica UMC; Mogi das Cruzes São PauloSão Paulo Brazil
| | - Fernando T. Ogata
- Departamento de Bioquímica-UNIFESP; São Paulo São Paulo Brazil
- Division of Biochemistry, Medical Biochemistry & Biophysics, Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
22
|
Cao J, Geng X, Wen J, Li Q, Ye L, Zhang A, Feng Z, Guo L, Gu Y. The penetration and phenotype modulation of smooth muscle cells on surface heparin modified poly(ɛ-caprolactone) vascular scaffold. J Biomed Mater Res A 2017. [PMID: 28643432 DOI: 10.1002/jbm.a.36144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The tubular porous poly(ɛ-caprolactone) (PCL) scaffold was fabricated by electrospinning. After then, the scaffold's surface was firstly eroded by hexyldiamine to endow amine group, and heparin was covalently grafted to the surface to get surface heparin modified scaffold (ShPCL scaffold). It was found that ShPCL scaffold can induce smooth muscle cells (SMCs) to penetrate the scaffold surface, while the SMCs cannot penetrate the surface of PCL scaffold. Subsequently, the rabbit SMCs were seeded on the ShPCL scaffold and cultured for 14 days. It was found the expression of α-smooth muscle actin in ShPCL scaffold maintained much higher level than that in culture plate, which implied the SMC differentiation in ShPCL scaffold. Furthermore, the immunefluorescence staining of the cross-sections of ShPCL scaffold exhibited the expression of calponin in ShPCL scaffold can be detected after 7 and 14 days, whereas the expression of smooth muscle myosin heavy chain can also be detected at 14 days. These results proved that penetrated SMCs preferably differentiated in to contractile phenotype. The successful SMC penetration and the contractile phenotype expression implied ShPCL scaffold is a suitable candidate for regenerating smooth muscle layer in vascular tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2806-2815, 2017.
Collapse
Affiliation(s)
- Jie Cao
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Xue Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Juan Wen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Qingxuan Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Aiying Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China.,Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing, 100081, China
| | - Lianrui Guo
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yongquan Gu
- Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
23
|
Wang P, Wang ZY. Metal ions influx is a double edged sword for the pathogenesis of Alzheimer's disease. Ageing Res Rev 2017; 35:265-290. [PMID: 27829171 DOI: 10.1016/j.arr.2016.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/08/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is a common form of dementia in aged people, which is defined by two pathological characteristics: β-amyloid protein (Aβ) deposition and tau hyperphosphorylation. Although the mechanisms of AD development are still being debated, a series of evidence supports the idea that metals, such as copper, iron, zinc, magnesium and aluminium, are involved in the pathogenesis of the disease. In particular, the processes of Aβ deposition in senile plaques (SP) and the inclusion of phosphorylated tau in neurofibrillary tangles (NFTs) are markedly influenced by alterations in the homeostasis of the aforementioned metal ions. Moreover, the mechanisms of oxidative stress, synaptic plasticity, neurotoxicity, autophagy and apoptosis mediate the effects of metal ions-induced the aggregation state of Aβ and phosphorylated tau on AD development. More importantly, imbalance of these mechanisms finally caused cognitive decline in different experiment models. Collectively, reconstructing the signaling network that regulates AD progression by metal ions may provide novel insights for developing chelators specific for metal ions to combat AD.
Collapse
Affiliation(s)
- Pu Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| | - Zhan-You Wang
- College of Life and Health Sciences, Northeastern University, No. 3-11, Wenhua Road, Shenyang, 110819, PR China.
| |
Collapse
|
24
|
Xu W, Yang L, Li J. Protection against β-amyloid-induced neurotoxicity by naturally occurring Z-ligustilide through the concurrent regulation of p38 and PI3-K/Akt pathways. Neurochem Int 2016; 100:44-51. [PMID: 27580711 DOI: 10.1016/j.neuint.2016.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/12/2016] [Accepted: 08/26/2016] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease (AD) is primarily characterized by the progressive loss of functional neurons in the brain. Therefore, compounds with neuroprotective property may have therapeutic value in treating AD. Z-ligustilide (Z-LIG) is an essential oil originally isolated from umbelliferous plants. In the current study, the neuroprotective effects and underlying mechanisms of Z-LIG against fibrillar aggregates of Aβ25-35 and Aβ1-42-induced neurotoxicity were investigated in both SH-SY5Y cells and differentiated PC12 cells. Z-LIG at 1-30 μM provided an effective neuroprotection, as evidenced by the increase in cell viability, as well as the decrease in LDH release and intracellular accumulation of reactive oxygen species. Additionally, Z-LIG markedly blocked Aβ fibrils-induced condensed nuclei and sub-G1 accumulation suggestive of apoptosis. Furthermore, Z-LIG substantially reversed the activation of phosphorylated p38 and the inhibition of phosphorylated Akt caused by Aβ25-35. LY294002, the specific inhibitor of PI3-K, significantly abrogated the protein expression of up-regulated phosphorylated Akt offered by Z-LIG. Most importantly, siRNA-mediated knockdown of PI3-K and p38 significantly abolished the neuroprotective effects of Z-LIG. The results taken together indicate that Z-LIG protects against Aβ fibrils-induced neurotoxicity possibly through the inhibition of p38 and activation of PI3-K/Akt signaling pathways concurrently. Z-LIG might be a potential candidate for further preclinical study aimed at the prevention and treatment of AD.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China.
| | - Li Yang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ji Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|