1
|
Fischer C, Thomas D, Gurke R, Tegeder I. Brain region specific regulation of anandamide (down) and sphingosine-1-phosphate (up) in association with anxiety (AEA) and resilience (S1P) in a mouse model of chronic unpredictable mild stress. Pflugers Arch 2024; 476:1863-1880. [PMID: 39177699 PMCID: PMC11582197 DOI: 10.1007/s00424-024-03012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.
Collapse
Affiliation(s)
- Caroline Fischer
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Dominique Thomas
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Robert Gurke
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Irmgard Tegeder
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
2
|
Zhang Q, Wu J, Guo D, Ji N, Liu W, Li X, Liu H, Zhang C, Zhao M, Li H, Jin H, Chang S, Wang D. Adipose-derived stem cell transplantation enhances spinal cord regeneration by upregulating PGRN expression. Neuroreport 2024; 35:1019-1029. [PMID: 39292953 DOI: 10.1097/wnr.0000000000002091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
This study aims to investigate the effect of adipose-derived stem cells (ADSCs) transplantation on progranulin (PGRN) expression and functional recovery in rats with spinal cord injury (SCI). ADSCs were isolated from the inguinal adipose tissue of rats. A SCI model was created, and ADSCs were injected into the injured area. Various techniques were used to assess the effects of ADSCs transplantation, including hematoxylin-eosin staining, Masson staining, immunofluorescence staining, electron microscopy, MRI, and motor function assessment. The potential mechanisms of ADSC transplantation were investigated using gene expression analysis and protein analysis. Finally, the safety of this therapy was evaluated through hematoxylin-eosin staining and indicators of liver and kidney damage in serum. PGRN expression increased in the injured spinal cord, and ADSCs transplantation further enhanced PGRN levels. The group that received ADSCs transplantation showed reduced inflammation, decreased scar formation, increased nerve regeneration, and faster recovery of bladder function. Importantly, motor function significantly improved in the ADSC transplantation group. ADSCs transplantation enhances functional regeneration in SCI by upregulating PGRN expression, reducing inflammation and scar formation, and promoting nerve regeneration and myelin repair. These findings suggest that ADSC transplantation is a potential therapy for SCI.
Collapse
Affiliation(s)
- Qiongchi Zhang
- Department of Orthopedics, 521 Hospitai of Norinco Group
| | - Jingtao Wu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Dong Guo
- Department of Orthopedics, Xi 'an Honghui hospital, Xi'an, Shaanxi Province
| | - Ning Ji
- Department of Orthopedics, 521 Hospitai of Norinco Group
| | - Weidong Liu
- Department of Orthopedics, Xi 'an Honghui hospital, Xi'an, Shaanxi Province
| | - Xinyu Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Hao Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Chengyi Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Minchao Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Haopeng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Hongxu Jin
- Department of Orthopedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Su'e Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| | - Dong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University
| |
Collapse
|
3
|
Wang S, Weyer MP, Hummel R, Wilken-Schmitz A, Tegeder I, Schäfer MKE. Selective neuronal expression of progranulin is sufficient to provide neuroprotective and anti-inflammatory effects after traumatic brain injury. J Neuroinflammation 2024; 21:257. [PMID: 39390556 PMCID: PMC11468377 DOI: 10.1186/s12974-024-03249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 10/12/2024] Open
Abstract
Progranulin (PGRN), which is produced in neurons and microglia, is a neurotrophic and anti-inflammatory glycoprotein. Human loss-of-function mutations cause frontotemporal dementia, and PGRN knockout (KO) mice are a model for dementia. In addition, PGRN KO mice exhibit severe phenotypes in models of traumatic or ischemic central nervous system (CNS) disorders, including traumatic brain injury (TBI). It is unknown whether restoration of progranulin expression in neurons (and not in microglia) might be sufficient to prevent excessive TBI-evoked brain damage. To address this question, we generated mice with Nestin-Cre-driven murine PGRN expression in a PGRN KO line (PGRN-KONestinGrn) to rescue PGRN in neurons. PGRN expression analysis in primary CNS cell cultures from naïve mice and in (non-) injured brain tissue from PGRN-KONestinGrn revealed expression of PGRN in neurons but not in microglia. After experimental TBI, examination of the structural brain damage at 5 days post-injury (dpi) showed that the TBI-induced loss of brain tissue and hippocampal neurons was exacerbated in PGRN-KOGrnflfl mice (PGRN knockout with the mGrn fl-STOP-fl allele, Cre-negative), as expected, whereas the tissue damage in PGRN-KONestinGrn mice was similar to that in PGRN-WT mice. Analysis of CD68+ immunofluorescent microglia and Cd68 mRNA expression showed that excessive microglial activation was rescued in PGRN-KONestinGrn mice, and the correlation of brain injury with Cd68 expression suggested that Cd68 was a surrogate marker for excessive brain injury caused by PGRN deficiency. The results show that restoring neuronal PGRN expression was sufficient to rescue the exacerbated neuropathology of TBI caused by PGRN deficiency, even in the absence of microglial PGRN. Hence, endogenous microglial PGRN expression was not essential for the neuroprotective or anti-inflammatory effects of PGRN after TBI in this study.
Collapse
Affiliation(s)
- Sudena Wang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), 55131, Mainz, Germany
| | - Marc-Philipp Weyer
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7 | Bd 74-75, Rm 4.101a, 60590, Frankfurt am Main, Germany
| | - Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), 55131, Mainz, Germany
| | - Annett Wilken-Schmitz
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7 | Bd 74-75, Rm 4.101a, 60590, Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute for Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor Stern Kai 7 | Bd 74-75, Rm 4.101a, 60590, Frankfurt am Main, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1 (Bld. 505), 55131, Mainz, Germany.
- Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Research Center for Immunotherapy (FZI) of the Johannes Gutenberg-University Mainz, Mainz, Germany.
| |
Collapse
|
4
|
Yan D, Zhang Y, Huang Y, Ouyang W. Progranulin Facilitates Corneal Repair Through Dual Mechanisms of Inflammation Suppression and Regeneration Promotion. Inflammation 2024; 47:1648-1666. [PMID: 38460093 DOI: 10.1007/s10753-024-01999-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects modulating Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.
Collapse
Affiliation(s)
- Dan Yan
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yunuo Zhang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Yuhan Huang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Weijie Ouyang
- Department of Ophthalmology, the Affiliated Hospital of Guizhou Medical University, Guizhou Medical University, Eye Institute of Xiamen University, School of Medicine, Xiamen University, Guizhou, Xiamen, China.
- Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Xiamen, China.
- Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Zhou T, Dou Z, Cai Y, Zhu D, Fu Y. Tear Fluid Progranulin as a Noninvasive Biomarker for the Monitoring of Corneal Innervation Changes in Patients With Type 2 Diabetes Mellitus. Transl Vis Sci Technol 2024; 13:9. [PMID: 38984913 PMCID: PMC11238880 DOI: 10.1167/tvst.13.7.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Purpose This study aimed to investigate the expression levels of progranulin (PGRN) in the tears of patients with diabetic retinopathy (DR) versus healthy controls. Additionally, we sought to explore the correlation between PGRN levels and the severity of ocular surface complications in patients with diabetes. Methods In this prospective, single-visit, cross-sectional study, patients with DR (n = 48) and age-matched healthy controls (n = 22) were included and underwent dry eye examinations. Tear fluid was collected, and its components were analyzed using the Luminex assay. The subbasal nerve plexus of all participants was evaluated by in vivo confocal microscopy. Results Patients with DR exhibited more severe dry eye symptoms, along with a reduction in nerve fiber density, length, and branch density within the subbasal nerve plexus, accompanied by an increase in the number of dendritic cells. Tear PGRN levels were also significantly lower in patients with diabetes than in normal controls, and the levels of some inflammatory factors (TNF-α, IL-6, and MMP-9) were higher in patients with DR. Remarkably, the PGRN level significantly correlated with nerve fiber density (R = 0.48, P < 0.001), nerve fiber length (R = 0.65, P < 0.001), and nerve branch density (R = 0.69, P < 0.001). Conclusions Tear PGRN levels might reflect morphological changes in the corneal nerve plexus under diabetic conditions, suggesting that PGRN itself is a reliable indicator for predicting the advancement of neurotrophic keratopathy in patients with diabetes. Translational Relevance PGRN insufficiency on the ocular surface under diabetic conditions was found to be closely associated with nerve impairment, providing a novel perspective to discover the pathogenesis of diabetic complications, which could help in developing innovative therapeutic strategies.
Collapse
Affiliation(s)
- Tianyi Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Zhiwei Dou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yuchen Cai
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Dongqing Zhu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| | - Yao Fu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China
| |
Collapse
|
6
|
Zhang L, Saito H, Higashimoto T, Kaji T, Nakamura A, Iwamori K, Nagano R, Motooka D, Okuzaki D, Uezumi A, Seno S, Fukada SI. Regulation of muscle hypertrophy through granulin: Relayed communication among mesenchymal progenitors, macrophages, and satellite cells. Cell Rep 2024; 43:114052. [PMID: 38573860 DOI: 10.1016/j.celrep.2024.114052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/14/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024] Open
Abstract
Skeletal muscles exert remarkable regenerative or adaptive capacities in response to injuries or mechanical loads. However, the cellular networks underlying muscle adaptation are poorly understood compared to those underlying muscle regeneration. We employed single-cell RNA sequencing to investigate the gene expression patterns and cellular networks activated in overloaded muscles and compared these results with those observed in regenerating muscles. The cellular composition of the 4-day overloaded muscle, when macrophage infiltration peaked, closely resembled that of the 10-day regenerating muscle. In addition to the mesenchymal progenitor-muscle satellite cell (MuSC) axis, interactome analyses or targeted depletion experiments revealed communications between mesenchymal progenitors-macrophages and macrophages-MuSCs. Furthermore, granulin, a macrophage-derived factor, inhibited MuSC differentiation, and Granulin-knockout mice exhibited blunted muscle hypertrophy due to the premature differentiation of overloaded MuSCs. These findings reveal the critical role of granulin through the relayed communications of mesenchymal progenitors, macrophages, and MuSCs in facilitating efficient muscle hypertrophy.
Collapse
Affiliation(s)
- Lidan Zhang
- Center for Medical Epigenetics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 40016, China; Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hayato Saito
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tatsuyoshi Higashimoto
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kaji
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ayasa Nakamura
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kanako Iwamori
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Ryoko Nagano
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan; Laboratory of Oral Pathology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka 812-8582, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Akiyoshi Uezumi
- Division of Cell Heterogeneity, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi, Fukuoka 812-8582, Japan
| | - Shigeto Seno
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - So-Ichiro Fukada
- Laboratory of Stem Cell Regeneration and Adaptation, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
7
|
Huang G, Jian J, Liu CJ. Progranulinopathy: A diverse realm of disorders linked to progranulin imbalances. Cytokine Growth Factor Rev 2024; 76:142-159. [PMID: 37981505 PMCID: PMC10978308 DOI: 10.1016/j.cytogfr.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023]
Abstract
Progranulin (PGRN), encoded by the GRN gene in humans, was originally isolated as a secreted growth factor that implicates in a multitude of processes ranging from regulation of tumorigenesis, inflammation to neural proliferation. Compelling evidence indicating that GRN mutation can lead to various common neuronal degenerative diseases and rare lysosomal storage diseases. These findings have unveiled a critical role for PGRN as a lysosomal protein in maintaining lysosomal function. The phenotypic spectrum of PGRN imbalance has expanded to encompass a broad spectrum of diseases, including autoimmune diseases, metabolic, musculoskeletal and cardiovascular diseases. These diseases collectively referred to as Progranulinopathy- a term encompasses the wide spectrum of disorders influenced by PGRN imbalance. Unlike its known extracellular function as a growth factor-like molecule associated with multiple membrane receptors, PGRN also serves as an intracellular co-chaperone engaged in the folding and traffic of its associated proteins, particularly the lysosomal hydrolases. This chaperone activity is required for PGRN to exert its diverse functions across a broad range of diseases, encompassing both the central nervous system and peripheral systems. In this comprehensive review, we present an update of the emerging role of PGRN in Progranulinopathy, with special focus on elucidating the intricate interplay between PGRN and a diverse array of proteins at various levels, ranging from extracellular fluids and intracellular components, as well as various pathophysiological processes involved. This review seeks to offer a comprehensive grasp of PGRN's diverse functions, aiming to unveil intricate mechanisms behind Progranulinopathy and open doors for future research endeavors.
Collapse
Affiliation(s)
- Guiwu Huang
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA; Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Joint Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, China
| | - Jinlong Jian
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA
| | - Chuan-Ju Liu
- Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, USA; Department of Orthopaedic Surgery, New York University Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
8
|
Verwaerde P, Estrella C, Burlet S, Barrier M, Marotte AA, Clincke G. First-In-Human Safety, Tolerability, and Pharmacokinetics of Single and Multiple Doses of AZP2006, A Synthetic Compound for the Treatment of Alzheimer's Disease and Related Diseases. J Alzheimers Dis 2024; 98:715-727. [PMID: 38427472 DOI: 10.3233/jad-220883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Alzheimer's disease (AD) and progressive supranuclear palsy (PSP) are major neurodegenerative conditions with tau pathology in common but distinct symptoms-AD involves cognitive decline while PSP affects balance and eye movement. Progranulin (PGRN) is a growth factor implicated in neurodegenerative diseases, including AD and PSP. AZP2006, a synthetic compound, targets tauopathies by stabilizing PGRN levels and reducing tau aggregation and neuroinflammation. Objective Evaluate the safety, tolerability, and pharmacokinetics of AZP2006. Methods A first-in-Human phase 1 study comprised a single ascending dose (SAD) and a multiple ascending dose study (MAD). The SAD study included 64 healthy male volunteers and tested singles oral doses of 3 to 500 mg of AZP2006 free base equivalent or placebo. In the MAD study, 24 healthy male volunteers were administered oral doses of 30, 60, and 120 mg per day of AZP2006 or placebo for 10 days. Results No serious adverse events were observed. Clinical, biological, and electrocardiogram findings were non-relevant. Nineteen minor adverse events resolved before study completion. The safety profile indicated no specific risks. The multiple ascending dose study was halted, and the optional dose level of 180 mg was not performed due to high levels of M2 metabolite in plasma that necessitated additional preclinical evaluation of M2. Both AZP2006 and its M2 metabolite were quickly absorbed and widely distributed in tissues. Exposure increased more than proportionally with dose. Conclusions AZP2006 had a favorable safety profile and was rapidly absorbed. Elevated M2 metabolite levels necessitated further studies to clarify excretion and metabolism mechanisms.
Collapse
|
9
|
Yan D, Ouyang W, Lin J, Liu Z. Smart coating by thermo-sensitive Pluronic F-127 for enhanced corneal healing via delivery of biological macromolecule progranulin. Int J Biol Macromol 2023; 253:127586. [PMID: 37866564 DOI: 10.1016/j.ijbiomac.2023.127586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
As a leading cause of vision impairment and blindness, corneal alkali burns lead to long-term visual deterioration or even permanent visual impairment while effective treatment strategies remain a challenge. Herein, a thermo-sensitive hydrogel with the combination of multi-functional protein progranulin (PGRN), a biological macromolecule consisting of several hundred amino acids and possessing a high molecular weight, is efficiently prepared through a convenient stirring and mixing at the low temperature. The hydrogel can be easily administrated to the ocular surface contacting with the cornea, which can be immediately transformed into gel-like state due to the thermo-responsive behavior, realizing a site-specific coating to isolate further external stimulation. The smart coating not only exhibits excellent transparency and biocompatibility, but also presents a constant delivery of PGRN, creating a nutritious and supportive micro-environment for the ocular surface. The results show that the prepared functional hydrogel can efficiently suppress inflammation, accelerate re-epithelization, and intriguingly enhance axonal regeneration via modulation of multiple signaling pathways, indicating the novel designed HydrogelPGRN is a promising therapy option for serious corneal injury.
Collapse
Affiliation(s)
- Dan Yan
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China
| | - Weijie Ouyang
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China
| | - Jinyou Lin
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.
| | - Zuguo Liu
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen University affiliated Xiamen Eye Center, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Fujian Engineering and Research Center of Eye Regenerative Medicine, Department of Ophthalmology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian 361005, China; Department of Ophthalmology, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Thomasen PB, Salasova A, Kjaer-Sorensen K, Woloszczuková L, Lavický J, Login H, Tranberg-Jensen J, Almeida S, Beel S, Kavková M, Qvist P, Kjolby M, Ovesen PL, Nolte S, Vestergaard B, Udrea AC, Nejsum LN, Chao MV, Van Damme P, Krivanek J, Dasen J, Oxvig C, Nykjaer A. SorCS2 binds progranulin to regulate motor neuron development. Cell Rep 2023; 42:113333. [PMID: 37897724 DOI: 10.1016/j.celrep.2023.113333] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.
Collapse
Affiliation(s)
- Pernille Bogetofte Thomasen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Alena Salasova
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Lucie Woloszczuková
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Josef Lavický
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Hande Login
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Jeppe Tranberg-Jensen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sergio Almeida
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Sander Beel
- Department of Neurology and Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000 Leuven, Belgium
| | - Michaela Kavková
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Per Qvist
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Mads Kjolby
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Peter Lund Ovesen
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Stella Nolte
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Benedicte Vestergaard
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreea-Cornelia Udrea
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Moses V Chao
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
| | - Philip Van Damme
- Department of Neurology and Department of Neurosciences, KU Leuven and Center for Brain & Disease Research VIB, 3000 Leuven, Belgium
| | - Jan Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Jeremy Dasen
- Department of Neuroscience and Physiology, NYU Langone Health, New York, NY 10016, USA
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Anders Nykjaer
- Danish Research Institute of Translational Neuroscience DANDRITE-Nordic EMBL Partnership for Molecular Medicine, and Center of Excellence PROMEMO, 8000 Aarhus C, Denmark; Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
11
|
Boylan MA, Pincetic A, Romano G, Tatton N, Kenkare-Mitra S, Rosenthal A. Targeting Progranulin as an Immuno-Neurology Therapeutic Approach. Int J Mol Sci 2023; 24:15946. [PMID: 37958929 PMCID: PMC10647331 DOI: 10.3390/ijms242115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Immuno-neurology is an emerging therapeutic strategy for dementia and neurodegeneration designed to address immune surveillance failure in the brain. Microglia, as central nervous system (CNS)-resident myeloid cells, routinely perform surveillance of the brain and support neuronal function. Loss-of-function (LOF) mutations causing decreased levels of progranulin (PGRN), an immune regulatory protein, lead to dysfunctional microglia and are associated with multiple neurodegenerative diseases, including frontotemporal dementia caused by the progranulin gene (GRN) mutation (FTD-GRN), Alzheimer's disease (AD), Parkinson's disease (PD), limbic-predominant age-related transactivation response deoxyribonucleic acid binding protein 43 (TDP-43) encephalopathy (LATE), and amyotrophic lateral sclerosis (ALS). Immuno-neurology targets immune checkpoint-like proteins, offering the potential to convert aging and dysfunctional microglia into disease-fighting cells that counteract multiple disease pathologies, clear misfolded proteins and debris, promote myelin and synapse repair, optimize neuronal function, support astrocytes and oligodendrocytes, and maintain brain vasculature. Several clinical trials are underway to elevate PGRN levels as one strategy to modulate the function of microglia and counteract neurodegenerative changes associated with various disease states. If successful, these and other immuno-neurology drugs have the potential to revolutionize the treatment of neurodegenerative disorders by harnessing the brain's immune system and shifting it from an inflammatory/pathological state to an enhanced physiological/homeostatic state.
Collapse
Affiliation(s)
| | | | | | | | | | - Arnon Rosenthal
- Alector, Inc., 131 Oyster Point Blvd, Suite 600, South San Francisco, CA 94080, USA
| |
Collapse
|
12
|
Liang L, Zhang F, Feng N, Kuang B, Fan M, Chen C, Pan Y, Zhou P, Geng N, Li X, Xian M, Deng L, Li X, Kuang L, Luo F, Tan Q, Xie Y, Guo F. IRE1α protects against osteoarthritis by regulating progranulin-dependent XBP1 splicing and collagen homeostasis. Exp Mol Med 2023; 55:2376-2389. [PMID: 37907740 PMCID: PMC10689778 DOI: 10.1038/s12276-023-01106-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 11/02/2023] Open
Abstract
Osteoarthritis (OA) is a full-joint, multifactorial, degenerative and inflammatory disease that seriously affects the quality of life of patients due to its disabling and pain-causing properties. ER stress has been reported to be closely related to the progression of OA. The inositol-requiring enzyme 1α/X-box-binding protein-1 spliced (IRE1α/XBP1s) pathway, which is highly expressed in the chondrocytes of OA patients, promotes the degradation and refolding of abnormal proteins during ER stress and maintains the stability of the ER environment of chondrocytes, but its function and the underlying mechanisms of how it contributes to the progression of OA remain unclear. This study investigates the role of IRE1α/ERN1 in OA. Specific deficiency of ERN1 in chondrocytes spontaneously resulted in OA-like cartilage destruction and accelerated OA progression in a surgically induced arthritis model. Local delivery of AdERN1 relieved degradation of the cartilage matrix and prevented OA development in an ACLT-mediated model. Mechanistically, progranulin (PGRN), an intracellular chaperone, binds to IRE1α, promoting its phosphorylation and splicing of XBP1u to generate XBP1s. XBP1s protects articular cartilage through TNF-α/ERK1/2 signaling and further maintains collagen homeostasis by regulating type II collagen expression. The chondroprotective effect of IRE1α/ERN1 is dependent on PGRN and XBP1s splicing. ERN1 deficiency accelerated cartilage degeneration in OA by reducing PGRN expression and XBP1s splicing, subsequently decreasing collagen II expression and triggering collagen structural abnormalities and an imbalance in collagen homeostasis. This study provides new insights into OA pathogenesis and the UPR and suggests that IRE1α/ERN1 may serve as a potential target for the treatment of joint degenerative diseases, including OA.
Collapse
Affiliation(s)
- Li Liang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Fengmei Zhang
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
- Laboratory Animal Center, Chongqing Medical University, 400016, Chongqing, China
| | - Naibo Feng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Biao Kuang
- Department of Orthopedics, The 2nd Affiliated Hospital of Chongqing Medical University, 400072, Chongqing, China
| | - Mengtian Fan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Cheng Chen
- Department of Orthopedics, The 1st Affiliated Hospital of Chongqing Medical University, 400016, Chongqing, China
| | - Yiming Pan
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Pengfei Zhou
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, 400016, Chongqing, China
| | - Nana Geng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Xingyue Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Menglin Xian
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Lin Deng
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoli Li
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, Center of Bone Metabolism and Repair (CBMR), State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Daping Hospital, Army Medical University, 400042, Chongqing, China
| | - Fengjin Guo
- Laboratory of Developmental Biology, Department of Cell Biology and Genetics, School of Basic Medical Sciences, Chongqing Medical University, 400016, Chongqing, China.
| |
Collapse
|
13
|
Kaplelach AK, Fox SN, Cook AK, Hall JA, Dannemiller RS, Jaunarajs KL, Arrant AE. Regulation of extracellular progranulin in medial prefrontal cortex. Neurobiol Dis 2023; 188:106326. [PMID: 37838007 PMCID: PMC10682954 DOI: 10.1016/j.nbd.2023.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023] Open
Abstract
Progranulin is a secreted pro-protein that has anti-inflammatory and neurotrophic effects and is necessary for maintaining lysosomal function. Mutations in progranulin (GRN) are a major cause of frontotemporal dementia. Most pathogenic GRN mutations cause progranulin haploinsufficiency, so boosting progranulin levels is a promising therapeutic strategy. Progranulin is constitutively secreted, then taken up and trafficked to lysosomes. Before being taken up from the extracellular space, progranulin interacts with receptors that may mediate anti-inflammatory and growth factor-like effects. Modifying progranulin trafficking is a viable approach to boosting progranulin, but progranulin secretion and uptake by cells in the brain is poorly understood and may involve distinct mechanisms from other parts of the body. Understanding the cell types and processes that regulate extracellular progranulin in the brain could provide insight into progranulin's mechanism of action and inform design of progranulin-boosting therapies. To address this question we used microdialysis to measure progranulin in interstitial fluid (ISF) of mouse medial prefrontal cortex (mPFC). Grn+/- mice had approximately 50% lower ISF progranulin than wild-type mice, matching the reduction of progranulin in cortical tissue. Fluorescent in situ hybridization and immunofluorescence confirmed that microglia and neurons are the major progranulin-expressing cell types in the mPFC. Studies of conditional microglial (Mg-KO) and neuronal (N-KO) Grn knockout mice revealed that loss of progranulin from either cell type results in approximately 50% reduction in ISF progranulin. LPS injection (i.p.) produced an acute increase in ISF progranulin in mPFC. Depolarizing cells with KCl increased ISF progranulin, but this response was not altered in N-KO mice, indicating progranulin secretion by non-neuronal cells. Increasing neuronal activity with picrotoxin did not increase ISF progranulin. These data indicate that microglia and neurons are the source of most ISF progranulin in mPFC, with microglia likely secreting more progranulin per cell than neurons. The acute increase in ISF progranulin after LPS treatment is consistent with a role for extracellular progranulin in regulating inflammation, and may have been driven by microglia or peripheral immune cells. Finally, these data indicate that mPFC neurons engage in constitutive progranulin secretion that is not acutely changed by neuronal activity.
Collapse
Affiliation(s)
- Azariah K Kaplelach
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Stephanie N Fox
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Anna K Cook
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Justin A Hall
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ryan S Dannemiller
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karen L Jaunarajs
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew E Arrant
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
14
|
Lopez-Garzon M, Canta A, Chiorazzi A, Alberti P. Gait analysis in chemotherapy-induced peripheral neurotoxicity rodent models. Brain Res Bull 2023; 203:110769. [PMID: 37748696 DOI: 10.1016/j.brainresbull.2023.110769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Gait analysis could be used in animal models as an indicator of sensory ataxia due to chemotherapy-induced peripheral neurotoxicity (CIPN). Over the years, gait analysis in in vivo studies has evolved from simple observations carried out by a trained operator to computerised systems with machine learning that allow the quantification of any variable of interest and the establishment of algorithms for behavioural classification. However, there is not a consensus on gait analysis use in CIPN animal models; therefore, we carried out a systematic review. Of 987 potentially relevant studies, 14 were included, in which different methods were analysed (observation, footprint and CatWalk™). We presented the state-of-the-art of possible approaches to analyse sensory ataxia in rodent models, addressing advantages and disadvantages of different methods available. Semi-automated methods may be of interest when preventive or therapeutic strategies are evaluated, also considering their methodological simplicity and automaticity; up to now, only CatWalk™ analysis has been tested. Future studies should expect that CIPN-affected animals tend to reduce hind paw support due to pain, allodynia or loss of sensation, and an increase in swing phase could or should be observed. Few available studies documented these impairments at the last time point, and only appeared later on respect to other earlier signs of CIPN (such as altered neurophysiological findings). For that reason, gait impairment could be interpreted as late repercussions of loss of sensory.
Collapse
Affiliation(s)
- Maria Lopez-Garzon
- Biomedical Group (BIO277), Department of Physiotherapy, Faculty of Health Sciences, University of Granada, Granada, Spain; A02-Cuídate, Instituto de Investigación Biosanitaria Ibs, GRANADA, Granada, Spain; Unit of Excellence On Exercise and Health (UCEES), University of Granada, Granada, Spain; Sport and Health Research Center (IMUDs), Granada, Spain
| | - Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy; NeuroMI (Milan Center for neuroscience), Milan, Italy; Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| |
Collapse
|
15
|
Ventura E, Belfiore A, Iozzo RV, Giordano A, Morrione A. Progranulin and EGFR modulate receptor-like tyrosine kinase sorting and stability in mesothelioma cells. Am J Physiol Cell Physiol 2023; 325:C391-C405. [PMID: 37399497 PMCID: PMC10393324 DOI: 10.1152/ajpcell.00248.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
Progranulin is a growth factor with pro-tumorigenic activity. We recently demonstrated that in mesothelioma, progranulin regulates cell migration, invasion, adhesion, and in vivo tumor formation by modulating a complex signaling network involving multiple receptor tyrosine kinase (RTK)s. Progranulin biological activity relies on epidermal growth factor receptor (EGFR) and receptor-like tyrosine kinase (RYK), a co-receptor of the Wnt signaling pathway, which are both required for progranulin-induced downstream signaling. However, the molecular mechanism regulating the functional interaction among progranulin, EGFR, and RYK are not known. In this study, we demonstrated that progranulin directly interacted with RYK by specific enzyme-linked immunosorbent assay (ELISA) (KD = 0.67). Using immunofluorescence and proximity ligation assay, we further discovered that progranulin and RYK colocalized in mesothelioma cells in distinct vesicular compartments. Notably, progranulin-dependent downstream signaling was sensitive to endocytosis inhibitors, suggesting that it could depend on RYK or EGFR internalization. We discovered that progranulin promoted RYK ubiquitination and endocytosis preferentially through caveolin-1-enriched pathways, and modulated RYK stability. Interestingly, we also showed that in mesothelioma cells, RYK complexes with the EGFR, contributing to the regulation of RYK stability. Collectively, our results suggest a complex regulation of RYK trafficking/activity in mesothelioma cells, a process that is concurrently regulated by exogenous soluble progranulin and EGFR. NEW & NOTEWORTHY The growth factor progranulin has pro-tumorigenic activity. In mesothelioma, progranulin signaling is mediated by EGFR and RYK, a co-receptor of the Wnt signaling. However, the molecular mechanisms regulating progranulin action are not well defined. Here, we demonstrated that progranulin binds RYK and regulates its ubiquitination, internalization, and trafficking. We also uncovered a role for EGFR in modulating RYK stability. Overall, these results highlight a complex modulation of RYK activity by progranulin and EGFR in mesothelioma.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, Catania, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
- Department of Biomedical Biotechnologies, University of Siena, Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
16
|
Ventura E, Ducci G, Benot Dominguez R, Ruggiero V, Belfiore A, Sacco E, Vanoni M, Iozzo RV, Giordano A, Morrione A. Progranulin Oncogenic Network in Solid Tumors. Cancers (Basel) 2023; 15:cancers15061706. [PMID: 36980592 PMCID: PMC10046331 DOI: 10.3390/cancers15061706] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Progranulin is a pleiotropic growth factor with important physiological roles in embryogenesis and maintenance of adult tissue homeostasis. While-progranulin deficiency is associated with a broad range of pathological conditions affecting the brain, such as frontotemporal dementia and neuronal ceroid lipofuscinosis, progranulin upregulation characterizes many tumors, including brain tumors, multiple myeloma, leiomyosarcoma, mesothelioma and epithelial cancers such as ovarian, liver, breast, bladder, adrenal, prostate and kidney carcinomas. The increase of progranulin levels in tumors might have diagnostic and prognostic significance. In cancer, progranulin has a pro-tumorigenic role by promoting cancer cell proliferation, migration, invasiveness, anchorage-independent growth and resistance to chemotherapy. In addition, progranulin regulates the tumor microenvironment, affects the function of cancer-associated fibroblasts, and modulates tumor immune surveillance. However, the molecular mechanisms of progranulin oncogenic function are not fully elucidated. In bladder cancer, progranulin action relies on the activation of its functional signaling receptor EphA2. Notably, more recent data suggest that progranulin can also modulate a functional crosstalk between multiple receptor-tyrosine kinases, demonstrating a more complex and context-dependent role of progranulin in cancer. Here, we will review what is currently known about the function of progranulin in tumors, with a focus on its molecular mechanisms of action and regulation.
Collapse
Affiliation(s)
- Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| | - Giacomo Ducci
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Reyes Benot Dominguez
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Valentina Ruggiero
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Pharmacological Sciences, Master Program in Pharmaceutical Biotechnologies, University of Padua, 35131 Padua, Italy
| | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, Endocrinology Unit, University of Catania, Garibaldi-Nesima Hospital, 95122 Catania, Italy
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
- SYSBIO (Centre of Systems Biology), ISBE (Infrastructure Systems Biology Europe), 20126 Milan, Italy
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence: (E.V.); (A.M.); Tel.: +1-215-204-2450 (A.M.)
| |
Collapse
|
17
|
Alini M, Diwan AD, Erwin WM, Little CB, Melrose J. An update on animal models of intervertebral disc degeneration and low back pain: Exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics. JOR Spine 2023; 6:e1230. [PMID: 36994457 PMCID: PMC10041392 DOI: 10.1002/jsp2.1230] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/31/2022] [Accepted: 09/11/2022] [Indexed: 02/03/2023] Open
Abstract
Animal models have been invaluable in the identification of molecular events occurring in and contributing to intervertebral disc (IVD) degeneration and important therapeutic targets have been identified. Some outstanding animal models (murine, ovine, chondrodystrophoid canine) have been identified with their own strengths and weaknesses. The llama/alpaca, horse and kangaroo have emerged as new large species for IVD studies, and only time will tell if they will surpass the utility of existing models. The complexity of IVD degeneration poses difficulties in the selection of the most appropriate molecular target of many potential candidates, to focus on in the formulation of strategies to effect disc repair and regeneration. It may well be that many therapeutic objectives should be targeted simultaneously to effect a favorable outcome in human IVD degeneration. Use of animal models in isolation will not allow resolution of this complex issue and a paradigm shift and adoption of new methodologies is required to provide the next step forward in the determination of an effective repairative strategy for the IVD. AI has improved the accuracy and assessment of spinal imaging supporting clinical diagnostics and research efforts to better understand IVD degeneration and its treatment. Implementation of AI in the evaluation of histology data has improved the usefulness of a popular murine IVD model and could also be used in an ovine histopathological grading scheme that has been used to quantify degenerative IVD changes and stem cell mediated regeneration. These models are also attractive candidates for the evaluation of novel anti-oxidant compounds that counter inflammatory conditions in degenerate IVDs and promote IVD regeneration. Some of these compounds also have pain-relieving properties. AI has facilitated development of facial recognition pain assessment in animal IVD models offering the possibility of correlating the potential pain alleviating properties of some of these compounds with IVD regeneration.
Collapse
Affiliation(s)
| | - Ashish D. Diwan
- Spine Service, Department of Orthopedic Surgery, St. George & Sutherland Campus, Clinical SchoolUniversity of New South WalesSydneyNew South WalesAustralia
| | - W. Mark Erwin
- Department of SurgeryUniversity of TorontoOntarioCanada
| | - Chirstopher B. Little
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
| | - James Melrose
- Raymond Purves Bone and Joint Research LaboratoryKolling Institute, Sydney University Faculty of Medicine and Health, Northern Sydney Area Health District, Royal North Shore HospitalSt. LeonardsNew South WalesAustralia
- Graduate School of Biomedical EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
18
|
TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat Neurosci 2022; 25:1608-1625. [PMID: 36424432 DOI: 10.1038/s41593-022-01199-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/11/2022] [Indexed: 11/27/2022]
Abstract
Decreasing the activation of pathology-activated microglia is crucial to prevent chronic inflammation and tissue scarring. In this study, we used a stab wound injury model in zebrafish and identified an injury-induced microglial state characterized by the accumulation of lipid droplets and TAR DNA-binding protein of 43 kDa (TDP-43)+ condensates. Granulin-mediated clearance of both lipid droplets and TDP-43+ condensates was necessary and sufficient to promote the return of microglia back to the basal state and achieve scarless regeneration. Moreover, in postmortem cortical brain tissues from patients with traumatic brain injury, the extent of microglial activation correlated with the accumulation of lipid droplets and TDP-43+ condensates. Together, our results reveal a mechanism required for restoring microglia to a nonactivated state after injury, which has potential for new therapeutic applications in humans.
Collapse
|
19
|
Nasser AH, Gendy AM, El-Yamany MF, El-Tanbouly DM. Upregulation of neuronal progranulin mediates the antinociceptive effect of trimetazidine in paclitaxel-induced peripheral neuropathy: Role of ERK1/2 signaling. Toxicol Appl Pharmacol 2022; 448:116096. [PMID: 35662665 DOI: 10.1016/j.taap.2022.116096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 10/18/2022]
Abstract
Neuronal progranulin (PGRN) overexpression is an endogenous adaptive pain defense following nerve injury. It allows the survival of injured neurons to block enhanced nociceptive responses. Trimetazidine (TMZ) is widely used by cardiac patients as an anti-anginal drug, reflecting its anti-ischemic property. TMZ promotes axonal regeneration of sciatic nerves after crush injury. This study explored the interplay between PGRN and extracellular signal-regulated kinases (ERK1/2) to address mechanisms underlying neuropathic pain alleviation following paclitaxel (PTX) administration. Rats were given four injections of PTX (2 mg/kg, i.p.) every other day. Two days after the last dose, rats received TMZ (25 mg/kg) with or without the ERK inhibitor, PD98059, daily for 21 days. TMZ preserved the integrity of myelinated nerve fibers, as evidenced by an obvious reduction in axonal damage biomarkers. Accordingly, it alleviated PTX-evoked thermal, cold, and mechanical hyperalgesia/allodynia. TMZ also promoted ERK1/2 phosphorylation with a profound upsurge in PGRN content. These effects were associated with a substantial increase in Notch1 receptor gene expression and a prominent anti-inflammatory effect with a marked increase in mRNA expression of secretory leukocyte protease inhibitor. Further, TMZ decreased oxidative stress and caspase-3 activity in the sciatic nerve. Conversely, co-administration of PD98059 completely abolished these beneficial effects. Thus, the robust antinociceptive effect of TMZ is largely attributed to upregulating PGRN and Notch1 receptors via ERK1/2 activation.
Collapse
Affiliation(s)
- Asmaa H Nasser
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Abdallah M Gendy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Mohammed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
20
|
Wang L, Chen J, Hu Y, Liao A, Zheng W, Wang X, Lan J, Shen J, Wang S, Yang F, Wang Y, Li Y, Chen D. Progranulin improves neural development via the PI3K/Akt/GSK-3β pathway in the cerebellum of a VPA-induced rat model of ASD. Transl Psychiatry 2022; 12:114. [PMID: 35318322 PMCID: PMC8941112 DOI: 10.1038/s41398-022-01875-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease featuring social interaction deficits and repetitive/stereotyped behaviours; the prevalence of this disorder has continuously increased. Progranulin (PGRN) is a neurotrophic factor that promotes neuronal survival and differentiation. However, there have not been sufficient studies investigating its effect in animal models of autism. This study investigated the effects of PGRN on autistic phenotypes in rats treated with valproic acid (VPA) and assessed the underlying molecular mechanisms. PGRN was significantly downregulated in the cerebellum at postnatal day 14 (PND14) and PND35 in VPA-exposed rats, which simultaneously showed defective social preference, increased repetitive behaviours, and uncoordinated movements. When human recombinant PGRN (r-PGRN) was injected into the cerebellum of newborn ASD model rats (PND10 and PND17), some of the behavioural defects were alleviated. r-PGRN supplementation also reduced cerebellar neuronal apoptosis and rescued synapse formation in ASD rats. Mechanistically, we confirmed that PGRN protects neurodevelopment via the PI3K/Akt/GSK-3β pathway in the cerebellum of a rat ASD model. Moreover, we found that prosaposin (PSAP) promoted the internalisation and neurotrophic activity of PGRN. These results experimentally demonstrate the therapeutic effects of PGRN on a rat model of ASD for the first time and provide a novel therapeutic strategy for autism.
Collapse
Affiliation(s)
- Lili Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Jianhui Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yuling Hu
- Qujiang No. 2 Middle School, Xi'an, 710000, China
| | - Ailing Liao
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Wenxia Zheng
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoqing Wang
- Department of Nuclear Medicine, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, 637000, China
| | - Junying Lan
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
| | - Jingjing Shen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Shali Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Yang
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yan Wang
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Yingbo Li
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China
| | - Di Chen
- Cerebrovascular Diseases Laboratory, Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
21
|
Chitramuthu BP, Campos-García VR, Bateman A. Multiple Molecular Pathways Are Influenced by Progranulin in a Neuronal Cell Model-A Parallel Omics Approach. Front Neurosci 2022; 15:775391. [PMID: 35095393 PMCID: PMC8791029 DOI: 10.3389/fnins.2021.775391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Progranulin (PGRN) is critical in supporting a healthy CNS. Its haploinsufficiency results in frontotemporal dementia, while in experimental models of age-related neurodegenerative diseases, the targeted expression of PGRN greatly slows the onset of disease phenotypes. Nevertheless, much remains unclear about how PGRN affects its target cells. In previous studies we found that PGRN showed a remarkable ability to support the survival of NSC-34 motor neuron cells under conditions that would otherwise lead to their apoptosis. Here we used the same model to investigate other phenotypes of PGRN expression in NSC-34 cells. PGRN significantly influenced morphological differentiation, resulting in cells with enlarged cell bodies and extended projections. At a molecular level this correlated with pathways associated with the cytoskeleton and synaptic differentiation. Depletion of PGRN led to increased expression of several neurotrophic receptors, which may represent a homeostatic mechanism to compensate for loss of neurotrophic support from PGRN. The exception was RET, a neurotrophic tyrosine receptor kinase, which, when PGRN levels are high, shows increased expression and enhanced tyrosine phosphorylation. Other receptor tyrosine kinases also showed higher tyrosine phosphorylation when PGRN was elevated, suggesting a generalized enhancement of receptor activity. PGRN was found to bind to multiple plasma membrane proteins, including RET, as well as proteins in the ER/Golgi apparatus/lysosome pathway. Understanding how these various pathways contribute to PGRN action may provide routes toward improving neuroprotective therapies.
Collapse
Affiliation(s)
- Babykumari P Chitramuthu
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Víctor R Campos-García
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| | - Andrew Bateman
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, and Centre for Translational Biology, Metabolic Disorders and Complications, McGill University Health Centre Research Institute, Montréal, QC, Canada
| |
Collapse
|
22
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
23
|
Lan YJ, Sam NB, Cheng MH, Pan HF, Gao J. Progranulin as a Potential Therapeutic Target in Immune-Mediated Diseases. J Inflamm Res 2021; 14:6543-6556. [PMID: 34898994 PMCID: PMC8655512 DOI: 10.2147/jir.s339254] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
Progranulin (PGRN), a secretory glycoprotein consisting of 593 amino acid residues, is a key actor and regulator of multiple system functions such as innate immune response and inflammation, as well as tissue regeneration. Recently, there is emerging evidence that PGRN is protective in the development of a variety of immune-mediated diseases, including rheumatoid arthritis (RA), inflammatory bowel disease (IBD), type 1 diabetes mellitus (T1DM) and multiple sclerosis (MS) by regulating signaling pathways known to be critical for immunology, particularly the tumor necrosis factor alpha/TNF receptor (TNF-α/TNFR) signaling pathway. Whereas, the role of PGRN in psoriasis, systemic lupus erythematosus (SLE) and systemic sclerosis (SSc) is controversial. This review summarizes the immunological functions of PGRN and its role in the pathogenesis of several immune-mediated diseases, in order to provide new ideas for developing therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yue-Jiao Lan
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, People's Republic of China
| | - Napoleon Bellua Sam
- Department of Medical Research and Innovation, School of Medicine, University for Development Studies, Tamale, Ghana
| | - Ming-Han Cheng
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hai-Feng Pan
- Department of Epidemiology & Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, People's Republic of China
| | - Jian Gao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Dong T, Tejwani L, Jung Y, Kokubu H, Luttik K, Driessen TM, Lim J. Microglia regulate brain progranulin levels through the endocytosis/lysosomal pathway. JCI Insight 2021; 6:e136147. [PMID: 34618685 PMCID: PMC8663778 DOI: 10.1172/jci.insight.136147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/06/2021] [Indexed: 01/01/2023] Open
Abstract
Genetic variants in Granulin (GRN), which encodes the secreted glycoprotein progranulin (PGRN), are associated with several neurodegenerative diseases, including frontotemporal lobar degeneration, neuronal ceroid lipofuscinosis, and Alzheimer's disease. These genetic alterations manifest in pathological changes due to a reduction of PGRN expression; therefore, identifying factors that can modulate PGRN levels in vivo would enhance our understanding of PGRN in neurodegeneration and could reveal novel potential therapeutic targets. Here, we report that modulation of the endocytosis/lysosomal pathway via reduction of Nemo-like kinase (Nlk) in microglia, but not in neurons, can alter total brain Pgrn levels in mice. We demonstrate that Nlk reduction promotes Pgrn degradation by enhancing its trafficking through the endocytosis/lysosomal pathway, specifically in microglia. Furthermore, genetic interaction studies in mice showed that Nlk heterozygosity in Grn haploinsufficient mice further reduces Pgrn levels and induces neuropathological phenotypes associated with PGRN deficiency. Our results reveal a mechanism for Pgrn level regulation in the brain through the active catabolism by microglia and provide insights into the pathophysiology of PGRN-associated diseases.
Collapse
Affiliation(s)
- Tingting Dong
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Leon Tejwani
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
| | - Youngseob Jung
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hiroshi Kokubu
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Kimberly Luttik
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
| | - Terri M. Driessen
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Janghoo Lim
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience
- Program in Cellular Neuroscience, Neurodegeneration and Repair, and
- Yale Stem Cell Center, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Schumann L, Wilken-Schmitz A, Trautmann S, Vogel A, Schreiber Y, Hahnefeld L, Gurke R, Geisslinger G, Tegeder I. Increased Fat Taste Preference in Progranulin-Deficient Mice. Nutrients 2021; 13:4125. [PMID: 34836380 PMCID: PMC8623710 DOI: 10.3390/nu13114125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 11/25/2022] Open
Abstract
Progranulin deficiency in mice is associated with deregulations of the scavenger receptor signaling of CD36/SCARB3 in immune disease models, and CD36 is a dominant receptor in taste bud cells in the tongue and contributes to the sensation of dietary fats. Progranulin-deficient mice (Grn-/-) are moderately overweight during middle age. We therefore asked if there was a connection between progranulin/CD36 in the tongue and fat taste preferences. By using unbiased behavioral analyses in IntelliCages and Phenomaster cages we showed that progranulin-deficient mice (Grn-/-) developed a strong preference of fat taste in the form of 2% milk over 0.3% milk, and for diluted MCTs versus tap water. The fat preference in the 7d-IntelliCage observation period caused an increase of 10% in the body weight of Grn-/- mice, which did not occur in the wildtype controls. CD36 expression in taste buds was reduced in Grn-/- mice at RNA and histology levels. There were no differences in the plasma or tongue lipids of various classes including sphingolipids, ceramides and endocannabinoids. The data suggest that progranulin deficiency leads to a lower expression of CD36 in the tongue resulting in a stronger urge for fatty taste and fatty nutrition.
Collapse
Affiliation(s)
- Lana Schumann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Alexandra Vogel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| | - Yannick Schreiber
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Lisa Hahnefeld
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Robert Gurke
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
- Fraunhofer Cluster of Excellence for Immune Mediated Diseases (CIMD), 60596 Frankfurt, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, 60590 Frankfurt, Germany; (L.S.); (A.W.-S.); (S.T.); (A.V.); (Y.S.); (L.H.); (R.G.); (G.G.)
| |
Collapse
|
26
|
Ma H, Liu Z, Yang Y, Feng D, Dong Y, Garbutt TA, Hu Z, Wang L, Luan C, Cooper CD, Li Y, Welch JD, Qian L, Liu J. Functional coordination of non-myocytes plays a key role in adult zebrafish heart regeneration. EMBO Rep 2021; 22:e52901. [PMID: 34523214 DOI: 10.15252/embr.202152901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac regeneration occurs primarily through proliferation of existing cardiomyocytes, but also involves complex interactions between distinct cardiac cell types including non-cardiomyocytes (non-CMs). However, the subpopulations, distinguishing molecular features, cellular functions, and intercellular interactions of non-CMs in heart regeneration remain largely unexplored. Using the LIGER algorithm, we assemble an atlas of cell states from 61,977 individual non-CM scRNA-seq profiles isolated at multiple time points during regeneration. This analysis reveals extensive non-CM cell diversity, including multiple macrophage (MC), fibroblast (FB), and endothelial cell (EC) subpopulations with unique spatiotemporal distributions, and suggests an important role for MC in inducing the activated FB and EC subpopulations. Indeed, pharmacological perturbation of MC function compromises the induction of the unique FB and EC subpopulations. Furthermore, we developed computational algorithm Topologizer to map the topological relationships and dynamic transitions between functional states. We uncover dynamic transitions between MC functional states and identify factors involved in mRNA processing and transcriptional regulation associated with the transition. Together, our single-cell transcriptomic analysis of non-CMs during cardiac regeneration provides a blueprint for interrogating the molecular and cellular basis of this process.
Collapse
Affiliation(s)
- Hong Ma
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Ziqing Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yuchen Yang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Dong Feng
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Yanhan Dong
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Tiffany A Garbutt
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Zhiyuan Hu
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Li Wang
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Changfei Luan
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Cynthia D Cooper
- School of Molecular Biosciences, Washington State University Vancouver, Vancouver, WA, USA
| | - Yun Li
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.,Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA.,Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
| | - Joshua D Welch
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Li Qian
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Jiandong Liu
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC, USA.,Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
27
|
Shimoda A, Tanabe T, Sato T, Nedachi T. Hydrogen peroxide induces progranulin expression to control neurite outgrowth in HT22 cells. Biosci Biotechnol Biochem 2021; 85:2103-2112. [PMID: 34289035 DOI: 10.1093/bbb/zbab134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/15/2021] [Indexed: 01/02/2023]
Abstract
Progranulin (PGRN) is a multifunctional growth factor expressed in central nervous system. Although PGRN expression is regulated by various stressors, its precise role(s) and regulatory mechanism(s) remain elusive. In this study, we used HT22 cells to investigate the physiological implications of oxidative stress-induced PGRN expression and the regulation of PGRN expression by oxidative stress. We observed that p38 MAP kinase was activated upon the addition of H2O2, and a selective p38 MAP kinase inhibitor attenuated PGRN induction by H2O2. To explore the physiological role(s) of the PGRN induction, we first confirmed H2O2-dependent responses of HT22 cells and found that the length and number of neurites were increased by H2O2. Pgrn knockdown experiments suggested that these changes were mediated by H2O2-induced PGRN expression, at least in part. Overall, the results suggested that an increase in oxidative stress in HT22 cells induced PGRN expression via p38 MAP kinase pathway, thereby controlling neurite outgrowth.
Collapse
Affiliation(s)
- Ayumu Shimoda
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Takemi Tanabe
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Tsubasa Sato
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| | - Taku Nedachi
- Graduate School of Life Sciences, Toyo University, Oura-gun, Gunma, Japan
| |
Collapse
|
28
|
He L, de Souto Barreto P, Giudici KV, Aggarwal G, Nguyen AD, Morley JE, Li Y, Bateman RJ, Vellas B. Cross-Sectional and Longitudinal Associations Between Plasma Neurodegenerative Biomarkers and Physical Performance Among Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci 2021; 76:1874-1881. [PMID: 33186456 DOI: 10.1093/gerona/glaa284] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Plasma amyloid-beta (Aβ), neurofilament light chain (NfL), and progranulin (PGRN) have been related to multiple neurodegenerative conditions that might affect physical performance. The aim of this study was to explore the relationship between these plasma neurodegenerative markers and physical performance among community-dwelling older adults. METHODS Five hundred and seven older adults (aged 76 ± 5 years) previously recruited in the Multidomain Alzheimer's Preventive Trial, and had received blood and physical performance tests, were included in this study. Plasma Aβ (Aβ 42/Aβ 40 ratio), NfL, and PGRN levels were measured. Physical performance was assessed by handgrip strength and the Short Physical Performance Battery (combining gait speed, chair stands, and balance tests). Physical performance measured at the same time point and after the blood tests were used. Mixed-effect linear models were performed with age, sex, allocation to Multidomain Alzheimer's Preventive Trial group, body mass index, and Mini-Mental State Examination score as covariates. RESULTS The mean values of Aβ 42/Aβ 40 ratio, NfL, and PGRN were 0.11, 84.06 pg/mL, and 45.43 ng/mL, respectively. At the cross-sectional level, higher plasma NfL was associated with a lower Short Physical Performance Battery score (β = -0.004, 95% CI [-0.007, -0.001]). At the longitudinal level, higher PGRN levels were associated with decreasing handgrip strength over time (β = -0.02, 95% CI [-0.04, -0.007]). All the other associations were statistically nonsignificant. CONCLUSION Our findings suggest the possibility of using plasma NfL and PGRN as markers of physical performance in older adults.
Collapse
Affiliation(s)
- Lingxiao He
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France
| | - Philipe de Souto Barreto
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France.,UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | - Kelly V Giudici
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France
| | - Geetika Aggarwal
- Division of Geriatric Medicine, Saint Louis University School of Medicine, Missouri.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Missouri
| | - Andrew D Nguyen
- Division of Geriatric Medicine, Saint Louis University School of Medicine, Missouri.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University, Missouri
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, Missouri
| | - Yan Li
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Randall J Bateman
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Bruno Vellas
- Gérontopôle de Toulouse, Institut du Vieillissement, Centre Hospitalo-Universitaire de Toulouse, France.,UPS/Inserm UMR1027, University of Toulouse III, Toulouse, France
| | | |
Collapse
|
29
|
Davis SE, Roth JR, Aljabi Q, Hakim AR, Savell KE, Day JJ, Arrant AE. Delivering progranulin to neuronal lysosomes protects against excitotoxicity. J Biol Chem 2021; 297:100993. [PMID: 34298019 PMCID: PMC8379502 DOI: 10.1016/j.jbc.2021.100993] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 01/18/2023] Open
Abstract
Loss-of-function mutations in progranulin (GRN) are a major genetic cause of frontotemporal dementia (FTD), possibly due to loss of progranulin's neurotrophic and anti-inflammatory effects. Progranulin promotes neuronal growth and protects against excitotoxicity and other forms of injury. It is unclear if these neurotrophic effects are mediated through cellular signaling or through promotion of lysosomal function. Progranulin is a secreted proprotein that may activate neurotrophic signaling through cell-surface receptors. However, progranulin is efficiently trafficked to lysosomes and is necessary for maintaining lysosomal function. To determine which of these mechanisms mediates progranulin's protection against excitotoxicity, we generated lentiviral vectors expressing progranulin (PGRN) or lysosome-targeted progranulin (L-PGRN). L-PGRN was generated by fusing the LAMP-1 transmembrane and cytosolic domains to the C-terminus of progranulin. L-PGRN exhibited no detectable secretion, but was delivered to lysosomes and processed into granulins. PGRN and L-PGRN protected against NMDA excitotoxicity in rat primary cortical neurons, but L-PGRN had more consistent protective effects than PGRN. L-PGRN's protective effects were likely mediated through the autophagy-lysosomal pathway. In control neurons, an excitotoxic dose of NMDA stimulated autophagy, and inhibiting autophagy with 3-methyladenine reduced excitotoxic cell death. L-PGRN blunted the autophagic response to NMDA and occluded the protective effect of 3-methyladenine. This was not due to a general impairment of autophagy, as L-PGRN increased basal autophagy and did not alter autophagy after nutrient starvation. These data show that progranulin's protection against excitotoxicity does not require extracellular progranulin, but is mediated through lysosomes, providing a mechanistic link between progranulin's lysosomal and neurotrophic effects.
Collapse
Affiliation(s)
- Skylar E Davis
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jonathan R Roth
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qays Aljabi
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ahmad R Hakim
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Katherine E Savell
- Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeremy J Day
- Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew E Arrant
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, USA; Alzheimer's Disease Center, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
30
|
Trehalose Reduces Nerve Injury Induced Nociception in Mice but Negatively Affects Alertness. Nutrients 2021; 13:nu13092953. [PMID: 34578829 PMCID: PMC8469914 DOI: 10.3390/nu13092953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 07/31/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Trehalose, a sugar from fungi, mimics starvation due to a block of glucose transport and induces Transcription Factor EB- mediated autophagy, likely supported by the upregulation of progranulin. The pro-autophagy effects help to remove pathological proteins and thereby prevent neurodegenerative diseases such as Alzheimer’s disease. Enhancing autophagy also contributes to the resolution of neuropathic pain in mice. Therefore, we here assessed the effects of continuous trehalose administration via drinking water using the mouse Spared Nerve Injury model of neuropathic pain. Trehalose had no effect on drinking, feeding, voluntary wheel running, motor coordination, locomotion, and open field, elevated plus maze, and Barnes Maze behavior, showing that it was well tolerated. However, trehalose reduced nerve injury-evoked nociceptive mechanical and thermal hypersensitivity as compared to vehicle. Trehalose had no effect on calcium currents in primary somatosensory neurons, pointing to central mechanisms of the antinociceptive effects. In IntelliCages, trehalose-treated mice showed reduced activity, in particular, a low frequency of nosepokes, which was associated with a reduced proportion of correct trials and flat learning curves in place preference learning tasks. Mice failed to switch corner preferences and stuck to spontaneously preferred corners. The behavior in IntelliCages is suggestive of sedative effects as a “side effect” of a continuous protracted trehalose treatment, leading to impairment of learning flexibility. Hence, trehalose diet supplements might reduce chronic pain but likely at the expense of alertness.
Collapse
|
31
|
Terryn J, Verfaillie CM, Van Damme P. Tweaking Progranulin Expression: Therapeutic Avenues and Opportunities. Front Mol Neurosci 2021; 14:713031. [PMID: 34366786 PMCID: PMC8343103 DOI: 10.3389/fnmol.2021.713031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/07/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disease, leading to behavioral changes and language difficulties. Heterozygous loss-of-function mutations in progranulin (GRN) induce haploinsufficiency of the protein and are associated with up to one-third of all genetic FTD cases worldwide. While the loss of GRN is primarily associated with neurodegeneration, the biological functions of the secreted growth factor-like protein are more diverse, ranging from wound healing, inflammation, vasculogenesis, and metabolic regulation to tumor cell growth and metastasis. To date, no disease-modifying treatments exist for FTD, but different therapeutic approaches to boost GRN levels in the central nervous system are currently being developed (including AAV-mediated GRN gene delivery as well as anti-SORT1 antibody therapy). In this review, we provide an overview of the multifaceted regulation of GRN levels and the corresponding therapeutic avenues. We discuss the opportunities, advantages, and potential drawbacks of the diverse approaches. Additionally, we highlight the therapeutic potential of elevating GRN levels beyond patients with loss-of-function mutations in GRN.
Collapse
Affiliation(s)
- Joke Terryn
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Interdepartmental Stem Cell Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium.,Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Hummel R, Lang M, Walderbach S, Wang Y, Tegeder I, Gölz C, Schäfer MKE. Single intracerebroventricular progranulin injection adversely affects the blood-brain barrier in experimental traumatic brain injury. J Neurochem 2021; 158:342-357. [PMID: 33899947 DOI: 10.1111/jnc.15375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/23/2022]
Abstract
Progranulin (PGRN) is a neurotrophic and anti-inflammatory factor with protective effects in animal models of ischemic stroke, subarachnoid hemorrhage, and traumatic brain injury (TBI). Administration of recombinant (r) PGRN prevents exaggerated brain pathology after TBI in Grn-deficient mice, suggesting that local injection of recombinant progranulin (rPGRN) provides therapeutic benefit in the acute phase of TBI. To test this hypothesis, we subjected adult male C57Bl/6N mice to the controlled cortical impact model of TBI, administered a single dose of rPGRN intracerebroventricularly (ICV) shortly before the injury, and examined behavioral and biological effects up to 5 days post injury (dpi). The anti-inflammatory bioactivity of rPGRN was confirmed by its capability to inhibit the inflammation-induced hypertrophy of murine primary microglia and astrocytes in vitro. In C57Bl/6N mice, however, ICV administration of rPGRN failed to attenuate behavioral deficits over the 5-day observation period. (Immuno)histological gene and protein expression analyses at 5 dpi did not reveal a therapeutic benefit in terms of brain injury size, brain inflammation, glia activation, cell numbers in neurogenic niches, and neuronal damage. Instead, we observed a failure of TBI-induced mRNA upregulation of the tight junction protein occludin and increased extravasation of serum immunoglobulin G into the brain parenchyma at 5 dpi. In conclusion, single ICV administration of rPGRN had not the expected protective effects in the acute phase of murine TBI, but appeared to cause an aggravation of blood-brain barrier disruption. The data raise questions about putative PGRN-boosting approaches in other types of brain injuries and disease.
Collapse
Affiliation(s)
- Regina Hummel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manuel Lang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Simona Walderbach
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yong Wang
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Medical Faculty, Goethe-University Frankfurt, Frankfurt, Germany
| | - Christina Gölz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences (FTN) of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy (FZI) of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
33
|
van der Ende EL, Morenas-Rodriguez E, McMillan C, Grossman M, Irwin D, Sanchez-Valle R, Graff C, Vandenberghe R, Pijnenburg YAL, Laforce R, Ber IL, Lleo A, Haass C, Suarez-Calvet M, van Swieten JC, Seelaar H. CSF sTREM2 is elevated in a subset in GRN-related frontotemporal dementia. Neurobiol Aging 2021; 103:158.e1-158.e5. [PMID: 33896652 DOI: 10.1016/j.neurobiolaging.2021.02.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023]
Abstract
Excessive microglial activation might be a central pathological process in GRN-related frontotemporal dementia (FTD-GRN). We measured soluble triggering receptor expressed on myeloid cells 2 (sTREM2), which is shed from disease-associated microglia following cleavage of TREM2, in cerebrospinal fluid of 34 presymptomatic and 35 symptomatic GRN mutation carriers, 6 presymptomatic and 32 symptomatic C9orf72 mutation carriers and 67 healthy noncarriers by ELISA. Although no group differences in sTREM2 levels were observed (GRN: symptomatic (median 5.2 ng/mL, interquartile range [3.9-9.2]) vs. presymptomatic (4.3 ng/mL [2.6-6.1]) vs. noncarriers (4.2 ng/mL [2.6-5.5]): p = 0.059; C9orf72: symptomatic (4.3 [2.9-7.0]) vs. presymptomatic (3.2 [2.2-4.2]) vs. noncarriers: p = 0.294), high levels were seen in a subset of GRN, but not C9orf72, mutation carriers, which might reflect differential TREM2-related microglial activation. Interestingly, 2 presymptomatic carriers with low sTREM2 levels developed symptoms after 1 year, whereas 2 with high levels became symptomatic after >5 years. While sTREM2 is not a promising diagnostic biomarker for FTD-GRN or FTD-C9orf72, further research might elucidate its potential to monitor microglial activity and predict disease progression.
Collapse
Affiliation(s)
- Emma L van der Ende
- Alzheimer Center Rotterdam and Dept. of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Estrella Morenas-Rodriguez
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximillians-Universität München, Munich, Germany
| | - Corey McMillan
- Dept. of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Dept. of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - David Irwin
- Dept. of Neurology, Penn Frontotemporal Degeneration Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Caroline Graff
- Karolinska Institutet, Dept. NVS, Division of Neurogeriatrics, Bioclinicum, Stockholm, Sweden; Unit of Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire du CHU de Québec, Département des Sciences Neurologiques, Université Laval, Québec, Canada
| | - Isabelle Le Ber
- APHP, Reference Centre for Rare or Early Onset Dementias, IM2A, Department of Neurology, Hôpital La Pitié-Salpêtrière, Paris, France; Sorbonne Université, Paris Brain Institute, Institut du Cerveau, ICM, Inserm U1127, CNRS UMR 7225, APHP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Alberto Lleo
- Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximillians-Universität München, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Marc Suarez-Calvet
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - John C van Swieten
- Alzheimer Center Rotterdam and Dept. of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Harro Seelaar
- Alzheimer Center Rotterdam and Dept. of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
34
|
Zhou X, Kukar T, Rademakers R. Lysosomal Dysfunction and Other Pathomechanisms in FTLD: Evidence from Progranulin Genetics and Biology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:219-242. [PMID: 33433878 DOI: 10.1007/978-3-030-51140-1_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
It has been more than a decade since heterozygous loss-of-function mutations in the progranulin gene (GRN) were first identified as an important genetic cause of frontotemporal lobar degeneration (FTLD). Due to the highly diverse biological functions of the progranulin (PGRN) protein, encoded by GRN, multiple possible disease mechanisms have been proposed. Early work focused on the neurotrophic properties of PGRN and its role in the inflammatory response. However, since the discovery of homozygous GRN mutations in patients with a lysosomal storage disorder, investigation into the possible roles of PGRN and its proteolytic cleavage products granulins, in lysosomal function and dysfunction, has taken center stage. In this chapter, we summarize the GRN mutational spectrum and its associated phenotypes followed by an in-depth discussion on the possible disease mechanisms implicated in FTLD-GRN. We conclude with key outstanding questions which urgently require answers to ensure safe and successful therapy development for GRN mutation carriers.
Collapse
Affiliation(s)
- Xiaolai Zhou
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas Kukar
- Department of Pharmacology and Chemical Biology, Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- VIB Center for Molecular Neurology, University of Antwerp-CDE, Antwerp, Belgium.
| |
Collapse
|
35
|
Karimi M, Moazzami M, Rezaeian N. Effects of Eight Weeks of Core Stability Training on Serum level of Progranulin and Tumor Necrosis Factor Alpha in Women with Multiple Sclerosis. MEDICAL LABORATORY JOURNAL 2021. [DOI: 10.29252/mlj.15.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
36
|
Kalinski AL, Yoon C, Huffman LD, Duncker PC, Kohen R, Passino R, Hafner H, Johnson C, Kawaguchi R, Carbajal KS, Jara JS, Hollis E, Geschwind DH, Segal BM, Giger RJ. Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement. eLife 2020; 9:60223. [PMID: 33263277 PMCID: PMC7735761 DOI: 10.7554/elife.60223] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6Chigh monocytes infiltrate the nerve first and rapidly give way to Ly6Cnegative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages ‘eat’ apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient (Csf2-/-) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.
Collapse
Affiliation(s)
- Ashley L Kalinski
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Choya Yoon
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Lucas D Huffman
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| | - Patrick C Duncker
- Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| | - Rafi Kohen
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| | - Ryan Passino
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Hannah Hafner
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Kevin S Carbajal
- Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| | | | - Edmund Hollis
- Burke Neurological Institute, White Plains, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, United States
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, United States
| | - Benjamin M Segal
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, United States.,The Neurological Institute, The Ohio State University, Columbus, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States.,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States.,Department of Neurology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
37
|
Hessman CL, Hildebrandt J, Shah A, Brandt S, Bock A, Frye BC, Raffetseder U, Geffers R, Brunner-Weinzierl MC, Isermann B, Mertens PR, Lindquist JA. YB-1 Interferes with TNFα-TNFR Binding and Modulates Progranulin-Mediated Inhibition of TNFα Signaling. Int J Mol Sci 2020; 21:ijms21197076. [PMID: 32992926 PMCID: PMC7583764 DOI: 10.3390/ijms21197076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammation and an influx of macrophages are common elements in many diseases. Among pro-inflammatory cytokines, tumor necrosis factor α (TNFα) plays a central role by amplifying the cytokine network. Progranulin (PGRN) is a growth factor that binds to TNF receptors and interferes with TNFα-mediated signaling. Extracellular PGRN is processed into granulins by proteases released from immune cells. PGRN exerts anti-inflammatory effects, whereas granulins are pro-inflammatory. The factors coordinating these ambivalent functions remain unclear. In our study, we identify Y-box binding protein-1 (YB-1) as a candidate for this immune-modulating activity. Using a yeast-2-hybrid assay with YB-1 protein as bait, clones encoding for progranulin were selected using stringent criteria for strong interaction. We demonstrate that at physiological concentrations, YB-1 interferes with the binding of TNFα to its receptors in a dose-dependent manner using a flow cytometry-based binding assay. We show that YB-1 in combination with progranulin interferes with TNFα-mediated signaling, supporting the functionality with an NF-κB luciferase reporter assay. Together, we show that YB-1 displays immunomodulating functions by affecting the binding of TNFα to its receptors and influencing TNFα-mediated signaling via its interaction with progranulin.
Collapse
Affiliation(s)
- Christopher L. Hessman
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Josephine Hildebrandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Antonia Bock
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Björn C. Frye
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany; (B.C.F.); (U.R.)
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany; (B.C.F.); (U.R.)
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | | | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
- Correspondence: (P.R.M.); (J.A.L.); Tel.: +49-391-6713236 (P.R.M.); +49-391-6724703 (J.A.L.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
- Correspondence: (P.R.M.); (J.A.L.); Tel.: +49-391-6713236 (P.R.M.); +49-391-6724703 (J.A.L.)
| |
Collapse
|
38
|
Low brain endocannabinoids associated with persistent non-goal directed nighttime hyperactivity after traumatic brain injury in mice. Sci Rep 2020; 10:14929. [PMID: 32913220 PMCID: PMC7483739 DOI: 10.1038/s41598-020-71879-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Traumatic brain injury (TBI) is a frequent cause of chronic headache, fatigue, insomnia, hyperactivity, memory deficits, irritability and posttraumatic stress disorder. Recent evidence suggests beneficial effects of pro-cannabinoid treatments. We assessed in mice levels of endocannabinoids in association with the occurrence and persistence of comparable sequelae after controlled cortical impact in mice using a set of long-term behavioral observations in IntelliCages, motor and nociception tests in two sequential cohorts of TBI/sham mice. TBI mice maintained lower body weights, and they had persistent low levels of brain ethanolamide endocannabinoids (eCBs: AEA, OEA, PEA) in perilesional and subcortical ipsilateral brain tissue (6 months), but rapidly recovered motor functions (within days), and average nociceptive responses were within normal limits, albeit with high variability, ranging from loss of thermal sensation to hypersensitivity. TBI mice showed persistent non-goal directed nighttime hyperactivity, i.e. they visited rewarding and non-rewarding operant corners with high frequency and random success. On successful visits, they made more licks than sham mice resulting in net over-licking. The lower the eCBs the stronger was the hyperactivity. In reward-based learning and reversal learning tasks, TBI mice were not inferior to sham mice, but avoidance memory was less stable. Hence, the major late behavioral TBI phenotype was non-goal directed nighttime hyperactivity and "over-licking" in association with low ipsilateral brain eCBs. The behavioral phenotype would agree with a "post-TBI hyperactivity disorder". The association with persistently low eCBs in perilesional and subcortical regions suggests that eCB deficiency contribute to the post-TBI psychopathology.
Collapse
|
39
|
Zambusi A, Pelin Burhan Ö, Di Giaimo R, Schmid B, Ninkovic J. Granulins Regulate Aging Kinetics in the Adult Zebrafish Telencephalon. Cells 2020; 9:E350. [PMID: 32028681 PMCID: PMC7072227 DOI: 10.3390/cells9020350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/31/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022] Open
Abstract
Granulins (GRN) are secreted factors that promote neuronal survival and regulate inflammation in various pathological conditions. However, their roles in physiological conditions in the brain remain poorly understood. To address this knowledge gap, we analysed the telencephalon in Grn-deficient zebrafish and identified morphological and transcriptional changes in microglial cells, indicative of a pro-inflammatory phenotype in the absence of any insult. Unexpectedly, activated mutant microglia shared part of their transcriptional signature with aged human microglia. Furthermore, transcriptome profiles of the entire telencephali isolated from young Grn-deficient animals showed remarkable similarities with the profiles of the telencephali isolated from aged wildtype animals. Additionally, 50% of differentially regulated genes during aging were regulated in the telencephalon of young Grn-deficient animals compared to their wildtype littermates. Importantly, the telencephalon transcriptome in young Grn-deficent animals changed only mildly with aging, further suggesting premature aging of Grn-deficient brain. Indeed, Grn loss led to decreased neurogenesis and oligodendrogenesis, and to shortening of telomeres at young ages, to an extent comparable to that observed during aging. Altogether, our data demonstrate a role of Grn in regulating aging kinetics in the zebrafish telencephalon, thus providing a valuable tool for the development of new therapeutic approaches to treat age-associated pathologies.
Collapse
Affiliation(s)
- Alessandro Zambusi
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Graduate School of Systemic Neuroscience; Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| | - Özge Pelin Burhan
- German Center for Neurodegenerative Diseases (DZNE), 81377 München, Germany; (Ö.P.B.); (B.S.)
| | - Rossella Di Giaimo
- Department of Biology, University of Naples Federico II, 80134 Naples, Italy;
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), 81377 München, Germany; (Ö.P.B.); (B.S.)
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, 85764 Neuherberg, Germany
- Graduate School of Systemic Neuroscience; Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg, Germany
| |
Collapse
|
40
|
Zhang L, Chen X, Liu Z, Han Q, Tang L, Tian Z, Ren Z, Rong C, Xu H. Miconazole alleviates peripheral nerve crush injury by mediating a macrophage phenotype change through the NF-κB pathway. Brain Behav 2019; 9:e01400. [PMID: 31486271 PMCID: PMC6790322 DOI: 10.1002/brb3.1400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 08/06/2019] [Accepted: 08/11/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Peripheral nerve injury (PNI) causes motor and sensory defects, has strong impact on life quality and still has no effective therapy. Miconazole is one of the most widely used antifungal drugs; the aims of the study were to investigate the effects of miconazole during sciatic nerve regeneration in a mouse model of sciatic nerve crush injury. METHODS We established peripheral nerve crush model and investigated the effects of miconazole by multiple aspects. We further studied the potential mechanism of action of miconazole by Western blotting, fluorescence immunohistochemistry, and PCR analysis. RESULTS Miconazole improves the symptoms of crushed nerve by improving inflammatory cell infiltration and demyelinating myelin of sciatic nerve. Affected by miconazole, the proportion of inflammatory M1 macrophages in the distal part of the sciatic nerve was reduced, and the proportion of anti-inflammatory M2 macrophages was increased. Finally, the neuroprotective properties of miconazole may be regulated by the nuclear factor (NF)-κB pathway. CONCLUSIONS Our data suggest that miconazole can effectively alleviate PNI, and the mechanism involves mediating a phenotype change of M1/ M2 macrophages. Thus, miconazole may represent a potential therapeutic intervention for nerve crush injury.
Collapse
Affiliation(s)
- Liangliang Zhang
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Xiuju Chen
- Department of Neurology, Tianjin Nankai Hospital, Tianjin, China
| | - Zengyun Liu
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Qingluan Han
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Liguo Tang
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Zhen Tian
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Zhiyong Ren
- Department of Orthopaedic, Sunshine Union Hospital, Weifang, Shandong, China
| | - Cunmin Rong
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| | - Hui Xu
- Department of Hand Surgery, Affiliated Hospital of Jining Medical University, Jining, Shandong, China.,Jining Medical University, Jining, Shandong, China
| |
Collapse
|
41
|
Cho KI, Yoon D, Yu M, Peachey NS, Ferreira PA. Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons. Cell Mol Life Sci 2019; 76:3407-3432. [PMID: 30944974 PMCID: PMC6698218 DOI: 10.1007/s00018-019-03078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Nucleocytoplasmic transport is dysregulated in sporadic and familial amyotrophic lateral sclerosis (ALS) and retinal ganglion neurons (RGNs) are purportedly involved in ALS. The Ran-binding protein 2 (Ranbp2) controls rate-limiting steps of nucleocytoplasmic transport. Mice with Ranbp2 loss in Thy1+-motoneurons develop cardinal ALS-like motor traits, but the impairments in RGNs and the degree of dysfunctional consonance between RGNs and motoneurons caused by Ranbp2 loss are unknown. This will help to understand the role of nucleocytoplasmic transport in the differential vulnerability of neuronal cell types to ALS and to uncover non-motor endophenotypes with pathognomonic signs of ALS. Here, we ascertain Ranbp2's function and endophenotypes in RGNs of an ALS-like mouse model lacking Ranbp2 in motoneurons and RGNs. Thy1+-RGNs lacking Ranbp2 shared with motoneurons the dysregulation of nucleocytoplasmic transport. RGN abnormalities were comprised morphologically by soma hypertrophy and optic nerve axonopathy and physiologically by a delay of the visual pathway's evoked potentials. Whole-transcriptome analysis showed restricted transcriptional changes in optic nerves that were distinct from those found in sciatic nerves. Specifically, the level and nucleocytoplasmic partition of the anti-apoptotic and novel substrate of Ranbp2, Pttg1/securin, were dysregulated. Further, acetyl-CoA carboxylase 1, which modulates de novo synthesis of fatty acids and T-cell immunity, showed the highest up-regulation (35-fold). This effect was reflected by the activation of ramified CD11b+ and CD45+-microglia, increase of F4\80+-microglia and a shift from pseudopodial/lamellipodial to amoeboidal F4\80+-microglia intermingled between RGNs of naive mice. Further, there was the intracellular sequestration in RGNs of metalloproteinase-28, which regulates macrophage recruitment and polarization in inflammation. Hence, Ranbp2 genetic insults in RGNs and motoneurons trigger distinct paracrine signaling likely by the dysregulation of nucleocytoplasmic transport of neuronal-type selective substrates. Immune-modulators underpinning RGN-to-microglial signaling are regulated by Ranbp2, and this neuronal-glial system manifests endophenotypes that are likely useful in the prognosis and diagnosis of motoneuron diseases, such as ALS.
Collapse
Affiliation(s)
- Kyoung-In Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
42
|
Schmitz K, Wilken-Schmitz A, Vasic V, Brunkhorst R, Schmidt M, Tegeder I. Progranulin deficiency confers resistance to autoimmune encephalomyelitis in mice. Cell Mol Immunol 2019; 17:1077-1091. [PMID: 31467413 PMCID: PMC7609649 DOI: 10.1038/s41423-019-0274-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Progranulin is a secreted neurotrophin that assists in the autophagolysosomal pathways that contribute to MHC-mediated antigen processing, pathogen removal, and autoimmunity. We showed that patients with multiple sclerosis (MS) have high levels of circulating progranulin and that its depletion in a mouse model by a monoclonal antibody aggravates MS-like experimental autoimmune encephalomyelitis (EAE). However, unexpectedly, progranulin-deficient mice (Grn−/−) were resistant to EAE, and this resistance was fully restored by wild-type bone marrow transplantation. FACS analyses revealed a loss of MHC-II-positive antigen-presenting cells in Grn−/− mice and a reduction in the number of CD8+ and CD4+ T-cells along with a strong increase in the number of scavenger receptor class B (CD36+) phagocytes, suggesting defects in antigen presentation along with a compensatory increase in phagocytosis. Indeed, bone marrow-derived dendritic cells from Grn−/− mice showed stronger uptake of antigens but failed to elicit antigen-specific T-cell proliferation. An increase in the number of CD36+ phagocytes was associated with increased local inflammation at the site of immunization, stronger stimulation-evoked morphological transformation of bone marrow-derived macrophages to phagocytes, an increase in the phagocytosis of E. coli particles and latex beads and defects in the clearance of the material. Hence, the outcomes in the EAE model reflect the dichotomy of progranulin-mediated immune silencing and autoimmune mechanisms of antigen recognition and presentation, and our results reveal a novel progranulin-dependent pathway in autoimmune encephalomyelitis.
Collapse
Affiliation(s)
- Katja Schmitz
- Institute of Clinical Pharmacology of the Medical Faculty, Goethe-University, Frankfurt (Main), Germany
| | - Annett Wilken-Schmitz
- Institute of Clinical Pharmacology of the Medical Faculty, Goethe-University, Frankfurt (Main), Germany
| | - Verica Vasic
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Robert Brunkhorst
- Department of Neurology, Goethe University Hospital, Frankfurt am Main, Germany
| | - Mirko Schmidt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology of the Medical Faculty, Goethe-University, Frankfurt (Main), Germany.
| |
Collapse
|
43
|
Bright F, Werry EL, Dobson-Stone C, Piguet O, Ittner LM, Halliday GM, Hodges JR, Kiernan MC, Loy CT, Kassiou M, Kril JJ. Neuroinflammation in frontotemporal dementia. Nat Rev Neurol 2019; 15:540-555. [PMID: 31324897 DOI: 10.1038/s41582-019-0231-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2019] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders with different pathological signatures, genetic variability and complex disease mechanisms, for which no effective treatments exist. Despite advances in understanding the underlying pathology of FTD, sensitive and specific fluid biomarkers for this disease are lacking. As in other types of dementia, mounting evidence suggests that neuroinflammation is involved in the progression of FTD, including cortical inflammation, microglial activation, astrogliosis and differential expression of inflammation-related proteins in the periphery. Furthermore, an overlap between FTD and autoimmune disease has been identified. The most substantial evidence, however, comes from genetic studies, and several FTD-related genes are also implicated in neuroinflammation. This Review discusses specific evidence of neuroinflammatory mechanisms in FTD and describes how advances in our understanding of these mechanisms, in FTD as well as in other neurodegenerative diseases, might facilitate the development and implementation of diagnostic tools and disease-modifying treatments for FTD.
Collapse
Affiliation(s)
- Fiona Bright
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Eryn L Werry
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Centre of Excellence in Cognition and its Disorders, Australian Research Council, Sydney, NSW, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Clement T Loy
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Kassiou
- School of Chemistry, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| | - Jillian J Kril
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
44
|
Li J, Yang KY, Tam RCY, Chan VW, Lan HY, Hori S, Zhou B, Lui KO. Regulatory T-cells regulate neonatal heart regeneration by potentiating cardiomyocyte proliferation in a paracrine manner. Theranostics 2019; 9:4324-4341. [PMID: 31285764 PMCID: PMC6599663 DOI: 10.7150/thno.32734] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
The neonatal mouse heart is capable of transiently regenerating after injury from postnatal day (P) 0-7 and macrophages are found important in this process. However, whether macrophages alone are sufficient to orchestrate this regeneration; what regulates cardiomyocyte proliferation; why cardiomyocytes do not proliferate after P7; and whether adaptive immune cells such as regulatory T-cells (Treg) influence neonatal heart regeneration have less studied. Methods: We employed both loss- and gain-of-function transgenic mouse models to study the role of Treg in neonatal heart regeneration. In loss-of-function studies, we treated mice with the lytic anti-CD25 antibody that specifically depletes Treg; or we treated FOXP3DTR with diphtheria toxin that specifically ablates Treg. In gain-of-function studies, we adoptively transferred hCD2+ Treg from NOD.Foxp3hCD2 to NOD/SCID that contain Treg as the only T-cell population. Furthermore, we performed single-cell RNA-sequencing of Treg to uncover paracrine factors essential for cardiomyocyte proliferation. Results: Unlike their wild type counterparts, NOD/SCID mice that are deficient in T-cells but harbor macrophages fail to regenerate their injured myocardium at as early as P3. During the first week of injury, Treg are recruited to the injured cardiac muscle but their depletion contributes to more severe cardiac fibrosis. On the other hand, adoptive transfer of Treg results in mitigated fibrosis and enhanced proliferation and function of the injured cardiac muscle. Mechanistically, single-cell transcriptomic profiling reveals that Treg could be a source of regenerative factors. Treg directly promote proliferation of both mouse and human cardiomyocytes in a paracrine manner; and their secreted factors such as CCL24, GAS6 or AREG potentiate neonatal cardiomyocyte proliferation. By comparing the regenerating P3 and non-regenerating P8 heart, there is a significant increase in the absolute number of intracardiac Treg but the whole transcriptomes of these Treg do not differ regardless of whether the neonatal heart regenerates. Furthermore, even adult Treg, given sufficient quantity, possess the same regenerative capability. Conclusion: Our results demonstrate a regenerative role of Treg in neonatal heart regeneration. Treg can directly facilitate cardiomyocyte proliferation in a paracrine manner.
Collapse
Affiliation(s)
- Jiatao Li
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Kevin Y. Yang
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Rachel Chun Yee Tam
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Vicken W. Chan
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Yao Lan
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Shohei Hori
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Japan
| | - Bin Zhou
- The State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Kathy O. Lui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
|
46
|
Zschiebsch K, Fischer C, Wilken‐Schmitz A, Geisslinger G, Channon K, Watschinger K, Tegeder I. Mast cell tetrahydrobiopterin contributes to itch in mice. J Cell Mol Med 2019; 23:985-1000. [PMID: 30450838 PMCID: PMC6349351 DOI: 10.1111/jcmm.13999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/25/2018] [Accepted: 10/13/2018] [Indexed: 12/28/2022] Open
Abstract
GTP cyclohydrolase (GCH1) governs de novo synthesis of the enzyme cofactor, tetrahydrobiopterin (BH4), which is essential for biogenic amine production, bioactive lipid metabolism and redox coupling of nitric oxide synthases. Overproduction of BH4 via upregulation of GCH1 in sensory neurons is associated with nociceptive hypersensitivity in rodents, and neuron-specific GCH1 deletion normalizes nociception. The translational relevance is revealed by protective polymorphisms of GCH1 in humans, which are associated with a reduced chronic pain. Because myeloid cells constitute a major non-neuronal source of BH4 that may contribute to BH4-dependent phenotypes, we studied here the contribution of myeloid-derived BH4 to pain and itch in lysozyme M Cre-mediated GCH1 knockout (LysM-GCH1-/- ) and overexpressing mice (LysM-GCH1-HA). Unexpectedly, knockout or overexpression in myeloid cells had no effect on nociceptive behaviour, but LysM-driven GCH1 knockout reduced, and its overexpression increased the scratching response in Compound 48/80 and hydroxychloroquine-evoked itch models, which involve histamine and non-histamine dependent signalling pathways. Mechanistically, GCH1 overexpression increased BH4, nitric oxide and hydrogen peroxide, and these changes were associated with increased release of histamine and serotonin and degranulation of mast cells. LysM-driven GCH1 knockout had opposite effects, and pharmacologic inhibition of GCH1 provided even stronger itch suppression. Inversely, intradermal BH4 provoked scratching behaviour in vivo and BH4 evoked an influx of calcium in sensory neurons. Together, these loss- and gain-of-function experiments suggest that itch in mice is contributed by BH4 release plus BH4-driven mediator release from myeloid immune cells, which leads to activation of itch-responsive sensory neurons.
Collapse
Affiliation(s)
- Katja Zschiebsch
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | - Caroline Fischer
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | | | - Gerd Geisslinger
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| | - Keith Channon
- Division of Cardiovascular MedicineUniversity of OxfordOxfordUK
| | - Katrin Watschinger
- Division of Biological ChemistryBiocenterMedical University of InnsbruckInnsbruckAustria
| | - Irmgard Tegeder
- Institute of Clinical PharmacologyGoethe‐University HospitalFrankfurtGermany
| |
Collapse
|
47
|
Cui Y, Hettinghouse A, Liu CJ. Progranulin: A conductor of receptors orchestra, a chaperone of lysosomal enzymes and a therapeutic target for multiple diseases. Cytokine Growth Factor Rev 2019; 45:53-64. [PMID: 30733059 DOI: 10.1016/j.cytogfr.2019.01.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/14/2022]
Abstract
Progranulin (PGRN), a widely expressed glycoprotein with pleiotropic function, has been linked to a host of physiological processes and diverse pathological states. A series of contemporary preclinical disease models and clinical trials have evaluated various therapeutic strategies targeting PGRN, highlighting PGRN as a promising therapeutic target. Herein we summarize available knowledge of PGRN targeting in various kinds of diseases, including common neurological diseases, inflammatory autoimmune diseases, cancer, tissue repair, and rare lysosomal storage diseases, with a focus on the functional domain-oriented drug development strategies. In particular, we emphasize the role of extracellular PGRN as a non-conventional, extracellular matrix bound, growth factor-like conductor orchestrating multiple membrane receptors and intracellular PGRN as a chaperone/co-chaperone that mediates the folding and traffic of its various binding partners.
Collapse
Affiliation(s)
- Yazhou Cui
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Medical Center, New York, NY, 10003, USA; Department of Cell Biology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
48
|
Rajaei S, Fatahi Y, Dabbagh A. Meeting Between Rumi and Shams in Notch Signaling; Implications for Pain Management: A Narrative Review. Anesth Pain Med 2019; 9:e85279. [PMID: 30881911 PMCID: PMC6412915 DOI: 10.5812/aapm.85279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/28/2018] [Indexed: 01/03/2023] Open
Abstract
The meeting between Rumi and Shams, in the 13th century, was a turning point in the life of Rumi leading to a revolutionary effect in his thoughts, ideas, and poems. This was an ever-inspiring meeting with many results throughout the centuries. This meeting has created some footprints in cellular and molecular medicine: The discovery of two distinct genes in Drosophila, i.e. Rumi and Shams and their role in controlling Notch signaling, which has a critical role in cell biology. This nomination and the interactions between the two genes has led us to a number of novel studies during the last years. This article reviews the interactions between Rumi and Shams and their effects on Notch signaling in order to find potential novel drugs for pain control through drug development studies in the future.
Collapse
Affiliation(s)
- Samira Rajaei
- Immunology Department, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Dabbagh
- Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Cardiac Anesthesiology Department, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Khoonsari PE, Ossipova E, Lengqvist J, Svensson CI, Kosek E, Kadetoff D, Jakobsson PJ, Kultima K, Lampa J. The human CSF pain proteome. J Proteomics 2019; 190:67-76. [DOI: 10.1016/j.jprot.2018.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/27/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
|
50
|
Hyung S, Im SK, Lee BY, Shin J, Park JC, Lee C, Suh JKF, Hur EM. Dedifferentiated Schwann cells secrete progranulin that enhances the survival and axon growth of motor neurons. Glia 2018; 67:360-375. [PMID: 30444070 DOI: 10.1002/glia.23547] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/02/2018] [Accepted: 09/07/2018] [Indexed: 12/13/2022]
Abstract
Schwann cells (SCs), the primary glia in the peripheral nervous system (PNS), display remarkable plasticity in that fully mature SCs undergo dedifferentiation and convert to repair SCs upon nerve injury. Dedifferentiated SCs provide essential support for PNS regeneration by producing signals that enhance the survival and axon regrowth of damaged neurons, but the identities of neurotrophic factors remain incompletely understood. Here we show that SCs express and secrete progranulin (PGRN), depending on the differentiation status of SCs. PGRN expression and secretion markedly increased as primary SCs underwent dedifferentiation, while PGRN secretion was prevented by administration of cAMP, which induced SC differentiation. We also found that sciatic nerve injury, a physiological trigger of SC dedifferentiation, induced PGRN expression in SCs in vivo. These results suggest that dedifferentiated SCs express and secrete PGRN that functions as a paracrine factor to support the survival and axon growth of neighboring neurons after injury.
Collapse
Affiliation(s)
- Sujin Hyung
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Sun-Kyoung Im
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, Seoul, South Korea
| | - Bo Yoon Lee
- Center for Glia-Neuron Interaction, KIST, Seoul, South Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| | - Jihye Shin
- Center for Theragnosis, KIST, Seoul, South Korea
| | - Jong-Chul Park
- Department of Medical Engineering and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Cheolju Lee
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea.,Center for Theragnosis, KIST, Seoul, South Korea
| | - Jun-Kyo Francis Suh
- Center for Bionics, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Eun-Mi Hur
- Department of Neuroscience, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University, Seoul, South Korea
| |
Collapse
|