1
|
Tribble JR, Wong VHY, Stuart KV, Chidlow G, Nicol A, Rombaut A, Rabiolo A, Hoang A, Lee PY, Rutigliani C, Enz TJ, Canovai A, Lardner E, Stålhammar G, Nguyen CTO, Garway-Heath DF, Casson RJ, Khawaja AP, Bui BV, Williams PA. Dysfunctional one-carbon metabolism identifies vitamins B 6, B 9, B 12, and choline as neuroprotective in glaucoma. Cell Rep Med 2025; 6:102127. [PMID: 40345183 DOI: 10.1016/j.xcrm.2025.102127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/03/2025] [Accepted: 04/15/2025] [Indexed: 05/11/2025]
Abstract
Glaucoma, characterized by the loss of retinal ganglion cells (RGCs), is a leading cause of blindness for which there are no neuroprotective therapies. To explore observations of elevated homocysteine in glaucoma, we elevate vitreous homocysteine, which increases RGC death by 6% following ocular hypertension. Genetic association with higher homocysteine does not affect glaucoma-associated outcomes from the UK Biobank and serum homocysteine levels have no effect on glaucomatous visual field progression. This supports a hypothesis in which elevated homocysteine is a pathogenic, rather than causative, feature of glaucoma. Further exploration of homocysteine metabolism in glaucoma animal models demonstrates early and sustained dysregulation of genes involved in one-carbon metabolism and the interaction of essential cofactors and precursors (B6, B9, B12, and choline) in whole retina and optic nerve head and RGCs. Supplementing these provides neuroprotection in an acute model and prevents neurodegeneration and protects visual function in a chronic model of glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Kelsey V Stuart
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Glyn Chidlow
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - Alan Nicol
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Anne Rombaut
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Rabiolo
- Department of Ophthalmology, University Hospital Maggiore della Carita', Novara, Italy; Department of Health Sciences, Università del Piemonte Orientale "A.Avogadro", Novara, Italy
| | - Anh Hoang
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Carola Rutigliani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Tim J Enz
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Alessio Canovai
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Gustav Stålhammar
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David F Garway-Heath
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Robert J Casson
- Discipline of Ophthalmology & Visual Sciences, Level 7 Adelaide Health and Medical Sciences Building, University of Adelaide, North Terrace, Adelaide, SA 5000, Australia
| | - Anthony P Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Zhang C, Simón M, Harder JM, Lim H, Montgomery C, Wang Q, John SWM. TLR4 deficiency does not alter glaucomatous progression in a mouse model of chronic glaucoma. Sci Rep 2025; 15:16852. [PMID: 40374644 PMCID: PMC12081889 DOI: 10.1038/s41598-025-00638-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/29/2025] [Indexed: 05/17/2025] Open
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Toll-like receptor 4 (TLR4) is a pattern-recognition transmembrane receptor that induces neuroinflammatory processes in response to injury. Tlr4 is highly expressed in ocular tissues and is known to modulate inflammatory processes in both anterior and posterior segment tissues. TLR4 activation can lead to mitochondrial dysfunction and metabolic deficits in inflammatory disorders. Due to its effects on inflammation and metabolism, TLR4 is a candidate to participate in glaucoma pathogenesis. It has been suggested as a therapeutic target based on studies using acute models, such as experimentally raising IOP to ischemia-inducing levels. Nevertheless, its role in chronic glaucoma needs further evaluation. In the current study, we investigated the role of TLR4 in an inherited mouse model of chronic glaucoma, DBA/2J. To do this, we analyzed the effect of Tlr4 knockout (Tlr4-/-) on glaucoma in DBA/2J mice. Our studies found no significant differences in intraocular pressure, iris disease, or glaucomatous progression in Tlr4-/- compared to Tlr4+/+ DBA/2J mice. Our data do not support a role for TLR4 as a treatment target in chronic glaucoma.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Marina Simón
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | | | - Haeyn Lim
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Christa Montgomery
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Qing Wang
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Simon W M John
- Department of Ophthalmology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Guo M, Schwartz TD, Lawrence ECN, Lu J, Zhong A, Wu J, Sterling JK, Nikonov S, Dunaief JL, Cui QN. Loss of monocyte chemoattractant protein-1 reduced monocyte recruitment and preserved retinal ganglion cells in a mouse model of hypertensive glaucoma. Exp Eye Res 2025; 254:110325. [PMID: 40058724 PMCID: PMC11975471 DOI: 10.1016/j.exer.2025.110325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 01/27/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Monocyte chemoattractant protein-1 (MCP-1)/CCL2, a potent chemokine for myeloid cells, has been associated with disease progression in glaucoma. We examined whether genetic knockout (KO) of MCP-1 affected RGC density and function, retinal myeloid cell density, and pro-inflammatory cytokine expression in the setting of microbead induced hypertensive glaucoma. Adult wildtype (WT) C57BL/6J or MCP-1 KO mice received bilateral injections of either magnetic microbeads to elevate intraocular pressure (IOP) or balanced salt solution (BSS) as normotensive controls. After 8 weeks, immunolabeling of retina flat mounts for RBPMS and Iba1 quantified RGC and myeloid soma density in the retina, respectively. Axon density was quantified in optic nerve thin sections, while in vitro multi-electrode array recordings characterized RGC function. Quantitative PCR assessed expression of pro-inflammatory cytokines C1q, IL-1α, and TNF-α in macrophage/microglia-enriched retinal cellular populations. Results demonstrated lower RGC soma and axon density, and higher myeloid cellular density, in bead vs. BSS-injected eyes of WT mice. In contrast, RGC soma and axon density, as well as myeloid cellular density did not differ between bead and BSS-injected eyes of MCP-1 KO mice. Aspects of RGC firing rates were also preserved in KO compared to WT mice after IOP elevation. Interestingly, expressions of C1q, IL-1α, and TNF-α, cytokines previously shown to be cytotoxic to RGCs, did not differ between WT and KO mice. In summary, genetic ablation of MCP-1 rescued RGCs and decreased myeloid density in the retina without altering pro-inflammatory cytokine expression, supporting a pathogenic role for monocyte recruitment in hypertensive glaucoma.
Collapse
Affiliation(s)
- Michelle Guo
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Turner D Schwartz
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Emily C N Lawrence
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jingwen Lu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Anny Zhong
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jie Wu
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jacob K Sterling
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Sergei Nikonov
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Joshua L Dunaief
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Qi N Cui
- F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Giammaria S, Pandino I, Zingale GA, Atzori MG, Cavaterra D, Cecere M, Michelessi M, Roberti G, Tanga L, Carnevale C, Vercellin AV, Siesky B, Harris A, Grasso G, Bocedi A, Coletta M, Tundo GR, Oddone F, Sbardella D. Profiling of the Peripheral Blood Mononuclear Cells Proteome by Shotgun Proteomics Identifies Alterations of Immune System Components, Proteolytic Balance, Autophagy, and Mitochondrial Metabolism in Glaucoma Subjects. ACS OMEGA 2025; 10:14866-14883. [PMID: 40291004 PMCID: PMC12019430 DOI: 10.1021/acsomega.4c10035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 04/30/2025]
Abstract
Glaucoma is a chronic optic neuropathy and is the second cause of irreversible blindness worldwide. Although the pathogenesis of the disease is not fully understood, the death of retinal ganglion cells and degeneration of the optic nerve are likely promoted by a combination of local and systemic factors. Growing attention has been paid to nonintraocular pressure risk factors, including mechanisms of inflammation and neuroinflammation. Phenotypical and molecular alterations of circulating immune cells, in particular, lymphocyte subsets, have been documented in murine models of glaucoma and in human subjects. Very recently, oxygen consumption rate and nicotinamide adenine dinucleotide levels of human peripheral blood mononuclear cells (PBMC) have been proposed as biomarkers of disease progression, thus suggesting that immune cells of glaucoma subjects present severe molecular and metabolic alterations. In this framework, this pilot study aimed to be the first to characterize global proteome perturbations of PBMC of patients with primary open-angle glaucoma (POAG) compared to nonglaucomatous controls (control) by shotgun proteomics. The approach identified >4,500 proteins and a total of 435 differentially expressed proteins between POAG and control subjects. Clustering and rationalization of proteomic data sets and immunodetection of selected proteins by Western blotting highlighted significant alterations of immune system compartments (i.e., complement factors, regulators of immune functions, and lymphocyte activation) and pathways serving key roles for immune system such as proteolysis (i.e., matrix metalloproteinases and their inhibitors), autophagy (i.e., beclin-1 and LC3B), cell proliferation (Bcl2), mitochondrial (i.e., sirtuin), and energetic/redox metabolism (i.e., NADK). Based on these findings, this proteomic study suggests that circulating immune cells suffer from heterogeneous alterations of central pathways involved in cell metabolism and homeostasis. Larger, properly designed studies are required to confirm specifically how immune cellular alterations may be involved in the pathogenesis of both neuroinflammation and glaucomatous disease.
Collapse
Affiliation(s)
- Sara Giammaria
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | - Irene Pandino
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | | | - Dario Cavaterra
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | - Michela Cecere
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | - Gloria Roberti
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | - Lucia Tanga
- IRCCS Fondazione
Bietti, Via Livenza,
3, Rome 00198, Italy
| | | | | | - Brent Siesky
- Icahn
School
of Medicine at Mount Sinai, New York 10029-6574, United States
| | - Alon Harris
- Icahn
School
of Medicine at Mount Sinai, New York 10029-6574, United States
| | - Giuseppe Grasso
- Department
of Chemical SciencesUniversity of Catania, Viale Andrea Doria 6, Catania 95125, Italy
| | - Alessio Bocedi
- Department
of Chemical Sciences and Technologies, University
of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy
| | | | - Grazia Raffaella Tundo
- Department
of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | | | | |
Collapse
|
5
|
Li DL, Liu MX, Yin ZJ, Li YZ, Ma R, Zheng YJ, Qin Y, Liang G, Pan CW. Are blood platelet parameters associated with retinal nerve fiber layer thickness Among healthy young adults? a university-based study. Eur J Ophthalmol 2025:11206721251335375. [PMID: 40255068 DOI: 10.1177/11206721251335375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
BackgroundPlatelet parameters have been linked with glaucomatous optic neuropathy but whether they were associated with retinal nerve fiber layer (RNFL) thickness among healthy individuals remains unclear. We aim to determine the relationship between different platelet parameters and RNFL thickness in healthy university students.MethodsThe Dali University Students Eye Health Study is a university-based, cross-sectional study in southwestern China in 2021. RNFL thickness was measured automatically using an optical coherence tomography scanner. An automated hematology analyzer was used to analyze the platelet parameters including platelet (PLT) count, platelet distribution width (PDW), mean platelet volume (MPV) and plateletcrit (PCT). Linear regression models and generalized additive models were established to examine the associations of platelet parameters with RNFL thickness.ResultsA total of 1905 participants with valid RNFL thickness and platelet parameters data were included in the current analysis. Per unit increase in the levels of MPV and PDW was associated with a decrease of 0.74 μm (P = 0.04) and 0.35 μm (P = 0.04) in RNFL thickness in multivariable-adjusted model. Subgroup analyses indicated that the association between MPV and RNFL thickness was present in male students. A non-linear trend in the association of MPV with RNFL thickness were observed (P = 0.04).ConclusionIncreased levels of MPV and PDW were associated with thinner RNFLs among university students, suggesting that the platelet parameters, a simple, global, and economical markers, have the potentials to be an additional valuable biomarker for predicting the change of RNFL thickness and onset of RNFL-related nerve diseases in late adulthood.
Collapse
Affiliation(s)
- Dan-Lin Li
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Min-Xin Liu
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| | - Zhi-Jian Yin
- Department of Ophthalmology, the First Affiliated Hospital of Dali University, Dali, China
| | - Yue-Zu Li
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Rong Ma
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Yu Qin
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Gang Liang
- Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, the Second People's Hospital of Yunnan Province, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Suzhou Medical College of Soochow University, Suzhou, China
| |
Collapse
|
6
|
Rombaut A, Brautaset R, Williams PA, Tribble JR. Intravitreal injection of the Galectin-3 inhibitor TD139 provides neuroprotection in a rat model of ocular hypertensive glaucoma. Mol Brain 2024; 17:84. [PMID: 39574161 PMCID: PMC11583433 DOI: 10.1186/s13041-024-01160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Neuroinflammation is a significant contributor to the pathology of glaucoma. Targeting key-mediators in this process is a realistic option to slow disease progression. Galectin-3 is a β-galactoside binding lectin that has been associated with inflammation in both systemic and central nervous system diseases. Elevated Galectin-3 has recently been detected in multiple animal models of glaucoma and inhibiting Galectin-3 using an intravitreal injection of TD139 (a Galectin-3 small molecule inhibitor) is neuroprotective. We queried whether this neuroprotective effect was translatable to another animal model and species. TD139 was intravitreally injected, in a rat ocular hypertensive model of glaucoma, 3 days after the induction of ocular hypertension (at peak intraocular pressure). Retinal ganglion cell survival and glial morphological markers were quantified. The degeneration of retinal ganglion cells was prevented by TD139 injection, but gross glial markers remained unaffected. These data confirm that the intravitreal injection of TD139 is neuroprotective in a rat ocular hypertensive model of glaucoma, while suggesting that the inhibition of Galectin-3 is not sufficient to alter the gross inflammatory outcome.
Collapse
Affiliation(s)
- Anne Rombaut
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rune Brautaset
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Zhang C, Simón M, Lim H, Tolman NG, Horbal L, Juarez FA, Bhandari A, Montgomery C, John SWM. IOP-induced blood-retinal barrier compromise contributes to RGC death in glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618539. [PMID: 39463998 PMCID: PMC11507889 DOI: 10.1101/2024.10.15.618539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The integrity of the blood-retinal barrier (BRB) has been largely unexplored in glaucoma. We reveal that elevated intraocular pressure (IOP) partially compromises the BRB in two human-relevant inherited mouse models of glaucoma (DBA/2J and Lmx1bV265D). Experimentally increasing IOP in mouse eyes further confirms this. Notably, the compromise induces subtle leakage, happening without bleeding or detected endothelial cell junction disruption, and it precedes neurodegeneration. Leakage occurs from peripheral veins in the retinal ganglion cell layer with a concomitant loss of the transcytosis inhibitor MFSD2A. Importantly, stabilizing β-catenin in retinal endothelial cells prevents both vascular leakage and neurodegeneration in the DBA/2J model. The occurrence of leakage in all 3 high IOP models indicates that BRB compromise may be a common, yet overlooked, mechanism in glaucoma. These findings suggest that IOP-induced BRB compromise plays a critical role in glaucoma, offering a new therapeutic target.
Collapse
|
8
|
Diemler CA, MacLean M, Heuer SE, Hewes AA, Marola OJ, Libby RT, Howell GR. Microglia depletion leads to increased susceptibility to ocular hypertension-dependent glaucoma. Front Aging Neurosci 2024; 16:1396443. [PMID: 39015474 PMCID: PMC11250491 DOI: 10.3389/fnagi.2024.1396443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/07/2024] [Indexed: 07/18/2024] Open
Abstract
In recent years, microglia have been highlighted for playing integral roles in neurodegenerative diseases, like glaucoma. To better understand the role of microglia during chronic ocular hypertension, we depleted microglia from aged (9-12 months old) DBA/2 J (D2) mice, which exhibit age-related increases in intraocular pressure, using a dietary CSF1R antagonist, PLX5622. Retinal ganglion cell (RGC) somas were counted, and optic nerve cross-sections stained and assessed for glaucomatous damage. Sustained administration of dietary PLX5622 significantly reduced the numbers of retinal microglia. Dietary PLX5622 did not lead to changes in intraocular pressure in D2 or normotensive DBA/2 J-Gpnmb+ (D2-Gpnmb+ ) control mice. While PLX5622-treated D2-Gpnmb+ did not develop optic nerve damage, PLX5622-treated D2 mice showed a significant increase in moderate-to-severe optic nerve damage compared to D2 mice fed a control diet. In conclusion, global reduction of microglia exacerbated glaucomatous neurodegeneration in D2 mice suggesting microglia play an overall beneficial role in protecting from ocular hypertension associated RGC loss.
Collapse
Affiliation(s)
- Cory A. Diemler
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME, United States
| | | | - Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | | | | | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME, United States
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME, United States
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
9
|
Zhang C, Simón M, Harder JM, Lim H, Montgomery C, Wang Q, John SW. TLR4 deficiency does not alter glaucomatous progression in a mouse model of chronic glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597951. [PMID: 38895321 PMCID: PMC11185798 DOI: 10.1101/2024.06.07.597951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Toll-like receptor 4 (TLR4) is a pattern-recognition transmembrane receptor that induces neuroinflammatory processes in response to injury. Tlr4 is highly expressed in ocular tissues and is known to modulate inflammatory processes in both anterior and posterior segment tissues. TLR4 activation can lead to mitochondrial dysfunction and metabolic deficits in inflammatory disorders. Due to its effects on inflammation and metabolism, TLR4 is a candidate to participate in glaucoma pathogenesis. It has been suggested as a therapeutic target based on studies using acute models, such as experimentally raising IOP to ischemia-inducing levels. Nevertheless, its role in chronic glaucoma needs further evaluation. In the current study, we investigated the role of TLR4 in an inherited mouse model of chronic glaucoma, DBA/2J. To do this, we analyzed the effect of Tlr4 knockout (Tlr4 -/-) on glaucoma-associated phenotypes in DBA/2J mice. Our studies found no significant differences in intraocular pressure, iris disease, or glaucomatous progression in Tlr4 -/- compared to Tlr4 +/+ DBA/2J mice. These data do not identify a role for TLR4 in this chronic glaucoma, but further research is warranted to understand its role in other glaucoma models and different genetic contexts.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Marina Simón
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | | | - Haeyn Lim
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Christa Montgomery
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Qing Wang
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
| | - Simon W.M. John
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY
- The Jackson Laboratory, Bar Harbor, ME
| |
Collapse
|
10
|
Xia F, Shi S, Palacios E, Liu W, Buscho SE, Li J, Huang S, Vizzeri G, Dong XC, Motamedi M, Zhang W, Liu H. Sirt6 protects retinal ganglion cells and optic nerve from degeneration during aging and glaucoma. Mol Ther 2024; 32:1760-1778. [PMID: 38659223 PMCID: PMC11184404 DOI: 10.1016/j.ymthe.2024.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024] Open
Abstract
Glaucoma is characterized by the progressive degeneration of retinal ganglion cells (RGCs) and their axons, and its risk increases with aging. Yet comprehensive insights into the complex mechanisms are largely unknown. Here, we found that anti-aging molecule Sirt6 was highly expressed in RGCs. Deleting Sirt6 globally or specifically in RGCs led to progressive RGC loss and optic nerve degeneration during aging, despite normal intraocular pressure (IOP), resembling a phenotype of normal-tension glaucoma. These detrimental effects were potentially mediated by accelerated RGC senescence through Caveolin-1 upregulation and by the induction of mitochondrial dysfunction. In mouse models of high-tension glaucoma, Sirt6 level was decreased after IOP elevation. Genetic overexpression of Sirt6 globally or specifically in RGCs significantly attenuated high tension-induced degeneration of RGCs and their axons, whereas partial or RGC-specific Sirt6 deletion accelerated RGC loss. Importantly, therapeutically targeting Sirt6 with pharmacological activator or AAV2-mediated gene delivery ameliorated high IOP-induced RGC degeneration. Together, our studies reveal a critical role of Sirt6 in preventing RGC and optic nerve degeneration during aging and glaucoma, setting the stage for further exploration of Sirt6 activation as a potential therapy for glaucoma.
Collapse
Affiliation(s)
- Fan Xia
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shuizhen Shi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Erick Palacios
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Seth E Buscho
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joseph Li
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shixia Huang
- Advanced Technology Cores, Department of Molecular and Cellular Biology, Department of Education, Innovation and Technology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gianmarco Vizzeri
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xiaocheng Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Wenbo Zhang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Neurobiology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Hua Liu
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
11
|
Andersh KM, MacLean M, Howell GR, Libby RT. IL1A enhances TNF-induced retinal ganglion cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596328. [PMID: 38854045 PMCID: PMC11160597 DOI: 10.1101/2024.05.28.596328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Glaucoma is a neurodegenerative disease that leads to the death of retinal ganglion cells (RGCs). A growing body of literature suggests a role for neuroinflammation in RGC death after glaucoma-relevant insults. For instance, it was shown that deficiency of three proinflammatory cytokines, complement component 1, subcomponent q ( C1q ), interleukin 1 alpha ( Il1a ), and tumor necrosis factor ( Tnf ), resulted in near complete protection of RGCs after two glaucoma-relevant insults, optic nerve injury and ocular hypertension. While TNF and C1Q have been extensively investigated in glaucoma-relevant model systems, the role of IL1A in RGC is not as well defined. Thus, we investigated the direct neurotoxicity of IL1A on RGCs in vivo. Intravitreal injection of IL1A did not result in RGC death at either 14 days or 12 weeks after insult. Consistent with previous studies, TNF injection did not result in significant RGC loss at 14 days but did after 12 weeks. Interestingly, IL1A+TNF resulted in a relatively rapid RGC death, driving significant RGC loss two weeks after injection. JUN activation and SARM1 have been implicated in RGC death in glaucoma and after cytokine insult. Using mice deficient in JUN or SARM1, we show RGC loss after IL1A+TNF insult is JUN-independent and SARM1-dependent. Furthermore, RNA-seq analysis showed that RGC death by SARM1 deficiency does not stop the neuroinflammatory response to IL1A+TNF. These findings indicate that IL1A can potentiate TNF-induced RGC death after combined insult is likely driven by a SARM1-dependent RGC intrinsic signaling pathway.
Collapse
|
12
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
13
|
Wang D, Pu Y, Tan S, Wang X, Zeng L, Lei J, Gao X, Li H. Identification of immune-related biomarkers for glaucoma using gene expression profiling. Front Genet 2024; 15:1366453. [PMID: 38694874 PMCID: PMC11062407 DOI: 10.3389/fgene.2024.1366453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024] Open
Abstract
Introduction: Glaucoma, a principal cause of irreversible vision loss, is characterized by intricate optic neuropathy involving significant immune mechanisms. This study seeks to elucidate the molecular and immune complexities of glaucoma, aiming to improve our understanding of its pathogenesis. Methods: Gene expression profiles from glaucoma patients were analyzed to identify immune-related differentially expressed genes (DEGs). Techniques used were weighted gene co-expression network analysis (WGCNA) for network building, machine learning algorithms for biomarker identification, establishment of subclusters related to immune reactions, and single-sample gene set enrichment analysis (ssGSEA) to explore hub genes' relationships with immune cell infiltration and immune pathway activation. Validation was performed using an NMDA-induced excitotoxicity model and RT-qPCR for hub gene expression measurement. Results: The study identified 409 DEGs differentiating healthy individuals from glaucoma patients, highlighting the immune response's significance in disease progression. Immune cell infiltration analysis revealed elevated levels of activated dendritic cells, natural killer cells, monocytes, and immature dendritic cells in glaucoma samples. Three hub genes, CD40LG, TEK, and MDK, were validated as potential diagnostic biomarkers for high-risk glaucoma patients, showing increased expression in the NMDA-induced excitotoxicity model. Discussion: The findings propose the three identified immune-related genes (IRGs) as novel diagnostic markers for glaucoma, offering new insights into the disease's pathogenesis and potential therapeutic targets. The strong correlation between these IRGs and immune responses underscores the intricate role of immunity in glaucoma, suggesting a shift in the approach to its diagnosis and treatment.
Collapse
Affiliation(s)
- Dangdang Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yanyu Pu
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Sisi Tan
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xiaochen Wang
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Lihong Zeng
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Junqin Lei
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xi Gao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hong Li
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for the Prevention and Treatment of Major Blinding Eye Diseases, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| |
Collapse
|
14
|
Sun Y, Liang JJ, Xu J, Zhou K, Fu C, Chen SL, Yang R, Ng TK, Liu Q, Zhang M. Oxidized low-density lipoprotein changes the inflammatory status and metabolomics profiles in human and mouse macrophages and microglia. Heliyon 2024; 10:e28806. [PMID: 38617955 PMCID: PMC11015420 DOI: 10.1016/j.heliyon.2024.e28806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
The conjunctiva of primary open angle glaucoma patients showed high level of oxidized low-density lipoprotein (ox-LDL), which is associated with the inflammatory response. Microglia and macrophages are the immune cells involved in retinal ganglion cell survival regulation; yet, their roles of the ox-LDL-induced inflammation in glaucoma remain elusive. Here we aimed to investigate the lipid uptake, inflammatory cytokine expression, and metabolomics profiles of human and murine-derived microglial and macrophage cell lines treated with ox-LDL. Under the same ox-LDL concentration, macrophages exhibited higher lipid uptake and expression of pro-inflammatory cytokines as compared to microglia. The ox-LDL increased the levels of fatty acid metabolites in macrophages and sphingomyelin metabolites in microglia. In summary, this study revealed the heterogeneity in the inflammatory capacity and metabolic profiles of macrophages and microglia under the stimulation of ox-LDL.
Collapse
Affiliation(s)
- Yaru Sun
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Jia-Jian Liang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
| | - Jianming Xu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Kewen Zhou
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Changzhen Fu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
| | - Rucui Yang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, Gaungdong, China
| |
Collapse
|
15
|
Bugara K, Pacwa A, Smedowski A. Molecular pathways in experimental glaucoma models. Front Neurosci 2024; 18:1363170. [PMID: 38562304 PMCID: PMC10982327 DOI: 10.3389/fnins.2024.1363170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Glaucoma is a complex and progressive disease that primarily affects the optic nerve axons, leading to irreversible vision loss. Although the exact molecular mechanisms underlying glaucoma pathogenesis are not fully understood, it is believed that except increased intraocular pressure, a combination of genetic and environmental factors play a role in the development of the disease. Animal models have been widely used in the study of glaucoma, allowing researchers to better understand the underlying mechanisms of the disease and test potential treatments. Several molecular pathways have been implicated in the pathogenesis of glaucoma, including oxidative stress, inflammation, and excitotoxic-induced neurodegeneration. This review summarizes the most important knowledge about molecular mechanisms involved in the glaucoma development. Although much research has been done to better understand the molecular mechanisms underlying this disease, there is still much to be learned to develop effective treatments and prevent vision loss in those affected by glaucoma.
Collapse
Affiliation(s)
- Klaudia Bugara
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pacwa
- Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- GlaucoTech Co., Katowice, Poland
| | - Adrian Smedowski
- GlaucoTech Co., Katowice, Poland
- Department of Ophthalmology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
- Department of Ophthalmology, Professor K. Gibinski University Clinical Center, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
16
|
Diemler CA, MacLean M, Heuer SE, Hewes AA, Marola OJ, Libby RT, Howell GR. Microglia Depletion leads to Increased Susceptibility to Ocular Hypertension-Dependent Glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583529. [PMID: 38496398 PMCID: PMC10942367 DOI: 10.1101/2024.03.05.583529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
In recent years, microglia have been highlighted for playing integral roles in neurodegenerative diseases, like glaucoma. To better understand the role of microglia during chronic ocular hypertension, we depleted microglia from aged (9-12 months old) DBA/2J (D2) mice, which exhibit age-related increases in intraocular pressure, using a dietary CSF1R antagonist, PLX5622. Retinal ganglion cell (RGC) somas were counted, and optic nerve cross-sections stained and assessed for glaucomatous damage. Sustained administration of dietary PLX5622 significantly reduced the numbers of retinal microglia. Dietary PLX5622 did not lead to changes in intraocular pressure in D2 or normotensive DBA/2J-Gpnmb+ (D2-Gpnmb+) control mice. While PLX5622-treated D2-Gpnmb+ did not develop optic nerve damage, PLX5622-treated D2 mice showed a significant increase in moderate-to-severe optic nerve damage compared to D2 mice fed a control diet. In conclusion, global reduction of microglia exacerbated glaucomatous neurodegeneration in D2 mice suggesting microglia play an overall beneficial role in protecting from ocular hypertension associated RGC loss.
Collapse
Affiliation(s)
- Cory A. Diemler
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME
| | | | - Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA
| | | | | | - Richard T. Libby
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME
- Graduate School of Biological Sciences and Engineering, University of Maine, Orono, ME
- Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
17
|
Hoppe C, Gregory-Ksander M. The Role of Complement Dysregulation in Glaucoma. Int J Mol Sci 2024; 25:2307. [PMID: 38396986 PMCID: PMC10888626 DOI: 10.3390/ijms25042307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Glaucoma is a progressive neurodegenerative disease characterized by damage to the optic nerve that results in irreversible vision loss. While the exact pathology of glaucoma is not well understood, emerging evidence suggests that dysregulation of the complement system, a key component of innate immunity, plays a crucial role. In glaucoma, dysregulation of the complement cascade and impaired regulation of complement factors contribute to chronic inflammation and neurodegeneration. Complement components such as C1Q, C3, and the membrane attack complex have been implicated in glaucomatous neuroinflammation and retinal ganglion cell death. This review will provide a summary of human and experimental studies that document the dysregulation of the complement system observed in glaucoma patients and animal models of glaucoma driving chronic inflammation and neurodegeneration. Understanding how complement-mediated damage contributes to glaucoma will provide opportunities for new therapies.
Collapse
Affiliation(s)
- Cindy Hoppe
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
- Animal Physiology/Neurobiology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Meredith Gregory-Ksander
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA;
| |
Collapse
|
18
|
Spurlock M, An W, Reshetnikova G, Wen R, Wang H, Braha M, Solis G, Kurtenbach S, Galindez OJ, de Rivero Vaccari JP, Chou TH, Porciatti V, Shestopalov VI. The Inflammasome-Dependent Dysfunction and Death of Retinal Ganglion Cells after Repetitive Intraocular Pressure Spikes. Cells 2023; 12:2626. [PMID: 37998361 PMCID: PMC10670000 DOI: 10.3390/cells12222626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The dysfunction and selective loss of retinal ganglion cells (RGCs) is a known cause of vision loss in glaucoma and other neuropathies, where ocular hypertension (OHT) is the major risk factor. We investigated the impact of transient non-ischemic OHT spikes (spOHT) on RGC function and viability in vivo to identify cellular pathways linking low-grade repetitive mechanical stress to RGC pathology. We found that repetitive spOHT had an unexpectedly high impact on intraocular homeostasis and RGC viability, while exposure to steady OHT (stOHT) of a similar intensity and duration failed to induce pathology. The repetitive spOHT induced the rapid activation of the inflammasome, marked by the upregulation of NLRP1, NLRP3, AIM2, caspases -1, -3/7, -8, and Gasdermin D (GSDMD), and the release of interleukin-1β (IL-1β) and other cytokines into the vitreous. Similar effects were also detected after 5 weeks of exposure to chronic OHT in an induced glaucoma model. The onset of these immune responses in both spOHT and glaucoma models preceded a 50% deficit in pattern electroretinogram (PERG) amplitude and a significant loss of RGCs 7 days post-injury. The inactivation of inflammasome complexes in Nlrp1-/-, Casp1-/-, and GsdmD-/- knockout animals significantly suppressed the spOHT-induced inflammatory response and protected RGCs. Our results demonstrate that mechanical stress produced by acute repetitive spOHT or chronic OHT is mechanistically linked to inflammasome activation, which leads to RGC dysfunction and death.
Collapse
Affiliation(s)
- Markus Spurlock
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Weijun An
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Galina Reshetnikova
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Rong Wen
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Hua Wang
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Michelle Braha
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Gabriela Solis
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Stefan Kurtenbach
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Orlando J. Galindez
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Juan Pablo de Rivero Vaccari
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery and The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
| | - Valery I. Shestopalov
- Bascom Palmer Eye Institute Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (M.S.); (W.A.); (G.R.); (R.W.); (H.W.); (M.B.); (G.S.); (S.K.); (V.P.)
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
19
|
Zuo Z, Zhang Z, Zhang S, Fan B, Li G. The Molecular Mechanisms Involved in Axonal Degeneration and Retrograde Retinal Ganglion Cell Death. DNA Cell Biol 2023; 42:653-667. [PMID: 37819746 DOI: 10.1089/dna.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Axonal degeneration is a pathologic change common to multiple retinopathies and optic neuropathies. Various pathologic factors, such as mechanical injury, inflammation, and ischemia, can damage retinal ganglion cell (RGC) somas and axons, eventually triggering axonal degeneration and RGC death. The molecular mechanisms of somal and axonal degeneration are distinct but also overlap, and axonal degeneration can result in retrograde somal degeneration. While the mitogen-activated protein kinase pathway acts as a central node in RGC axon degeneration, several newly discovered molecules, such as sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 and nicotinamide mononucleotide adenylyltransferase 2, also play a critical role in this pathological process following different types of injury. Therefore, we summarize the types of injury that cause RGC axon degeneration and retrograde RGC death and important underlying molecular mechanisms, providing a reference for the identification of targets for protecting axons and RGCs.
Collapse
Affiliation(s)
- Zhaoyang Zuo
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Ziyuan Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Siming Zhang
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| | - Guangyu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Mazumder AG, Julé AM, Sun D. Astrocytes of the optic nerve exhibit a region-specific and temporally distinct response to elevated intraocular pressure. Mol Neurodegener 2023; 18:68. [PMID: 37759301 PMCID: PMC10523752 DOI: 10.1186/s13024-023-00658-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The optic nerve is an important tissue in glaucoma and the unmyelinated nerve head region remains an important site of many early neurodegenerative changes. In both humans and mice, astrocytes constitute the major glial cell type in the region, and in glaucoma they become reactive, influencing the optic nerve head (ONH) microenvironment and disease outcome. Despite recognizing their importance in the progression of the disease, the reactive response of optic nerve head astrocytes remains poorly understood. METHODS To determine the global reactive response of ONH astrocytes in glaucoma we studied their transcriptional response to an elevation in IOP induced by the microbead occlusion model. To specifically isolate astrocyte mRNA in vivo from complex tissues, we used the ribotag method to genetically tag ribosomes in astrocytes, restricting analysis to astrocytes and enabling purification of astrocyte-associated mRNA throughout the entire cell, including the fine processes, for bulk RNA-sequencing. We also assessed the response of astrocytes in the more distal myelinated optic nerve proper (ONP) as glaucomatous changes manifest differently between the two regions. RESULTS Astrocytes of the optic nerve exhibited a region-specific and temporally distinct response. Surprisingly, ONH astrocytes showed very few early transcriptional changes and ONP astrocytes demonstrated substantially larger changes over the course of the experimental period. Energy metabolism, particularly oxidative phosphorylation and mitochondrial protein translation emerged as highly upregulated processes in both ONH and ONP astrocytes, with the former showing additional upregulation in antioxidative capacity and proteolysis. Interestingly, optic nerve astrocytes demonstrated a limited neuroinflammatory response, even when challenged with a more severe elevation in IOP. Lastly, there were a greater number of downregulated processes in both astrocyte populations compared to upregulated processes. CONCLUSION Our findings demonstrate an essential role for energy metabolism in the response of optic nerve astrocytes to elevated IOP, and contrary to expectations, neuroinflammation had a limited overall role. The transcriptional response profile is supportive of the notion that optic nerve astrocytes have a beneficial role in glaucoma. These previously uncharacterized transcriptional response of optic nerve astrocytes to injury reveal their functional diversity and a greater heterogeneity than previously appreciated.
Collapse
Affiliation(s)
- Arpan G Mazumder
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel Sun
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
21
|
Vashishtha A, Maina SW, Altman J, Jones G, Lee TJ, Bollinger KE, Ulrich L, Töteberg-Harms M, Estes AJ, Zhi W, Sharma S, Sharma A. Complement System Proteins in the Human Aqueous Humor and Their Association with Primary Open-Angle Glaucoma. J Pers Med 2023; 13:1400. [PMID: 37763167 PMCID: PMC10532607 DOI: 10.3390/jpm13091400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
This study discovers the complement protein profile in the aqueous humor (AH) of human subjects and investigates its association with primary open-angle glaucoma (POAG) pathogenesis. Among the 32 complement proteins identified, 22 were highly abundant and detected in more than 50% of AH samples. The most predominant active complement proteins in the AH are C3, C4B, C4A, CFB, CFD, and C9. Additionally, the most prevalent complement regulators and receptors include CLU, SERPING1, F2, CFH, CFI, and VTN. Significant alterations in complement proteins were observed in individuals with POAG compared to those with cataracts. Specifically, complement protein F2 was upregulated, while C8G, C6, and CFH were downregulated in POAG samples. Stratification of the samples by race and sex revealed distinct alterations of complement proteins in patients with POAG. In the African American cohort, five complement proteins (C4A, C4B, F2, C7, and C3) were upregulated in POAG compared to cataract patients. In the Caucasian cohort, eight complement proteins (C3, SERPING1, CFI, CLU, CFHR1, C8G, C6, and CFH) were downregulated in the POAG samples compared to the cataract samples. Within the male cohort, three complement proteins (CLU, C6, and CFH) were downregulated in POAG patients compared to those with cataracts. Whereas, within the female cohort, two complement proteins (C4B and F2) were upregulated and one (C8G) downregulated in the POAG samples when compared to cataracts. Discerning these changes in the AH complement protein profile will assist in the development of tailored therapies to modulate the complement system for managing ocular disorders. These insights may also lead to novel biomarkers for diagnosing and monitoring disease progression.
Collapse
Affiliation(s)
- Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Sharon W. Maina
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Kathryn E. Bollinger
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Lane Ulrich
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Marc Töteberg-Harms
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Amy J. Estes
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (S.W.M.); (J.A.); (G.J.); (T.J.L.); (W.Z.); (S.S.)
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (K.E.B.); (L.U.); (M.T.-H.); (A.J.E.)
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
22
|
Tribble JR, Hui F, Quintero H, El Hajji S, Bell K, Di Polo A, Williams PA. Neuroprotection in glaucoma: Mechanisms beyond intraocular pressure lowering. Mol Aspects Med 2023; 92:101193. [PMID: 37331129 DOI: 10.1016/j.mam.2023.101193] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 06/04/2023] [Indexed: 06/20/2023]
Abstract
Glaucoma is a common, complex, multifactorial neurodegenerative disease characterized by progressive dysfunction and then loss of retinal ganglion cells, the output neurons of the retina. Glaucoma is the most common cause of irreversible blindness and affects ∼80 million people worldwide with many more undiagnosed. The major risk factors for glaucoma are genetics, age, and elevated intraocular pressure. Current strategies only target intraocular pressure management and do not directly target the neurodegenerative processes occurring at the level of the retinal ganglion cell. Despite strategies to manage intraocular pressure, as many as 40% of glaucoma patients progress to blindness in at least one eye during their lifetime. As such, neuroprotective strategies that target the retinal ganglion cell and these neurodegenerative processes directly are of great therapeutic need. This review will cover the recent advances from basic biology to on-going clinical trials for neuroprotection in glaucoma covering degenerative mechanisms, metabolism, insulin signaling, mTOR, axon transport, apoptosis, autophagy, and neuroinflammation. With an increased understanding of both the basic and clinical mechanisms of the disease, we are closer than ever to a neuroprotective strategy for glaucoma.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flora Hui
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia; Department of Optometry & Vision Sciences, The University of Melbourne, Melbourne, Australia
| | - Heberto Quintero
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Sana El Hajji
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Katharina Bell
- NHMRC Clinical Trials Centre, University of Sydney, Australia; Eye ACP Duke-NUS, Singapore
| | - Adriana Di Polo
- Department of Neuroscience, University of Montreal, Montreal, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Li S, Jakobs TC. Vitamin C protects retinal ganglion cells via SPP1 in glaucoma and after optic nerve damage. Life Sci Alliance 2023; 6:e202301976. [PMID: 37160307 PMCID: PMC10172762 DOI: 10.26508/lsa.202301976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023] Open
Abstract
Glaucoma is a common neurodegenerative disorder characterized by retinal ganglion cell death, astrocyte reactivity in the optic nerve, and vision loss. Currently, lowering the intraocular pressure (IOP) is the first-line treatment, but adjuvant neuroprotective approaches would be welcome. Vitamin C possesses neuroprotective activities that are thought to be related to its properties as a co-factor of enzymes and its antioxidant effects. Here, we show that vitamin C promotes a neuroprotective phenotype and increases gene expression related to neurotropic factors, phagocytosis, and mitochondrial ATP production. This effect is dependent on the up-regulation of secreted phosphoprotein 1 (SPP1) in reactive astrocytes via the transcription factor E2F1. SPP1+ astrocytes in turn promote retinal ganglion cell survival in a mouse model of glaucoma. In addition, oral administration of vitamin C lowers the IOP in mice. This study identifies an additional neuroprotective pathway for vitamin C and suggests a potential therapeutic role of vitamin C in neurodegenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Song Li
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| | - Tatjana C Jakobs
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Boston, MA, USA
| |
Collapse
|
24
|
Pitts KM, Margeta MA. Myeloid masquerade: Microglial transcriptional signatures in retinal development and disease. Front Cell Neurosci 2023; 17:1106547. [PMID: 36779012 PMCID: PMC9909491 DOI: 10.3389/fncel.2023.1106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
Microglia are dynamic guardians of neural tissue and the resident immune cells of the central nervous system (CNS). The disease-associated microglial signature (DAM), also known as the microglial neurodegenerative phenotype (MGnD), has gained significant attention in recent years as a fundamental microglial response common to various neurodegenerative disease pathologies. Interestingly, this signature shares many features in common with developmental microglia, suggesting the existence of recycled gene programs which play a role both in early neural circuit formation as well as in response to aging and disease. In addition, recent advances in single cell RNA sequencing have revealed significant heterogeneity within the original DAM signature, with contributions from both yolk sac-derived microglia as well as bone marrow-derived macrophages. In this review, we examine the role of the DAM signature in retinal development and disease, highlighting crosstalk between resident microglia and infiltrating monocytes which may critically contribute to the underlying mechanisms of age-related neurodegeneration.
Collapse
Affiliation(s)
- Kristen M. Pitts
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, United States
| | - Milica A. Margeta
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
- Schepens Eye Research Institute of Mass, Eye and Ear, Boston, MA, United States
| |
Collapse
|
25
|
Pezzino S, Sofia M, Greco LP, Litrico G, Filippello G, Sarvà I, La Greca G, Latteri S. Microbiome Dysbiosis: A Pathological Mechanism at the Intersection of Obesity and Glaucoma. Int J Mol Sci 2023; 24:ijms24021166. [PMID: 36674680 PMCID: PMC9862076 DOI: 10.3390/ijms24021166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The rate at which obesity is becoming an epidemic in many countries is alarming. Obese individuals have a high risk of developing elevated intraocular pressure and glaucoma. Additionally, glaucoma is a disease of epidemic proportions. It is characterized by neurodegeneration and neuroinflammation with optic neuropathy and the death of retinal ganglion cells (RGC). On the other hand, there is growing interest in microbiome dysbiosis, particularly in the gut, which has been widely acknowledged to play a prominent role in the etiology of metabolic illnesses such as obesity. Recently, studies have begun to highlight the fact that microbiome dysbiosis could play a critical role in the onset and progression of several neurodegenerative diseases, as well as in the development and progression of several ocular disorders. In obese individuals, gut microbiome dysbiosis can induce endotoxemia and systemic inflammation by causing intestinal barrier malfunction. As a result, bacteria and their metabolites could be delivered via the bloodstream or mesenteric lymphatic vessels to ocular regions at the level of the retina and optic nerve, causing tissue degeneration and neuroinflammation. Nowadays, there is preliminary evidence for the existence of brain and intraocular microbiomes. The altered microbiome of the gut could perturb the resident brain-ocular microbiome ecosystem which, in turn, could exacerbate the local inflammation. All these processes, finally, could lead to the death of RGC and neurodegeneration. The purpose of this literature review is to explore the recent evidence on the role of gut microbiome dysbiosis and related inflammation as common mechanisms underlying obesity and glaucoma.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Maria Sofia
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Luigi Piero Greco
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giorgia Litrico
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Giulia Filippello
- Complex Operative Unit of Ophtalmology, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Iacopo Sarvà
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Gaetano La Greca
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
| | - Saverio Latteri
- Department of Surgical Sciences and Advanced Technologies “G. F. Ingrassia”, Cannizzaro Hospital, University of Catania, 95126 Catania, Italy
- Correspondence: ; Tel.: +39-0957263584
| |
Collapse
|
26
|
Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y, Yang N. Use of gene therapy for optic nerve protection: Current concepts. Front Neurosci 2023; 17:1158030. [PMID: 37090805 PMCID: PMC10117674 DOI: 10.3389/fnins.2023.1158030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Gene therapy has become an essential treatment for optic nerve injury (ONI) in recent years, and great strides have been made using animal models. ONI, which is characterized by the loss of retinal ganglion cells (RGCs) and axons, can induce abnormalities in the pupil light reflex, visual field defects, and even vision loss. The eye is a natural organ to target with gene therapy because of its high accessibility and certain immune privilege. As such, numerous gene therapy trials are underway for treating eye diseases such as glaucoma. The aim of this review was to cover research progress made in gene therapy for ONI. Specifically, we focus on the potential of gene therapy to prevent the progression of neurodegenerative diseases and protect both RGCs and axons. We cover the basic information of gene therapy, including the classification of gene therapy, especially focusing on genome editing therapy, and then we introduce common editing tools and vector tools such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) -Cas9 and adeno-associated virus (AAV). We also summarize the progress made on understanding the roles of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), phosphatase-tensin homolog (PTEN), suppressor of cytokine signal transduction 3 (SOCS3), histone acetyltransferases (HATs), and other important molecules in optic nerve protection. However, gene therapy still has many challenges, such as misalignment and mutations, immunogenicity of AAV, time it takes and economic cost involved, which means that these issues need to be addressed before clinical trials can be considered.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yiqiao Xing,
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Ning Yang,
| |
Collapse
|
27
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
28
|
Pitts KM, Neeson CE, Hall NE, Lin JB, Falah HK, Wang SL, Lo KT, Song CE, Margeta MA, Solá-Del Valle DA. Neurodegeneration Markers Galectin-3 and Apolipoprotein E Are Elevated in the Aqueous Humor of Eyes With Glaucoma. Transl Vis Sci Technol 2022; 11:1. [DOI: 10.1167/tvst.11.11.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Kristen M. Pitts
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Cameron E. Neeson
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nathan E. Hall
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jonathan B. Lin
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Henisk K. Falah
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Silas L. Wang
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kristine T. Lo
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christian E. Song
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Milica A. Margeta
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - David A. Solá-Del Valle
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Margeta MA, Yin Z, Madore C, Pitts KM, Letcher SM, Tang J, Jiang S, Gauthier CD, Silveira SR, Schroeder CM, Lad EM, Proia AD, Tanzi RE, Holtzman DM, Krasemann S, Chen DF, Butovsky O. Apolipoprotein E4 impairs the response of neurodegenerative retinal microglia and prevents neuronal loss in glaucoma. Immunity 2022; 55:1627-1644.e7. [PMID: 35977543 PMCID: PMC9488669 DOI: 10.1016/j.immuni.2022.07.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/09/2022] [Accepted: 07/18/2022] [Indexed: 12/27/2022]
Abstract
The apolipoprotein E4 (APOE4) allele is associated with an increased risk of Alzheimer disease and a decreased risk of glaucoma, but the underlying mechanisms remain poorly understood. Here, we found that in two mouse glaucoma models, microglia transitioned to a neurodegenerative phenotype characterized by upregulation of Apoe and Lgals3 (Galectin-3), which were also upregulated in human glaucomatous retinas. Mice with targeted deletion of Apoe in microglia or carrying the human APOE4 allele were protected from retinal ganglion cell (RGC) loss, despite elevated intraocular pressure (IOP). Similarly to Apoe-/- retinal microglia, APOE4-expressing microglia did not upregulate neurodegeneration-associated genes, including Lgals3, following IOP elevation. Genetic and pharmacologic targeting of Galectin-3 ameliorated RGC degeneration, and Galectin-3 expression was attenuated in human APOE4 glaucoma samples. These results demonstrate that impaired activation of APOE4 microglia is protective in glaucoma and that the APOE-Galectin-3 signaling can be targeted to treat this blinding disease.
Collapse
Affiliation(s)
- Milica A Margeta
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Zhuoran Yin
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charlotte Madore
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | - Kristen M Pitts
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Sophia M Letcher
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Christian D Gauthier
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sebastian R Silveira
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Caitlin M Schroeder
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eleonora M Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Alan D Proia
- Department of Pathology, Duke University Medical Center, Durham, NC, USA; Department of Pathology, Campbell University School of Osteopathic Medicine, Lillington, NC, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer Disease Research Center, Washington University, St. Louis, MO, USA
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Rutigliani C, Tribble JR, Hagström A, Lardner E, Jóhannesson G, Stålhammar G, Williams PA. Widespread retina and optic nerve neuroinflammation in enucleated eyes from glaucoma patients. Acta Neuropathol Commun 2022; 10:118. [PMID: 35986368 PMCID: PMC9392254 DOI: 10.1186/s40478-022-01427-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 04/04/2024] Open
Abstract
Neuroinflammation is recognized as a key component of neurodegenerative disease. In glaucoma, a common neurodegenerative disease and the leading cause of irreversible blindness, the evidence for neuroinflammation in patients is lacking. Animal models have demonstrated significant pro-inflammatory activation of resident glia in the retina, as well as influx of blood-derived monocytes and pro-inflammatory factors. Confirmation of this in human donor tissue has been challenging due to a lack of well-preserved and well-characterized post-mortem tissue. To address this we utilize archived, wax embedded eyes fixed immediately following enucleation from living glaucoma patients. We compared glaucoma to control eyes (enucleated for uveal melanoma where the tumor did not impact the central retina or optic nerve). We performed immunolabelling for neurodegenerative and glial markers (CD45, CD163, IBA1, GFAP, Vimentin) which were quantified by high-resolution light microscopy and image analysis in FIJI. Glaucoma eyes demonstrated significant neural loss consistent with advanced neurodegeneration. IBA1 and GFAP were significantly increased in the retina and optic nerve head of the glaucomatous eyes indicating that significant neuroinflammation had occurred which support findings in animal models. Inflammation is a treatable symptom of many diseases and as such, identification of earlier inflammatory processes in glaucoma could be important for potential future treatment options.
Collapse
|
31
|
Tribble JR, Kastanaki E, Uslular AB, Rutigliani C, Enz TJ, Williams PA. Valproic Acid Reduces Neuroinflammation to Provide Retinal Ganglion Cell Neuroprotection in the Retina Axotomy Model. Front Cell Dev Biol 2022; 10:903436. [PMID: 35646919 PMCID: PMC9135180 DOI: 10.3389/fcell.2022.903436] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is a critical and targetable pathogenic component of neurodegenerative diseases, including glaucoma, the leading cause of irreversible blindness. Valproic acid has previously been demonstrated to reduce neuroinflammation and is neuroprotective in a number of experimental settings. To determine whether valproic acid can limit retinal neuroinflammation and protect retinal neurons we used an ex vivo retina explant (axotomy) model to isolate resident glial responses from blood-derived monocytes. Neuroinflammatory status was defined using high resolution confocal imaging with 3D morphological reconstruction and cytokine protein arrays. Valproic acid significantly reduced microglia and astrocyte morphological changes, consistent with a reduction in pro-inflammatory phenotypes. Cytokine profiling demonstrated that valproic acid significantly attenuated or prevented expression of pro-inflammatory cytokines in injured retina. This identifies that the retinal explant model as a useful tool to explore resident neuroinflammation in a rapid timescale whilst maintaining a complex system of cell interactions and valproic acid as a useful drug to further explore anti-neuroinflammatory strategies in retinal disease.
Collapse
|
32
|
Ma Y, Li S, Shao M, Cao W, Sun X. Platelet Parameters and Their Relationships With the Thickness of the Retinal Nerve Fiber Layer and Ganglion Cell Complex in Primary Open-Angle Glaucoma. Front Neurol 2022; 13:867465. [PMID: 35585849 PMCID: PMC9108427 DOI: 10.3389/fneur.2022.867465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Objective Glaucoma is a neurodegenerative disease of the visual system. Platelet parameters are correlated with visual field mean deviation (MD) in glaucoma, but there is a lack of relative data on their relationship with structural changes in the retina. This study aimed to explore the relationship between platelet parameters and retinal nerve fiber layer (RNEL), ganglion cell complex (GCC) thickness, and cup/disk area ratio, evaluated by optical coherence tomography (OCT) in primary open-angle glaucoma (POAG). Methods A total of 118 consecutive patients with POAG and 120 age- and sex-matched control subjects were included in this retrospective study. Demographic data, platelet parameters in blood tests, visual field, and OCT results were evaluated. The RNFL was divided into the temporal, superior, nasal, and inferior quadrants. Based on the visual field MD, the patients were stratified into mild (MD ≤ 6.0 dB), moderate (6 dB < MD ≤ 12 dB), and severe (MD > 12.0 dB) subgroups. Results Patients with POAG had significantly lower platelet (PLT) levels and significantly higher platelet distribution width (PDW) and mean platelet volume (MPV) levels than controls. As the visual field MD increased, structural evaluation by OCT identified loss of disk rim area, average GCC thickness, and average RNFL thickness (all P < 0.001), as well as increased PDW (P < 0.001) and MPV (P = 0.004) levels in patients with POAG. The Spearman's rank correlation analysis showed that PDW levels were significantly correlated with OCT parameters such as RNFL thickness (r = −0.370, P < 0.001), GCC thickness (r = −0.294, P = 0.001), and cup/disk area ratio (r = 0.322, P < 0.001), as well as visual field MD (r = 0.607, P < 0.001) and mean sensitivity (MS) (r = −0.570, P < 0.001). Significantly correlations were also found between MPV and RNFL thickness (r = −0.321, P < 0.001), GCC thickness (r = −0.194, P = 0.041), and cup/disk area ratio (r = 0.237, P = 0.010). All the quadrants showed similar negative correlations between PDW, MPV, and RNFL thickness. The multiple linear regression analyses showed significant association between PDW and RNFL thickness (β = −0.331, P < 0.001), PDW and GCC thickness (β = −0.288, P = 0.002), MPV and RNFL thickness (β = −0.313, P = 0.001), and MPV and GCC thickness (β = −0.188, P = 0.048). Conclusion This study found significantly negative association between PDW, MPV levels and RNFL, GCC thickness, as well as positive association between PDW, MPV levels, and cup/disk area ratio in patients with POAG, suggesting that platelet activation may contribute to glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- Yi Ma
- Department of Clinical Laboratory, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Shengjie Li
- Department of Clinical Laboratory, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Mingxi Shao
- Department of Clinical Laboratory, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Wenjun Cao
- Department of Clinical Laboratory, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
| | - Xinghuai Sun
- Department of Ophthalmology and Visual Science, Shanghai Medical College, Eye and Ear Nose and Throat Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Shanghai, China
- Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| |
Collapse
|
33
|
Marola OJ, Howell GR, Libby RT. Vascular derived endothelin receptor A controls endothelin-induced retinal ganglion cell death. Cell Death Discov 2022; 8:207. [PMID: 35429992 PMCID: PMC9013356 DOI: 10.1038/s41420-022-00985-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Endothelin (EDN, also known as ET) signaling has been suggested to be an important mediator of retinal ganglion cell (RGC) death in glaucoma. Antagonism of EDN receptors (EDNRA and EDNRB, also known as ET-A and ET-B) prevented RGC death in mouse models of chronic ocular hypertension, and intravitreal injection of EDN ligand was sufficient to drive RGC death. However, it remains unclear which cell types EDN ligands directly affect to elicit RGC death. Multiple cell types in the retina and optic nerve express EDNRA and EDNRB and thus could respond to EDN ligands in the context of glaucoma. Here, we systematically deleted Edn receptors from specific cell types to identify the critical EDN receptor mediating RGC death in vivo. Deletion of both Ednra and Ednrb from retinal neurons (including RGCs) and macroglia did not prevent RGC loss after exposure to EDN1 ligands, suggesting EDN1 ligands cause RGC death via an indirect mechanism involving a secondary cell type. Deletion of Ednra from the full body, and then specifically from vascular mural cells, prevented EDN1-induced vasoconstriction and RGC death. Together, these data suggest EDN ligands cause RGC death via a mechanism initiated by vascular mural cells. It is possible RGC death is a consequence of vascular mural cell-induced vasoconstriction and its pathological sequelae. These results highlight the potential importance of neurovascular dysfunction in glaucoma.
Collapse
Affiliation(s)
- Olivia J Marola
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA
| | - Gareth R Howell
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, USA
| | - Richard T Libby
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester Medical Center, Rochester, NY, USA.
- The Center for Visual Sciences, University of Rochester, Rochester, NY, USA.
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
34
|
Molecular regulation of neuroinflammation in glaucoma: Current knowledge and the ongoing search for new treatment targets. Prog Retin Eye Res 2022; 87:100998. [PMID: 34348167 PMCID: PMC8803988 DOI: 10.1016/j.preteyeres.2021.100998] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022]
Abstract
Neuroinflammation relying on the inflammatory responses of glial cells has emerged as an impactful component of the multifactorial etiology of neurodegeneration in glaucoma. It has become increasingly evident that despite early adaptive and reparative features of glial responses, prolonged reactivity of the resident glia, along with the peripheral immune cells, create widespread toxicity to retinal ganglion cell (RGC) axons, somas, and synapses. As much as the synchronized responses of astrocytes and microglia to glaucoma-related stress or neuron injury, their bi-directional interactions are critical to build and amplify neuroinflammation and to dictate the neurodegenerative outcome. Although distinct molecular programs regulate somatic and axonal degeneration in glaucoma, inhibition of neurodegenerative inflammation can provide a broadly beneficial treatment strategy to rescue RGC integrity and function. Since inflammatory toxicity and mitochondrial dysfunction are converging etiological paths that can boost each other and feed into a vicious cycle, anti-inflammatory treatments may also offer a multi-target potential. This review presents an overview of the current knowledge on neuroinflammation in glaucoma with particular emphasis on the cell-intrinsic and cell-extrinsic factors involved in the reciprocal regulation of glial responses, the interdependence between inflammatory and mitochondrial routes of neurodegeneration, and the research aspects inspiring for prospective immunomodulatory treatments. With the advent of powerful technologies, ongoing research on molecular and functional characteristics of glial responses is expected to accumulate more comprehensive and complementary information and to rapidly move the field forward to safe and effective modulation of the glial pro-inflammatory activities, while restoring or augmenting the glial immune-regulatory and neurosupport functions.
Collapse
|
35
|
Lucas-Ruiz F, Galindo-Romero C, Albaladejo-García V, Vidal-Sanz M, Agudo-Barriuso M. Mechanisms implicated in the contralateral effect in the central nervous system after unilateral injury: focus on the visual system. Neural Regen Res 2021; 16:2125-2131. [PMID: 33818483 PMCID: PMC8354113 DOI: 10.4103/1673-5374.310670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/21/2020] [Accepted: 01/11/2021] [Indexed: 12/21/2022] Open
Abstract
The retina, as part of the central nervous system is an ideal model to study the response of neurons to injury and disease and to test new treatments. During the last decade is becoming clear that unilateral lesions in bilateral areas of the central nervous system trigger an inflammatory response in the contralateral uninjured site. This effect has been better studied in the visual system where, as a rule, one retina is used as experimental and the other as control. Contralateral retinas in unilateral models of retinal injury show neuronal degeneration and glial activation. The mechanisms by which this adverse response in the central nervous system occurs are discussed in this review, focusing primarily on the visual system.
Collapse
Affiliation(s)
- Fernando Lucas-Ruiz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Caridad Galindo-Romero
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Virginia Albaladejo-García
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| | - Marta Agudo-Barriuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria-Virgen de la Arrixaca (IMIBArrixaca) Murcia, Spain
| |
Collapse
|
36
|
Li Z, Xiang Y, Wang Y, Wan W, Ye Z, Zheng S, Chen Y, Xiong L, Zhu L, Ji Y, Hu K. Ocular microbial diversity, community structure, and function at high altitude. Microb Pathog 2021; 161:105253. [PMID: 34687837 DOI: 10.1016/j.micpath.2021.105253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the composition and function of ocular surface microbiome in healthy people from different altitudes. METHODS Thirty-two healthy people living in a high altitude region and 30 sex- and age-matched individuals living in a low altitude region were enrolled. Samples were collected from the lower conjunctival sac of one randomly chosen eye for each participant. 16S rRNA sequencing was conducted to study the bacterial community composition and predict gene function using PICRUSt software. RESULTS Microbial diversity and richness was significantly decreased in samples from highlanders as calculated by Abundance-based Coverage Estimator (ACE) index, Chao1 index, and observed-species index (all p < 0.01). Principle coordinate analysis (PCoA) suggested significantly distinct clustering of the conjunctival sac bacterial communities between two groups (p = 0.03), especially the dominant genera. The relative abundances of Corynebacterium, Staphylococcus, and Anaerococcus were significantly enriched in highlanders, while those of Pseudomonas and Massilia were significantly decreased as compared with lowlanders (p < 0.01). In the functional annotation analysis, we found that 74 gene pathways, mainly in metabolism, differed in abundance. Pathways related to immune system diseases and infectious diseases were also enriched in highlanders. CONCLUSION The composition and function of ocular surface microbiome in highlanders were distinct from those of lowlanders and our study may provide a reference catalog of the healthy conjunctival microbiome in highlanders.
Collapse
Affiliation(s)
- Zhouyu Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Yong Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Yanyi Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Liang Xiong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Lu Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Yan Ji
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China.
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China.
| |
Collapse
|
37
|
Peterson SL, Li Y, Sun CJ, Wong KA, Leung KS, de Lima S, Hanovice NJ, Yuki K, Stevens B, Benowitz LI. Retinal Ganglion Cell Axon Regeneration Requires Complement and Myeloid Cell Activity within the Optic Nerve. J Neurosci 2021; 41:8508-8531. [PMID: 34417332 PMCID: PMC8513703 DOI: 10.1523/jneurosci.0555-21.2021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/21/2021] [Accepted: 08/16/2021] [Indexed: 01/01/2023] Open
Abstract
Axon regenerative failure in the mature CNS contributes to functional deficits following many traumatic injuries, ischemic injuries, and neurodegenerative diseases. The complement cascade of the innate immune system responds to pathogen threat through inflammatory cell activation, pathogen opsonization, and pathogen lysis, and complement is also involved in CNS development, neuroplasticity, injury, and disease. Here, we investigated the involvement of the classical complement cascade and microglia/monocytes in CNS repair using the mouse optic nerve injury (ONI) model, in which axons arising from retinal ganglion cells (RGCs) are disrupted. We report that central complement C3 protein and mRNA, classical complement C1q protein and mRNA, and microglia/monocyte phagocytic complement receptor CR3 all increase in response to ONI, especially within the optic nerve itself. Importantly, genetic deletion of C1q, C3, or CR3 attenuates RGC axon regeneration induced by several distinct methods, with minimal effects on RGC survival. Local injections of C1q function-blocking antibody revealed that complement acts primarily within the optic nerve, not retina, to support regeneration. Moreover, C1q opsonizes and CR3+ microglia/monocytes phagocytose growth-inhibitory myelin debris after ONI, a likely mechanism through which complement and myeloid cells support axon regeneration. Collectively, these results indicate that local optic nerve complement-myeloid phagocytic signaling is required for CNS axon regrowth, emphasizing the axonal compartment and highlighting a beneficial neuroimmune role for complement and microglia/monocytes in CNS repair.SIGNIFICANCE STATEMENT Despite the importance of achieving axon regeneration after CNS injury and the inevitability of inflammation after such injury, the contributions of complement and microglia to CNS axon regeneration are largely unknown. Whereas inflammation is commonly thought to exacerbate the effects of CNS injury, we find that complement proteins C1q and C3 and microglia/monocyte phagocytic complement receptor CR3 are each required for retinal ganglion cell axon regeneration through the injured mouse optic nerve. Also, whereas studies of optic nerve regeneration generally focus on the retina, we show that the regeneration-relevant role of complement and microglia/monocytes likely involves myelin phagocytosis within the optic nerve. Thus, our results point to the importance of the innate immune response for CNS repair.
Collapse
Affiliation(s)
- Sheri L Peterson
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Yiqing Li
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong China, 510060
| | - Christina J Sun
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Kimberly A Wong
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kylie S Leung
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
| | - Silmara de Lima
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Nicholas J Hanovice
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Kenya Yuki
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
| | - Beth Stevens
- F.M. Kirby Neurobiology Center, and
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, Massachusetts 02115
- Stanley Center for Psychiatric Research, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts 02142
| | - Larry I Benowitz
- Laboratories for Neuroscience Research in Neurosurgery
- Department of Neurosurgery
- F.M. Kirby Neurobiology Center, and
- Department of Neurosurgery and
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
38
|
Immune responses to injury and their links to eye disease. Transl Res 2021; 236:52-71. [PMID: 34051364 PMCID: PMC8380715 DOI: 10.1016/j.trsl.2021.05.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
The eye is regarded as an immune privileged site. Since the presence of a vasculature would impair vision, the vasculature of the eye is located outside of the central light path. As a result, many regions of the eye evolved mechanisms to deliver immune cells to sites of dysgenesis, injury, or in response to the many age-related pathologies. While the purpose of these immune responses is reparative or protective, cytokines released by immune cells compromise visual acuity by inducing inflammation and fibrosis. The response to traumatic or pathological injury is distinct in different regions of the eye. Age-related diseases impact both the anterior and posterior segment and lead to reduced quality of life and blindness. Here we focus attention on the role that inflammation and fibrosis play in the progression of age-related pathologies of the cornea and the lens as well as in glaucoma, the formation of epiretinal membranes, and in proliferative vitreoretinopathy.
Collapse
Key Words
- 2ryERM
- A T-helper cell that expresses high levels of IL-17 which can suppress T-regulatory cell function
- A cytokine expressed early during inflammation that attracts neutrophils
- A cytokine expressed early during inflammation that attracts neutrophils, sometimes referred to as monocyte chemoattractant protein-1 (MCP-1))
- A mouse model that lacks functional T and B cells and used to study the immune response
- A pigmented mouse strain used for research and known to mount a primarily Th1 response to infection
- A protein encoded by the ADGRE1 gene that, in mice, is expressed primarily on macrophages
- A strain of pigmented mice used in glaucoma research
- ACAID
- APCs
- ASC
- An albino mouse strain used for research and known to mount a primarily Th2 response to infection
- Antigen Presenting Cells, this class includes dendritic cells and monocytes
- BALB/c
- BM
- C57BL6
- CCL2
- CD45
- CNS
- CXCL1
- Central Nervous System
- Cluster of differentiation 45 antigen
- DAMPs
- DBA/2J
- EBM
- ECM
- EMT
- ERM
- Epithelial Basement Membrane
- F4/80
- FGF2
- HA =hyaluronic acid
- HSK
- HSP
- HSPGs
- HSV
- ICN
- IL-20
- IL6
- ILM
- IOP
- Inner (or internal) limiting membrane
- Interleukin 6
- Interleukin-20
- MAGP1
- MHC-II
- Major histocompatibility complex type II, a class of MHC proteins typically found only on APCs
- Microfibril-associated glycoprotein 1
- N-cad
- N-cadherin
- NEI
- NK
- National Eye Institute
- Natural killer T cells
- PCO
- PDGF
- PDR
- PVD
- PVR
- Platelet derived growth factor
- Posterior capsular opacification
- RGC
- RPE
- RRD
- Rag1-/-
- Retinal ganglion cells
- Retinal pigment epithelial cells
- SMAD
- Sons of Mothers Against Decapentaplegic, SMADs are a class of molecules that mediate TGF and bone morphogenetic protein signaling
- T-helper cell 1 response, proinflammatory adaptive response involving interferon gamma and associated with autoimmunity
- T-helper cell 2 response involving IgE and interleukins 4,5, and 13, also induces the anti-inflammatory interleukin 10 family cytokines
- T-regulatory cell
- TG
- TGF1
- TM
- TNF
- Th1
- Th17
- Th2
- Transforming growth factor 1
- Treg
- Tumor necrosis factor a cytokine produced during inflammation
- VEGF
- Vascular endothelial growth factor
- WHO
- World Health Organization
- anterior chamber immune deviation
- anterior subcapsular cataracts
- basement membrane
- damage-associated molecular patterns
- epiretinal membrane
- epiretinal membrane secondary to disease pathology
- epithelial-mesenchymal transition
- extracellular matrix
- fibroblast growth factor 2, also referred to as basic FGF
- heat shock protein
- heparan sulfate proteoglycans
- herpes simplex virus
- herpes stromal keratitis
- iERM
- idiopathic epiretinal membrane
- intraepithelial corneal nerves
- intraocular pressure
- mTOR
- mechanistic target of rapamycin, a protein kinase encoded by the MTOR genes that regulates a variety of signal transduction events including cell growth, autophagy and actin cytoskeleton
- posterior vitreous detachment
- proliferative diabetic retinopathy
- proliferative vitreoretinopathy
- rhegmatogenous (rupture, tear) retinal detachment
- trabecular meshwork
- trigeminal ganglion
- αSMA
- α−Smooth muscle actin, a class of actin expressed in mesenchymal cells
Collapse
|
39
|
Guo M, Schwartz TD, Dunaief JL, Cui QN. Myeloid cells in retinal and brain degeneration. FEBS J 2021; 289:2337-2361. [PMID: 34478598 PMCID: PMC8891394 DOI: 10.1111/febs.16177] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022]
Abstract
Retinal inflammation underlies multiple prevalent ocular and neurological diseases. Similar inflammatory processes are observed in glaucomatous optic neuropathy, age-related macular degeneration, retinitis pigmentosa, posterior uveitis, Alzheimer's disease, and Parkinson's disease. In particular, human and animal studies have demonstrated the important role microglia/macrophages play in initiating and maintaining a pro-inflammatory environment in degenerative processes impacting vision. On the other hand, microglia have also been shown to have a protective role in multiple central nervous system diseases. Identifying the mechanisms underlying cell dysfunction and death is the first step toward developing novel therapeutics for these diseases impacting the central nervous system. In addition to reviewing recent key studies defining important mediators of retinal inflammation, with an emphasis on translational studies that bridge this research from bench to bedside, we also highlight a promising therapeutic class of medications, the glucagon-like peptide-1 receptor agonists. Finally, we propose areas where additional research is necessary to identify mechanisms that can be modulated to shift the balance from a neurotoxic to a neuroprotective retinal environment.
Collapse
Affiliation(s)
- Michelle Guo
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Turner D Schwartz
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua L Dunaief
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| | - Qi N Cui
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Shestopalov VI, Spurlock M, Gramlich OW, Kuehn MH. Immune Responses in the Glaucomatous Retina: Regulation and Dynamics. Cells 2021; 10:1973. [PMID: 34440742 PMCID: PMC8391899 DOI: 10.3390/cells10081973] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Glaucoma is a multifactorial disease resulting in progressive vision loss due to retinal ganglion cell (RGC) dysfunction and death. Early events in the pathobiology of the disease include oxidative, metabolic, or mechanical stress that acts upon RGC, causing these to rapidly release danger signals, including extracellular ATP, resulting in micro- and macroglial activation and neuroinflammation. Danger signaling also leads to the formation of inflammasomes in the retina that enable maturation of proinflammatory cytokines such IL-1β and IL-18. Chronic neuroinflammation can have directly damaging effects on RGC, but it also creates a proinflammatory environment and compromises the immune privilege of the retina. In particular, continuous synthesis of proinflammatory mediators such as TNFα, IL-1β, and anaphylatoxins weakens the blood-retina barrier and recruits or activates T-cells. Recent data have demonstrated that adaptive immune responses strongly exacerbate RGC loss in animal models of the disease as T-cells appear to target heat shock proteins displayed on the surface of stressed RGC to cause their apoptotic death. It is possible that dysregulation of these immune responses contributes to the continued loss of RGC in some patients.
Collapse
Affiliation(s)
- Valery I. Shestopalov
- Department of Ophthalmology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
- Kharkevich Institute for Information Transmission Problems, RAS, 127051 Moscow, Russia
| | - Markus Spurlock
- Department of Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA;
- Graduate Program in Neuroscience, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Oliver W. Gramlich
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA 52242, USA
| | - Markus H. Kuehn
- Department of Veterans Affairs, Center for the Prevention and Treatment of Visual Loss, Iowa City, IA 52246, USA;
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
41
|
Multifactorial Pathogenic Processes of Retinal Ganglion Cell Degeneration in Glaucoma towards Multi-Target Strategies for Broader Treatment Effects. Cells 2021; 10:cells10061372. [PMID: 34199494 PMCID: PMC8228726 DOI: 10.3390/cells10061372] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
Glaucoma is a chronic neurodegenerative disease characterized by apoptosis of retinal ganglion cell (RGC) somas, degeneration of axons, and loss of synapses at dendrites and axon terminals. Glaucomatous neurodegeneration encompasses multiple triggers, multiple cell types, and multiple molecular pathways through the etiological paths with biomechanical, vascular, metabolic, oxidative, and inflammatory components. As much as intrinsic responses of RGCs themselves, divergent responses and intricate interactions of the surrounding glia also play decisive roles for the cell fate. Seen from a broad perspective, multitarget treatment strategies have a compelling pathophysiological basis to more efficiently manipulate multiple pathogenic processes at multiple injury sites in such a multifactorial neurodegenerative disease. Despite distinct molecular programs for somatic and axonal degeneration, mitochondrial dysfunction and glia-driven neuroinflammation present interdependent processes with widespread impacts in the glaucomatous retina and optic nerve. Since dysfunctional mitochondria stimulate inflammatory responses and proinflammatory mediators impair mitochondria, mitochondrial restoration may be immunomodulatory, while anti-inflammatory treatments protect mitochondria. Manipulation of these converging routes may thus allow a unified treatment strategy to protect RGC axons, somas, and synapses. This review presents an overview of recent research advancements with emphasis on potential treatment targets to achieve the best treatment efficacy to preserve visual function in glaucoma.
Collapse
|
42
|
Shi Y, Ye D, Huang R, Xu Y, Lu P, Chen H, Huang J. Down Syndrome Critical Region 1 Reduces Oxidative Stress-Induced Retinal Ganglion Cells Apoptosis via CREB-Bcl-2 Pathway. Invest Ophthalmol Vis Sci 2021; 61:23. [PMID: 33104163 PMCID: PMC7594594 DOI: 10.1167/iovs.61.12.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Irreversible retina ganglion cell (RGC) loss is a key process during glaucoma progression. Down syndrome critical region 1 (DSCR1) has been shown to have protective effects against neuronal death. In this study, we aimed to investigate the neuroprotective mechanisms of DSCR1 on RGCs. Methods DBA/2J mice and optic nerve crush (ONC) rat model were used for vivo assays. Oxidative stress model of primary RGCs was carried out with in vitro transduction. DSCR1 protein localization was assessed by immunofluorescence. Differential protein expression was validated by Western blot, and gene expression was detected by real-time PCR. TUNEL was used to identify cell apoptosis, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide was used to analyze cell viability. Results Significant upregulation of DSCR1 was observed in DBA/2J mice, ONC rat model, and RGCs treated with H2O2, reaching peaks at the age of 6 months in DBA/2J mice, 5 days after ONC in rats, and 24 hours after H2O2 treatment in RGCs, respectively. DSCR1 was shown to be expressed in the ganglion cell layer. In vitro, overexpressed DSCR1 significantly promoted phosphorylation of cyclic AMP response element binding protein (CREB), B-cell lymphoma 2 (Bcl-2) expression, and RGC survival rate while reducing cleaved caspase 3 expression in H2O2-treated RGCs. On the other hand, the opposite effects were shown after knockdown of DSCR1. In addition, silencing of CREB inhibited expression of DSCR1. Conclusions Our results suggested that DSCR1 might protect the RGCs against oxidative stress via the CREB–Bcl-2 pathway, which may provide a theoretical basis for future treatments of glaucoma.
Collapse
Affiliation(s)
- Yuxun Shi
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Dan Ye
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Rong Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Peng Lu
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Hailiu Chen
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jingjing Huang
- State Key Laboratory of Ophthalmology, Department of Glaucoma, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
43
|
Samelska K, Zaleska-Żmijewska A, Bałan B, Grąbczewski A, Szaflik JP, Kubiak AJ, Skopiński P. Immunological and molecular basics of the primary open angle glaucoma pathomechanism. Cent Eur J Immunol 2021; 46:111-117. [PMID: 33897292 PMCID: PMC8056342 DOI: 10.5114/ceji.2021.104328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Glaucoma is a degenerative process of the optic nerve. Increased intraocular pressure is believed to be the main factor leading to the glaucomatous damage. The in vitro and in vivo animal glaucoma research models provide insight into the molecular changes in the retina in response to the injury factor. The damage is a complex process incorporating molecular and immunological changes. Such changes involve NF kB activity and complement activation. The processes affect the human antigen, JNK, MAPK, p53, MT2 and DBA/2J molecular pathways, activate the autophagy processes and compromise neuroprotective mechanisms. Activation and inhibition of immunological responses contribute to cell injury. The immunological mechanisms of glaucomatous degeneration include glial response, the complement, tumor necrosis factor α (TNF-α) pathways and toll-like receptors athways. Oxidative stress and excitotoxicity are factors contributing to cell death in glaucoma. The authors present an up-to-date review of the mechanisms involved and update on research focusing on a possible innovative glaucoma treatment.
Collapse
Affiliation(s)
- Katarzyna Samelska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Zaleska-Żmijewska
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Bałan
- Department of Immunology Biochemistry and Nutrition, Medical University of Warsaw, Warsaw, Poland
| | | | - Jacek Paweł Szaflik
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Skopiński
- SPKSO Ophthalmic University Hospital, Warsaw, Poland
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
44
|
Rolle T, Ponzetto A, Malinverni L. The Role of Neuroinflammation in Glaucoma: An Update on Molecular Mechanisms and New Therapeutic Options. Front Neurol 2021; 11:612422. [PMID: 33613418 PMCID: PMC7890114 DOI: 10.3389/fneur.2020.612422] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022] Open
Abstract
Glaucoma is a multifactorial optic neuropathy characterized by the continuous loss of retinal ganglion cells, leading to progressive and irreversible visual impairment. In this minireview, we report the results of the most recent experimental studies concerning cells, molecular mechanisms, genes, and microbiome involved in neuroinflammation processes correlated to glaucoma neurodegeneration. The identification of cellular mechanisms and molecular pathways related to retinal ganglion cell death is the first step toward the discovery of new therapeutic strategies. Recent experimental studies identified the following possible targets: adenosine A2A receptor, sterile alpha and TIR motif containing 1 (neurofilament light chain), toll-like receptors (TLRs) 2 and 4, phosphodiesterase type 4 (PDE4), and FasL-Fas signaling (in particular ONL1204, a small peptide antagonist of Fas receptors), and therapies directed against them. The continuous progress in knowledge provides interesting data, although the total lack of human studies remains an important limitation. Further research is required to better define the role of neuroinflammation in the neurodegeneration processes that occur in glaucomatous disease and to discover neuroprotective treatments amenable to clinical trials. The hereinafter reviewed studies are reported and evaluated according to their translational relevance.
Collapse
Affiliation(s)
- Teresa Rolle
- Eye Clinic, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Antonio Ponzetto
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Lorenza Malinverni
- Eye Clinic, Department of Surgical Sciences, University of Torino, Torino, Italy
| |
Collapse
|
45
|
Tribble JR, Otmani A, Kokkali E, Lardner E, Morgan JE, Williams PA. Retinal Ganglion Cell Degeneration in a Rat Magnetic Bead Model of Ocular Hypertensive Glaucoma. Transl Vis Sci Technol 2021; 10:21. [PMID: 33510960 PMCID: PMC7804499 DOI: 10.1167/tvst.10.1.21] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/02/2020] [Indexed: 01/22/2023] Open
Abstract
Purpose Glaucoma remains a leading cause of irreversible blindness worldwide. Animal glaucoma models replicate high intraocular pressure, a risk factor for glaucoma, to induce retinal ganglion cell (RGC) degeneration. We describe an inducible, magnetic bead model in the Brown Norway rat in which we are able to determine degeneration across multiple RGC compartments at a time point that is appropriate for investigating neurodegenerative events and potential treatment effects. Methods We induced ocular hypertension through injection of magnetic microspheres into the anterior chamber of Brown Norway rats; un-operated (naïve) rats served as controls. Intraocular pressure was recorded, and eye diameter measurements were taken before surgery and at the terminal end points. We assessed RGC degeneration and vascular changes through immunofluorescence, and axon transport to terminal brain thalami through intravitreal injection of fluorophore-conjugated cholera toxin subunit β. Results We observed clinically relevant features of disease accompanying RGC cell somal, axonal, and dendritic loss. RGC axonal dysfunction persisted along the trajectory of the cell into the terminal brain thalami, with clear disruption at the optic nerve head. We also observed vascular compromise consistent with human disease, as well as an expansion of global eye size with ocular hypertension. Conclusions The magnetic bead model in the Brown Norway rat recapitulates many clinically relevant disease features of human glaucoma, including degeneration across multiple RGC compartments. Eye expansion is likely a result of rodent scleral elasticity, and we caution that this should be considered when assessing retinal density measurements. Translational Relevance This model offers a disease-relevant platform that will allow for assessment of glaucoma-relevant therapeutics.
Collapse
Affiliation(s)
- James R Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James E Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK.,School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Pete A Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
46
|
Tribble JR, Kokkali E, Otmani A, Plastino F, Lardner E, Vohra R, Kolko M, André H, Morgan JE, Williams PA. When Is a Control Not a Control? Reactive Microglia Occur Throughout the Control Contralateral Pathway of Retinal Ganglion Cell Projections in Experimental Glaucoma. Transl Vis Sci Technol 2021; 10:22. [PMID: 33510961 PMCID: PMC7804521 DOI: 10.1167/tvst.10.1.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Animal models show retinal ganglion cell (RGC) injuries that replicate features of glaucoma and the contralateral eye is commonly used as an internal control. There is significant crossover of RGC axons from the ipsilateral to the contralateral side at the level of the optic chiasm, which may confound findings when damage is restricted to one eye. The effect of unilateral glaucoma on neuroinflammatory damage to the contralateral pathway of RGC projections has largely been unexplored. Methods Ocular hypertensive glaucoma was induced unilaterally or bilaterally in the rat and RGC neurodegenerative events were assessed. Neuroinflammation was quantified in the retina, optic nerve head, optic nerve, lateral geniculate nucleus, and superior colliculus by high-resolution imaging, and in the retina by flow cytometry and protein arrays. Results After ocular hypertensive stress, peripheral monocytes enter the retina and microglia become reactive. This effect is more marked in animals with bilateral ocular hypertensive glaucoma. In rats where glaucoma was induced unilaterally, there was significant microglia activation in the contralateral (control) eye. Microglial activation extended into the optic nerve and terminal visual thalami, where it was similar across hemispheres in unilateral ocular hypertension. Conclusions These data suggest that caution is warranted when using the contralateral eye as a control and in comparing visual thalami in unilateral models of glaucoma. Translational Relevance The use of a contralateral eye as a control may confound the discovery of human-relevant mechanism and treatments in animal models. We also identify neuroinflammatory protein responses that warrant further investigation as potential disease-modifiable targets.
Collapse
Affiliation(s)
- James R. Tribble
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Eirini Kokkali
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Amin Otmani
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Emma Lardner
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Rupali Vohra
- Department of Veterinary and Animal Sciences, Pathobiological Sciences, University of Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet-Glostrup, Copenhagen, Denmark
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - James E. Morgan
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| | - Pete A. Williams
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
47
|
Disturbed glucose and pyruvate metabolism in glaucoma with neuroprotection by pyruvate or rapamycin. Proc Natl Acad Sci U S A 2020; 117:33619-33627. [PMID: 33318177 PMCID: PMC7776900 DOI: 10.1073/pnas.2014213117] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intraocular pressure-sensitive retinal ganglion cell degeneration is a hallmark of glaucoma, the leading cause of irreversible blindness. Here, we used RNA-sequencing and metabolomics to examine early glaucoma in DBA/2J mice. We demonstrate gene expression changes that significantly impact pathways mediating the metabolism and transport of glucose and pyruvate. Subsequent metabolic studies characterized an intraocular pressure (IOP)-dependent decline in retinal pyruvate levels coupled to dysregulated glucose metabolism prior to detectable optic nerve degeneration. Remarkably, retinal glucose levels were elevated 50-fold, consistent with decreased glycolysis but possibly including glycogen mobilization and other metabolic changes. Oral supplementation of the glycolytic product pyruvate strongly protected from neurodegeneration in both rat and mouse models of glaucoma. Investigating further, we detected mTOR activation at the mechanistic nexus of neurodegeneration and metabolism. Rapamycin-induced inhibition of mTOR robustly prevented glaucomatous neurodegeneration, supporting a damaging role for IOP-induced mTOR activation in perturbing metabolism and promoting glaucoma. Together, these findings support the use of treatments that limit metabolic disturbances and provide bioenergetic support. Such treatments provide a readily translatable strategy that warrants investigation in clinical trials.
Collapse
|
48
|
Gramlich OW, Godwin CR, Heuss ND, Gregerson DS, Kuehn MH. T and B Lymphocyte Deficiency in Rag1-/- Mice Reduces Retinal Ganglion Cell Loss in Experimental Glaucoma. Invest Ophthalmol Vis Sci 2020; 61:18. [PMID: 33320171 PMCID: PMC7745626 DOI: 10.1167/iovs.61.14.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose We previously demonstrated that passive transfer of lymphocytes from glaucomatous mice induces retinal ganglion cell (RGC) damage in recipient animals, suggesting a role for immune responses in the multifactorial pathophysiology of glaucoma. Here we evaluate whether absence of an adaptive immune response reduces RGC loss in glaucoma. Methods Elevated intraocular pressure (IOP) was induced in one eye of C57BL/6J (B6) or T- and B-cell-deficient Rag1-/- knockout mice. After 16 weeks RGC density was determined in both the induced and the normotensive contralateral eyes. Data were compared to mice having received injections of "empty" vector (controls). The number of extravascular CD3+ cells in the retinas was determined using FACS. Results Retinas of eyes with elevated IOP contain significantly more extravasated CD3+ cells than control retinas (46.0 vs. 27.1, P = 0.025). After 16 weeks of elevated IOP the average RGC density in B6 mice decreased by 20.7% (P = 1.9 × 10-4). In contrast, RGC loss in Rag1-/- eyes with elevated IOP was significantly lower (10.3%, P = 0.006 vs. B6). RGC loss was also observed in the contralateral eyes of B6 mice, despite the absence of elevated IOP in those eyes (10.1%; P = 0.008). In RAG1-/- loss in the contralateral eyes was minimal (3.1%) and significantly below that detected in B6 (P = 0.02). Conclusions Our findings demonstrate that T Rag1-/- mice are significantly protected from glaucomatous RGC loss. In this model, lymphocyte activity contributes to approximately half of all RGC loss in eyes with elevated IOP and to essentially all loss observed in normotensive contralateral eyes.
Collapse
Affiliation(s)
- Oliver W. Gramlich
- University of Iowa, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, Iowa, United States
| | - Cheyanne R. Godwin
- University of Iowa, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, Iowa, United States
| | - Neal D. Heuss
- University of Minnesota, Department of Ophthalmology and Visual Neurosciences, Minneapolis, Minnesota, United States
| | - Dale S. Gregerson
- University of Minnesota, Department of Ophthalmology and Visual Neurosciences, Minneapolis, Minnesota, United States
| | - Markus H. Kuehn
- University of Iowa, Department of Ophthalmology and Visual Sciences, Iowa City, Iowa, United States
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, Iowa, United States
| |
Collapse
|
49
|
Harder JM, Williams PA, Braine CE, Yang HS, Thomas JM, Foxworth NE, John SWM, Howell GR. Complement peptide C3a receptor 1 promotes optic nerve degeneration in DBA/2J mice. J Neuroinflammation 2020; 17:336. [PMID: 33176797 PMCID: PMC7656757 DOI: 10.1186/s12974-020-02011-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The risk of glaucoma increases significantly with age and exposure to elevated intraocular pressure, two factors linked with neuroinflammation. The complement cascade is a complex immune process with many bioactive end-products, including mediators of inflammation. Complement cascade activation has been shown in glaucoma patients and models of glaucoma. However, the function of complement-mediated inflammation in glaucoma is largely untested. Here, the complement peptide C3a receptor 1 was genetically disrupted in DBA/2J mice, an ocular hypertensive model of glaucoma, to test its contribution to neurodegeneration. METHODS A null allele of C3ar1 was backcrossed into DBA/2J mice. Development of iris disease, ocular hypertension, optic nerve degeneration, retinal ganglion cell activity, loss of RGCs, and myeloid cell infiltration in C3ar1-deficient and sufficient DBA/2J mice were compared across multiple ages. RNA sequencing was performed on microglia from primary culture to determine global effects of C3ar1 on microglia gene expression. RESULTS Deficiency in C3ar1 lowered the risk of degeneration in ocular hypertensive mice without affecting intraocular pressure elevation at 10.5 months of age. Differences were found in the percentage of mice affected, but not in individual characteristics of disease progression. The protective effect of C3ar1 deficiency was then overcome by additional aging and ocular hypertensive injury. Microglia and other myeloid-derived cells were the primary cells identified that express C3ar1. In the absence of C3ar1, microglial expression of genes associated with neuroinflammation and other immune functions were differentially expressed compared to WT. A network analysis of these data suggested that the IL10 signaling pathway is a major interaction partner of C3AR1 signaling in microglia. CONCLUSIONS C3AR1 was identified as a damaging neuroinflammatory factor. These data help suggest complement activation causes glaucomatous neurodegeneration through multiple mechanisms, including inflammation. Microglia and infiltrating myeloid cells expressed high levels of C3ar1 and are the primary candidates to mediate its effects. C3AR1 appeared to be a major regulator of microglia reactivity and neuroinflammatory function due to its interaction with IL10 signaling and other immune related pathways. Targeting myeloid-derived cells and C3AR1 signaling with therapies is expected to add to or improve neuroprotective therapeutic strategies.
Collapse
Affiliation(s)
| | - Pete A Williams
- The Jackson Laboratory, Bar Harbor, ME, USA
- Division of Eye and Vision, Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Catherine E Braine
- The Jackson Laboratory, Bar Harbor, ME, USA
- Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | | | | | | | - Simon W M John
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Department of Ophthalmology, Tufts University of Medicine, Boston, MA, USA.
- Howard Hughes Medical Institute, Department of Ophthalmology, Columbia University Medical Center, and Zuckerman Mind Brain Behavior Institute, New York, NY, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
50
|
Sterling JK, Adetunji MO, Guttha S, Bargoud AR, Uyhazi KE, Ross AG, Dunaief JL, Cui QN. GLP-1 Receptor Agonist NLY01 Reduces Retinal Inflammation and Neuron Death Secondary to Ocular Hypertension. Cell Rep 2020; 33:108271. [PMID: 33147455 PMCID: PMC7660987 DOI: 10.1016/j.celrep.2020.108271] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/03/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is the leading cause of irreversible blindness and is characterized by the death of retinal ganglion cells (RGCs). Recent studies have implicated pro-inflammatory microglia, macrophages, and A1 astrocytes in the pathogenesis of neurodegenerative diseases. The role of pro-inflammatory, neurotoxic A1 astrocytes in glaucoma is just beginning to be explored. Using a mouse model of glaucoma, we demonstrate that ocular hypertension is sufficient to trigger production of C1q, interleukin-1α (IL-1α), and tumor necrosis factor α (TNF-α), three cytokines necessary and sufficient to drive the formation of A1 astrocytes. Upregulation of these cytokines occurs first in CD11b+ CD11c+ cells followed by CD11b+ CD11c- cells. Ablation of this pathway, by either genetic deletions of C1qa, IL-1α, and TNF-α, or treatment with glucagon-like peptide-1 receptor agonist NLY01, reduces A1 astrocyte transformation and RGC death. Together, these results highlight a neuroinflammatory mechanism of glaucomatous neurodegeneration that can be therapeutically targeted by NLY01 administration.
Collapse
Affiliation(s)
- Jacob K Sterling
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Modupe O Adetunji
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Samyuktha Guttha
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Albert R Bargoud
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine E Uyhazi
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ahmara G Ross
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Joshua L Dunaief
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Qi N Cui
- FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|