1
|
Dölle C, Tzoulis C. NAD augmentation as a disease-modifying strategy for neurodegeneration. Trends Endocrinol Metab 2025:S1043-2760(25)00070-0. [PMID: 40287324 DOI: 10.1016/j.tem.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Neurodegenerative diseases (NDDs) pose a significant and rapidly growing global health challenge, but there are no effective therapies to delay or halt progression. In recent years augmentation of nicotinamide adenine dinucleotide (NAD) has emerged as a promising disease-modifying strategy that targets multiple key disease pathways across multiple NDDs, such as mitochondrial dysfunction, energy deficits, proteostasis, and neuroinflammation. Several early clinical trials of NAD augmentation have been completed, and many more are currently underway, reflecting the growing optimism and urgency within the field. We discuss the rationale and evolving therapeutic landscape of NAD augmentation. We argue that, to fully realize its therapeutic potential, it is essential to determine the specific contexts in which NAD supplementation is most effective and to address crucial knowledge gaps.
Collapse
Affiliation(s)
- Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway; K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020 Bergen, Norway.
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, Pb 7804, 5020 Bergen, Norway; K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Pb 7804, 5020 Bergen, Norway.
| |
Collapse
|
2
|
Murphy KB, Ye Y, Tsalenchuk M, Nott A, Marzi SJ. CHAS infers cell type-specific signatures in bulk brain histone acetylation studies of neurological and psychiatric disorders. CELL REPORTS METHODS 2025:101032. [PMID: 40300607 DOI: 10.1016/j.crmeth.2025.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/07/2025] [Accepted: 04/04/2025] [Indexed: 05/01/2025]
Abstract
Epigenomic profiling of the brain has largely been done on bulk tissues, limiting our understanding of cell type-specific epigenetic changes in disease states. Here, we introduce cell type-specific histone acetylation score (CHAS), a computational tool for inferring cell type-specific signatures in bulk brain H3K27ac profiles. We applied CHAS to >300 H3K27ac chromatin immunoprecipitation sequencing samples from studies of Alzheimer's disease, Parkinson's disease, autism spectrum disorder, schizophrenia, and bipolar disorder in bulk postmortem brain tissue. In addition to recapitulating known disease-associated shifts in cellular proportions, we identified cell type-specific biological insights into brain-disorder-associated regulatory variation. In most cases, genetic risk and epigenetic dysregulation targeted different cell types, suggesting independent mechanisms. For instance, genetic risk of Alzheimer's disease was exclusively enriched within microglia, while epigenetic dysregulation predominantly fell within oligodendrocyte-specific H3K27ac regions. In addition, reanalysis of the original datasets using CHAS enabled identification of biological pathways associated with each neurological and psychiatric disorder at cellular resolution.
Collapse
Affiliation(s)
- Kitty B Murphy
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK.
| | - Yuqian Ye
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute at Imperial College London, London, UK
| | - Maria Tsalenchuk
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London, UK; UK Dementia Research Institute at Imperial College London, London, UK
| | - Sarah J Marzi
- UK Dementia Research Institute at King's College London, London, UK; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
3
|
Son SM, Siddiqi FH, Lopez A, Ansari R, Tyrkalska SD, Park SJ, Kunath T, Metzakopian E, Fleming A, Rubinsztein DC. Alpha-synuclein mutations mislocalize cytoplasmic p300 compromising autophagy, which is rescued by ACLY inhibition. Neuron 2025:S0896-6273(25)00247-8. [PMID: 40262613 DOI: 10.1016/j.neuron.2025.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025]
Abstract
Triplications and certain point mutations in the SNCA gene, encoding alpha-synuclein (α-Syn), cause Parkinson's disease (PD). Here, we demonstrate that the PD-causing A53T α-Syn mutation and elevated α-Syn expression perturb acetyl-coenzyme A (CoA) and p300 biology in human neurons and in the CNS of zebrafish and mice. This dysregulation is mediated by activation of ATP-citrate lyase (ACLY), a key enzyme that generates acetyl-CoA in the cytoplasm, via two mechanisms. First, ACLY activity increases acetyl-CoA levels, which activate p300. Second, ACLY activation increases LKB1 acetylation, which inhibits AMPK, leading to increased cytoplasmic and decreased nuclear p300. This lowers histone acetylation and increases acetylation of cytoplasmic p300 substrates, like raptor, which causes mechanistic target of rapamycin complex 1 (mTORC1) hyperactivation, thereby impairing autophagy. ACLY inhibitors rescue pathological phenotypes in PD neurons, organoids, zebrafish, and mouse models, suggesting that this pathway is a core feature of α-Syn toxicity and that ACLY may be a suitable therapeutic target.
Collapse
Affiliation(s)
- Sung Min Son
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Farah H Siddiqi
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Ana Lopez
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Rizwan Ansari
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Sylwia D Tyrkalska
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - So Jung Park
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Tilo Kunath
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK; bit.bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, UK
| | - Angeleen Fleming
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - David C Rubinsztein
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK; UK Dementia Research Institute, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Duarte-Zambrano F, Alfonso-Cedeño DF, Barrero JA, Rodríguez-Vanegas LA, Moreno-Cárdenas V, Olarte-Díaz A, Arboleda G, Arboleda H. Genetic variants associated with idiopathic Parkinson's disease in Latin America: A systematic review. Neurogenetics 2025; 26:43. [PMID: 40178685 PMCID: PMC11968493 DOI: 10.1007/s10048-025-00817-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/02/2025] [Indexed: 04/05/2025]
Abstract
Idiopathic Parkinson's disease (PD) constitutes a complex trait influenced by genetic, environmental, and lifestyle factors, with an estimated heritability of nearly 30%. However, a large proportion of the heritable variation linked to PD remains uncertain, partly due to ancestral bias. Expanding research into Hispanic populations can contribute to address this gap. To review the evidence of genetic variants associated with idiopathic PD in Latin America. A PRISMA-compliant systematic review was conducted in MEDLINE, EMBASE and LILACS, compiling studies published up to February 7, 2025. Nineteen case-control studies were included. Two hypothesis-free studies identified rs525496 near H2BW1 as a protective factor and rs356182 in SNCA as a risk factor through XWAS and GWAS, respectively. Seventeen hypothesis-driven studies examined over three hundred variants, identifying nineteen genetic markers; risk factors included one INDEL in NR4A2, CNV burdens in PRKN, SNCA, and PLA2G6, along with fourteen variants in six loci including GBA, APOEε4, MTHFR, LRRK2, and SNCA. Three SNPs in the PICALM, ALDH1A1, and APOE-ε3 loci were identified as protective factors. Additionally, six SNCA variant haplotypes appear to increase PD risk, while two NR4A2 INDELs haplotypes showed mixed effects. This review summarized genetic loci associated with idiopathic PD in Latin American populations evidencing an overlap with European findings as well as novel loci, although awaiting replication and validation. These observations contribute to the understanding of genetic configuration of the disease and highlight the need for further genomic research in underrepresented groups that include local ancestry analysis within admixed cohorts to guide development of personalized treatments and population-specific interventions.
Collapse
Affiliation(s)
- Felipe Duarte-Zambrano
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
- Grupo de Investigación en Neurociencias y Muerte Celular, Facultad de Medicina E Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - David Felipe Alfonso-Cedeño
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge A Barrero
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Valentina Moreno-Cárdenas
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Anamaría Olarte-Díaz
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Gonzalo Arboleda
- Grupo de Investigación en Neurociencias y Muerte Celular, Facultad de Medicina E Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Humberto Arboleda
- Semillero de Investigación en Neurociencias, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Grupo de Investigación en Neurociencias y Muerte Celular, Facultad de Medicina E Instituto de Genética, Universidad Nacional de Colombia, Bogotá, Colombia
- Departamento de Pediatría E Instituto de Genética, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
5
|
Gao XD, Ding JE, Xie JX, Xu HM. Epigenetic regulation of iron metabolism and ferroptosis in Parkinson's disease: Identifying novel epigenetic targets. Acta Pharmacol Sin 2025:10.1038/s41401-025-01499-6. [PMID: 40069488 DOI: 10.1038/s41401-025-01499-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/28/2025] [Indexed: 03/17/2025]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease, and emerging evidence has shown that iron deposition, ferroptosis and epigenetic modifications are implicated in the pathogenesis of PD. However, the interplay among these factors in PD has not been fully understood. In this review, we provide an overview of the current research progress on iron metabolism, ferroptosis and epigenetic alterations associated with PD. Furthermore, we present new frontiers concerning various epigenetic modifications related to iron metabolism and ferroptosis that might contribute to the pathology of PD. Notably, epigenetic modifications of iron metabolism and ferroptosis as both diagnostic and therapeutic targets in PD have been discussed. This opens new avenues for the regulation of iron homeostasis and ferroptosis in PD from epigenetic perspectives, and provides evidence for their potential implications in the diagnosis and treatment of PD.
Collapse
Affiliation(s)
- Xiao-Die Gao
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jian-E Ding
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Jun-Xia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| | - Hua-Min Xu
- Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Brain Diseases and State Key Disciplines: Physiology, Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
6
|
Kacemi R, Campos MG. Bee Pollen Phytochemicals and Nutrients as Unequaled Pool of Epigenetic Regulators: Implications for Age-Related Diseases. Foods 2025; 14:347. [PMID: 39941940 PMCID: PMC11816923 DOI: 10.3390/foods14030347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 02/16/2025] Open
Abstract
Bee pollen is characterized by an exceptional diversity and abundance of micronutrients and bioactive phytochemicals. This richness remains very sparsely investigated, but accumulating evidence strongly supports a promising future for bee pollen in human nutrition and medicine. Epigenetic regulation is among the most compelling biomedical topics that remain completely untapped in bee pollen and bee derivative research. In our current research, we identified numerous ubiquitous compounds that are consistently present in this matrix, regardless of its botanical and geographical origins, and that have been well studied and documented as epigenetic regulators in recent years. Given the relative newness of both bee pollen biomedical research and epigenetic studies within nutritional, pharmaceutical, and medical sciences, this review aims to bridge these valuable fields and advance related experimental investigations. To the best of our knowledge, this is the first work that has aimed to comprehensively investigate the epigenetic modulatory potential of bee pollen compounds. Our findings have also unveiled several intriguing phenomena, such as a dual effect of the same compound depending on the cellular context or the effect of some compounds on the cross-generational heritability of epigenetic traits. Although experimental studies of epigenetic regulation by bee pollen as a whole or by its extract are still lacking, our current study clearly indicates that this research avenue is very promising and worth further investigations. We hope that our current work constitutes a foundational cornerstone of future investigations for this avenue of research.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
7
|
Singh P, Paramanik V. DNA methylation, histone acetylation in the regulation of memory and its modulation during aging. FRONTIERS IN AGING 2025; 5:1480932. [PMID: 39835300 PMCID: PMC11743476 DOI: 10.3389/fragi.2024.1480932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025]
Abstract
Memory formation is associated with constant modifications of neuronal networks and synaptic plasticity gene expression in response to different environmental stimuli and experiences. Dysregulation of synaptic plasticity gene expression affects memory during aging and neurodegenerative diseases. Covalent modifications such as methylation on DNA and acetylation on histones regulate the transcription of synaptic plasticity genes. Changes in these epigenetic marks correlated with alteration of synaptic plasticity gene expression and memory formation during aging. These epigenetic modifications, in turn, are regulated by physiology and metabolism. Steroid hormone estrogen and metabolites such as S-adenosyl methionine and acetyl CoA directly impact DNA and histones' methylation and acetylation levels. Thus, the decline of estrogen levels or imbalance of these metabolites affects gene expression and underlying brain functions. In the present review, we discussed the importance of DNA methylation and histone acetylation on chromatin modifications, regulation of synaptic plasticity gene expression and memory consolidation, and modulation of these epigenetic marks by epigenetic modifiers such as phytochemicals and vitamins. Further, understanding the molecular mechanisms that modulate these epigenetic modifications will help develop recovery approaches.
Collapse
Affiliation(s)
| | - Vijay Paramanik
- Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| |
Collapse
|
8
|
González Molina LA, Dolga AM, Rots MG, Sarno F. The Promise of Epigenetic Editing for Treating Brain Disorders. Subcell Biochem 2025; 108:111-190. [PMID: 39820862 DOI: 10.1007/978-3-031-75980-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Brain disorders, especially neurodegenerative diseases, affect millions of people worldwide. There is no causal treatment available; therefore, there is an unmet clinical need for finding therapeutic options for these diseases. Epigenetic research has resulted in identification of various genomic loci with differential disease-specific epigenetic modifications, mainly DNA methylation. These biomarkers, although not yet translated into clinically approved options, offer therapeutic targets as epigenetic modifications are reversible. Indeed, clinical trials are designed to inhibit epigenetic writers, erasers, or readers using epigenetic drugs to interfere with epigenetic dysregulation in brain disorders. However, since such drugs elicit genome-wide effects and potentially cause toxicity, the recent developments in the field of epigenetic editing are gaining widespread attention. In this review, we provide examples of epigenetic biomarkers and epi-drugs, while describing efforts in the field of epigenetic editing, to eventually make a difference for the currently incurable brain disorders.
Collapse
Affiliation(s)
- Luis A González Molina
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Molecular Pharmacology, Faculty of Science and Engineering, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Federica Sarno
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| |
Collapse
|
9
|
Borrego-Ruiz A, Borrego JJ. Epigenetic Mechanisms in Aging: Extrinsic Factors and Gut Microbiome. Genes (Basel) 2024; 15:1599. [PMID: 39766866 PMCID: PMC11675900 DOI: 10.3390/genes15121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Aging is a natural physiological process involving biological and genetic pathways. Growing evidence suggests that alterations in the epigenome during aging result in transcriptional changes, which play a significant role in the onset of age-related diseases, including cancer, cardiovascular disease, diabetes, and neurodegenerative disorders. For this reason, the epigenetic alterations in aging and age-related diseases have been reviewed, and the major extrinsic factors influencing these epigenetic alterations have been identified. In addition, the role of the gut microbiome and its metabolites as epigenetic modifiers has been addressed. RESULTS Long-term exposure to extrinsic factors such as air pollution, diet, drug use, environmental chemicals, microbial infections, physical activity, radiation, and stress provoke epigenetic changes in the host through several endocrine and immune pathways, potentially accelerating the aging process. Diverse studies have reported that the gut microbiome plays a critical role in regulating brain cell functions through DNA methylation and histone modifications. The interaction between genes and the gut microbiome serves as a source of adaptive variation, contributing to phenotypic plasticity. However, the molecular mechanisms and signaling pathways driving this process are still not fully understood. CONCLUSIONS Extrinsic factors are potential inducers of epigenetic alterations, which may have important implications for longevity. The gut microbiome serves as an epigenetic effector influencing host gene expression through histone and DNA modifications, while bidirectional interactions with the host and the underexplored roles of microbial metabolites and non-bacterial microorganisms such as fungi and viruses highlight the need for further research.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain;
| | - Juan J. Borrego
- Departamento de Microbiología, Universidad de Málaga, 29071 Málaga, Spain
| |
Collapse
|
10
|
N M P, Fullard JF, Clarence T, Mathur D, Casey C, Hennigan E, Alvia M, Krause-Massaguer J, Barreda A, Davis DA, Vontell RT, Garamszegi SP, Vance JM, Sang L, Chatigny M, Vismer D, Landin B, Burstein D, Lee D, Voloudakis G, Berretta S, Haroutunian V, Scott WK, Bendl J, Roussos P. A multi-region single nucleus transcriptomic atlas of Parkinson's disease. Sci Data 2024; 11:1274. [PMID: 39580497 PMCID: PMC11585549 DOI: 10.1038/s41597-024-04117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disorder, characterized by motor and cognitive impairments, that affects >1% of the population over the age of 60. The pathogenesis of PD is complex and remains largely unknown. Due to the cellular heterogeneity of the human brain and changes in cell type composition with disease progression, this complexity cannot be fully captured with bulk tissue studies. To address this, we generated single-nucleus RNA sequencing and whole-genome sequencing data from 100 postmortem cases and controls, carefully selected to represent the entire spectrum of PD neuropathological severity and diverse clinical symptoms. The single nucleus data were generated from five brain regions, capturing the subcortical and cortical spread of PD pathology. Rigorous preprocessing and quality control were applied to ensure data reliability. Committed to collaborative research and open science, this dataset is available on the AMP PD Knowledge Platform, offering researchers a valuable tool to explore the molecular bases of PD and accelerate advances in understanding and treating the disease.
Collapse
Affiliation(s)
- Prashant N M
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tereza Clarence
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deepika Mathur
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Clara Casey
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evelyn Hennigan
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Alvia
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joana Krause-Massaguer
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ayled Barreda
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David A Davis
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Regina T Vontell
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Susanna P Garamszegi
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jeffery M Vance
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | - David Burstein
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Donghoon Lee
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA
| | - Sabina Berretta
- McLean Hospital, Belmont, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Vahram Haroutunian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William K Scott
- Brain Endowment Bank, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jaroslav Bendl
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA.
- Center for Precision Medicine and Translational Therapeutics, James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
11
|
Singh R, Rathore AS, Dilnashin H, Keshri PK, Gupta NK, Prakash SAS, Zahra W, Singh S, Singh SP. HAT and HDAC: Enzyme with Contradictory Action in Neurodegenerative Diseases. Mol Neurobiol 2024; 61:9110-9124. [PMID: 38587698 DOI: 10.1007/s12035-024-04115-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024]
Abstract
In view of the increasing risk of neurodegenerative diseases, epigenetics plays a fundamental role in the field of neuroscience. Several modifications have been studied including DNA methylation, histone acetylation, histone phosphorylation, etc. Histone acetylation and deacetylation regulate gene expression, and the regular activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs) provides regulatory stages for gene expression and cell cycle. Imbalanced homeostasis in these enzymes causes a detrimental effect on neurophysiological function. Intriguingly, epigenetic remodelling via histone acetylation in certain brain areas has been found to play a key role in the neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. It has been demonstrated that a number of HATs have a role in crucial brain processes such regulating neuronal plasticity and memory formation. The most recent therapeutic methods involve the use of small molecules known as histone deacetylase (HDAC) inhibitors that antagonize HDAC activity thereby increase acetylation levels in order to prevent the loss of HAT function in neurodegenerative disorders. The target specificity of the HDAC inhibitors now in use raises concerns about their applicability, despite the fact that this strategy has demonstrated promising therapeutic outcomes. The aim of this review is to summarize the cross-linking between histone modification and its regulation in the pathogenesis of neurological disorders. Furthermore, these findings also support the notion of new pharmacotherapies that target particular areas of the brain using histone deacetylase inhibitors.
Collapse
Affiliation(s)
- Richa Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Priyanka Kumari Keshri
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Nitesh Kumar Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Singh Ankit Satya Prakash
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Shekhar Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi-221005 (U.P.), India.
| |
Collapse
|
12
|
Wu J, Wu J, Chen T, Cai J, Ren R. Protein aggregation and its affecting mechanisms in neurodegenerative diseases. Neurochem Int 2024; 180:105880. [PMID: 39396709 DOI: 10.1016/j.neuint.2024.105880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/15/2024]
Abstract
Protein aggregation serves as a critical pathological marker in a spectrum of neurodegenerative diseases (NDs), including the formation of amyloid β (Aβ) and Tau neurofibrillary tangles in Alzheimer's disease, as well as α-Synuclein (α-Syn) aggregates in Parkinson's disease, Parkinson's disease-related dementia (PDD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). A significant proportion of patients with amyotrophic lateral sclerosis (ALS) exhibit TDP-43 aggregates. Moreover, a confluence of brain protein pathologies, such as Aβ, Tau, α-Syn, and TDP-43, has been identified in individual NDs cases, highlighting the intricate interplay among these proteins that is garnering heightened scrutiny. Importantly, protein aggregation is modulated by an array of factors, with burgeoning evidence suggesting that it frequently results from perturbations in protein homeostasis, influenced by the cellular membrane milieu, metal ion concentrations, post-translational modifications, and genetic mutations. This review delves into the pathological underpinnings of protein aggregation across various NDs and elucidates the intercommunication among disparate proteins within the same disease context. Additionally, we examine the pathogenic mechanisms by which diverse factors impinge upon protein aggregation, offering fresh perspectives for the future therapeutic intervention of NDs.
Collapse
Affiliation(s)
- Junyun Wu
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jianan Wu
- Department of Neurosurgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Tao Chen
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China
| | - Jing Cai
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| | - Reng Ren
- Neuroscience Care Unit, Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
13
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
14
|
Firdaus Z, Li X. Epigenetic Explorations of Neurological Disorders, the Identification Methods, and Therapeutic Avenues. Int J Mol Sci 2024; 25:11658. [PMID: 39519209 PMCID: PMC11546397 DOI: 10.3390/ijms252111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative disorders are major health concerns globally, especially in aging societies. The exploration of brain epigenomes, which consist of multiple forms of DNA methylation and covalent histone modifications, offers new and unanticipated perspective into the mechanisms of aging and neurodegenerative diseases. Initially, chromatin defects in the brain were thought to be static abnormalities from early development associated with rare genetic syndromes. However, it is now evident that mutations and the dysregulation of the epigenetic machinery extend across a broader spectrum, encompassing adult-onset neurodegenerative diseases. Hence, it is crucial to develop methodologies that can enhance epigenetic research. Several approaches have been created to investigate alterations in epigenetics on a spectrum of scales-ranging from low to high-with a particular focus on detecting DNA methylation and histone modifications. This article explores the burgeoning realm of neuroepigenetics, emphasizing its role in enhancing our mechanistic comprehension of neurodegenerative disorders and elucidating the predominant techniques employed for detecting modifications in the epigenome. Additionally, we ponder the potential influence of these advancements on shaping future therapeutic approaches.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Fisher RMA, Torrente MP. Histone post-translational modification and heterochromatin alterations in neurodegeneration: revealing novel disease pathways and potential therapeutics. Front Mol Neurosci 2024; 17:1456052. [PMID: 39346681 PMCID: PMC11427407 DOI: 10.3389/fnmol.2024.1456052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/20/2024] [Indexed: 10/01/2024] Open
Abstract
Alzheimer's disease (AD), Parkinson's disease (PD), Frontotemporal Dementia (FTD), and Amyotrophic lateral sclerosis (ALS) are complex and fatal neurodegenerative diseases. While current treatments for these diseases do alleviate some symptoms, there is an imperative need for novel treatments able to stop their progression. For all of these ailments, most cases occur sporadically and have no known genetic cause. Only a small percentage of patients bear known mutations which occur in a multitude of genes. Hence, it is clear that genetic factors alone do not explain disease occurrence. Chromatin, a DNA-histone complex whose basic unit is the nucleosome, is divided into euchromatin, an open form accessible to the transcriptional machinery, and heterochromatin, which is closed and transcriptionally inactive. Protruding out of the nucleosome, histone tails undergo post-translational modifications (PTMs) including methylation, acetylation, and phosphorylation which occur at specific residues and are connected to different chromatin structural states and regulate access to transcriptional machinery. Epigenetic mechanisms, including histone PTMs and changes in chromatin structure, could help explain neurodegenerative disease processes and illuminate novel treatment targets. Recent research has revealed that changes in histone PTMs and heterochromatin loss or gain are connected to neurodegeneration. Here, we review evidence for epigenetic changes occurring in AD, PD, and FTD/ALS. We focus specifically on alterations in the histone PTMs landscape, changes in the expression of histone modifying enzymes and chromatin remodelers as well as the consequences of these changes in heterochromatin structure. We also highlight the potential for epigenetic therapies in neurodegenerative disease treatment. Given their reversibility and pharmacological accessibility, epigenetic mechanisms provide a promising avenue for novel treatments. Altogether, these findings underscore the need for thorough characterization of epigenetic mechanisms and chromatin structure in neurodegeneration.
Collapse
Affiliation(s)
- Raven M. A. Fisher
- PhD. Program in Biochemistry, City University of New York - The Graduate Center, New York, NY, United States
| | - Mariana P. Torrente
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, United States
- PhD. Programs in Chemistry, Biochemistry, and Biology, City University of New York - The Graduate Center, New York, NY, United States
| |
Collapse
|
16
|
Tunoğlu S, Yalçın B, Tunoğlu ENY, Karaaslan Z, Bilgiç B, Hanağası HA, Tüzün E, Küçükali Cİ. Gene Expression Levels Related to Histone Acetylation are Altered in Parkinson Disease Patients. Noro Psikiyatr Ars 2024; 67:271-274. [PMID: 39258138 PMCID: PMC11382565 DOI: 10.29399/npa.28700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/02/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Parkinson's Disease (PD) is a neurodegenerative disorder distinguished from other neurodegenerative disorders by the loss of dopaminergic neurons in the substantia nigra region of the brain, and is the most common neurodegenerative disorder, along with Alzheimer's Disease. PD is characterized by the presence of Lewy bodies when evaluated pathologically. Recent studies showed that the incidence of PH development as a result of genetic mutations alone is very low among all PD cases, and that environmental effects contribute significantly to the disease progression. The molecular mechanisms of diseases are associated with the maintenance of gene and protein expressions as a result of epigenetic regulations. The role of these regulations in the development and pathogenesis of neurodegenerative diseases is still not clearly understood. Methods In our study, we examined the expression levels of H3C1, H3C12, HDAC4, HDAC5, ANKRD11, ANKRD12, ITM2B and GABBR1, which are genes involved in epigenetic processes in patients with idiopathic PD. Seventy five patients diagnosed with idiopathic PD and 50 healthy controls were included in the study. Peripheral Blood Mononuclear Cell (PBMC) was obtained from whole blood taken from the patient and control groups, and then total RNA was isolated from PBMC. Results According to the comparison of the patient and control groups, the expression of H3C1, H3C12, ITM2B was high, and the expression of ANKRD11, HDAC4, HDAC5 and GABBR1 was low (p<0.05). Conclusion As conclusion, we propose that histone regulation is one of the epigenetic mechanisms related to the presence of PD.
Collapse
Affiliation(s)
- Servet Tunoğlu
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Çapa, Istanbul, Turkey
| | - Beyzanur Yalçın
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Ezgi Nurdan Yenilmez Tunoğlu
- Division of Medical Techniques and Services, Vocational School of Health Services, Demiroglu Science University, Istanbul, Turkey
| | - Zerrin Karaaslan
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Başar Bilgiç
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul, Turkey
| | - Haşmet Ayhan Hanağası
- Istanbul University, Istanbul Faculty of Medicine, Department of Neurology, Behavioral Neurology and Movement Disorders Unit, Istanbul, Turkey
| | - Erdem Tüzün
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Cem İsmail Küçükali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
17
|
Huang M, Jin H, Anantharam V, Kanthasamy A, Kanthasamy AG. Mitochondrial stress-induced H4K12 hyperacetylation dysregulates transcription in Parkinson's disease. Front Cell Neurosci 2024; 18:1422362. [PMID: 39188570 PMCID: PMC11345260 DOI: 10.3389/fncel.2024.1422362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 08/28/2024] Open
Abstract
Aberrant epigenetic modification has been implicated in the pathogenesis of Parkinson's disease (PD), which is characterized by the irreversible loss of dopaminergic (DAergic) neurons. However, the mechanistic landscape of histone acetylation (ac) in PD has yet to be fully explored. Herein, we mapped the proteomic acetylation profiling changes at core histones H4 and thus identified H4K12ac as a key epigenomic mark in dopaminergic neuronal cells as well as in MitoPark animal model of PD. Notably, the significantly elevated H4K12ac deposition in post-mortem PD brains highlights its clinical relevance to human PD. Increased histone acetyltransferase (HAT) activity and decreased histone deacetylase 2 (HDAC2) and HDAC4 were found in experimental PD cell models, suggesting the HAT/HDAC imbalance associated with mitochondrial stress. Following our delineation of the proteasome dysfunction that possibly contributes to H4K12ac deposition, we characterized the altered transcriptional profile and disease-associated pathways in the MitoPark mouse model of PD. Our study uncovers the axis of mitochondrial impairment-H4K12ac deposition-altered transcription/disease pathways as a neuroepigenetic mechanism underlying PD pathogenesis. These findings provide mechanistic information for the development of potential pharmacoepigenomic translational strategies for PD.
Collapse
Affiliation(s)
- Minhong Huang
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
| | - Huajun Jin
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Vellareddy Anantharam
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Arthi Kanthasamy
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| | - Anumantha G. Kanthasamy
- Parkinson Disorders Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, IA, United States
- Isakson Center for Neurological Disease Research, Department of Physiology and Pharmacology, University of Georgia, Athens, GA, United States
| |
Collapse
|
18
|
Soraci L, Corsonello A, Paparazzo E, Montesanto A, Piacenza F, Olivieri F, Gambuzza ME, Savedra EV, Marino S, Lattanzio F, Biscetti L. Neuroinflammaging: A Tight Line Between Normal Aging and Age-Related Neurodegenerative Disorders. Aging Dis 2024; 15:1726-1747. [PMID: 38300639 PMCID: PMC11272206 DOI: 10.14336/ad.2023.1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/01/2023] [Indexed: 02/02/2024] Open
Abstract
Aging in the healthy brain is characterized by a low-grade, chronic, and sterile inflammatory process known as neuroinflammaging. This condition, mainly consisting in an up-regulation of the inflammatory response at the brain level, contributes to the pathogenesis of age-related neurodegenerative disorders. Development of this proinflammatory state involves the interaction between genetic and environmental factors, able to induce age-related epigenetic modifications. Indeed, the exposure to environmental compounds, drugs, and infections, can contribute to epigenetic modifications of DNA methylome, histone fold proteins, and nucleosome positioning, leading to epigenetic modulation of neuroinflammatory responses. Furthermore, some epigenetic modifiers, which combine and interact during the life course, can contribute to modeling of epigenome dynamics to sustain, or dampen the neuroinflammatory phenotype. The aim of this review is to summarize current knowledge about neuroinflammaging with a particular focus on epigenetic mechanisms underlying the onset and progression of neuroinflammatory cascades in the central nervous system; furthermore, we describe some diagnostic biomarkers that may contribute to increase diagnostic accuracy and help tailor therapeutic strategies in patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center of Aging (IRCCS INRCA), Cosenza, Italy.
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy.
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Italian National Research Center of Aging (IRCCS INRCA), IRCCS INRCA, Ancona, Italy.
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
- Clinic of Laboratory and Precision Medicine, Italian National Research Center of Aging (IRCCS INRCA), Ancona, Italy.
| | | | | | - Silvia Marino
- IRCCS Centro Neurolesi "Bonino-Pulejo”, Messina, Italy.
| | | | - Leonardo Biscetti
- Section of Neurology, Italian National Research Center on Aging (IRCCS INRCA), Ancona, Italy.
| |
Collapse
|
19
|
Mao Q, Luo Z, Wang K, Chen B, Wang Z, Zhang Y, Wang X, Luo X. Modifications on histone tails in Parkinson's disease. SCIBASE NEUROLOGY 2024; 2:1017. [PMID: 39145143 PMCID: PMC11323098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
This study investigates the role of histone tail modifications in Parkinson's disease (PD), emphasizing the epigenetic regulation of genes associated with the disease. PD primarily manifests in individuals over 60, suggesting that PD-causal genes remain dormant until later in life, influenced by environmental factors and epigenetic modifications. Histone modifications such as methylation, acetylation, phosphorylation, and ubiquitylation play crucial roles in gene expression regulation by altering chromatin structure or interacting with gene regulatory regions. Specifically, modifications on histones H2A, H2AX, H3, and H4 have been linked to PD. For instance, α-synuclein (α-SYN) aggregation, a hallmark of PD, is regulated by histone modifications like H3K27ac and H3K4me3, which enhance α-SYN expression and contribute to PD progression. Conversely, repressive marks like H3K9ac and H3K27me3 can mitigate PD risk by reducing α-SYN levels. Therapeutic strategies targeting these histone modifications, such as the use of GSK-J4 or vitamin C-treated neural stem cells, show potential in alleviating PD symptoms by modulating histone marks and gene expression. Understanding these epigenetic mechanisms offers promising avenues for developing novel treatments for PD.
Collapse
Affiliation(s)
- Qiao Mao
- Department of Psychosomatic Medicine, People’s Hospital of Deyang City, Deyang, Sichuan 618000, China
| | - Zhixiong Luo
- College of Integrative Medicine, Fujian University of Traditional Medicine, Fuzhou 350122, China
| | - Kesheng Wang
- Department of Family and Community Health, School of Nursing, Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | - Bin Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Cardiovascular Medicine, Fujian Provincial Hospital, Fuzhou, Fujian 350001, China
| | - Zhiren Wang
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing 100096, China
| | - Yong Zhang
- Institute of Mental Health, Tianjin Anding Hospital, Mental Health Center of Tianjin Medical University, Tianjin 300222, China
| | - Xiaoping Wang
- Department of Neurology, Jiading Branch of Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xingguang Luo
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical School of Medicine, Beijing 100096, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
20
|
Zhao A, Xu W, Han R, Wei J, Yu Q, Wang M, Li H, Li M, Chi G. Role of histone modifications in neurogenesis and neurodegenerative disease development. Ageing Res Rev 2024; 98:102324. [PMID: 38762100 DOI: 10.1016/j.arr.2024.102324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Progressive neuronal dysfunction and death are key features of neurodegenerative diseases; therefore, promoting neurogenesis in neurodegenerative diseases is crucial. With advancements in proteomics and high-throughput sequencing technology, it has been demonstrated that histone post-transcriptional modifications (PTMs) are often altered during neurogenesis when the brain is affected by disease or external stimuli and that the degree of histone modification is closely associated with the development of neurodegenerative diseases. This review aimed to show the regulatory role of histone modifications in neurogenesis and neurodegenerative diseases by discussing the changing patterns and functional significance of histone modifications, including histone methylation, acetylation, ubiquitination, phosphorylation, and lactylation. Finally, we explored the control of neurogenesis and the development of neurodegenerative diseases by artificially modulating histone modifications.
Collapse
Affiliation(s)
- Anqi Zhao
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Wenhong Xu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Rui Han
- Department of Neurovascular Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Junyuan Wei
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Qi Yu
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Miaomiao Wang
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Haokun Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Meiying Li
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| |
Collapse
|
21
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
22
|
Di Martino P, Marcozzi V, Bibbò S, Ghinassi B, Di Baldassarre A, Gaggi G, Di Credico A. Unraveling the Epigenetic Landscape: Insights into Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. Brain Sci 2024; 14:553. [PMID: 38928553 PMCID: PMC11202179 DOI: 10.3390/brainsci14060553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Pierpaolo Di Martino
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Valentina Marcozzi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
| | - Sandra Bibbò
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Giulia Gaggi
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Andrea Di Credico
- Department of Medicine and Aging Sciences, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (P.D.M.); (V.M.); (S.B.); (B.G.); (A.D.B.); (A.D.C.)
- Cell Reprogramming and Differentiation Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
- UdA-Tech Lab, G. D’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
23
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
24
|
Zhang Y, Wang Y, Dou H, Wang S, Qu D, Peng X, Zou N, Yang L. Caffeine improves mitochondrial dysfunction in the white matter of neonatal rats with hypoxia-ischemia through deacetylation: a proteomic analysis of lysine acetylation. Front Mol Neurosci 2024; 17:1394886. [PMID: 38745725 PMCID: PMC11091324 DOI: 10.3389/fnmol.2024.1394886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Aims White matter damage (WMD) is linked to both cerebral palsy and cognitive deficits in infants born prematurely. The focus of this study was to examine how caffeine influences the acetylation of proteins within the neonatal white matter and to evaluate its effectiveness in treating white matter damage caused by hypoxia-ischemia. Main methods We employed a method combining affinity enrichment with advanced liquid chromatography and mass spectrometry to profile acetylation in proteins from the white matter of neonatal rats grouped into control (Sham), hypoxic-ischemic (HI), and caffeine-treated (Caffeine) groups. Key findings Our findings included 1,999 sites of lysine acetylation across 1,123 proteins, with quantifiable changes noted in 1,342 sites within 689 proteins. Analysis of these patterns identified recurring sequences adjacent to the acetylation sites, notably YKacN, FkacN, and G * * * GkacS. Investigation into the biological roles of these proteins through Gene Ontology analysis indicated their involvement in a variety of cellular processes, predominantly within mitochondrial locations. Further analysis indicated that the acetylation of tau (Mapt), a protein associated with microtubules, was elevated in the HI condition; however, caffeine treatment appeared to mitigate this over-modification, thus potentially aiding in reducing oxidative stress, inflammation in the nervous system, and improving mitochondrial health. Caffeine inhibited acetylated Mapt through sirtuin 2 (SITR2), promoted Mapt nuclear translocation, and improved mitochondrial dysfunction, which was subsequently weakened by the SIRT2 inhibitor, AK-7. Significance Caffeine-induced changes in lysine acetylation may play a key role in improving mitochondrial dysfunction and inhibiting oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Yajun Zhang
- Department of Anesthesiology, Dalian Women and Children's Medical Group, Dalian, Liaoning, China
| | - Yuqian Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Haiping Dou
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shanshan Wang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Danyang Qu
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xin Peng
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ning Zou
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liu Yang
- Department of Pediatrics, The Second Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
25
|
Flønes IH, Toker L, Sandnes DA, Castelli M, Mostafavi S, Lura N, Shadad O, Fernandez-Vizarra E, Painous C, Pérez-Soriano A, Compta Y, Molina-Porcel L, Alves G, Tysnes OB, Dölle C, Nido GS, Tzoulis C. Mitochondrial complex I deficiency stratifies idiopathic Parkinson's disease. Nat Commun 2024; 15:3631. [PMID: 38684731 PMCID: PMC11059185 DOI: 10.1038/s41467-024-47867-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Idiopathic Parkinson's disease (iPD) is believed to have a heterogeneous pathophysiology, but molecular disease subtypes have not been identified. Here, we show that iPD can be stratified according to the severity of neuronal respiratory complex I (CI) deficiency, and identify two emerging disease subtypes with distinct molecular and clinical profiles. The CI deficient (CI-PD) subtype accounts for approximately a fourth of all cases, and is characterized by anatomically widespread neuronal CI deficiency, a distinct cell type-specific gene expression profile, increased load of neuronal mtDNA deletions, and a predilection for non-tremor dominant motor phenotypes. In contrast, the non-CI deficient (nCI-PD) subtype exhibits no evidence of mitochondrial impairment outside the dopaminergic substantia nigra and has a predilection for a tremor dominant phenotype. These findings constitute a step towards resolving the biological heterogeneity of iPD with implications for both mechanistic understanding and treatment strategies.
Collapse
Affiliation(s)
- Irene H Flønes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Lilah Toker
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Dagny Ann Sandnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Martina Castelli
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Sepideh Mostafavi
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Njål Lura
- Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, Bergen, Norway
- Section for Radiology, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Omnia Shadad
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Erika Fernandez-Vizarra
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 0XY, UK
- Veneto Institute of Molecular Medicine, 35131, Padova, Italy
| | - Cèlia Painous
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Alexandra Pérez-Soriano
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
- UParkinson - Sinapsi Neurología, Centre Mèdic Teknon Grup Hospitalari Quirón Salud, Barcelona, Spain
| | - Yaroslau Compta
- Parkinson's disease & Movement Disorders Unit, Neurology Service, Hospital Clínic I Universitari de Barcelona; IDIBAPS, CIBERNED (CB06/05/0018-ISCIII), ERN-RND, Institut Clínic de Neurociències (Maria de Maeztu excellence centre), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Molina-Porcel
- Alzheimer's disease and other cognitive disorders unit. Neurology Service, Hospital Clínic, Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Guido Alves
- The Norwegian Centre for Movement Disorders and Department of Neurology, Stavanger University Hospital, Pb 8100, 4068, Stavanger, Norway
- Department of Mathematics and Natural Sciences, University of Stavanger, 4062, Stavanger, Norway
| | - Ole-Bjørn Tysnes
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway.
| |
Collapse
|
26
|
Słowikowski B, Owecki W, Jeske J, Jezierski M, Draguła M, Goutor U, Jagodziński PP, Kozubski W, Dorszewska J. Epigenetics and the neurodegenerative process. Epigenomics 2024; 16:473-491. [PMID: 38511224 DOI: 10.2217/epi-2023-0416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Neurological diseases are multifactorial, genetic and environmental. Environmental factors such as diet, physical activity and emotional state are epigenetic factors. Environmental markers are responsible for epigenetic modifications. The effect of epigenetic changes is increased inflammation of the nervous system and neuronal damage. In recent years, it has been shown that epigenetic changes may cause an increased risk of neurological disorders but, currently, the relationship between epigenetic modifications and neurodegeneration remains unclear. This review summarizes current knowledge about neurological disorders caused by epigenetic changes in diseases such as Alzheimer's disease, Parkinson's disease, stroke and epilepsy. Advances in epigenetic techniques may be key to understanding the epigenetics of central changes in neurological diseases.
Collapse
Affiliation(s)
- Bartosz Słowikowski
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Owecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jan Jeske
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Jezierski
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Michał Draguła
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Ulyana Goutor
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Paweł P Jagodziński
- Department of Biochemistry & Molecular Biology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Wojciech Kozubski
- Chair & Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, 61-701, Poland
| |
Collapse
|
27
|
Zhang Z, Wang R, Zhou H, Wu D, Cao Y, Zhang C, Sun H, Mu C, Hao Z, Ren H, Wang N, Yu S, Zhang J, Tao M, Wang C, Liu Y, Liu L, Liu Y, Zang J, Wang G. Inhibition of EHMT1/2 rescues synaptic damage and motor impairment in a PD mouse model. Cell Mol Life Sci 2024; 81:128. [PMID: 38472451 DOI: 10.1007/s00018-024-05176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Epigenetic dysregulation that leads to alterations in gene expression and is suggested to be one of the key pathophysiological factors of Parkinson's disease (PD). Here, we found that α-synuclein preformed fibrils (PFFs) induced histone H3 dimethylation at lysine 9 (H3K9me2) and increased the euchromatic histone methyltransferases EHMT1 and EHMT2, which were accompanied by neuronal synaptic damage, including loss of synapses and diminished expression levels of synaptic-related proteins. Furthermore, the levels of H3K9me2 at promoters in genes that encode the synaptic-related proteins SNAP25, PSD95, Synapsin 1 and vGLUT1 were increased in primary neurons after PFF treatment, which suggests a linkage between H3K9 dimethylation and synaptic dysfunction. Inhibition of EHMT1/2 with the specific inhibitor A-366 or shRNA suppressed histone methylation and alleviated synaptic damage in primary neurons that were treated with PFFs. In addition, the synaptic damage and motor impairment in mice that were injected with PFFs were repressed by treatment with the EHMT1/2 inhibitor A-366. Thus, our findings reveal the role of histone H3 modification by EHMT1/2 in synaptic damage and motor impairment in a PFF animal model, suggesting the involvement of epigenetic dysregulation in PD pathogenesis.
Collapse
Affiliation(s)
- Zhixiong Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Rui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hui Zhou
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Dan Wu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Yifan Cao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chuang Zhang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Hongyang Sun
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chenchen Mu
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Zongbing Hao
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Haigang Ren
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Institute of Trauma Medicine, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Nana Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Mengdan Tao
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Can Wang
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Yan Liu
- School of Pharmacy, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Liu Liu
- Department of Pharmacy, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jianye Zang
- Hefei National Laboratory for Physical Sciences at Microscale CAS Center for Excellence in Biomacromolecules, Collaborative Innovation Center of Chemistry for Life Sciences, and School of Life Sciences, University of Science and Technology of China, 96 Jinzhai Road, Hefei, 230026, Anhui, China
| | - Guanghui Wang
- Laboratory of Molecular Neuropathology, Department of Pharmacology, Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, Jiangsu, China.
- Center of Translational Medicine, First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, 215400, China.
| |
Collapse
|
28
|
Basavarajappa BS, Subbanna S. Unlocking the epigenetic symphony: histone acetylation's impact on neurobehavioral change in neurodegenerative disorders. Epigenomics 2024; 16:331-358. [PMID: 38321930 PMCID: PMC10910622 DOI: 10.2217/epi-2023-0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/08/2024] Open
Abstract
Recent genomics and epigenetic advances have empowered the exploration of DNA/RNA methylation and histone modifications crucial for gene expression in response to stress, aging and disease. Interest in understanding neuronal plasticity's epigenetic mechanisms, influencing brain rewiring amid development, aging and neurodegenerative disorders, continues to grow. Histone acetylation dysregulation, a commonality in diverse brain disorders, has become a therapeutic focus. Histone acetyltransferases and histone deacetylases have emerged as promising targets for neurodegenerative disorder treatment. This review delves into histone acetylation regulation, potential therapies and future perspectives for disorders like Alzheimer's, Parkinson's and Huntington's. Exploring genetic-environmental interplay through models and studies reveals molecular changes, behavioral insights and early intervention possibilities targeting the epigenome in at-risk individuals.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, NY 10032, USA
- Department of Psychiatry, Columbia University Irving Medical Center, NY 10032, USA
- Department of Psychiatry, New York University Langone Medical Center, NY 10016, USA
| | - Shivakumar Subbanna
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
29
|
Li W, Li HL, Wang JZ, Liu R, Wang X. Abnormal protein post-translational modifications induces aggregation and abnormal deposition of protein, mediating neurodegenerative diseases. Cell Biosci 2024; 14:22. [PMID: 38347638 PMCID: PMC10863199 DOI: 10.1186/s13578-023-01189-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/23/2023] [Indexed: 02/15/2024] Open
Abstract
Protein post-translational modifications (PPTMs) refer to a series of chemical modifications that occur after the synthesis of protein. Proteins undergo different modifications such as phosphorylation, acetylation, ubiquitination, and so on. These modifications can alter the protein's structure, function, and interaction, thereby regulating its biological activity. In neurodegenerative diseases, several proteins undergo abnormal post-translational modifications, which leads to aggregation and abnormal deposition of protein, thus resulting in neuronal death and related diseases. For example, the main pathological features of Alzheimer's disease are the aggregation of beta-amyloid protein and abnormal phosphorylation of tau protein. The abnormal ubiquitination and loss of α-synuclein are related to the onset of Parkinson's disease. Other neurodegenerative diseases such as Huntington's disease, amyotrophic lateral sclerosis, and so on are also connected with abnormal PPTMs. Therefore, studying the abnormal PPTMs in neurodegenerative diseases is critical for understanding the mechanism of these diseases and the development of significant therapeutic strategies. This work reviews the implications of PPTMs in neurodegenerative diseases and discusses the relevant therapeutic strategies.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, JS, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Wuhan, China.
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, JS, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Wuhan, China.
| |
Collapse
|
30
|
Ao C, Tang S, Yang Y, Liu Y, Zhao H, Ban J, Li J. Identification of histone acetylation modification sites in the striatum of subchronically manganese-exposed rats. Epigenomics 2024; 16:5-21. [PMID: 38174439 DOI: 10.2217/epi-2023-0364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Aim: To explore the specific histone acetylation sites and oxidative stress-related genes that are associated with the pathogenesis of manganese toxicity. Methods: We employed liquid chromatography-tandem mass spectrometry and bioinformatics analysis to identify acetylated proteins in the striatum of subchronic manganese-intoxicated rats. Results: We identified a total of 12 differentially modified histone acetylation sites: H3K9ac, H3K14ac, H3K18ac, H3K56ac and H3K79ac were upregulated and H3K27ac, H3K36ac, H4K91ac, H4K79ac, H4K31ac, H2BK16ac and H2BK20ac were downregulated. Additionally, we found that CAT, SOD1 and SOD2 might be epigenetically regulated and involved in the pathogenesis of manganism. Conclusion: This study identified histone acetylation sites and oxidative stress-related genes associated with the pathogenesis of manganese toxicity, and these findings are useful in the search for potential epigenetic targets for manganese toxicity.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Shunfang Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yue Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Ying Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hua Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jiaqi Ban
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| |
Collapse
|
31
|
Gionco JT, Bernstein AI. Emerging Role of Environmental Epitranscriptomics and RNA Modifications in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:643-656. [PMID: 38578904 PMCID: PMC11191529 DOI: 10.3233/jpd-230457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/10/2024] [Indexed: 04/07/2024]
Abstract
Environmental risk factors and gene-environment interactions play a critical role in Parkinson's disease (PD). However, the relatively large contribution of environmental risk factors in the overwhelming majority of PD cases has been widely neglected in the field. A "PD prevention agenda" proposed in this journal laid out a set of research priorities focused on preventing PD through modification of environmental risk factors. This agenda includes a call for preclinical studies to employ new high-throughput methods for analyzing transcriptomics and epigenomics to provide a deeper understanding of the effects of exposures linked to PD. Here, we focus on epitranscriptomics as a novel area of research with the potential to add to our understanding of the interplay between genes and environmental exposures in PD. Both epigenetics and epitranscriptomics have been recognized as potential mediators of the complex relationship between genes, environment, and disease. Multiple studies have identified epigenetic alterations, such as DNA methylation, associated with PD and PD-related exposures in human studies and preclinical models. In addition, recent technological advancements have made it possible to study epitranscriptomic RNA modifications, such as RNA N6-methyladenosine (m6A), and a handful of recent studies have begun to explore epitranscriptomics in PD-relevant exposure models. Continued exploration of epitranscriptomic mechanisms in environmentally relevant PD models offers the opportunity to identify biomarkers, pre-degenerative changes that precede symptom onset, and potential mitigation strategies for disease prevention and treatment.
Collapse
Affiliation(s)
- John T. Gionco
- Graduate Program in Cell and Developmental Biology, Rutgers University, Piscataway, NJ, USA
| | - Alison I. Bernstein
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
32
|
Kumar K, Anjali S, Sharma S. Effect of lead exposure on histone modifications: A review. J Biochem Mol Toxicol 2024; 38:e23547. [PMID: 37867311 DOI: 10.1002/jbt.23547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/21/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023]
Abstract
Lead at any levels can result in detrimental health effects affecting various organ systems. These systematic manifestations under Pb exposure and the underlying probable pathophysiological mechanisms have not been elucidated completely. With advancements in molecular research under Pb exposure, epigenetics is one of the emerging field that has opened many possibilities for appreciating the role of Pb exposure in modulating gene expression profiles. In terms of epigenetic alterations reported in Pb toxicity, DNA methylation, and microRNA alterations are extensively explored in both experimental and epidemiological studies, however, the understanding of histone modifications under Pb exposure is still in its infant stage limited to experimental models. In this review, we aim to present a synoptic view of histone modifications explored in relation to Pb exposure attempting to bring out this potential lacunae in research. The scarcity of studies associating histone modifications with Pb toxicity, and the paucity of their validation in human cohort further emphasizes the strong research potential of this field. We summarize the review by presenting our hypotheses regarding the involvement of these histone modification in various diseases modalities associated with Pb toxicity.
Collapse
Affiliation(s)
- Kanishka Kumar
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Sudha Anjali
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| | - Shailja Sharma
- Department of Biochemistry, AIIMS Jodhpur, Jodhpur, Rajasthan, India
| |
Collapse
|
33
|
Nohesara S, Abdolmaleky HM, Thiagalingam S, Zhou JR. Gut microbiota defined epigenomes of Alzheimer's and Parkinson's diseases reveal novel targets for therapy. Epigenomics 2024; 16:57-77. [PMID: 38088063 PMCID: PMC10804213 DOI: 10.2217/epi-2023-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/06/2024] Open
Abstract
The origins of Alzheimer's disease (AD) and Parkinson's disease (PD) involve genetic mutations, epigenetic changes, neurotoxin exposure and gut microbiota dysregulation. The gut microbiota's dynamic composition and its metabolites influence intestinal and blood-brain barrier integrity, contributing to AD and PD development. This review explores protein misfolding, aggregation and epigenetic links in AD and PD pathogenesis. It also highlights the role of a leaky gut and the microbiota-gut-brain axis in promoting these diseases through inflammation-induced epigenetic alterations. In addition, we investigate the potential of diet, probiotics and microbiota transplantation for preventing and treating AD and PD via epigenetic modifications, along with a discussion related to current challenges and future considerations. These approaches offer promise for translating research findings into practical clinical applications.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boson, MA 02215, USA
| |
Collapse
|
34
|
Neufeld LM, Ho E, Obeid R, Tzoulis C, Green M, Huber LG, Stout M, Griffiths JC. Advancing nutrition science to meet evolving global health needs. Eur J Nutr 2023; 62:1-16. [PMID: 38015211 PMCID: PMC10684707 DOI: 10.1007/s00394-023-03276-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/04/2023] [Indexed: 11/29/2023]
Abstract
Populations in crisis!A global overview of health challenges and policy efforts within the scope of current nutrition issues, from persistent forms of undernutrition, including micronutrient deficiency, to diet-related chronic diseases. Nutrition science has evolved from a therapeutic and prevention emphasis to include a focus on diets and food systems. Working and consensus definitions are needed, as well as guidance related to healthy diets and the emerging issues that require further research and consensus building. Between nutrient deficiency and chronic disease, nutrition has evolved from focusing exclusively on the extremes of overt nutrient deficiency and chronic disease prevention, to equipping bodies with the ability to cope with physiologic, metabolic, and psychological stress. Just what is 'optimal nutrition', is that a valid public health goal, and what terminology is being provided by the nutrition science community? Nutrition research on 'healthspan', resilience, and intrinsic capacity may provide evidence to support optimal nutrition. Finally, experts provide views on ongoing challenges of achieving consensus or acceptance of the various definitions and interventions for health promotion, and how these can inform government health policies.Nutrition topics that receive particular focus in these proceedings include choline, NAD-replenishment in neurodegenerative diseases, and xanthophyll carotenoids. Choline is a crucial nutrient essential for cellular metabolism, requiring consumption from foods or supplements due to inadequate endogenous synthesis. Maternal choline intake is vital for fetal and infant development to prevent neural tube defects. Neurodegenerative diseases pose a growing health challenge, lacking effective therapies. Nutrition, including NAD-replenishing nutrients, might aid prevention. Emerging research indicates xanthophyll carotenoids enhance vision and cognition, potentially impacting age-related diseases.
Collapse
Affiliation(s)
- Lynnette M Neufeld
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Emily Ho
- Linus Pauling Institute and College of Health, Oregon State University, Corvallis, OR, USA
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, University Hospital of the Saarland, Homburg, Germany
| | - Charalampos Tzoulis
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Medicine, K.G. Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Marina Green
- Nutrition Research Centre Ireland, South East Technological University, Waterford, Ireland
| | - Luke G Huber
- Council for Responsible Nutrition, Washington, DC, USA
| | | | - James C Griffiths
- Council for Responsible Nutrition-International, Washington, DC, USA.
| |
Collapse
|
35
|
Berven H, Kverneng S, Sheard E, Søgnen M, Af Geijerstam SA, Haugarvoll K, Skeie GO, Dölle C, Tzoulis C. NR-SAFE: a randomized, double-blind safety trial of high dose nicotinamide riboside in Parkinson's disease. Nat Commun 2023; 14:7793. [PMID: 38016950 PMCID: PMC10684646 DOI: 10.1038/s41467-023-43514-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD) replenishment therapy using nicotinamide riboside (NR) shows promise for Parkinson's disease (PD) and other neurodegenerative disorders. However, the optimal dose of NR remains unknown, and doses exceeding 2000 mg daily have not been tested in humans. To evaluate the safety of high-dose NR therapy, we conducted a single-center, randomized, placebo-controlled, double-blind, phase I trial on 20 individuals with PD, randomized 1:1 on NR 1500 mg twice daily (n = 10) or placebo (n = 10) for four weeks. The trial was conducted at the Department of Neurology, Haukeland University Hospital, Bergen, Norway. The primary outcome was safety, defined as the frequency of moderate and severe adverse events. Secondary outcomes were tolerability defined as frequency of mild adverse events, change in the whole blood and urine NAD metabolome, and change in the clinical severity of PD, measured by MDS-UPDRS. All 20 participants completed the trial. The trial met all prespecified outcomes. NR therapy was well tolerated with no moderate or severe adverse events, and no significant difference in mild adverse events. NR therapy was associated with clinical improvement of total MDS-UPDRS scores. However, this change was also associated with a shorter interval since the last levodopa dose. NR greatly augmented the blood NAD metabolome with up to 5-fold increase in blood NAD+ levels. While NR-recipients exhibited a slight initial rise in serum homocysteine levels, the integrity of the methyl donor pool remained intact. Our results support extending the dose range of NR in phase II clinical trials to 3000 mg per day, with appropriate safety monitoring. Clinicaltrials.gov identifier: NCT05344404.
Collapse
Affiliation(s)
- Haakon Berven
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Simon Kverneng
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Erika Sheard
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Mona Søgnen
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | | | - Kristoffer Haugarvoll
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
| | - Geir-Olve Skeie
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
| | - Christian Dölle
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway.
| | - Charalampos Tzoulis
- Neuro-SysMed, Department of Neurology, Haukeland University Hospital, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G. Jebsen Center for Translational Research in Parkinson's disease, University of Bergen, Pb 7804, 5020, Bergen, Norway.
| |
Collapse
|
36
|
Mir FA, Amanullah A, Jain BP, Hyderi Z, Gautam A. Neuroepigenetics of ageing and neurodegeneration-associated dementia: An updated review. Ageing Res Rev 2023; 91:102067. [PMID: 37689143 DOI: 10.1016/j.arr.2023.102067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Gene expression is tremendously altered in the brain during memory acquisition, recall, and forgetfulness. However, non-genetic factors, including environmental elements, epigenetic changes, and lifestyle, have grabbed significant attention in recent years regarding the etiology of neurodegenerative diseases (NDD) and age-associated dementia. Epigenetic modifications are essential in regulating gene expression in all living organisms in a DNA sequence-independent manner. The genes implicated in ageing and NDD-related memory disorders are epigenetically regulated by processes such as DNA methylation, histone acetylation as well as messenger RNA editing machinery. The physiological and optimal state of the epigenome, especially within the CNS of humans, plays an intricate role in helping us adjust to the changing environment, and alterations in it cause many brain disorders, but the mechanisms behind it still need to be well understood. When fully understood, these epigenetic landscapes could act as vital targets for pharmacogenetic rescue strategies for treating several diseases, including neurodegeneration- and age-induced dementia. Keeping this objective in mind, this updated review summarises the epigenetic changes associated with age and neurodegeneration-associated dementia.
Collapse
Affiliation(s)
- Fayaz Ahmad Mir
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Zeeshan Hyderi
- Department of Biotechnology, Alagappa University, Karaikudi, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
37
|
Schaffner SL, Wassouf Z, Hentrich T, Nuesch-Germano M, Kobor MS, Schulze-Hentrich JM. Distinct impacts of alpha-synuclein overexpression on the hippocampal epigenome of mice in standard and enriched environments. Neurobiol Dis 2023; 186:106274. [PMID: 37648037 DOI: 10.1016/j.nbd.2023.106274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/01/2023] Open
Abstract
Elevated alpha-synuclein (SNCA) gene expression is associated with transcriptional deregulation and increased risk of Parkinson's disease, which may be partially ameliorated by environmental enrichment. At the molecular level, there is emerging evidence that excess alpha-synuclein protein (aSyn) impacts the epigenome through direct and/or indirect mechanisms. However, the extents to which the effects of both aSyn and the environment converge at the epigenome and whether epigenetic alterations underpin the preventive effects of environmental factors on transcription remain to be elucidated. Here, we profiled five DNA and histone modifications in the hippocampus of wild-type and transgenic mice overexpressing human SNCA. Mice of each genotype were housed under either standard conditions or in an enriched environment (EE) for 12 months. SNCA overexpression induced hippocampal CpG hydroxymethylation and histone H3K27 acetylation changes that associated with genotype more than environment. Excess aSyn was also associated with genotype- and environment-dependent changes in non-CpG (CpH) DNA methylation and H3K4 methylation. These H3K4 methylation changes included loci where the EE ameliorated the impacts of the transgene as well as loci resistant to the effects of environmental enrichment in transgenic mice. In addition, select H3K4 monomethylation alterations were associated with changes in mRNA expression. Our results suggested an environment-dependent impact of excess aSyn on some functionally relevant parts of the epigenome, and will ultimately enhance our understanding of the molecular etiology of Parkinson's disease and other synucleinopathies.
Collapse
Affiliation(s)
- Samantha L Schaffner
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, 117-2194 Health Sciences Mall, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, V5Z 4H4 Vancouver, BC, Canada.
| | - Zinah Wassouf
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.
| | - Thomas Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
| | | | - Michael S Kobor
- Edwin S. H. Leong Centre for Healthy Aging, Faculty of Medicine, 117-2194 Health Sciences Mall, University of British Columbia, V6T 1Z3 Vancouver, BC, Canada; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, V5Z 4H4 Vancouver, BC, Canada.
| | - Julia M Schulze-Hentrich
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
38
|
Lomeli-Lepe AK, Castañeda-Cabral JL, López-Pérez SJ. Synucleinopathies: Intrinsic and Extrinsic Factors. Cell Biochem Biophys 2023; 81:427-442. [PMID: 37526884 DOI: 10.1007/s12013-023-01154-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
α-Synucleinopathies are a group of neurodegenerative disorders characterized by alterations in α-synuclein (α-syn), a protein associated with membrane phospholipids, whose precise function in normal cells is still unknown. These kinds of diseases are caused by multiple factors, but the regulation of the α-syn gene is believed to play a central role in the pathology of these disorders; therefore, the α-syn gene is one of the most studied genes. α-Synucleinopathies are complex disorders that derive from the interaction between genetic and environmental factors. Here, we offer an update on the landscape of the epigenetic regulation of α-syn gene expression that has been linked with α-synucleinopathies. We also delve into the reciprocal influence between epigenetic modifications and other factors related to these disorders, such as posttranslational modifications, microbiota participation, interactions with lipids, neuroinflammation and oxidative stress, to promote α-syn aggregation by acting on the transcription and/or translation of the α-syn gene.
Collapse
Affiliation(s)
- Alma Karen Lomeli-Lepe
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | - Jose Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, CUCBA, Universidad de Guadalajara, Guadalajara, JAL, México
| | | |
Collapse
|
39
|
Tsalenchuk M, Gentleman SM, Marzi SJ. Linking environmental risk factors with epigenetic mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:123. [PMID: 37626097 PMCID: PMC10457362 DOI: 10.1038/s41531-023-00568-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Sporadic Parkinson's disease (PD) is a progressive neurodegenerative disease, with a complex risk structure thought to be influenced by interactions between genetic variants and environmental exposures, although the full aetiology is unknown. Environmental factors, including pesticides, have been reported to increase the risk of developing the disease. Growing evidence suggests epigenetic changes are key mechanisms by which these environmental factors act upon gene regulation, in disease-relevant cell types. We present a systematic review critically appraising and summarising the current body of evidence of the relationship between epigenetic mechanisms and environmental risk factors in PD to inform future research in this area. Epigenetic studies of relevant environmental risk factors in animal and cell models have yielded promising results, however, research in humans is just emerging. While published studies in humans are currently relatively limited, the importance of the field for the elucidation of molecular mechanisms of pathogenesis opens clear and promising avenues for the future of PD research. Carefully designed epidemiological studies carried out in PD patients hold great potential to uncover disease-relevant gene regulatory mechanisms. Therefore, to advance this burgeoning field, we recommend broadening the scope of investigations to include more environmental exposures, increasing sample sizes, focusing on disease-relevant cell types, and recruiting more diverse cohorts.
Collapse
Affiliation(s)
- Maria Tsalenchuk
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | | | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London, UK.
- Department of Brain Sciences, Imperial College London, London, UK.
| |
Collapse
|
40
|
Cappelletti C, Henriksen SP, Geut H, Rozemuller AJM, van de Berg WDJ, Pihlstrøm L, Toft M. Transcriptomic profiling of Parkinson's disease brains reveals disease stage specific gene expression changes. Acta Neuropathol 2023; 146:227-244. [PMID: 37347276 PMCID: PMC10329075 DOI: 10.1007/s00401-023-02597-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/02/2023] [Accepted: 06/06/2023] [Indexed: 06/23/2023]
Abstract
Parkinson´s disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Aggravation of symptoms is mirrored by accumulation of protein aggregates mainly composed by alpha-synuclein in different brain regions, called Lewy bodies (LB). Previous studies have identified several molecular mechanisms as autophagy and inflammation playing a role in PD pathogenesis. Increased insights into mechanisms involved in early disease stages and driving the progression of the LB pathology are required for the development of disease-modifying strategies. Here, we aimed to elucidate disease stage-specific transcriptomic changes in brain tissue of well-characterized PD and control donors. We collected frontal cortex samples from 84 donors and sequenced both the coding and non-coding RNAs. We categorized our samples into groups based on their degree of LB pathology aiming to recapitulate a central aspect of disease progression. Using an analytical pipeline that corrected for sex, age at death, RNA quality, cell composition and unknown sources of variation, we found major disease stage-specific transcriptomic changes. Gene expression changes were most pronounced in donors at the disease stage when microscopic LB changes first occur in the sampled brain region. Additionally, we identified disease stage-specific enrichment of brain specific pathways and immune mechanisms. On the contrary, we showed that mitochondrial mechanisms are enriched throughout the disease course. Our data-driven approach also suggests a role for several poorly characterized lncRNAs in disease development and progression of PD. Finally, by combining genetic and epigenetic information, we highlighted two genes (MAP4K4 and PHYHIP) as candidate genes for future functional studies. Together our results indicate that transcriptomic dysregulation and associated functional changes are highly disease stage-specific, which has major implications for the study of neurodegenerative disorders.
Collapse
Affiliation(s)
- Chiara Cappelletti
- Department of Mechanical, Electronics and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet-Oslo Metropolitan University, Oslo, Norway
- Department of Research, Innovation and Education, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | | | - Hanneke Geut
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
- Netherlands Brain Bank, Netherlands Institute of Neurosciences, Amsterdam, Netherlands
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam UMC, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Wilma D J van de Berg
- Amsterdam UMC, Section Clinical Neuroanatomy and Biobanking, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit, Amsterdam, Netherlands
| | - Lasse Pihlstrøm
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Mathias Toft
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
41
|
Liu T, Du D, Zhao R, Xie Q, Dong Z. Gut microbes influence the development of central nervous system disorders through epigenetic inheritance. Microbiol Res 2023; 274:127440. [PMID: 37343494 DOI: 10.1016/j.micres.2023.127440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Central nervous system (CNS) disorders, such as depression, anxiety, and Alzheimer's disease (AD), affect quality of life of patients and pose significant economic and social burdens worldwide. Due to their obscure and complex pathogeneses, current therapies for these diseases have limited efficacy. Over the past decade, the gut microbiome has been shown to exhibit direct and indirect influences on the structure and function of the CNS, affecting multiple pathological pathways. In addition to the direct interactions between the gut microbiota and CNS, the gut microbiota and their metabolites can regulate epigenetic processes, including DNA methylation, histone modification, and regulation of non-coding RNAs. In this review, we discuss the tripartite relationship among gut microbiota, epigenetic inheritance, and CNS disorders. We suggest that gut microbes and their metabolites influence the pathogenesis of CNS disorders at the epigenetic level, which may inform the development of effective therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Tianyou Liu
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Dongru Du
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Rui Zhao
- West China School of Medicine, Sichuan University, Chengdu 610072, PR China
| | - Qinglian Xie
- Department of Outpatient, West China Hospital of Sichuan University, Chengdu 610041, PR China
| | - Zaiquan Dong
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
42
|
Song H, Chen J, Huang J, Sun P, Liu Y, Xu L, Wei C, Mu X, Lu X, Wang W, Zhang N, Shang M, Mo M, Zhang W, Zhao H, Han F. Epigenetic modification in Parkinson's disease. Front Cell Dev Biol 2023; 11:1123621. [PMID: 37351278 PMCID: PMC10283008 DOI: 10.3389/fcell.2023.1123621] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/18/2023] [Indexed: 06/24/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder caused by genetic, epigenetic, and environmental factors. Recent advance in genomics and epigenetics have revealed epigenetic mechanisms in PD. These epigenetic modifications include DNA methylation, post-translational histone modifications, chromatin remodeling, and RNA-based mechanisms, which regulate cellular functions in almost all cells. Epigenetic alterations are involved in multiple aspects of neuronal development and neurodegeneration in PD. In this review, we discuss current understanding of the epigenetic mechanisms that regulate gene expression and neural degeneration and then highlight emerging epigenetic targets and diagnostic and therapeutic biomarkers for treating or preventing PD.
Collapse
Affiliation(s)
- Hao Song
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Jin Huang
- Laboratory of Basic Medical Research, PLA Strategic Support Force Characteristic Medical Centre, Beijing, China
| | - Peng Sun
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yanming Liu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Li Xu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xin Mu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Xianjie Lu
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Wei Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Nan Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Miwei Shang
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mei Mo
- The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Wei Zhang
- Affiliated Yidu Central Hospital, Weifang Medical University, Weifang, China
| | - Hui Zhao
- Zhengzhou Revogene Scientific Co., LTD., Zhengzhou, Henan, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/The Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Zhengzhou Revogene Scientific Co., LTD., Zhengzhou, Henan, China
| |
Collapse
|
43
|
Toker L, Nido GS, Tzoulis C. Not every estimate counts - evaluation of cell composition estimation approaches in brain bulk tissue data. Genome Med 2023; 15:41. [PMID: 37287013 DOI: 10.1186/s13073-023-01195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/22/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Variation in cell composition can dramatically impact analyses in bulk tissue samples. A commonly employed approach to mitigate this issue is to adjust statistical models using estimates of cell abundance derived directly from omics data. While an arsenal of estimation methods exists, the applicability of these methods to brain tissue data and whether or not cell estimates can sufficiently account for confounding cellular composition has not been adequately assessed. METHODS We assessed the correspondence between different estimation methods based on transcriptomic (RNA sequencing, RNA-seq) and epigenomic (DNA methylation and histone acetylation) data from brain tissue samples of 49 individuals. We further evaluated the impact of different estimation approaches on the analysis of H3K27 acetylation chromatin immunoprecipitation sequencing (ChIP-seq) data from entorhinal cortex of individuals with Alzheimer's disease and controls. RESULTS We show that even closely adjacent tissue samples from the same Brodmann area vary greatly in their cell composition. Comparison across different estimation methods indicates that while different estimation methods applied to the same data produce highly similar outcomes, there is a surprisingly low concordance between estimates based on different omics data modalities. Alarmingly, we show that cell type estimates may not always sufficiently account for confounding variation in cell composition. CONCLUSIONS Our work indicates that cell composition estimation or direct quantification in one tissue sample should not be used as a proxy to the cellular composition of another tissue sample from the same brain region of an individual-even if the samples are directly adjacent. The highly similar outcomes observed among vastly different estimation methods, highlight the need for brain benchmark datasets and better validation approaches. Finally, unless validated through complementary experiments, the interpretation of analyses outcomes based on data confounded by cell composition should be done with great caution, and ideally avoided all together.
Collapse
Affiliation(s)
- Lilah Toker
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Gonzalo S Nido
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | - Charalampos Tzoulis
- Neuro-SysMed Center of Excellence, Department of Neurology, Department of Clinical Medicine, Haukeland University Hospital, University of Bergen, 5021, Bergen, Norway.
- Department of Clinical Medicine, University of Bergen, Pb 7804, 5020, Bergen, Norway.
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway.
| |
Collapse
|
44
|
McClarty BM, Chakraborty S, Rodriguez G, Dong H. Histone deacetylase 1 regulates haloperidol-induced motor side effects in aged mice. Behav Brain Res 2023; 447:114420. [PMID: 37028517 PMCID: PMC10586515 DOI: 10.1016/j.bbr.2023.114420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Antipsychotic drugs prescribed to elderly patients with neuropsychiatric disorders often experience severe extrapyramidal side effects. Previous studies from our group suggest that changes in histone modifications during aging increase the risk for antipsychotic drug side effects, because co-administration of antipsychotics with class 1 histone deacetylase (HDAC) inhibitors could mitigate the severity of motor side effects in aged mice. However, which HDAC subtype contributes to the age-related sensitivity to antipsychotic drug side effects is unknown. METHODS In this study, we overexpressed histone deacetylase type 1(HDAC1) in the striatum of 3-month-old mice and knocked down HDAC 1 in the striatum of 21-month-old mice by microinjection of AAV9-HDAC1-GFP or AAV9-CRISPR/Cas9-HDAC1-GFP vectors. Four weeks after the viral-vector delivery, the typical antipsychotic drug haloperidol was administered daily for 14 days, followed by motor function assessments through the open field, rotarod, and catalepsy behavioral tests. RESULTS Young mice with overexpressed HDAC1 showed increased cataleptic behavior induced by haloperidol administration, which is associated with the increased HDAC1 level in the striatum. In contrast, aged mice with HDAC1 knocked down rescued locomotor activity, motor coordination, and decreased cataleptic behavior induced by haloperidol administration, which is associated with decreased HDAC1 level in the striatum. CONCLUSIONS Our results suggest that HDAC1 is a critical regulator in haloperidol-induced severe motor side effects in aged mice. Repression of HDAC1 expression in the striatum of aged mice could mitigate typical antipsychotic drug-induced motor side effects.
Collapse
Affiliation(s)
- Bryan M McClarty
- Departments of Psychiatry and Behavioral Sciences, and Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Saikat Chakraborty
- Departments of Psychiatry and Behavioral Sciences, and Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Guadalupe Rodriguez
- Departments of Psychiatry and Behavioral Sciences, and Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA
| | - Hongxin Dong
- Departments of Psychiatry and Behavioral Sciences, and Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 7-103, Chicago, IL 60611, USA.
| |
Collapse
|
45
|
Uppala SN, Tryphena KP, Naren P, Srivastava S, Singh SB, Khatri DK. Involvement of miRNA on Epigenetics landscape of Parkinson's disease: From pathogenesis to therapeutics. Mech Ageing Dev 2023:111826. [PMID: 37268278 DOI: 10.1016/j.mad.2023.111826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/04/2023]
Abstract
The development of novel therapeutics for the effective management of Parkinson's disease (PD) is undertaken seriously by the scientific community as the burden of PD continues to increase. Several molecular pathways are being explored to identify novel therapeutic targets. Epigenetics is strongly implicated in several neurodegenerative diseases (NDDs) including PD. Several epigenetic mechanisms were found to dysregulated in various studies. These mechanisms are regulated by several miRNAs which are associated with a variety of pathogenic mechanisms in PD. This concept is extensively investigated in several cancers but not well documented in PD. Identifying the miRNAs with dual role i.e., regulation of epigenetic mechanisms as well as modulation of proteins implicated in the pathogenesis of PD could pave way for the development of novel therapeutics to target them. These miRNAs could also serve as potential biomarkers and can be useful in the early diagnosis or assessment of disease severity. In this article we would like to discuss about various epigenetic changes operating in PD and how miRNAs are involved in the regulation of these mechanisms and their potential to be novel therapeutic targets in PD.
Collapse
Affiliation(s)
- Sai Nikhil Uppala
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Kamatham Pushpa Tryphena
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Padmashri Naren
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037
| | - Shashi Bala Singh
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| | - Dharmendra Kumar Khatri
- Molecular and cellular neuroscience lab, Department of pharmacology and toxicology, National Institute of Pharmaceutical Education and Research (NIPER)- Hyderabad, Telangana-500037.
| |
Collapse
|
46
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
47
|
Gladkova MG, Leidmaa E, Anderzhanova EA. Epidrugs in the Therapy of Central Nervous System Disorders: A Way to Drive on? Cells 2023; 12:1464. [PMID: 37296584 PMCID: PMC10253154 DOI: 10.3390/cells12111464] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
The polygenic nature of neurological and psychiatric syndromes and the significant impact of environmental factors on the underlying developmental, homeostatic, and neuroplastic mechanisms suggest that an efficient therapy for these disorders should be a complex one. Pharmacological interventions with drugs selectively influencing the epigenetic landscape (epidrugs) allow one to hit multiple targets, therefore, assumably addressing a wide spectrum of genetic and environmental mechanisms of central nervous system (CNS) disorders. The aim of this review is to understand what fundamental pathological mechanisms would be optimal to target with epidrugs in the treatment of neurological or psychiatric complications. To date, the use of histone deacetylases and DNA methyltransferase inhibitors (HDACis and DNMTis) in the clinic is focused on the treatment of neoplasms (mainly of a glial origin) and is based on the cytostatic and cytotoxic actions of these compounds. Preclinical data show that besides this activity, inhibitors of histone deacetylases, DNA methyltransferases, bromodomains, and ten-eleven translocation (TET) proteins impact the expression of neuroimmune inflammation mediators (cytokines and pro-apoptotic factors), neurotrophins (brain-derived neurotropic factor (BDNF) and nerve growth factor (NGF)), ion channels, ionotropic receptors, as well as pathoproteins (β-amyloid, tau protein, and α-synuclein). Based on this profile of activities, epidrugs may be favorable as a treatment for neurodegenerative diseases. For the treatment of neurodevelopmental disorders, drug addiction, as well as anxiety disorders, depression, schizophrenia, and epilepsy, contemporary epidrugs still require further development concerning a tuning of pharmacological effects, reduction in toxicity, and development of efficient treatment protocols. A promising strategy to further clarify the potential targets of epidrugs as therapeutic means to cure neurological and psychiatric syndromes is the profiling of the epigenetic mechanisms, which have evolved upon actions of complex physiological lifestyle factors, such as diet and physical exercise, and which are effective in the management of neurodegenerative diseases and dementia.
Collapse
Affiliation(s)
- Marina G. Gladkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Este Leidmaa
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, 53127 Bonn, Germany
- Institute of Biomedicine and Translational Medicine, Department of Physiology, University of Tartu, 50411 Tartu, Estonia
| | | |
Collapse
|
48
|
Affiliation(s)
- Jian-Nan Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Qian Li
- Beijing Key Laboratory of Neural Regeneration & Repair, Capital Medical University, Beijing, 100069, China
- Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Capital Medical University, Beijing, 100069, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Neural Regeneration & Repair, Capital Medical University, Beijing, 100069, China
| |
Collapse
|
49
|
Lee AJ, Kim C, Park S, Joo J, Choi B, Yang D, Jun K, Eom J, Lee SJ, Chung SJ, Rissman RA, Chung J, Masliah E, Jung I. Characterization of altered molecular mechanisms in Parkinson's disease through cell type-resolved multiomics analyses. SCIENCE ADVANCES 2023; 9:eabo2467. [PMID: 37058563 PMCID: PMC10104466 DOI: 10.1126/sciadv.abo2467] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. However, cell type-dependent transcriptional regulatory programs responsible for PD pathogenesis remain elusive. Here, we establish transcriptomic and epigenomic landscapes of the substantia nigra by profiling 113,207 nuclei obtained from healthy controls and patients with PD. Our multiomics data integration provides cell type annotation of 128,724 cis-regulatory elements (cREs) and uncovers cell type-specific dysregulations in cREs with a strong transcriptional influence on genes implicated in PD. The establishment of high-resolution three-dimensional chromatin contact maps identifies 656 target genes of dysregulated cREs and genetic risk loci, uncovering both potential and known PD risk genes. Notably, these candidate genes exhibit modular gene expression patterns with unique molecular signatures in distinct cell types, highlighting altered molecular mechanisms in dopaminergic neurons and glial cells including oligodendrocytes and microglia. Together, our single-cell transcriptome and epigenome reveal cell type-specific disruption in transcriptional regulations related to PD.
Collapse
Affiliation(s)
- Andrew J. Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Changyoun Kim
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seongwan Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jaegeon Joo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Baekgyu Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Dongchan Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kyoungho Jun
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyun Eom
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Department of Medicine, Neuroscience Research Institute, Convergence Research Center for Dementia, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Neuramedy Co. Ltd., Seoul 04796, Republic of Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Robert A. Rissman
- Department Neurosciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jongkyeong Chung
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Eliezer Masliah
- Molecular Neuropathology Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
50
|
Pfab A, Belikov S, Keuper M, Jastroch M, Mannervik M. Inhibition of mitochondrial transcription by the neurotoxin MPP . Exp Cell Res 2023; 425:113536. [PMID: 36858342 DOI: 10.1016/j.yexcr.2023.113536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/02/2023]
Abstract
The neurotoxin MPP+ triggers cell death of dopamine neurons and induces Parkinson's disease symptoms in mice and men, but the immediate transcriptional response to this neurotoxin has not been studied. We therefore treated human SH-SY5Y cells with a low dose (0.1 mM) of MPP+ and measured the effect on nascent transcription by precision run-on sequencing (PRO-seq). We found that transcription of the mitochondrial genome was significantly reduced already after 30 min, whereas nuclear gene transcription was unaffected. Inhibition of respiratory complex I by MPP+ led to reduced ATP production, that may explain the diminished activity of mitochondrial RNA polymerase. Our results show that MPP+ has a direct effect on mitochondrial function and transcription, and that other gene expression or epigenetic changes induced by this neurotoxin are secondary effects that reflect a cellular adaptation program.
Collapse
Affiliation(s)
- Alexander Pfab
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Sergey Belikov
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Michaela Keuper
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Martin Jastroch
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Mattias Mannervik
- Dept. Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden.
| |
Collapse
|