1
|
Yeapuri P, Machhi J, Foster EG, Kadry R, Bhattarai S, Lu Y, Sil S, Sapkota R, Srivastava S, Kumar M, Ikezu T, Poluektova LY, Gendelman HE, Mosley RL. Amyloid precursor protein and presenilin-1 knock-in immunodeficient mice exhibit intraneuronal Aβ pathology, microgliosis, and extensive neuronal loss. Alzheimers Dement 2025; 21:e70084. [PMID: 40195277 PMCID: PMC11975631 DOI: 10.1002/alz.70084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 04/09/2025]
Abstract
INTRODUCTION Transgenic mice overexpressing familial Alzheimer's disease (AD) mutations (FAD) show non-physiological traits, and their immunocompetent backgrounds limit their use in AD immunotherapy research. Preclinical models that reflect human immune responses in AD are needed. METHODS Using CRISPR-Cas9, we developed single (NA) and double (NAPS) knock-in (KI) amyloid precursor protein (APP)KM670,671NL (Swedish) and presenilin 1 (PS 1)M146VFAD mutations on an immunodeficient NOG (NOD.Cg-PrkdcscidIl2rgtm1Sug/JicTac) background. The models were confirmed by Sanger sequencing and evaluated for AD-like pathology. RESULTS Both NA and NAPS mice developed pathology without overexpression artifacts. Mutation-induced upregulation of APP-CTF-β led to intraneuronal human amyloid beta (Aβ) (6E10) deposits and amyloid-associated microgliosis as early as 3 months, which increased with age. The addition of the PS 1M146V mutation doubled the amyloid load. The models displayed broad neuronal loss, resulting in brain atrophy in older mice. DISCUSSION These models replicate intraneuronal amyloid pathology and, with human immune reconstitution potential, enable novel studies of human immune responses in AD. HIGHLIGHTS A novel Alzheimer's disease (AD) knock-in (KI) mouse was developed and characterized on an immunodeficient NOG background. The model provides a platform for human immune studies and the evaluation of immunotherapies for AD. The KI mice demonstrate intraneuronal Aβ deposits and amyloid-associated microglial reactions. KI mice demonstrate extensive neuronal loss. Human immune reconstitution enables studies of infectious AD co-morbidities, such as the human immunodeficiency and herpes simplex viruses.
Collapse
Affiliation(s)
- Pravin Yeapuri
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jatin Machhi
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Emma G. Foster
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Rana Kadry
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shaurav Bhattarai
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Yaman Lu
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Susmita Sil
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Roshan Sapkota
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Shefali Srivastava
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Mohit Kumar
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Tsuneya Ikezu
- Department of NeuroscienceMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Larisa Y. Poluektova
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Howard E. Gendelman
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Rodney Lee Mosley
- Department of Pharmacology and Experimental NeuroscienceCenter for Neurodegenerative DisordersCollege of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
2
|
Li L, Gao W, Ren N, Chen L. IL-2/anti-IL-2 complexes attenuates neuroinflammation and neurodegeneration in mice of experimental Parkinson's disease. Brain Res Bull 2025; 223:111273. [PMID: 39999936 DOI: 10.1016/j.brainresbull.2025.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with motor and non-motor symptoms being its main clinical manifestations. Neuroinflammation has been shown to involve in pathogenesis of PD. Regulatory T cells (Tregs) in PD exhibited reduction in number and suppressive activity. Existing methods to increase the Tregs remains challenging for clinical application because of the difficulty in Tregs expanding or serious side-effects. Therefore, new approaches still need to be explored to balance the amount and activity of Tregs. In this study, we assessed the protective effects of IL-2/anti-IL-2 complexes (IL-2C) on mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). And the results showed that IL-2C significantly increased the number of Tregs both in spleen and brain, accompanied by reduced nigral dopaminergic neuron loss and behavioral defects. Besides, IL-2C also attenuated neuroinflammation as observed by diminished glial activation, fewer infiltration of CD4+ and CD8+ T cells and reduced pro-inflammatory cytokines releasing in the nigral region. Moreover, the protective effects of IL-2C were abolished by pre-treatment of anti-CD25 antibody (PC61), which was used to delete the Tregs. In summary, our results demonstrate that IL-2C-induced Tregs expansion attenuates the dopaminergic neurons loss and the neuroinflammatory response in vivo, suggesting that IL-2C maybe a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Lanxin Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China
| | - Weiwei Gao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Department of Neurology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, China; Tianjin Neurosurgical Institute, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China.
| | - Ning Ren
- Department of Neurology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, China; Tianjin Neurosurgical Institute, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China
| | - Lei Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Department of Neurology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, China; Tianjin Neurosurgical Institute, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
3
|
Duggan MR, Morgan DG, Price BR, Rajbanshi B, Martin-Peña A, Tansey MG, Walker KA. Immune modulation to treat Alzheimer's disease. Mol Neurodegener 2025; 20:39. [PMID: 40165251 PMCID: PMC11956194 DOI: 10.1186/s13024-025-00828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Immune mechanisms play a fundamental role in Alzheimer's disease (AD) pathogenesis, suggesting that approaches which target immune cells and immunologically relevant molecules can offer therapeutic opportunities beyond the recently approved amyloid beta monoclonal therapies. In this review, we provide an overview of immunomodulatory therapeutics in development, including their preclinical evidence and clinical trial results. Along with detailing immune processes involved in AD pathogenesis and highlighting how these mechanisms can be therapeutically targeted to modify disease progression, we summarize knowledge gained from previous trials of immune-based interventions, and provide a series of recommendations for the development of future immunomodulatory therapeutics to treat AD.
Collapse
Affiliation(s)
- Michael R Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA
| | - David G Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | | | - Binita Rajbanshi
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Alfonso Martin-Peña
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
Pfeffer LK, Fischbach F, Heesen C, Friese MA. Current state and perspectives of CAR T cell therapy in central nervous system diseases. Brain 2025; 148:723-736. [PMID: 39530593 DOI: 10.1093/brain/awae362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
B cell-directed CAR T cell therapy has fundamentally changed the treatment of haematological malignancies, and its scope of application is rapidly expanding to include other diseases such as solid tumours or autoimmune disorders. Therapy-refractoriness remains an important challenge in various inflammatory and non-inflammatory disorders of the CNS. The reasons for therapy failure are diverse and include the limited access current therapies have to the CNS, as well as enormous inter- and intra-individual disease heterogeneity. The tissue-penetrating properties of CAR T cells make them a promising option for overcoming this problem and tackling pathologies directly within the CNS. First application of B cell-directed CAR T cells in neuromyelitis optica spectrum disorder and multiple sclerosis patients has recently revealed promising outcomes, expanding the potential of CAR T cell therapy to encompass CNS diseases. Additionally, the optimization of CAR T cells for the therapy of gliomas is a growing field. As a further prospect, preclinical data reveal the potential benefits of CAR T cell therapy in the treatment of primary neurodegenerative diseases such as Alzheimer's disease. Considering the biotechnological optimizations in the field of T cell engineering, such as extension to target different antigens or variation of the modified T cell subtype, new and promising fields of CAR T cell application are rapidly opening up. These innovations offer the potential to address the complex pathophysiological properties of CNS diseases. To use CAR T cell therapy optimally to treat CNS diseases in the future while minimizing therapy risks, further mechanistic research and prospective controlled trials are needed to assess seriously the disease and patient-specific risk-benefit ratio.
Collapse
Affiliation(s)
- Lena Kristina Pfeffer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Felix Fischbach
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christoph Heesen
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
5
|
Kostic M, Zivkovic N, Cvetanovic A, Basic J, Stojanovic I. Dissecting the immune response of CD4 + T cells in Alzheimer's disease. Rev Neurosci 2025; 36:139-168. [PMID: 39238424 DOI: 10.1515/revneuro-2024-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
The formation of amyloid-β (Aβ) plaques is a neuropathological hallmark of Alzheimer's disease (AD), however, these pathological aggregates can also be found in the brains of cognitively unimpaired elderly population. In that context, individual variations in the Aβ-specific immune response could be key factors that determine the level of Aβ-induced neuroinflammation and thus the propensity to develop AD. CD4+ T cells are the cornerstone of the immune response that coordinate the effector functions of both adaptive and innate immunity. However, despite intensive research efforts, the precise role of these cells during AD pathogenesis is still not fully elucidated. Both pathogenic and beneficial effects have been observed in various animal models of AD, as well as in humans with AD. Although this functional duality of CD4+ T cells in AD can be simply attributed to the vast phenotype heterogeneity of this cell lineage, disease stage-specific effect have also been proposed. Therefore, in this review, we summarized the current understanding of the role of CD4+ T cells in the pathophysiology of AD, from the aspect of their antigen specificity, activation, and phenotype characteristics. Such knowledge is of practical importance as it paves the way for immunomodulation as a therapeutic option for AD treatment, given that currently available therapies have not yielded satisfactory results.
Collapse
Affiliation(s)
- Milos Kostic
- Department of Immunology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Nikola Zivkovic
- Department of Pathology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ana Cvetanovic
- Department of Oncology, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Jelena Basic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| | - Ivana Stojanovic
- Department of Biochemistry, Medical Faculty of Nis, University of Nis, Blvd. dr Zorana Djindjica 81, Nis, 18000, Serbia
| |
Collapse
|
6
|
Abbott V, Housden BE, Houldsworth A. Could immunotherapy and regulatory T cells be used therapeutically to slow the progression of Alzheimer's disease? Brain Commun 2025; 7:fcaf092. [PMID: 40078868 PMCID: PMC11896979 DOI: 10.1093/braincomms/fcaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Alzheimer's disease and other cognitive impairments are a growing problem in the healthcare world with the ageing population. There are currently no effective treatments available; however, it has been suggested that targeting neuroinflammation may be a successful approach in slowing the progression of neurodegeneration. Reducing the destructive hyperinflammatory pathology to maintain homeostasis in neural tissue is a promising option to consider. This review explores the mechanisms behind neuroinflammation and the effectiveness of immunotherapy in slowing the progression of cognitive decline in patients with Alzheimer's disease. The key components of neuroinflammation in Alzheimer's disease researched are microglia, astrocytes, cytokines and CD8+ effector T cells. The role of oxidative stress on modulating regulatory T cells and some of the limitations of regulatory T cell-based therapies are also explored. Increasing regulatory T cells can decrease activation of microglia, proinflammatory cytokines and astrocytes; however, it can also increase levels of inflammatory cytokines. There is a complex network of regulatory T cell interactions that reduce Alzheimer's disease pathology, which is not fully understood. Exploring the current literature, further research into the use of immunotherapy in Alzheimer's disease is vital to determine the potential of these techniques; however, there is sufficient evidence to suggest that increasing regulatory T cells count does prevent Alzheimer's disease symptoms and pathology in patients with Alzheimer's disease. Some exciting innovative therapies are muted to explore in the future. The function of regulatory T cells in the presence of reactive oxygen species and oxidative stress should be investigated further in patients with neurogenerative disorders to ascertain if combination therapies could reduce oxidative stress while also enhancing regulatory T cells function. Could methods of immunotherapy infuse exogenous functional Tregs or enhance the immune environment in favour of endogenous regulatory T cells differentiation, thus reducing neuroinflammation in neurodegenerative pathology, inhibiting the progression of Alzheimer's disease?
Collapse
Affiliation(s)
- Victoria Abbott
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| | - Benjamin E Housden
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK
| | - Annwyne Houldsworth
- Neuroscience, Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
- Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter EX2 4TH, UK
| |
Collapse
|
7
|
Siebrand CJ, Bergo NJ, Lee S, Andersen JK, Walton CC. Chimeric Antigen Receptors Discriminate Between Tau and Distinct Amyloid-Beta Species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.05.636350. [PMID: 39974919 PMCID: PMC11838580 DOI: 10.1101/2025.02.05.636350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The lack of a definitive cure for Alzheimer's disease (AD) is fueling the search for innovative therapeutic strategies. Having revolutionized cancer immunotherapy, immune cell engineering with chimeric antigen receptors (CAR) is being explored to target AD. Whether CARs can recognize distinct amyloid-β (Aβ) species and tau neurofibrillary tangles (NFTs)-hallmark pathologies of AD-remains unclear. To investigate this, we engineered CARs based on AD antibodies targeting tau (E2814), Aβ (Lecanemab and Aducanumab), and truncated pyroglutamate form of Aβ (Aβp3-42; Donanemab and Remternetug). To evaluate CAR function, we established the murine DO11.10 hybridoma T-cell line as a practical and scalable testing platform. Our findings demonstrate that CARs can detect and discriminate between tau preformed fibrils (PFFs), Aβ 1-42 , and Aβp3-42 aggregates. This highlights the potential of repurposing AD antibodies for CAR-based therapies to selectively target tau NFTs and distinct forms of Aβ senile plaques.
Collapse
|
8
|
Elyaman W, Stern LJ, Jiang N, Dressman D, Bradley P, Klatzmann D, Bradshaw EM, Farber DL, Kent SC, Chizari S, Funk K, Devanand D, Thakur KT, Raj T, Dalahmah OA, Sarkis RA, Weiner HL, Shneider NA, Przedborski S. Exploring the role of T cells in Alzheimer's and other neurodegenerative diseases: Emerging therapeutic insights from the T Cells in the Brain symposium. Alzheimers Dement 2025; 21:e14548. [PMID: 39868844 PMCID: PMC11851166 DOI: 10.1002/alz.14548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/02/2024] [Accepted: 12/21/2024] [Indexed: 01/28/2025]
Abstract
This proceedings article summarizes the inaugural "T Cells in the Brain" symposium held at Columbia University. Experts gathered to explore the role of T cells in neurodegenerative diseases. Key topics included characterization of antigen-specific immune responses, T cell receptor (TCR) repertoire, microbial etiology in Alzheimer's disease (AD), and microglia-T cell crosstalk, with a focus on how T cells affect neuroinflammation and AD biomarkers like amyloid beta and tau. The symposium also examined immunotherapies for AD, including the Valacyclovir Treatment of Alzheimer's Disease (VALAD) trial, and two clinical trials leveraging regulatory T cell approaches for multiple sclerosis and amyotrophic lateral sclerosis therapy. Additionally, single-cell RNA/TCR sequencing of T cells and other immune cells provided insights into immune dynamics in neurodegenerative diseases. This article highlights key findings from the symposium and outlines future research directions to further understand the role of T cells in neurodegeneration, offering innovative therapeutic approaches for AD and other neurodegenerative diseases. HIGHLIGHTS: Researchers gathered to discuss approaches to study T cells in brain disorders. New technologies allow high-throughput screening of antigen-specific T cells. Microbial infections can precede several serious and chronic neurological diseases. Central and peripheral T cell responses shape neurological disease pathology. Immunotherapy can induce regulatory T cell responses in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Wassim Elyaman
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Lawrence J. Stern
- Department of Pathology, and Immunology and Microbiology ProgramUMass Chan Medical SchoolWorcesterMassachusettsUSA
| | - Ning Jiang
- Department of BioengineeringInstitute for Immunology and Immune HealthCenter for Cellular ImmunotherapiesAbramson Cancer CenterInstitute for RNA InnovationCenter for Precision Engineering for HealthUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Dallin Dressman
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Philip Bradley
- Computational Biology ProgramPublic Health Sciences DivisionFred Hutchinson Cancer CenterSeattleWashingtonUSA
| | - David Klatzmann
- INSERM UMRS 959Immunology‐Immunopathology‐Immunotherapy (i3)Sorbonne UniversitéParisFrance
| | - Elizabeth M. Bradshaw
- Division of Translational NeurobiologyDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- The Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia University Medical CenterNew YorkNew YorkUSA
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Carol and Gene Ludwig Center for Research on NeurodegenerationDepartment of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Donna L. Farber
- Department of Microbiology and Immunology, and Department of SurgeryColumbia UniversityNew YorkNew YorkUSA
| | - Sally C. Kent
- Diabetes Center of ExcellenceDepartment of MedicineUniversity of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | - Shahab Chizari
- Department of BioengineeringInstitute for Immunology and Immune HealthCenter for Cellular ImmunotherapiesAbramson Cancer CenterInstitute for RNA InnovationCenter for Precision Engineering for HealthUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Kristen Funk
- Department of Biological SciencesUniversity of North Carolina at CharlotteCharlotteNorth CarolinaUSA
| | - Davangere Devanand
- Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Kiran T. Thakur
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Towfique Raj
- Department of Genetics and Genomic Sciences & Icahn Institute for Data Science and Genomic TechnologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Osama Al Dalahmah
- Department of Pathology and Cell BiologyVagelos College of Physicians and SurgeonsColumbia University Irving Medical Center and the New York Presbyterian HospitalNew YorkNew YorkUSA
| | - Rani A. Sarkis
- Epilepsy DivisionDepartment of NeurologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Howard L. Weiner
- Ann Romney Center for Neurologic DiseasesBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Neil A. Shneider
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
- Eleanor and Lou Gehrig ALS CenterColumbia UniversityNew YorkNew YorkUSA
| | - Serge Przedborski
- Center for Motor Neuron Biology and DiseaseColumbia University Medical CenterNew YorkNew YorkUSA
- Department of NeurologyColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
9
|
Suresh V, Rudrakumar M, Kaur A, Ghosh V, Satish P, Verma A, Roy P, Bardhan M. CD34+ Hematopoietic Stem Cell Counts in Alzheimer's Disease: A Meta-Analysis. Diseases 2025; 13:25. [PMID: 39997032 PMCID: PMC11854744 DOI: 10.3390/diseases13020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
PURPOSE To assess the presence and quantity of CD34+ hematopoietic stem cells in patients with Alzheimer's disease (AD) through a meta-analysis. METHODS A systematic search of the databases identified the observational and interventional studies reporting baseline CD34+ cell counts in AD patients. The data on mean counts and the measures of variation were extracted. Standardized mean differences (SMDs) were calculated using common and random effects models to compare the CD34+ cell counts between the AD patients and controls. Heterogeneity among the studies was evaluated using tau2, tau, and I2 statistics. The risk of bias was assessed using the Newcastle-Ottawa Scale and the ROBINS-I tool. PATIENTS Five studies were included, comprising four observational studies and one open-label trial, with a total of 271 participants (139 AD patients and 132 controls). RESULTS The meta-analysis indicated an increase in CD34+ cell counts of the AD patients when compared to the controls. The common effects model showed a moderate SMD of 0.2964 (95% CI:0.0490-0.5437). However, the random effects model yielded a non-significant SMD of 0.2326 (95% CI: -0.4832-0.9484). Significant heterogeneity was observed among the studies (I2 = 87.1%, p < 0.0001). CONCLUSION AD patients may exhibit higher circulating CD34+ cell counts than the controls, but substantial heterogeneity and potential biases limit definitive conclusions.
Collapse
Affiliation(s)
- Vinay Suresh
- King George’s Medical University, Lucknow 226003, India
| | | | - Anmol Kaur
- Lady Hardinge Medical College, New Delhi 110001, India
| | - Victor Ghosh
- Andhra Medical College, Visakhapatnam 530002, India
| | | | - Amogh Verma
- Rama Medical College Hospital and Research Centre, Hapur 245304, India
| | - Priyanka Roy
- Chief Inspector of Factories, Deputy Director (Medical) and Certifying Surgeon, Directorate of Factories, Department of Labour, Government of West Bengal, India
| | - Mainak Bardhan
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Xu B, Lei X, Yang Y, Yu J, Chen J, Xu Z, Ye K, Zhang J. Peripheral proteinopathy in neurodegenerative diseases. Transl Neurodegener 2025; 14:2. [PMID: 39819742 PMCID: PMC11737199 DOI: 10.1186/s40035-024-00461-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Proteinopathies in neurology typically refer to pathological changes in proteins associated with neurological diseases, such as the aggregation of amyloid β and Tau in Alzheimer's disease, α-synuclein in Parkinson's disease and multiple system atrophy, and TAR DNA-binding protein 43 in amyotrophic lateral sclerosis and frontotemporal dementia. Interestingly, these proteins are also commonly found in peripheral tissues, raising important questions about their roles in neurological disorders. Multiple studies have shown that peripherally derived pathological proteins not only travel to the brain through various routes, aggravating brain pathology, but also contribute significantly to peripheral dysfunction, highlighting their crucial impact on neurological diseases. Investigating how these peripherally derived proteins influence the progression of neurological disorders could open new horizons for achieving early diagnosis and treatment. This review summarizes the distribution, transportation pathways, and pathogenic mechanisms of several neurodegenerative disease-related pathological proteins in the periphery, proposing that targeting these peripheral pathological proteins could be a promising strategy for preventing and managing neurological diseases.
Collapse
Affiliation(s)
- Bin Xu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Xia Lei
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Ying Yang
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Jiayi Yu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Jun Chen
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
| | - Zhi Xu
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310002, China
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, 518055, China
| | - Jing Zhang
- Department of Pathology, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003, China.
- National Human Brain Bank for Health and Disease, Zhejiang University, Hangzhou, 310012, China.
| |
Collapse
|
11
|
Yang H, Yang J, Park N, Hwang DS, Park SY, Kim S, Bae H. Adoptive Transfer of CX3CR1-Transduced Tregs Homing to the Forebrain in Lipopolysaccharide-Induced Neuroinflammation and 3xTg Alzheimer's Disease Models. Int J Mol Sci 2024; 25:13682. [PMID: 39769442 PMCID: PMC11727661 DOI: 10.3390/ijms252413682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
CX3CR1-transduced regulatory T cells (Tregs) have shown potential in reducing neuroinflammation by targeting microglial activation. Reactive microglia are implicated in neurological disorders, and CX3CR1-CX3CL1 signaling modulates microglial activity. The ability of CX3CR1-transduced Tregs to inhibit LPS-induced neuroinflammation was assessed in animal models. CX3CR1 Tregs were administered to LPS-induced and 3xTg Alzheimer's mouse models, resulting in reduced proinflammatory marker expression in both the cortices and hippocampi. In the 3xTg Alzheimer's model, neuroinflammation was significantly reduced, demonstrating the efficacy of CX3CR1 Tregs even in chronic neuroinflammatory conditions. These findings highlight the therapeutic potential of CX3CR1 Treg therapy in modulating microglial activity and offer promising treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Hyejin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| | - Juwon Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| | - Namgyeong Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (N.P.); (D.-S.H.)
| | - Deok-Sang Hwang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (N.P.); (D.-S.H.)
| | - Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| | - Soyoung Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemoon-gu, Seoul 02447, Republic of Korea; (H.Y.); (J.Y.); (S.-Y.P.); (S.K.)
| |
Collapse
|
12
|
Yang H, Byun MS, Ha NY, Yang J, Park SY, Park JE, Yi D, Chang YT, Jung WS, Kim JY, Kim J, Lee DY, Bae H. A preclinical and phase I clinical study of ex vivo-expanded amyloid beta-specific human regulatory T cells in Alzheimer's disease. Biomed Pharmacother 2024; 181:117721. [PMID: 39626378 DOI: 10.1016/j.biopha.2024.117721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
INTRODUCTION Despite advancements in adoptive regulatory T cell (Treg) therapy, its application in Alzheimer's disease (AD) remains constrained by challenges in ex vivo Treg selection and expansion with antigen specificity. Our previous findings demonstrated the bystander suppressive immunomodulatory mechanism of ex vivo expanded amyloid β-specific mouse Tregs in AD models, prompting inquiry into the efficacy of ex vivo expanded human Tregs in AD. METHODS We developed an effective ex vivo expansion method for manufacturing amyloid β-specific human Tregs (Aβ-hTreg) and evaluated their safety and efficacy in 3xTg mouse models of AD and a phase 1 clinical trial with six AD patients. The phenotype of Aβ-hTreg was analyzed using single-cell transcriptomics. The clinical trial involved intravenous administration of Aβ-hTreg, with three patients receiving a low dose and three receiving a high dose. Exploratory assessments of effectiveness, including cognitive tasks and functional evaluations, were conducted ninety days post-treatment. RESULTS Behavioral spatial learning and memory impairment, neuroinflammatory and amyloid pathology were dramatically ameliorated by single intrathecal administration of ex vivo expanded Aβ-hTreg to 3xTg AD mice. Single cell transcriptomics analysis revealed alterations in five key genes within a cluster of Tregs under antigen-specific manufacturing conditions. In the clinical trial with six AD patients, dose-limiting toxicity was experienced by none of the participants within five days of receiving GMP-grade Aβ-hTreg (VT301), indicating its good tolerability. Although exploratory assessments of effectiveness did not reach statistically significant values among the groups, these findings offer valuable insights for AD treatment and management, guiding the planning of the next phase of clinical trials. DISCUSSION This study suggests that hTregs may modulate Alzheimer's disease pathology by suppressing neuroinflammation, while VT301 shows promise as a safe treatment option. However, further research is necessary to confirm its clinical efficacy and optimize treatment strategies. TRIAL REGISTRATION Title: A Study of Possibility of Using Regulatory T Cells (VT301) for Treatment of Alzheimer's Disease, ClinicalTrials.gov NCT05016427, Study approval date: Ministry of Food and Drug Safety of the Republic of Korea (MFDS) - August 31st, 2020, Institutional Review Board (IRB) of Seoul National University Hospital, Republic of Korea - September 29th, 2020, The date of first patient enrollment: December 7th, 2020. https://clinicaltrials.gov/study/NCT05016427.
Collapse
Affiliation(s)
- Hyejin Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Na-Yeon Ha
- Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Division of Digestive Diseases, Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Juwon Yang
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seon-Young Park
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jee Eun Park
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul 03080, Republic of Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul 03080, Republic of Korea
| | - Young-Tae Chang
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Woo Sang Jung
- Department of Cardiovascular and Neurologic Diseases, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Yoon Kim
- Institute of Life Science & Biotechnology, VT Bio.Co., Ltd., Seoul 06185, Republic of Korea
| | - Jinsung Kim
- Department of Digestive Diseases, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Division of Digestive Diseases, Department of Korean Internal Medicine, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Dong Young Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea; Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul 03080, Republic of Korea.
| | - Hyunsu Bae
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
13
|
Cómitre-Mariano B, Vellila-Alonso G, Segura-Collar B, Mondéjar-Ruescas L, Sepulveda JM, Gargini R. Sentinels of neuroinflammation: the crucial role of myeloid cells in the pathogenesis of gliomas and neurodegenerative diseases. J Neuroinflammation 2024; 21:304. [PMID: 39578808 PMCID: PMC11583668 DOI: 10.1186/s12974-024-03298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/13/2024] [Indexed: 11/24/2024] Open
Abstract
The inflammatory processes that drive pathologies of the central nervous system (CNS) are complex and involve significant contributions from the immune system, particularly myeloid cells. Understanding the shared and distinct pathways of myeloid cell regulation in different CNS diseases may offer critical insights into therapeutic development. This review aims to elucidate the mechanisms underlying myeloid cell dysfunction and neuroinflammation in two groups of neurological pathologies with significant social impact and a limited efficacy of their treatments: the most common primary brain tumors -gliomas-, and the most prevalent neurodegenerative disorders -Alzheimer's and Parkinson's disease. Despite their distinct clinical manifestations, these diseases share key pathological features, including chronic inflammation and immune dysregulation. The role of myeloid cells in neuroinflammation has garnered special interest in recent years in both groups, as evidenced by the growing focus on therapeutic research centred on myeloid cells. By examining the cellular and molecular dynamics that govern these conditions, we hope to identify common and unique therapeutic targets that can inform the development of more effective treatments. Recent advances in single-cell technologies have revolutionized our understanding of myeloid cell heterogeneity, revealing diverse phenotypes and molecular profiles across different disease stages and microenvironments. Here, we present a comprehensive analysis of myeloid cell involvement in gliomas, Alzheimer's and Parkinson's disease, with a focus on phenotypic acquisition, molecular alterations, and therapeutic strategies targeting myeloid cells. This integrated approach not only addresses the limitations of current treatments but also suggests new avenues for therapeutic intervention, aimed at modulating the immune landscape to improve patient outcomes.
Collapse
Affiliation(s)
- Blanca Cómitre-Mariano
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Gabriel Vellila-Alonso
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
| | - Berta Segura-Collar
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Lucía Mondéjar-Ruescas
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain
| | - Juan M Sepulveda
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
| | - Ricardo Gargini
- Instituto de Investigación Biomédicas I+12, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario 12 de Octubre, Av. de Córdoba, S/N, Madrid, 28041, Spain.
| |
Collapse
|
14
|
Morgun EI, Govorova IA, Chernysheva MB, Machinskaya MA, Vorotelyak EA. Mini-Review: Tregs as a Tool for Therapy-Obvious and Non-Obvious Challenges and Solutions. Cells 2024; 13:1680. [PMID: 39451198 PMCID: PMC11506333 DOI: 10.3390/cells13201680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Tregs have the potential to be utilized as a novel therapeutic agent for the treatment of various chronic diseases, including diabetes, Alzheimer's disease, asthma, and rheumatoid arthritis. One of the challenges associated with developing a therapeutic product based on Tregs is the non-selectivity of polyclonal cells. A potential solution to this issue is a generation of antigen-specific CAR-Tregs. Other challenges associated with developing a therapeutic product based on Tregs include the phenotypic instability of these cells in an inflammatory microenvironment, discrepancies between engineered Treg-like cells and natural Tregs, and the expression of dysfunctional isoforms of Treg marker genes. This review presents a summary of proposed strategies for addressing these challenges.
Collapse
Affiliation(s)
- Elena I. Morgun
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia; (I.A.G.); (M.B.C.); (M.A.M.)
| | | | | | | | - Ekaterina A. Vorotelyak
- Laboratory of Cell Biology, Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia; (I.A.G.); (M.B.C.); (M.A.M.)
| |
Collapse
|
15
|
Sahu B, Nookala S, Floden AM, Ambhore NS, Sathish V, Klug MG, Combs CK. House dust mite-induced asthma exacerbates Alzheimer's disease changes in the brain of the App NL-G-F mouse model of disease. Brain Behav Immun 2024; 121:365-383. [PMID: 39084541 PMCID: PMC11442016 DOI: 10.1016/j.bbi.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ) plaques, neuroinflammation, and neuronal death. Besides aging, various comorbidities increase the risk of AD, including obesity, diabetes, and allergic asthma. Epidemiological studies have reported a 2.17-fold higher risk of dementia in asthmatic patients. However, the molecular mechanism(s) underlying this asthma-associated AD exacerbation is unknown. This study was designed to explore house dust mite (HDM)-induced asthma effects on AD-related brain changes using the AppNL-G-F transgenic mouse model of disease. Male and female 8-9 months old C57BL/6J wild type and AppNL-G-F mice were exposed to no treatment, saline sham, or HDM extract every alternate day for 16 weeks for comparison across genotypes and treatment. Mice were euthanized at the end of the experiment, and broncho-alveolar lavage fluid (BALF), blood, lungs, and brains were collected. BALF was used to quantify immune cell phenotype, cytokine levels, total protein content, lactate dehydrogenase (LDH) activity, and total IgE. Lungs were sectioned and stained with hematoxylin and eosin, Alcian blue, and Masson's trichrome. Serum levels of cytokines and soluble Aβ1-40/42 were quantified. Brains were sectioned and immunostained for Aβ, GFAP, CD68, and collagen IV. Finally, frozen hippocampi and temporal cortices were used to perform Aβ ELISAs and cytokine arrays, respectively. HDM exposure led to increased levels of inflammatory cells, cytokines, total protein content, LDH activity, and total IgE in the BALF, as well as increased pulmonary mucus and collagen staining in both sexes and genotypes. Levels of serum cytokines increased in all HDM-exposed groups. Serum from the AppNL-G-F HDM-induced asthma group also had significantly increased soluble Aβ1-42 levels in both sexes. In agreement with this peripheral change, hippocampi from asthma-induced male and female AppNL-G-F mice demonstrated elevated Aβ plaque load and increased soluble Aβ 1-40/42 and insoluble Aβ 1-40 levels. HDM exposure also increased astrogliosis and microgliosis in both sexes of AppNL-G-F mice, as indicated by GFAP and CD68 immunoreactivity, respectively. Additionally, HDM exposure elevated cortical levels of several cytokines in both sexes and genotypes. Finally, HDM-exposed groups also showed a disturbed blood-brain-barrier (BBB) integrity in the hippocampus of AppNL-G-F mice, as indicated by decreased collagen IV immunoreactivity. HDM exposure was responsible for an asthma-like condition in the lungs that exacerbated Aβ pathology, astrogliosis, microgliosis, and cytokine changes in the brains of male and female AppNL-G-F mice that correlated with reduced BBB integrity. Defining mechanisms of asthma effects on the brain may identify novel therapeutic targets for asthma and AD.
Collapse
Affiliation(s)
- Bijayani Sahu
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Suba Nookala
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Angela M Floden
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Nilesh S Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health and Human Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | - Marilyn G Klug
- Department of Population health, School of Medicine and Health Sciences, USA
| | - Colin K Combs
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
16
|
Zhang S, Lu J, Jin Z, Xu H, Zhang D, Chen J, Wang J. Gut microbiota metabolites: potential therapeutic targets for Alzheimer's disease? Front Pharmacol 2024; 15:1459655. [PMID: 39355779 PMCID: PMC11442227 DOI: 10.3389/fphar.2024.1459655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/05/2024] [Indexed: 10/03/2024] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive decline in cognitive function, which significantly increases pain and social burden. However, few therapeutic interventions are effective in preventing or mitigating the progression of AD. An increasing number of recent studies support the hypothesis that the gut microbiome and its metabolites may be associated with upstream regulators of AD pathology. Methods In this review, we comprehensively explore the potential mechanisms and currently available interventions targeting the microbiome for the improvement of AD. Our discussion is structured around modern research advancements in AD, the bidirectional communication between the gut and brain, the multi-target regulatory effects of microbial metabolites on AD, and therapeutic strategies aimed at modulating gut microbiota to manage AD. Results The gut microbiota plays a crucial role in the pathogenesis of AD through continuous bidirectional communication via the microbiota-gut-brain axis. Among these, microbial metabolites such as lipids, amino acids, bile acids and neurotransmitters, especially sphingolipids and phospholipids, may serve as central components of the gut-brain axis, regulating AD-related pathogenic mechanisms including β-amyloid metabolism, Tau protein phosphorylation, and neuroinflammation. Additionally, interventions such as probiotic administration, fecal microbiota transplantation, and antibiotic use have also provided evidence supporting the association between gut microbiota and AD. At the same time, we propose an innovative strategy for treating AD: a healthy lifestyle combined with targeted probiotics and other potential therapeutic interventions, aiming to restore intestinal ecology and microbiota balance. Conclusion Despite previous efforts, the molecular mechanisms by which gut microbes act on AD have yet to be fully described. However, intestinal microorganisms may become an essential target for connecting the gut-brain axis and improving the symptoms of AD. At the same time, it requires joint exploration by multiple centers and multiple disciplines.
Collapse
Affiliation(s)
- Shanshan Zhang
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jing Lu
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Ziqi Jin
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Hanying Xu
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Dongmei Zhang
- Research Center of Traditional Chinese Medicine, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Jianan Chen
- The School to Changchun University of Chinese Medicine, Changchun, China
| | - Jian Wang
- Department of Encephalopathy, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
17
|
Zhang H, Wang Y, Zhao H, Wang W, Han F. The involvement of effector memory CD4 + T cells in mediating the impact of genus Oscillibacter gut microbiota on Alzheimer's disease: a Mendelian randomization study. Front Aging Neurosci 2024; 16:1423707. [PMID: 39170894 PMCID: PMC11335717 DOI: 10.3389/fnagi.2024.1423707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study aimed to investigate the causal relationship between gut microbiota characteristics (207 taxa and 205 pathways) and Alzheimer's disease and determine and quantify the role of immune cells as potential mediators. Methods Gut microbiota characteristics (207 taxa and 205 pathways) were obtained from the NHGRI-EBI GWAS Catalog project, while Alzheimer's disease data and 731 immune cell characteristics were obtained from the IEU Open GWAS project. Two-sample Mendelian randomization (MR) was conducted to determine whether gut microbiota characteristics (207 taxa and 205 pathways) were causally related to Alzheimer's disease. Furthermore, two-step MR was employed to quantify the proportion of the effect of immune cell characteristics mediated by gut microbiota characteristics (207 taxa and 205 pathways) on Alzheimer's disease. Results A total of 17 immune cell characteristics were identified as potential mediators for 13 gut microbiota influencing Alzheimer's disease, with Effector Memory CD4+ T-cell Absolute Count accounted for 8.99% of the causal relationship between genus Oscillibacter and Alzheimer's disease. Conclusion In summary, our research confirms a causal relationship between gut microbiota and Alzheimer's disease, with immune cells contributing to a significant portion of the effect. However, the full mediators of gut microbiota's impact on Alzheimer's disease remain unclear. Further investigation is warranted to explore additional potential risk factors acting as mediators.
Collapse
Affiliation(s)
- Huachang Zhang
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong, China
| | - Yudong Wang
- Department of Nursing, Liaocheng People’s Hospital, Liaocheng, Shandong, China
- Intensive Care Unit, Liaocheng People’s Hospital, Liaocheng, Shandong, China
| | - Hui Zhao
- Henan Academy of Sciences, Zhengzhou, Henan, China
- Henan High Tech Industrial Co., Ltd., Zhengzhou, Henan, China
| | - Wei Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong, China
| |
Collapse
|
18
|
Franco R, Garrigós C, Lillo J, Rivas-Santisteban R. The Potential of Metabolomics to Find Proper Biomarkers for Addressing the Neuroprotective Efficacy of Drugs Aimed at Delaying Parkinson's and Alzheimer's Disease Progression. Cells 2024; 13:1288. [PMID: 39120318 PMCID: PMC11311351 DOI: 10.3390/cells13151288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
The first objective is to highlight the lack of tools to measure whether a given intervention affords neuroprotection in patients with Alzheimer's or Parkinson's diseases. A second aim is to present the primary outcome measures used in clinical trials in cohorts of patients with neurodegenerative diseases. The final aim is to discuss whether metabolomics using body fluids may lead to the discovery of biomarkers of neuroprotection. Information on the primary outcome measures in clinical trials related to Alzheimer's and Parkinson's disease registered since 2018 was collected. We analysed the type of measures selected to assess efficacy, not in terms of neuroprotection since, as stated in the aims, there is not yet any marker of neuroprotection. Proteomic approaches using plasma or CSF have been proposed. PET could estimate the extent of lesions, but disease progression does not necessarily correlate with a change in tracer uptake. We propose some alternatives based on considering the metabolome. A new opportunity opens with metabolomics because there have been impressive technological advances that allow the detection, among others, of metabolites related to mitochondrial function and mitochondrial structure in serum and/or cerebrospinal fluid; some of the differentially concentrated metabolites can become reliable biomarkers of neuroprotection.
Collapse
Affiliation(s)
- Rafael Franco
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- School of Chemistry, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Claudia Garrigós
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
| | - Jaume Lillo
- Molecular Neurobiology Laboratory, Departament de Bioquimica i Biomedicina Molecular, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain; (C.G.); (J.L.)
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
| | - Rafael Rivas-Santisteban
- Network Center Neurodegenerative Diseases, CiberNed, Spanish National Health Center Carlos iii, Monforte de Lemos 3, 28029 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
19
|
Zhang Q, Yang G, Luo Y, Jiang L, Chi H, Tian G. Neuroinflammation in Alzheimer's disease: insights from peripheral immune cells. Immun Ageing 2024; 21:38. [PMID: 38877498 PMCID: PMC11177389 DOI: 10.1186/s12979-024-00445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Alzheimer's disease (AD) is a serious brain disorder characterized by the presence of beta-amyloid plaques, tau pathology, inflammation, neurodegeneration, and cerebrovascular dysfunction. The presence of chronic neuroinflammation, breaches in the blood-brain barrier (BBB), and increased levels of inflammatory mediators are central to the pathogenesis of AD. These factors promote the penetration of immune cells into the brain, potentially exacerbating clinical symptoms and neuronal death in AD patients. While microglia, the resident immune cells of the central nervous system (CNS), play a crucial role in AD, recent evidence suggests the infiltration of cerebral vessels and parenchyma by peripheral immune cells, including neutrophils, T lymphocytes, B lymphocytes, NK cells, and monocytes in AD. These cells participate in the regulation of immunity and inflammation, which is expected to play a huge role in future immunotherapy. Given the crucial role of peripheral immune cells in AD, this article seeks to offer a comprehensive overview of their contributions to neuroinflammation in the disease. Understanding the role of these cells in the neuroinflammatory response is vital for developing new diagnostic markers and therapeutic targets to enhance the diagnosis and treatment of AD patients.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, USA
| | - Yuan Luo
- Department of Laboratory Medicine, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- Clinical Medical College, Southwest Medical University, Luzhou, China
| | - Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou, China.
| | - Gang Tian
- Department of Laboratory Medicine, Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, The Affiliated Hospital of Southwest Medical University, Sichuan, 646000, China.
| |
Collapse
|
20
|
Sarazin M, Lagarde J, El Haddad I, de Souza LC, Bellier B, Potier MC, Bottlaender M, Dorothée G. The path to next-generation disease-modifying immunomodulatory combination therapies in Alzheimer's disease. NATURE AGING 2024; 4:761-770. [PMID: 38839924 DOI: 10.1038/s43587-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
The cautious optimism following recent anti-amyloid therapeutic trials for Alzheimer's disease (AD) provides a glimmer of hope after years of disappointment. Although these encouraging results represent discernible progress, they also highlight the need to enhance further the still modest clinical efficacy of current disease-modifying immunotherapies. Here, we highlight crucial milestones essential for advancing precision medicine in AD. These include reevaluating the choice of therapeutic targets by considering the key role of both central neuroinflammation and peripheral immunity in disease pathogenesis, refining patient stratification by further defining the inflammatory component within the forthcoming ATN(I) (amyloid, tau and neurodegeneration (and inflammation)) classification of AD biomarkers and defining more accurate clinical outcomes and prognostic biomarkers that better reflect disease heterogeneity. Next-generation immunotherapies will need to go beyond the current antibody-only approach by simultaneously targeting pathological proteins together with innate neuroinflammation and/or peripheral-central immune crosstalk. Such innovative immunomodulatory combination therapy approaches should be evaluated in appropriately redesigned clinical therapeutic trials, which must carefully integrate the neuroimmune component.
Collapse
Affiliation(s)
- Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France.
- Université Paris-Cité, Paris, France.
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France.
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte-Anne, Paris, France
- Université Paris-Cité, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France
| | - Inès El Haddad
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Leonardo Cruz de Souza
- Grupo de Pesquisa em Neurologia Cognitiva e do Comportamento, Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
- Programa de Pós-Graduação em Neurociências, UFMG, Belo Horizonte, Brazil
- Departamento de Clínica Médica, Faculdade de Medicina, UFMG, Belo Horizonte, Brazil
| | - Bertrand Bellier
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Hôpital de la Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frédéric Joliot, CEA, CNRS, Inserm, Orsay, France
- Université Paris-Saclay, UNIACT, Neurospin, Joliot Institute, CEA, Gif-sur-Yvette, France
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, Immune System and Neuroinflammation Laboratory, Hôpital Saint-Antoine, Paris, France.
| |
Collapse
|
21
|
van Olst L, Kamermans A, Halters S, van der Pol SMA, Rodriguez E, Verberk IMW, Verberk SGS, Wessels DWR, Rodriguez-Mogeda C, Verhoeff J, Wouters D, Van den Bossche J, Garcia-Vallejo JJ, Lemstra AW, Witte ME, van der Flier WM, Teunissen CE, de Vries HE. Adaptive immune changes associate with clinical progression of Alzheimer's disease. Mol Neurodegener 2024; 19:38. [PMID: 38658964 PMCID: PMC11044380 DOI: 10.1186/s13024-024-00726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent cause of dementia. Recent evidence suggests the involvement of peripheral immune cells in the disease, but the underlying mechanisms remain unclear. METHODS We comprehensively mapped peripheral immune changes in AD patients with mild cognitive impairment (MCI) or dementia compared to controls, using cytometry by time-of-flight (CyTOF). RESULTS We found an adaptive immune signature in AD, and specifically highlight the accumulation of PD1+ CD57+ CD8+ T effector memory cells re-expressing CD45RA in the MCI stage of AD. In addition, several innate and adaptive immune cell subsets correlated to cerebrospinal fluid (CSF) biomarkers of AD neuropathology and measures for cognitive decline. Intriguingly, subsets of memory T and B cells were negatively associated with CSF biomarkers for tau pathology, neurodegeneration and neuroinflammation in AD patients. Lastly, we established the influence of the APOE ε4 allele on peripheral immunity. CONCLUSIONS Our findings illustrate significant peripheral immune alterations associated with both early and late clinical stages of AD, emphasizing the necessity for further investigation into how these changes influence underlying brain pathology.
Collapse
Affiliation(s)
- Lynn van Olst
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands.
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands.
- Present address: The Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Alwin Kamermans
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Sem Halters
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Susanne M A van der Pol
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Ernesto Rodriguez
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - Inge M W Verberk
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Sanne G S Verberk
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Danielle W R Wessels
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Carla Rodriguez-Mogeda
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Dorine Wouters
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Atherosclerosis & Ischemic Syndromes, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, the Netherlands
| | - Afina W Lemstra
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Maarten E Witte
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Inflammatory Diseases, Amsterdam, the Netherlands
| | - Wiesje M van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Epidemiology & Data Science, Amsterdam UMC Location VUmc, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neuroinfection & -Inflammation, Amsterdam, the Netherlands
- Department of Laboratory Medicine, Neurochemistry Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurovascular Disorders, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Park SY, Cha N, Kim S, Chae S, Lee WJ, Jung H, Bae H. Blocking Microglial Proliferation by CSF-1R Inhibitor Does Not Alter the Neuroprotective Effects of Adoptive Regulatory T Cells in 3xTg Alzheimer's Disease Mice. Curr Issues Mol Biol 2024; 46:2871-2883. [PMID: 38666910 PMCID: PMC11049167 DOI: 10.3390/cimb46040180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease that causes cognitive impairment. Neuroinflammation induced by activated microglia exacerbates AD. Regulatory T cells (Tregs) play roles in limiting neuroinflammation by converting microglial polarization. Therefore, adoptive Treg therapy is considered an attractive option for neurodegenerative disorders. However, the mechanism underlying Treg therapy via microglial modulation is not fully understood. In this study, we sought to determine whether adoptively transferred Tregs were effective when microglia proliferation was inhibited by using GW2580, which is an inhibitor of CSF1R. We found that inhibition of microglial proliferation during Treg transfer did not alter the therapeutic effects of Tregs on cognitive deficits and the accumulation of Aβ and pTAU in 3xTg-AD mice. The expression of pro- and anti-inflammatory markers in the hippocampus of 3xTg mice showed that GW2580 did not affect the inhibition of neuroinflammation by Treg transfer. Additionally, adoptively transferred Tregs were commonly detected in the brain on day 7 after transfer and their levels decreased slowly over 100 days. Our findings suggest that adoptively transferred Tregs can survive longer than 100 days in the brain, suppressing microglial activation and thus alleviating AD pathology. The present study provides valuable evidence to support the prolonged efficacy of adoptive Treg therapy in AD.
Collapse
Affiliation(s)
- Seon-Young Park
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Nari Cha
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soyoung Kim
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Songah Chae
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Won-Jun Lee
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunjae Jung
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyunsu Bae
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
23
|
Balistreri CR, Monastero R. Neuroinflammation and Neurodegenerative Diseases: How Much Do We Still Not Know? Brain Sci 2023; 14:19. [PMID: 38248234 PMCID: PMC10812964 DOI: 10.3390/brainsci14010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
The term "neuroinflammation" defines the typical inflammatory response of the brain closely related to the onset of many neurodegenerative diseases (NDs). Neuroinflammation is well known, but its mechanisms and pathways are not entirely comprehended. Some progresses have been achieved through many efforts and research. Consequently, new cellular and molecular mechanisms, diverse and conventional, are emerging. In listing some of those that will be the subject of our description and discussion, essential are the important roles of peripheral and infiltrated monocytes and clonotypic cells, alterations in the gut-brain axis, dysregulation of the apelinergic system, alterations in the endothelial glycocalyx of the endothelial component of neuronal vascular units, variations in expression of some genes and levels of the encoding molecules by the action of microRNAs (miRNAs), or other epigenetic factors and distinctive transcriptional factors, as well as the role of autophagy, ferroptosis, sex differences, and modifications in the circadian cycle. Such mechanisms can add significantly to understanding the complex etiological puzzle of neuroinflammation and ND. In addition, they could represent biomarkers and targets of ND, which is increasing in the elderly.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Roberto Monastero
- Unit of Neurology & Neuro-Physiopathology, Department of Biomedicine, Neuroscience, and Advanced Diagnostics (Bi.N.D), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy;
| |
Collapse
|