1
|
Rajković M, Deksne G, Živković L, Leonova E, Spremo-Potparević B, Sjakste N. DNA damage induced by parasitic infections in humans and animals. Comp Immunol Microbiol Infect Dis 2025; 119:102337. [PMID: 40220655 DOI: 10.1016/j.cimid.2025.102337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Pathologies caused by parasitic infections, including protozoans and helminths remain a burden for healthcare in many countries. The DNA damage is produced by numerous parasites, both protozoans and helminths. However, the exact number of cancer-causing parasites and their role in neoplasma formation is still undetermined. The progression and dynamics of parasitic infections are significantly influenced by endogenously induced increase in oxidative stress (OS). Increased ROS production undermines antioxidant defense mechanisms by disrupting the balance between prooxidants and antioxidants, causing structural damage to important biomolecules, including host DNA. The generation of DNA damage possibly leads to the progression of carcinogenesis. However, direct DNA damage by parasites, eggs and factors released by parasites is also possible, and it leads to genomic instability that is a hallmark of most human and animal cancers. Understanding the way parasites induce DNA damage in the hosts may be helpful in the control of parasitic infections and the prevention of parasite-induced malignancies, ultimately benefiting the health of humans and animals. This review article offers an updated overview of parasitic infection-induced DNA damage mechanisms.
Collapse
Affiliation(s)
- Milan Rajković
- Department of Parasitology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar oslobodjenja 18, Belgrade 11000, Serbia.
| | - Gunita Deksne
- Department of Ecology, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 1, LV1004, Latvia; Laboratory of Microbiology and Pathology, Parasitology group, Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes street 3, Riga LV1076, Latvia.
| | - Lada Živković
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11000, Serbia
| | - Elina Leonova
- Department of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 3, Riga LV1004, Latvia
| | - Biljana Spremo-Potparević
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, Belgrade 11000, Serbia
| | - Nikolajs Sjakste
- Department of Pharmaceutical Sciences, Faculty of Medicine and Life Sciences, University of Latvia, Jelgavas Street 3, Riga LV1004, Latvia.
| |
Collapse
|
2
|
Fuentes-Lopez K, Olivero-Verbel J, Caballero-Gallardo K. Presence of Nematodes, Mercury Concentrations, and Liver Pathology in Carnivorous Freshwater Fish from La Mojana, Sucre, Colombia: Assessing Fish Health and Potential Human Health Risks. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:189-209. [PMID: 39976684 PMCID: PMC11870952 DOI: 10.1007/s00244-025-01117-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 01/24/2025] [Indexed: 03/03/2025]
Abstract
Fish provide high-quality protein and essential nutrients. However, environmental pollution can lead to the accumulation of toxic substances such as mercury (Hg), with known negative impacts on human consumers. The aim of this study was to assess fish health and potential human health risks by analyzing the presence of nematodes, Hg concentrations, and liver pathology in freshwater fish from La Mojana, Colombia. For this purpose, 326 specimens were collected. Parasitic infection was evaluated using parasitological indices. Total Hg (T-Hg) was quantified using a direct mercury analyzer. Liver pathology was assessed through histopathological examination. Risk-based fish consumption limits were established by calculating the hazard quotient (HQ) and safe consumption limits. The overall prevalence and abundance of nematodes (Contracaecum sp.) were 46% and 2.72 ± 0.47 parasites/fish, respectively. Sternopygus macrurus exhibited the highest prevalence (100%) and parasite abundance (13.5 parasites/fish) during the rainy season, whereas Hoplias malabaricus demonstrated the greatest prevalence (100%) and abundance (14.8 parasites/fish) in the dry season. The average T-Hg was 0.31 ± 0.01 µg/g ww. During the rainy season, S. macrurus had the highest T-Hg levels (0.46 ± 0.08 µg/g ww); in the dry season, Cynopotamus magdalenae showed the highest T-Hg concentration (0.54 ± 0.03 µg/g ww). Significant positive relationships were recorded between T-Hg and parasite abundance, while these were negative with the condition factor. All specimens exhibited hepatic alterations. The HQ and Hg values suggest potential health risks from frequent fish consumption, especially in fish-dependent communities. These findings highlight the need for precautionary measures by health and environmental authorities to safeguard human and ecosystem health.
Collapse
Affiliation(s)
- Katerin Fuentes-Lopez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia
| | - Karina Caballero-Gallardo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia.
- Functional Toxicology Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, 130014, Cartagena, Colombia.
| |
Collapse
|
3
|
Shu Y, Wu F, Fang Z. Using Stable Isotope Techniques to Analyze the Trophic Relationship between Argentine Hake ( Merluccius hubbsi) and Anisakidae. BIOLOGY 2024; 13:515. [PMID: 39056708 PMCID: PMC11273689 DOI: 10.3390/biology13070515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The Argentine hake (Merluccius hubbsi) is a vital fishery species in the Southwest Atlantic, recognized for its substantial economic importance. Previous studies have identified Anisakidae larvae as common parasites of M. hubbsi. However, the nutritional relationships between these parasites and their host remain poorly understood. This study employs stable isotope techniques to investigate the specific nutritional relationships between Anisakidae larvae and different tissues of M. hubbsi. The findings reveal notable differences in δ13C and δ15N compositions between the parasites and their host. The lower δ13C values in parasites compared to host tissues indicate the utilization of different carbon sources. The δ15N values of the parasites partially overlap with those of the host's stomach, indicating that the parasites primarily derive nutrients from the host's stomach. Nutritional niche indicators show that parasites have a broad carbon range (CR) and nitrogen range (NR), suggesting a high diversity in nutritional sources. The trophic discrimination factor (ΔTDF), which represents the difference in stable isotope values between host tissues and parasites, was analyzed for both δ13C and δ15N. The ΔTDFδ13C between the host liver and the parasites showed the greatest variation, indicating a strong dependence of the parasites on the liver's carbon sources. In contrast, variations in ΔTDFδ15N between host tissues and parasites were minimal. Analyzing ΔTDF across different stages of gonadal maturity in the host fish indicates that, as the gonads of the host fish mature, ΔTDFδ13C between host tissues and parasites significantly decreases (p < 0.01). The Kruskal-Wallis test showed significant differences in ΔTDFδ13C values among different parasite infection levels in muscle, liver, and stomach tissues, while no significant differences were found for ΔTDFδ15N values. These findings offer valuable insights into the nutritional relationships between parasites and hosts, aiding in a better understanding of the growth conditions and habitats of M. hubbsi.
Collapse
Affiliation(s)
- Yue Shu
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (F.W.)
| | - Feiyu Wu
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (F.W.)
| | - Zhou Fang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; (Y.S.); (F.W.)
- National Engineering Research Center for Oceanic Fisheries, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
- Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
- Scientific Observing and Experimental Station of Oceanic Fishery Resources, Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
4
|
Tiberti N, Manfredi M, Piubelli C, Buonfrate D. Progresses and challenges in Strongyloides spp. proteomics. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220447. [PMID: 38008115 PMCID: PMC10676815 DOI: 10.1098/rstb.2022.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/09/2023] [Indexed: 11/28/2023] Open
Abstract
The availability of high-quality data of helminth genomes provided over the past two decades has supported and accelerated large-scale 'omics studies and, consequently, the achievement of a more in-depth molecular characterization of a number of pathogens. This has also involved Strongyloides spp. and since their genome was made available transcriptomics has been rather frequently applied to investigate gene expression regulation across their life cycle. Strongyloides proteomics characterization has instead been somehow neglected, with only a few reports performing high-throughput or targeted analyses associated with protein identification by tandem mass spectrometry. Such investigations are however necessary in order to discern important aspects associated with human strongyloidiasis, including understanding parasite biology and the mechanisms of host-parasite interaction, but also to identify novel diagnostic and therapeutic targets. In this review article, we will give an overview of the published proteomics studies investigating strongyloidiasis at different levels, spanning from the characterization of the somatic proteome and excretory/secretory products of different parasite stages to the investigation of potentially immunogenic proteins. Moreover, in the effort to try to start filling the current gap in host-proteomics, we will also present the first serum proteomics analysis in patients suffering from human strongyloidiasis. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| | - Dora Buonfrate
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella (Verona), Italy
| |
Collapse
|
5
|
Wu F, Chen X, Du Z, Chen Y, Tong D, Zhang J, Yang Y, Ma G, Du A. Proteomic differences between extracellular vesicles and extracellular vesicle-depleted excretory/secretory products of barber's pole worm. Parasit Vectors 2024; 17:17. [PMID: 38217036 PMCID: PMC10785392 DOI: 10.1186/s13071-023-06092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Components of excretory/secretory products (ESPs) of helminths have been proposed as vaccine targets and shown to play a role in modulating host immune responses for decades. Such research interest is further increased by the discovery of extracellular vesicles (EVs) in the ESPs of parasitic worms. Although efforts have been made to reveal the cargos of EVs, little is known about the proteomic differences between EVs and canonical ESPs released by parasitic worms from animals. METHODS The total ESPs of Haemonchus contortus (barber's pole worm) were obtained by short-term in vitro culturing of young adult worms, and small EVs were isolated from ESPs using an ultracentrifugation method. Data-dependent acquisition (DDA) label-free Nano-LC-MS/MS was used to quantify the proteomic difference between small EVs and EV-depleted ESPs of H. contortus. Functional annotation and enrichment of the differential proteins were performed regarding cellular components, molecular functions, pathways, and/or biological processes. RESULTS A total of 1697 proteins were identified in small EVs and EV-depleted ESPs of H. contortus adult worms, with 706 unique proteins detected in the former and 597 unique proteins in the latter. It was revealed that proteins in small EVs are dominantly cytoplasmic, whereas proteins in EV-depleted ESPs are mainly extracellular; canonical ESPs such as proteases and small GTPases were abundantly detected in small EVs, and SCP/TAP-, DUF-, and GLOBIN domain-containing proteins were mainly found in EV-depleted ESPs. Compared with well-characterised proteins in small EVs, about 50% of the proteins detected in EV-depleted ESPs were poorly characterised. CONCLUSIONS There are remarkable differences between small EVs and EV-depleted ESPs of H. contortus in terms of protein composition. Immune modulatory effects caused by nematode ESPs are possibly contributed mainly by the proteins in small EVs.
Collapse
Affiliation(s)
- Fei Wu
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xueqiu Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhendong Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yanqiong Chen
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Danni Tong
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jingju Zhang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yi Yang
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Guangxu Ma
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Aifang Du
- College of Animal Sciences, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Institute of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Sayyaf Dezfuli B, Lorenzoni M, Carosi A, Giari L, Bosi G. Teleost innate immunity, an intricate game between immune cells and parasites of fish organs: who wins, who loses. Front Immunol 2023; 14:1250835. [PMID: 37908358 PMCID: PMC10613888 DOI: 10.3389/fimmu.2023.1250835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/06/2023] [Indexed: 11/02/2023] Open
Abstract
Fish, comprising over 27,000 species, represent the oldest vertebrate group and possess both innate and adaptive immune systems. The susceptibility of most wild fish to parasitic infections and related diseases is well-established. Among all vertebrates, the digestive tract creates a remarkably favorable and nutrient-rich environment, which, in turn, renders it susceptible to microparasites and macroparasites. Consequently, metazoan parasites emerge as important disease agents, impacting both wild and farmed fish and resulting in substantial economic losses. Given their status as pathogenic organisms, these parasites warrant considerable attention. Helminths, a general term encompassing worms, constitute one of the most important groups of metazoan parasites in fish. This group includes various species of platyhelminthes (digeneans, cestodes), nematodes, and acanthocephalans. In addition, myxozoans, microscopic metazoan endoparasites, are found in water-dwelling invertebrates and vertebrate hosts. It is worth noting that several innate immune cells within the fish alimentary canal and certain visceral organs (e.g., liver, spleen, and gonads) play active roles in the immune response against parasites. These immune cells include macrophages, neutrophils, rodlet cells, and mast cells also known as eosinophilic granular cells. At the site of intestinal infection, helminths often impact mucous cells number and alter mucus composition. This paper presents an overview of the state of the art on the occurrence and characteristics of innate immune cells in the digestive tract and other visceral organs in different fish-parasite systems. The data, coming especially from studies employed immunohistochemical, histopathological, and ultrastructural analyses, provide evidence supporting the involvement of teleost innate immune cells in modulating inflammatory responses to metazoan and protozoan parasitic infections.
Collapse
Affiliation(s)
- Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Massimo Lorenzoni
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Antonella Carosi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Perugia, Italy
| | - Luisa Giari
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| |
Collapse
|
7
|
Palomba M, Rughetti A, Mignogna G, Castrignanò T, Rahimi H, Masuelli L, Napoletano C, Pinna V, Giorgi A, Santoro M, Schininà ME, Maras B, Mattiucci S. Proteomic characterization of extracellular vesicles released by third stage larvae of the zoonotic parasite Anisakis pegreffii (Nematoda: Anisakidae). Front Cell Infect Microbiol 2023; 13:1079991. [PMID: 37009516 PMCID: PMC10050594 DOI: 10.3389/fcimb.2023.1079991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
IntroductionAnisakis pegreffii is a sibling species within the A. simplex (s.l.) complex requiring marine homeothermic (mainly cetaceans) and heterothermic (crustaceans, fish, and cephalopods) organisms to complete its life cycle. It is also a zoonotic species, able to accidentally infect humans (anisakiasis). To investigate the molecular signals involved in this host-parasite interaction and pathogenesis, the proteomic composition of the extracellular vesicles (EVs) released by the third-stage larvae (L3) of A. pegreffii, was characterized.MethodsGenetically identified L3 of A. pegreffii were maintained for 24 h at 37°C and EVs were isolated by serial centrifugation and ultracentrifugation of culture media. Proteomic analysis was performed by Shotgun Analysis.Results and discussionEVs showed spherical shaped structure (size 65-295 nm). Proteomic results were blasted against the A. pegreffii specific transcriptomic database, and 153 unique proteins were identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis predicted several proteins belonging to distinct metabolic pathways. The similarity search employing selected parasitic nematodes database revealed that proteins associated with A. pegreffii EVs might be involved in parasite survival and adaptation, as well as in pathogenic processes. Further, a possible link between the A. pegreffii EVs proteins versus those of human and cetaceans’ hosts, were predicted by using HPIDB database. The results, herein described, expand knowledge concerning the proteins possibly implied in the host-parasite interactions between this parasite and its natural and accidental hosts.
Collapse
Affiliation(s)
- Marialetizia Palomba
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppina Mignogna
- Department of Biochemistry Science, Sapienza University of Rome, Rome, Italy
| | - Tiziana Castrignanò
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Hassan Rahimi
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Laura Masuelli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Napoletano
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Valentina Pinna
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Alessandra Giorgi
- Department of Biochemistry Science, Sapienza University of Rome, Rome, Italy
| | - Mario Santoro
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | - Bruno Maras
- Department of Biochemistry Science, Sapienza University of Rome, Rome, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, Rome, Italy
- *Correspondence: Simonetta Mattiucci,
| |
Collapse
|
8
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
9
|
Bellini I, Scribano D, Sarshar M, Ambrosi C, Pizzarelli A, Palamara AT, D’Amelio S, Cavallero S. Inflammatory Response in Caco-2 Cells Stimulated with Anisakis Messengers of Pathogenicity. Pathogens 2022; 11:1214. [PMID: 36297271 PMCID: PMC9611079 DOI: 10.3390/pathogens11101214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/07/2024] Open
Abstract
Background: Anisakis spp. third-stage larvae (L3) are the causative agents of human zoonosis called anisakiasis. The accidental ingestion of L3 can cause acute and chronic inflammation at the gastric, intestinal, or ectopic levels. Despite its relevance in public health, studies on pathogenetic mechanisms and parasite-human interplay are scarce. The aim of this study was to investigate the human inflammatory response to different Anisakis vehicles of pathogenicity. Methods: Human colorectal adenocarcinoma (Caco-2) cells were exposed to Anisakis L3 (the initial contact with the host), extracellular vesicles (EVs, Anisakis-host communication), and crude extract (CE, the larval dying). The protein quantity and gene expression of two pro-inflammatory cytokines (IL-6 and IL-8) were investigated using an ELISA test (6 h and 24 h) and a qReal-Time PCR (1 h, 6 h, and 24 h), respectively. Results: The L3 and EVs induced a downregulation in both the Il-6 and Il-8 gene expression and protein quantity. On the contrary, the CE stimulated IL-6 gene expression and its protein release, not affecting IL-8. Conclusions: The Caco-2 cells seemed to not react to the exposure to the L3 and EVs, suggesting a parasite's immunomodulating action to remain alive in an inhospitable niche. Conversely, the dying larva (CE) could induce strong activation of the immune strategy of the host that, in vivo, would lead to parasite expulsion, eosinophilia, and/or granuloma formation.
Collapse
Affiliation(s)
- Ilaria Bellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Cecilia Ambrosi
- Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| | - Antonella Pizzarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Laboratory Affiliated to Institute Pasteur Italia—Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Department of Infectious Diseases, National Institute of Health, 00185 Rome, Italy
| | - Stefano D’Amelio
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Stryiński R, Mateos J, Carrera M, Jastrzębski JP, Bogacka I, Łopieńska-Biernat E. Tandem Mass Tagging (TMT) Reveals Tissue-Specific Proteome of L4 Larvae of Anisakis simplex s. s.: Enzymes of Energy and/or Carbohydrate Metabolism as Potential Drug Targets in Anisakiasis. Int J Mol Sci 2022; 23:ijms23084336. [PMID: 35457153 PMCID: PMC9027741 DOI: 10.3390/ijms23084336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Anisakis simplex s. s. is a parasitic nematode of marine mammals and causative agent of anisakiasis in humans. The cuticle and intestine of the larvae are the tissues most responsible for direct and indirect contact, respectively, of the parasite with the host. At the L4 larval stage, tissues, such as the cuticle and intestine, are fully developed and functional, in contrast to the L3 stage. As such, this work provides for the first time the tissue-specific proteome of A. simplex s. s. larvae in the L4 stage. Statistical analysis (FC ≥ 2; p-value ≤ 0.01) showed that 107 proteins were differentially regulated (DRPs) between the cuticle and the rest of the larval body. In the comparison between the intestine and the rest of the larval body at the L4 stage, 123 proteins were identified as DRPs. Comparison of the individual tissues examined revealed a total of 272 DRPs, with 133 proteins more abundant in the cuticle and 139 proteins more abundant in the intestine. Detailed functional analysis of the identified proteins was performed using bioinformatics tools. Glycolysis and the tricarboxylic acid cycle were the most enriched metabolic pathways by cuticular and intestinal proteins, respectively, in the L4 stage of A. simplex s. s. The presence of two proteins, folliculin (FLCN) and oxoglutarate dehydrogenase (OGDH), was confirmed by Western blot, and their tertiary structure was predicted and compared with other species. In addition, host–pathogen interactions were identified, and potential new allergens were predicted. The result of this manuscript shows the largest number of protein identifications to our knowledge using proteomics tools for different tissues of L4 larvae of A. simplex s. s. The identified tissue-specific proteins could serve as targets for new drugs against anisakiasis.
Collapse
Affiliation(s)
- Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, 15-706 A Coruña, Spain;
| | - Mónica Carrera
- Department of Food Technology, Marine Research Institute (IIM), Spanish National Research Council (CSIC), 36-208 Vigo, Spain
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Iwona Bogacka
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
- Correspondence: (R.S.); (M.C.); (E.Ł.-B.)
| |
Collapse
|
11
|
Targeted proteomics and specific immunoassays reveal the presence of shared allergens between the zoonotic nematodes Anisakis simplex and Pseudoterranova decipiens. Sci Rep 2022; 12:4127. [PMID: 35260766 PMCID: PMC8904469 DOI: 10.1038/s41598-022-08113-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 11/08/2022] Open
Abstract
The family Anisakidae, mainly represented by Anisakis simplex s.l. and Pseudoterranova decipiens, encompasses zoonotic nematodes infecting many marine fish. Both are responsible for gastrointestinal disease in humans after ingestion of a live larva by consumption of undercooked fish, and, in the case of A. simplex, an allergic reaction may occur after consuming or even handling infected fish. Due to its phylogenetic relatedness with A. simplex, few studies investigated the allergenic potential of P. decipiens, yet none of them focused on its excretory/secretory (E/S) proteins that easily get missed when working solely on extracts from crushed nematodes. Moreover, these E/S allergens remain behind even when the larva has been removed during fish quality processing. Therefore, the aim was to investigate if Anisakis-like allergens could also be detected in both crushed and E/S P. decipiens protein extract using targeted mass spectrometry analysis and immunological methods. The results confirmed that at least five A. simplex allergens have homologous proteins in P. decipiens; a result that emphasizes the importance of also including E/S protein extracts in proteomic studies. Not only A. simplex, but also P. decipiens should therefore be considered a potential source of allergens that could lead to hypersensitivity reactions in humans.
Collapse
|
12
|
Benzaldehyde Attenuates the Fifth Stage Larval Excretory–Secretory Product of Angiostrongylus cantonensis-Induced Injury in Mouse Astrocytes via Regulation of Endoplasmic Reticulum Stress and Oxidative Stress. Biomolecules 2022; 12:biom12020177. [PMID: 35204678 PMCID: PMC8961544 DOI: 10.3390/biom12020177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 02/07/2023] Open
Abstract
Excretory–secretory products (ESPs) are the main research targets for investigating the hosts and helminths interaction. Parasitic worms can migrate to parasitic sites and avoid the host immune response by secreting this product. Angiostrongylus cantonensis is an important food-borne zoonotic parasite that causes severe neuropathological damage and symptoms, including eosinophilic meningitis or meningoencephalitis in humans. Benzaldehydes are organic compounds composed of a benzene ring and formyl substituents. This compound has anti-inflammatory and antioxidation properties. Previous studies showed that 3-hydroxybenzaldehyde (3-HBA) and 4-hydroxybenzaldehyde (4-HBA) can reduce apoptosis in A. cantonensis ESP-treated astrocytes. These results on the protective effect underlying benzaldehyde have primarily focused on cell survival. The study was designed to investigate the molecular mechanisms of endoplasmic reticulum stress (ER stress) and oxidative stress in astrocytes in A. cantonensis ESP-treated astrocytes and to evaluate the therapeutic consequent of 3-HBA and 4-HBA. First, we initially established the RNA-seq dataset in each group, including normal, ESPs, ESPs + 3-HBA, and ESPs + 4-HBA. We also found that benzaldehyde (3-HBA and 4-HBA) can stimulate astrocytes to express ER stress-related molecules after ESP treatment. The level of oxidative stress could also be decreased in astrocytes by elevating antioxidant activity and reducing ROS generation. These results suggested that benzaldehyde may be a potential therapeutic compound for human angiostrongyliasis to support brain cell survival by inducing the expression levels of ER stress- and oxidative stress-related pathways.
Collapse
|
13
|
Mehrdana F, Lavilla M, Kania PW, Pardo MÁ, Audicana MT, Longo N, Buchmann K. Evidence of IgE-Mediated Cross-Reactions between Anisakis simplex and Contracaecum osculatum Proteins. Pathogens 2021; 10:pathogens10080950. [PMID: 34451414 PMCID: PMC8399947 DOI: 10.3390/pathogens10080950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Fish consumers may develop allergic reactions following the ingestion of fish products containing nematode larvae within the genus Anisakis. Sensitized patients may cross-react with proteins from insects, mites and mollusks, leading to allergic reactions even in the absence of the offending food. Potential cross-reactivity in Anisakis-allergic patients with larval proteins from other zoonotic parasites present in freshwater and sea fish should be investigated due to an increasing occurrence in certain fish stocks, particularly Contracaecum osculatum. In this work, we evaluated IgE-cross reactions by in vivo (skin prick tests with parasites extracts) and in vitro methods (IgE-ELISA and IgE-immunoblot). In vivo skin prick tests (SPT) proved the reactivity of Anisakis-sensitized patients when exposed to C. osculatum antigens. Sera from Anisakis-sensitized patients confirmed the reaction with somatic antigens (SA) and excretory/secretory proteins (ES) from C. osculatum. Only anecdotal responses were obtained from other freshwater worm parasites. Consequently, it is suggested that Anisakis-sensitized humans, especially patients with high levels of specific anti-Anisakis antibodies, may react to C. osculatum proteins, possibly due to IgE-mediated cross-reactivity.
Collapse
Affiliation(s)
- Foojan Mehrdana
- Laboratory of Aquatic Pathobiology, Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (F.M.); (P.W.K.)
| | - María Lavilla
- AZTI-BRTA, Food Research, Parque Tecnológico de Bizkaia, Astondo Bidea-Edificio 609, E-48160 Derio, Spain; (M.L.); (M.Á.P.)
| | - Per Walter Kania
- Laboratory of Aquatic Pathobiology, Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (F.M.); (P.W.K.)
| | - Miguel Ángel Pardo
- AZTI-BRTA, Food Research, Parque Tecnológico de Bizkaia, Astondo Bidea-Edificio 609, E-48160 Derio, Spain; (M.L.); (M.Á.P.)
| | - María Teresa Audicana
- Allergy Department, Araba Integrated Health Organization, Bioaraba.Osakidetza, Basque Health Service, Jose Atxotegui s/n, E-01009 Vitoria, Spain; (M.T.A.); (N.L.)
| | - Natividad Longo
- Allergy Department, Araba Integrated Health Organization, Bioaraba.Osakidetza, Basque Health Service, Jose Atxotegui s/n, E-01009 Vitoria, Spain; (M.T.A.); (N.L.)
| | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (F.M.); (P.W.K.)
- Correspondence: ; Tel.: +45-35-33-27-00
| |
Collapse
|
14
|
de Oliveira EA, Merigueti YFFB, Ferreira IB, Garcia IS, Pereira AS, Santos RDS, Kmetiuk LB, dos Santos AP, Biondo AW, Giuffrida R, Santarém VA. The Role of Nile Tilapia ( Oreochromis niloticus) in the Life Cycle of Toxocara spp. Front Vet Sci 2021; 8:685911. [PMID: 34222405 PMCID: PMC8245787 DOI: 10.3389/fvets.2021.685911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
The present study aimed to experimentally assess Nile tilapia as potential paratenic host of Toxocara spp. A total of 15 Nile tilapia (Oreochromis niloticus) were fed with 300 embryonated Toxocara canis eggs by oral gavage, while five others of the control group received distilled water. The fish were individually analyzed at 16, 24, 48, 72, and 240 h after inoculation. Water contamination was assessed, and tissue migration by liver, gastrointestinal tract (GIT), eyes, and central nervous system. A murine model was used as the paratenic host for egg infectivity assessment. Eggs and larvae were found in plastic tank water and fish GIT, ranging from 23 to 86% per fish. Eggs and larvae were recovered from the tank water (76.3%) and fish GIT (23.7%). The counting of eggs and larvae observed was negatively correlated with number of eggs and larvae in the water tank (rho = -0.698, p = 0.003). Shedding of embryonated eggs was first detected at 16 and up to 240 h, with significant egg and larvae yield decrease on water-shedding (p = 0.001) and in the GIT (p = 0.007). Although no T. canis larva was recovered in fish tissues, egg infectivity after fish GIT transit was experimentally confirmed by mice assessment. In conclusion, despite shedding viable embryonated eggs through the gastrointestinal tract, tilapias may not play a role as a suitable paratenic hosts for Toxocara spp., posing low risk of zoonotic transmission by fish meat consumption.
Collapse
Affiliation(s)
| | | | - Isabella Braghin Ferreira
- Laboratory of Veterinary Parasitology, Veterinary Teaching Hospital, São Paulo Western University, Presidente Prudente, Brazil
| | - Isabele Santos Garcia
- Laboratory of Veterinary Parasitology, Veterinary Teaching Hospital, São Paulo Western University, Presidente Prudente, Brazil
| | - Alini Soriano Pereira
- Laboratory of Pisciculture, Zootechny Teaching Aquaculture, São Paulo Western University, Presidente Prudente, Brazil
| | - Rosemeire de Souza Santos
- Laboratory of Pisciculture, Zootechny Teaching Aquaculture, São Paulo Western University, Presidente Prudente, Brazil
| | - Louise Bach Kmetiuk
- Graduate College of Molecular Biology, Federal University of Paraná, Curitiba, Brazil
| | - Andrea Pires dos Santos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States
| | | | - Rogerio Giuffrida
- Graduate College in Animal Science, São Paulo Western University, Presidente Prudente, Brazil
| | | |
Collapse
|
15
|
Klapper R, Karl H, Ostermeyer U. Intrinsic properties of anisakid nematode larvae as a potential tool for the detection in fish products. Int J Food Microbiol 2021; 343:109094. [PMID: 33621832 DOI: 10.1016/j.ijfoodmicro.2021.109094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 11/27/2022]
Abstract
Anisakid nematode larvae (NL) in fish products comprise a risk to human health and, if visible, lead to the rejection of these products by consumers. Therefore, great efforts are being made for the identification of these anisakid larvae to estimate the potential consumer health risk as well as to develop effective detection methods in order to prevent the introduction of heavily infected fish products into the market. The tasks of national reference laboratories include the improvement of detection methods and to promote their further development. As a prerequisite for improved detection, it is important to understand the structural properties of anisakid NL and compounds produced during host-parasite interactions. This review provides an overview of the intrinsic properties of anisakid NL and reports the latest detection methods in published literature. First, in order to define the potentially interesting intrinsic properties of anisakid nematodes for their detection, anatomy and compounds involved in host-parasite interactions are summarised. These can be used for various detection approaches, such as in the medical field or for allergen detection in fish products. In addition, fluorescence characteristics and their use as both established and promising candidates for detection methods, especially in the field of optical sensing technologies, are presented. Finally, different detection and identification methods applied by the fish processing industries and by control laboratories are listed. The review intends to highlight trends and provide suggestions for the development of improved detection and identification methods of anisakid NL in fish products.
Collapse
Affiliation(s)
- Regina Klapper
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Department of Safety and Quality of Milk and Fish products, Palmaille 9, 22767 Hamburg, Germany; Present Address: Max Rubner-Institut, Federal Research Institute of Nutrition and Food, National Reference Centre for Authentic Food, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany.
| | - Horst Karl
- Present Address: Max Rubner-Institut, Federal Research Institute of Nutrition and Food, National Reference Centre for Authentic Food, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| | - Ute Ostermeyer
- Present Address: Max Rubner-Institut, Federal Research Institute of Nutrition and Food, National Reference Centre for Authentic Food, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany
| |
Collapse
|
16
|
Salikin NH, Nappi J, Majzoub ME, Egan S. Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms 2020; 8:E1963. [PMID: 33322253 PMCID: PMC7764037 DOI: 10.3390/microorganisms8121963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic nematode infections cause debilitating diseases and impede economic productivity. Antinematode chemotherapies are fundamental to modern medicine and are also important for industries including agriculture, aquaculture and animal health. However, the lack of suitable treatments for some diseases and the rise of nematode resistance to many available therapies necessitates the discovery and development of new drugs. Here, marine epiphytic bacteria represent a promising repository of newly discovered antinematode compounds. Epiphytic bacteria are ubiquitous on marine surfaces where they are under constant pressure of grazing by bacterivorous predators (e.g., protozoans and nematodes). Studies have shown that these bacteria have developed defense strategies to prevent grazers by producing toxic bioactive compounds. Although several active metabolites against nematodes have been identified from marine bacteria, drug discovery from marine microorganisms remains underexplored. In this review, we aim to provide further insight into the need and potential for marine epiphytic bacteria to become a new source of antinematode drugs. We discuss current and emerging strategies, including culture-independent high throughput screening and the utilization of Caenorhabditis elegans as a model target organism, which will be required to advance antinematode drug discovery and development from marine microbial sources.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
- School of Industrial Technology, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| |
Collapse
|
17
|
|
18
|
de Las Vecillas L, Muñoz-Cacho P, López-Hoyos M, Monttecchiani V, Martínez-Sernández V, Ubeira FM, Rodríguez-Fernández F. Analysis of Ani s 7 and Ani s 1 allergens as biomarkers of sensitization and allergy severity in human anisakiasis. Sci Rep 2020; 10:11275. [PMID: 32647149 PMCID: PMC7347943 DOI: 10.1038/s41598-020-67786-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/12/2020] [Indexed: 11/14/2022] Open
Abstract
The high frequency of infection by Anisakis simplex (A. simplex) has led to an increase in IgE sensitization, turning allergy to this parasite a relevant contemporary health problem. Improving the lack of conventional diagnosis test specificity is crucial to better understand these clinical scenarios. Specific IgE (sIgE) to A. simplex extract by ImmunoCAP (Anisakis-sIgE) was determined in sera from 403 blood donors (BD) from Cantabria (North of Spain) of which 51 subjects resulted sensitized. Among these latter, 47 were asymptomatic (sABD). The values of total IgE, prick-test, Anisakis-sIgE, and sIgE to Ani s 1 (anti-rAni s 1) and Ani s 7 (anti-rAni s 7) were compared between 46 sABD and 49 A. simplex allergic patients. The IgE seroprevalence by ImmunoCAP among BD was 12.65%. Allergic patients and sABD showed significant differences in all serum biomarkers evaluated. The area under the curve was assessed for Anisakis-sIgE (0.892), sIgE-rAni s 1 (0.672) and sIgE-rAni s 7 (0.668). After a severe reaction, significantly higher levels of Anisakis-sIgE and sIgE anti-rAni s 1 were detected. Determinations of sIgE by ImmunoCAP, Ani s 1 and Ani s 7 presented different sensitization patterns between allergic and asymptomatic individuals. The Ani s 1 allergen arises as a possible biomarker to detect patients at risk of suffering severe allergic reactions.
Collapse
Affiliation(s)
- Leticia de Las Vecillas
- Department of Allergy, Marqués de Valdecilla University Hospital-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| | - Pedro Muñoz-Cacho
- Gerencia Atención Primaria, Servicio Cántabro de Salud, Santander, Spain
| | - Marcos López-Hoyos
- Department of Immunology, Marqués de Valdecilla University Hospital-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Vittoria Monttecchiani
- Department of Allergy, Marqués de Valdecilla University Hospital-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Victoria Martínez-Sernández
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Florencio M Ubeira
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Santiago de Compostela, Spain.,Instituto de Investigación en Análisis Químicos y Biológicos (IAQBUS), Universidad de Santiago de Compostela, Santiago de Compostela, Spain
| | - Fernando Rodríguez-Fernández
- Department of Allergy, Marqués de Valdecilla University Hospital-Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|
19
|
Mass Spectrometry Based-Proteomic Analysis of Anisakis spp.: A Preliminary Study towards a New Diagnostic Tool. Genes (Basel) 2020; 11:genes11060693. [PMID: 32599802 PMCID: PMC7349252 DOI: 10.3390/genes11060693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Anisakiasis is nowadays a well-known infection, mainly caused by the accidental ingestion of Anisakis larvae, following the consumption of raw or undercooked fishes and cephalopods. Due to the similarity of symptoms with those of common gastrointestinal disorders, this infection is often underestimated, and the need for new specific diagnostic tools is becoming crucial. Given the remarkable impact that MALDI–TOF MS biotyping had in the last decade in clinical routine practice for the recognition of bacterial and fungi strains, a similar scenario could be foreseen for the identification of parasites, such as nematodes. In this work, a MALDI–TOF MS profiling of Anisakis proteome was pursued with a view to constructing a first spectral library for the diagnosis of Anisakis infections. At the same time, a shotgun proteomics approach by LC–ESI–MS/MS was performed on the two main fractions obtained from protein extraction, to evaluate the protein species enriched by the protocol. A set of MALDI–TOF MS signals associated with proteins originating in the ribosomal fraction of the nematode extract was selected as a potential diagnostic tool for the identification of Anisakis spp.
Collapse
|
20
|
Palomba M, Cipriani P, Giulietti L, Levsen A, Nascetti G, Mattiucci S. Differences in Gene Expression Profiles of Seven Target Proteins in Third-Stage Larvae of Anisakis simplex (Sensu Stricto) by Sites of Infection in Blue Whiting ( Micromesistius poutassou). Genes (Basel) 2020; 11:genes11050559. [PMID: 32429519 PMCID: PMC7288290 DOI: 10.3390/genes11050559] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
The third-stage larvae of the parasitic nematode genus Anisakis tend to encapsulate in different tissues including the musculature of fish. Host tissue penetration and degradation involve both mechanic processes and the production of proteins encoded by an array of genes. Investigating larval gene profiles during the fish infection has relevance in understanding biological traits in the parasite’s adaptive ability to cope with the fish hosts’ defense responses. The present study aimed to investigate the gene expression levels of some proteins in L3 of A. simplex (s.s.) infecting different tissues of blue whiting Micromesistius poutassou, a common fish host of the parasite in the NE Atlantic. The following genes encoding for Anisakis spp. proteins were studied: Kunitz-type trypsin inhibitor (TI), hemoglobin (hb), glycoprotein (GP), trehalase (treh), zinc metallopeptidase 13 (nas 13), ubiquitin-protein ligase (hyd) and sideroflexin 2 (sfxn 2). Significant differences in gene transcripts (by quantitative real-time PCR, qPCR) were observed in larvae located in various tissues of the fish host, with respect to the control. ANOVA analysis showed that relative gene expression levels of the seven target genes in the larvae are linked to the infection site in the fish host. Genes encoding some of the target proteins seem to be involved in the host tissue migration and survival of the parasite in the hostile target tissues of the fish host.
Collapse
Affiliation(s)
- Marialetizia Palomba
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, 00185 Rome, Italy;
| | - Paolo Cipriani
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, 5817 Bergen, Norway; (P.C.); (L.G.); (A.L.)
| | - Lucilla Giulietti
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, 5817 Bergen, Norway; (P.C.); (L.G.); (A.L.)
| | - Arne Levsen
- Section of Contaminants and Biohazards, Institute of Marine Research (IMR), P.O. Box 1870 Nordnes, 5817 Bergen, Norway; (P.C.); (L.G.); (A.L.)
| | - Giuseppe Nascetti
- Department of Biological and Ecological Sciences, Tuscia University, 01100 Viterbo, Italy;
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-0649914894
| |
Collapse
|
21
|
Rojas A, Baneth G. Secretome of the carcinogenic helminth Spirocerca lupi reveals specific parasite proteins associated with its different life stages. Vet Parasitol 2019; 275:108935. [PMID: 31704657 DOI: 10.1016/j.vetpar.2019.108935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022]
Abstract
Spirocerca lupi is a parasitic and carcinogenic nematode of canids distributed in tropical and subtropical regions around the world. The excretion-secretion proteins (PES) of S. lupi have been suggested to play a role in the pathogenesis of its infection. We aimed to identify the PES of different stages of S. lupi and search for proteins that would be useful for diagnostic, therapeutic and vaccination purposes as well as understand their functions. A nano-UPLC mass spectrometry de novo analysis was performed on proteins collected from cultures of S. lupi L3 larvae, L4 females, adult females and adult males from naturally infected hosts. A total of 211 proteins were identified in all cultures. Accordingly, 117, 130, 99 and 116 proteins were detected in L3 larva, L4 females, adult females and adult males, respectively, with a strong correlation in the biological replicates (Pearson coefficients > 0.73). Fourty-four proteins were detected in all developmental stages, 64 were stage-specific and 49 were exclusively identified in L4 females. Cell compartment enrichment analysis revealed that proteins common to all stages were cytoplasmatic (p < 9.x10-6), whereas L4 unique proteins were in collagen trimers, and macromolecular complexes (p < 0.00001). Functional enrichment analysis of proteins showed significant enrichment in lipid metabolism in L3-unique proteins (p<0.00005), in mannose metabolism and protein de-glycosylation for L4-unique proteins (p < 0.00004), and in phosphorus metabolism in proteins shared by all stages (p < 2.1 x10-9). Interestingly, annexin 6, associated with cancer in humans, was detected in all life stages, but in a larger abundance in L4 females and adults. These findings indicate that S. lupi establishes complex interactions with its hosts by an arsenal of proteins expressed in different patterns in each life stage which influence the pathogenesis and oncogenesis of S. lupi and may be used as potential targets for diagnostic assays, drug targets or vaccine candidates.
Collapse
Affiliation(s)
- Alicia Rojas
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| | - Gad Baneth
- Koret School of Veterinary Medicine, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
22
|
Łopieńska-Biernat E, Paukszto Ł, Jastrzębski JP, Myszczyński K, Polak I, Stryiński R. Genome-wide analysis of Anisakis simplex sensu lato: the role of carbohydrate metabolism genes in the parasite's development. Int J Parasitol 2019; 49:933-943. [PMID: 31560928 DOI: 10.1016/j.ijpara.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 01/08/2023]
Abstract
Anisakis simplex sensu lato is a parasitic nematode which can cause gastric symptoms and/or allergic reactions in humans who consume raw and undercooked fish. Anisakiasis poses a growing health problem around the globe because it causes non-specific symptoms and is difficult to diagnose. This genome-wide study was undertaken to expand our knowledge of A. simplex s.l. at the molecular level and provide novel data for biological and biotechnological research into the analyzed species and related nematodes. A draft genome assembly of the L3 stage of A. simplex s.l. was analyzed in detail, and changes in the expression of carbohydrate metabolism genes during the parasite's life cycle were determined. To our knowledge, this is the first genome to be described for a parasitic nematode of the family Anisakidae to date. We identified genes involved in parasite-specific pathways, including carbohydrates metabolism, apoptosis and chemo signaling. A total of 7607 coding genes were predicted. The genome of A. simplex s.l. is highly similar to genomes of other parasitic nematodes. In particular, we described a valuable repository of genes encoding proteins of trehalose and glycogen metabolism, and we developed the most comprehensive data set relating to the conversion of both saccharides which play important roles during the parasite's life cycle in a host environment. We also confirmed that trehalose is synthesized at the expense of glycogen. Trehalose anabolism and glycogen catabolism were the predominant processes in stages L4 and L5, which could confirm our and other authors' previous reports that trehalose is synthesized at the expense of glycogen. The A. simplex s.l. genome provides essential data for post-genomic research into the biology of gastrointestinal and allergic anisakiasis in humans and the biology of other important parasitic helminths.
Collapse
Affiliation(s)
- Elżbieta Łopieńska-Biernat
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland.
| | - Łukasz Paukszto
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Jan Paweł Jastrzębski
- Department of Plant Physiology, Genetics and Biotechnology, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Kamil Myszczyński
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland
| | - Iwona Polak
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| | - Robert Stryiński
- Department of Biochemistry, Faculty of Biology and Biotechnology, University Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn, Poland
| |
Collapse
|
23
|
Palomba M, Paoletti M, Colantoni A, Rughetti A, Nascetti G, Mattiucci S. Gene expression profiles of antigenic proteins of third stage larvae of the zoonotic nematode Anisakis pegreffii in response to temperature conditions. ACTA ACUST UNITED AC 2019; 26:52. [PMID: 31441776 PMCID: PMC6707101 DOI: 10.1051/parasite/2019055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/12/2019] [Indexed: 01/10/2023]
Abstract
Anisakis pegreffii, a recognised etiological agent of human anisakiasis, is a parasite of homeothermic hosts at the adult stage and of ectothermic hosts at the third larval stage. Among distinct factors, temperature appears to be crucial in affecting parasite hatching, moulting and to modulate parasite-host interaction. In the present study, we investigated the gene transcripts of proteins having an antigenic role among excretory secretory products (ESPs) (i.e., a Kunitz-type trypsin inhibitor, A.peg-1; a glycoprotein, A.peg-7; and the myoglobin, A.peg-13) after 24 h, in A. pegreffii larvae maintained in vitro, under controlled temperature conditions. Temperatures were 37 °C and 20 °C, resembling respectively homeothermic and ectothermic hosts conditions, and 7 °C, the cold stress condition post mortem of the fish host. Primers of genes coding for these ESPs to be used in quantitative real-time PCR were newly designed, and qRT-PCR conditions developed. Expression profiles of the genes A.peg-1 and A.peg-13 were significantly up-regulated at 20 °C and 37 °C, with respect to the control (larvae kept at 2 °C for 24 h). Conversely, transcript profiles of A.peg-7 did not significantly change among the chosen temperature conditions. In accordance with the observed transcript profiles, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed the presence of the three target ESPs at 37 °C, while only A.peg-13 was observed at 7 °C. The results suggest that temperature conditions do regulate the gene expression profiles of A.peg-1 and A.peg-13 in A. pegreffii larvae. However, regulation of the glycoprotein A.peg-7 is likely to be related to other factors such as the host's immune response.
Collapse
Affiliation(s)
- Marialetizia Palomba
- Department of Public Health and Infectious Diseases, Section of Parasitology, and "Umberto I" Academic Hospital "Sapienza - University of Rome", P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Michela Paoletti
- Department of Ecological and Biological Sciences, Tuscia University, Viale dell'Università s/n, 01100 Viterbo, Italy
| | - Alessandra Colantoni
- Department of Public Health and Infectious Diseases, Section of Parasitology, and "Umberto I" Academic Hospital "Sapienza - University of Rome", P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, "Sapienza-University of Rome", P.le Aldo Moro, 5, 00185 Rome, Italy
| | - Giuseppe Nascetti
- Department of Ecological and Biological Sciences, Tuscia University, Viale dell'Università s/n, 01100 Viterbo, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, Section of Parasitology, and "Umberto I" Academic Hospital "Sapienza - University of Rome", P.le Aldo Moro, 5, 00185 Rome, Italy
| |
Collapse
|
24
|
Podolska M, Pawlikowski B, Nadolna-Ałtyn K, Pawlak J, Komar-Szymczak K, Szostakowska B. How effective is freezing at killing Anisakis simplex, Pseudoterranova krabbei, and P. decipiens larvae? An experimental evaluation of time-temperature conditions. Parasitol Res 2019; 118:2139-2147. [PMID: 31098726 PMCID: PMC6611746 DOI: 10.1007/s00436-019-06339-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 04/29/2019] [Indexed: 11/29/2022]
Abstract
The consumption of raw or inadequately cooked marine fish can lead to several disorders caused by the ingestion of viable anisakid nematodes. Although anisakid larvae can be killed by subzero temperatures, making freezing an important control measure for this potential health hazard, these parasites can survive freezing under some conditions. Therefore, the aim of the present study was to experimentally evaluate the time-temperature conditions needed to kill Anisakis simplex and Pseudoterranova spp. The effectiveness of freezing was tested on two species of fish: cod, Gadus morhua from the North Atlantic, and herring, Clupea harengus membras from the southern Baltic Sea. Samples, which comprised skinless fillets of cod (n = 40) with visible parasites and whole herring (n = 240), were separately frozen at − 15, − 18, or − 20 °C for 24 h, or at − 20 °C for 48 h in the single-compressor freezer and at − 20, − 25, or − 35 °C for 24 h in the double-compressor freezer. After thawing, parasites were stained with malachite green and examined under the microscope for viability. All A. simplex and Pseudoterranova spp. larvae in cod fillets died at a temperature of − 15 °C or lower. However, freezing did not kill all the A. simplex larvae in whole herring: spontaneous movement of these parasites was observed in samples stored in the single-compressor freezer at − 15, − 18, and − 20 °C over 24 h. Our results demonstrate that the freezing procedure must consider both the capability of the freezing device and the nature of the fish product to ensure consumer safety.
Collapse
Affiliation(s)
- Magdalena Podolska
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland.
| | - Bogusław Pawlikowski
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | | | - Joanna Pawlak
- National Marine Fisheries Research Institute, Kołłątaja 1, 81-332, Gdynia, Poland
| | | | - Beata Szostakowska
- A&A Biotechnology, Aleja Zwycięstwa 96/98, 81-451, Gdynia, Poland.,Medical University of Gdańsk, Powstania Styczniowego 9B, 81-519, Gdynia, Poland
| |
Collapse
|
25
|
Liu K, Yin D, Shu Y, Dai P, Yang Y, Wu H. Transcriptome and metabolome analyses of Coilia nasus in response to Anisakidae parasite infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:235-242. [PMID: 30611778 DOI: 10.1016/j.fsi.2018.12.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/18/2018] [Accepted: 12/31/2018] [Indexed: 06/09/2023]
Abstract
Parasites from the family Anisakidae are capable of infecting a range of marine fish species worldwide. Coilia nasus, which usually feeds and overwinters in coastal waters and spawns in freshwater, is highly susceptible to infection by Anisakidae. In this study, we used scanning electron microscopes to show that C. nasus infected by Anisakidae exhibited damage and fibrosis of the liver tissue. To better understand host immune reaction and metabolic changes to Anisakidae infection, we used a combination of transcriptomic and metabolomic method to characterize the key genes and metabolites, and the signaling pathway regulation of C. nasus infected by Anisakidae. We generated 62,604 unigenes from liver tissue and identified 391 compounds from serum. Of these, Anisakidae infection resulted in significant up-regulation of 545 genes and 28 metabolites, and significant down-regulation of 416 genes and 37 metabolites. Seventy-four of the 961 differentially expressed genes were linked to immune response, and 1, 2-Diacylglycerol, an important immune-related metabolite, was significantly up-regulated after infection. Our results show activation of antigen processing and presentation, initiation of the T cell receptor signaling pathway, disruption of the TCA cycle, and changes to the amino acid and Glycerolipid metabolisms, which indicate perturbations to the host immune system and metabolism following infection. This is the first study describing the immune responses and metabolic changes in C. nasus to Anisakidae infection, and thus improves our understanding of the interaction mechanisms between C. nasus and Anisakidae. Our findings will be useful for future research on the population ecology of C. nasus.
Collapse
Affiliation(s)
- Kai Liu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Denghua Yin
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Yilin Shu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Pei Dai
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Yanping Yang
- Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Ministry of Agriculture and Rural Affaris, Freshwater Fisheries Research Center, CAFS, WuXi, 214081, China
| | - Hailong Wu
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, 241000, China.
| |
Collapse
|
26
|
Torben W, Molehin AJ, Blair RV, Kenway C, Shiro F, Roslyn D, Chala B, Gutu D, Kebede MA, Ahmad G, Zhang W, Aye P, Mohan M, Lackner A, Siddiqui AA. The self-curing phenomenon of schistosome infection in rhesus macaques: insight from in vitro studies. Ann N Y Acad Sci 2017; 1408:79-89. [PMID: 29239481 DOI: 10.1111/nyas.13565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/26/2022]
Abstract
A reduction in the burden of schistosomiasis is potentially achievable by integrating a schistosomiasis vaccine with current control measures. Here, we determine parasite-specific in vitro responses of B, T, and NK cells from naive uninfected rhesus macaques to Schistosoma mansoni (Sm) egg (SmEA) and worm antigen (SmWA) preparations isolated from infected baboons. Pronounced B cell responses to SmEA and NK cell responses to both SmEA and SmWA were observed. High levels of IL-2 and IL-21 responses against Sm antigens were observed in T and non-T cells of lymph nodes (LNs) and gut lamina propria-derived lymphocytes (LPLs). Data analysis showed multifunctionality of LN-derived CD4+ , CD8+ , and CD4+ CD8+ double positive T cells against either SmWA or SmWA+SmEA antigen preparations. Distinct SmEA-specific multifunctional responses were observed in gut LPLs, suggesting simultaneous responses against egg antigens. These data provide insight into the immune effectors involved in schistosome responses by rhesus macaques.
Collapse
Affiliation(s)
- Workineh Torben
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Adebayo J Molehin
- Center for Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Robert V Blair
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Carys Kenway
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Faith Shiro
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Davis Roslyn
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Bayissa Chala
- Department of Applied Biology, Adama Science and Technology University, School of Applied Natural Sciences, Adama, Ethiopia
| | - Dereje Gutu
- Department of Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Michael A Kebede
- Department of Epidemiology & Biostatistics, George Washington University, Washington, DC
| | - Gul Ahmad
- Department of Biology, Peru State College, Peru, Nebraska
| | - Weidong Zhang
- Center for Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Pyone Aye
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Mahesh Mohan
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Andrew Lackner
- Tulane National Primate Research Center, TNPRC, Comparative Pathology/Immunology, Tulane University Health Sciences Center, Covington, Louisiana
| | - Afzal A Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
27
|
Zuo S, Barlaup L, Mohammadkarami A, Al-Jubury A, Chen D, Kania PW, Buchmann K. Extrusion of Contracaecum osculatum nematode larvae from the liver of cod (Gadus morhua). Parasitol Res 2017; 116:2721-2726. [PMID: 28795224 DOI: 10.1007/s00436-017-5580-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/01/2017] [Indexed: 11/28/2022]
Abstract
Baltic cod livers have during recent years been found increasingly and heavily infected with third-stage larvae of Contracaecum osculatum. The infections are associated with an increasing population of grey seals which are final hosts for the parasite. Heavy worm burdens challenge utilization and safety of the fish liver products, and technological solutions for removal of worms are highly needed. We investigated the attachment of the worm larvae in liver tissue by use of histochemical techniques and found that the cod host encapsulates the worm larvae in layers of host cells (macrophages, fibroblasts) supported by enclosures of collagen and calcium. A series of incubation techniques, applying compounds targeting molecules in the capsule, were then tested for their effect to induce worm escape/release reactions. Full digestion solutions comprising pepsin, NaCl, HCl and water induced a fast escape of more than 60% of the worm larvae within 20 min and gave full release within 65 min but the liver tissue became highly dispersed. HCl alone, in concentrations of 48 and 72 mM, triggered a corresponding release of worm larvae with minor effect on liver integrity. A lower HCl concentration of 24 mM resulted in 80% release within 35 min. Water and physiological saline had no effect on worm release, and 1% pepsin in water elicited merely a weak escape reaction. In addition to the direct effect of acid on worm behaviour it is hypothesised that the acid effect on calcium carbonate in the encapsulation, with subsequent release of reaction products, may contribute to activation of C. osculatum larvae and induce escape reactions. Short-term pretreatment of infected cod liver and possibly other infected fish products, using low acid concentrations is suggested as part of a technological solution for worm clearance as low acid concentrations had limited macroscopic effect on liver integrity within 35 min.
Collapse
Affiliation(s)
- S Zuo
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - L Barlaup
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - A Mohammadkarami
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - A Al-Jubury
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - D Chen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - P W Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - K Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| |
Collapse
|