1
|
Gao L, Su Y, Zhang N, Mehmood T, Wang Z, Peng L. Ecotoxicological impact of virgin and environmental microplastics leachate on Chlorella vulgaris: Synergistic microbial-pollutant drivers cripple photosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138321. [PMID: 40267708 DOI: 10.1016/j.jhazmat.2025.138321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Abstract
Microplastics (MPs, < 5 mm) leachate poses significant threats to aquatic ecosystems; however, their toxicity across different sources remains poorly understood. This study examined the toxicological effects of leachates derived from virgin MPs (VMPs) and environmentally weathered MPs (EMPs) on Chlorella vulgaris in seawater. EMPs leachate exhibited 2.5-3.4 times higher toxicity than VMPs leachate, with growth inhibition rates reaching 77.66 ± 10.25 % and 32.64 ± 6.99 %, respectively. EMPs leachate exposure induced more pronounced disruptions to algal photosynthesis than VMPs leachate, including a 35.3 % reduction in chlorophyll a content and significant downregulation of photosynthesis-related genes (e.g., PsbS, PsbY). EMPs leachate also altered carbon metabolism (59 differentially expressed genes (DEGs)) and elevated oxidative stress markers, evidenced by a 22.2 % increase in malondialdehyde (MDA) compared to VMPs leachate. In contrast, VMPs leachate primarily affected amino acid biosynthesis (44 DEGs). Crucially, EMPs leachate introduced 580 unique bacterial taxa and anthropogenic pollutants (e.g., ciprofloxacin), which synergistically exacerbated algal toxicity through nutrient competition and oxidative damage. These findings highlight the heightened ecological risks posed by EMPs due to synergistic interactions among pollutants and microorganisms, emphasizing the urgent need for targeted regulatory strategies to mitigate MPs pollution.
Collapse
Affiliation(s)
- Liu Gao
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming 650201, China
| | - Yuanyuan Su
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China
| | - Naiming Zhang
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China; Yunnan Soil Fertility and Pollution Restoration Laboratory, Yunnan Agricultural University, Kunming 650201, China
| | - Tariq Mehmood
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department Sensors and Modeling, Max-Eyth-Allee 100, Potsdam 14469, Germany
| | - Zezheng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Licheng Peng
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
2
|
Fu S, Ma K, Song X, Sun T, Chen L, Zhang W. Synthetic Biology Strategies and Tools to Modulate Photosynthesis in Microbes. Int J Mol Sci 2025; 26:3116. [PMID: 40243859 PMCID: PMC11989218 DOI: 10.3390/ijms26073116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The utilization of photosynthetic microbes, such as cyanobacteria and microalgae, offers sustainable solutions to addressing global resource shortages and pollution. While these microorganisms have demonstrated significant potential in biomanufacturing, their industrial application is limited by suboptimal photosynthetic efficiency. Synthetic biology integrates molecular biology, systems biology, and engineering principles to provide a powerful tool for elucidating photosynthetic mechanisms and rationally optimizing photosynthetic platforms. This review summarizes recent advancements in regulating photosynthesis in cyanobacteria and microalgae via synthetic biology, focusing on strategies to enhance light energy absorption, optimize electron transport chains, and improve carbon assimilation. Furthermore, we discuss key challenges in translating these genetic modifications to large-scale bioproduction, highlighting specific bottlenecks in strain stability, metabolic burden, and process scalability. Finally, we propose potential solutions, such as AI-assisted metabolic engineering, synthetic microbial consortia, and next-generation photobioreactor designs, to overcome these limitations. Overall, while synthetic biology holds great promise for enhancing photosynthetic efficiency in cyanobacteria and microalgae, further research is needed to refine genetic strategies and develop scalable production systems.
Collapse
Affiliation(s)
- Shujin Fu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Kaiyu Ma
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Xinyu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Tao Sun
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, China; (S.F.); (K.M.); (T.S.); (L.C.)
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Tianjin University Center for Biosafety Research and Strategy, Tianjin 300072, China
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
3
|
Rasor BJ, Erb TJ. Cell-Free Systems to Mimic and Expand Metabolism. ACS Synth Biol 2025; 14:316-322. [PMID: 39878226 PMCID: PMC11852204 DOI: 10.1021/acssynbio.4c00729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/11/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Cell-free synthetic biology incorporates purified components and/or crude cell extracts to carry out metabolic and genetic programs. While protein synthesis has historically been the primary focus, more metabolism researchers are now turning toward cell-free systems either to prototype pathways for cellular implementation or to design new-to-nature reaction networks that incorporate environmentally relevant substrates or new energy sources. The ability to design, build, and test enzyme combinations in vitro has accelerated efforts to understand metabolic bottlenecks and engineer high-yielding pathways. However, only a small fraction of metabolic possibilities has been explored in cell-free systems, and extracts from model organisms remain the most common starting points. Expanding the scope of cell-free metabolism to include extracts from new organisms, alternative metabolic pathways, and non-natural chemistries will enhance our ability to understand and engineer bio-based chemical conversions.
Collapse
Affiliation(s)
- Blake J. Rasor
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Tobias J. Erb
- Department
of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Center
for Synthetic Microbiology (SYNMIKRO), 35043 Marburg, Germany
| |
Collapse
|
4
|
Grandel NE, Alexander AM, Peng X, Palamountain C, Alnahhas RN, Hirning AJ, Josić K, Bennett MR. Long-term homeostasis in microbial consortia via auxotrophic cross-feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631749. [PMID: 39829869 PMCID: PMC11741367 DOI: 10.1101/2025.01.08.631749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Synthetic microbial consortia are collections of multiple strains or species of engineered organisms living in a shared ecosystem. Because they can separate metabolic tasks among different strains, synthetic microbial consortia have myriad applications in developing biomaterials, biomanufacturing, and biotherapeutics. However, synthetic consortia often require burdensome control mechanisms to ensure that the members of the community remain at the correct proportions. This is especially true in continuous culture systems in which slight differences in growth rates can lead to extinctions. Here, we present a simple method for controlling consortia proportions using cross-feeding in continuous auxotrophic co-culture. We use mutually auxotrophic E. coli with different essential gene deletions and regulate the growth rates of members of the consortium via cross-feeding of the missing nutrients in each strain. We demonstrate precise regulation of the co-culture steady-state ratio by exogenous addition of the missing nutrients. We also model the co-culture's behavior using a system of ordinary differential equations that enable us to predict its response to changes in nutrient concentrations. Our work provides a powerful tool for consortia proportion control with minimal metabolic costs to the constituent strains.
Collapse
|
5
|
Hunt A, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2025; 125:91-149. [PMID: 39700225 PMCID: PMC11719329 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/29/2024] [Accepted: 10/21/2024] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew
C. Hunt
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J. Rasor
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M. Ekas
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S. Karim
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry
of Life Processes Institute, Northwestern
University, Evanston, Illinois 60208, United States
- Robert
H. Lurie Comprehensive Cancer Center, Northwestern
University, Chicago, Illinois 60611, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
6
|
Song X, Ju Y, Chen L, Zhang W. Strategies and tools to construct stable and efficient artificial coculture systems as biosynthetic platforms for biomass conversion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:148. [PMID: 39702246 DOI: 10.1186/s13068-024-02594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024]
Abstract
Inspired by the natural symbiotic relationships between diverse microbial members, researchers recently focused on modifying microbial chassis to create artificial coculture systems using synthetic biology tools. An increasing number of scientists are now exploring these systems as innovative biosynthetic platforms for biomass conversion. While significant advancements have been achieved, challenges remain in maintaining the stability and productivity of these systems. Sustaining an optimal population ratio over a long time period and balancing anabolism and catabolism during cultivation have proven difficult. Key issues, such as competitive or antagonistic relationships between microbial members, as well as metabolic imbalances and maladaptation, are critical factors affecting the stability and productivity of artificial coculture systems. In this article, we critically review current strategies and methods for improving the stability and productivity of these systems, with a focus on recent progress in biomass conversion. We also provide insights into future research directions, laying the groundwork for further development of artificial coculture biosynthetic platforms.
Collapse
Affiliation(s)
- Xinyu Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yue Ju
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Lei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Weiwen Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, 300072, People's Republic of China.
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Xue B, Liu H, Wang S, Su H. Rational construction of synthetic consortia: Key considerations and model-based methods for guiding the development of a novel biosynthesis platform. Biotechnol Adv 2024; 72:108348. [PMID: 38531490 DOI: 10.1016/j.biotechadv.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The rapid development of synthetic biology has significantly improved the capabilities of mono-culture systems in converting different substrates into various value-added bio-chemicals through metabolic engineering. However, overexpression of biosynthetic pathways in recombinant strains can impose a heavy metabolic burden on the host, resulting in imbalanced energy distribution and negatively affecting both cell growth and biosynthesis capacity. Synthetic consortia, consisting of two or more microbial species or strains with complementary functions, have emerged as a promising and efficient platform to alleviate the metabolic burden and increase product yield. However, research on synthetic consortia is still in its infancy, with numerous challenges regarding the design and construction of stable synthetic consortia. This review provides a comprehensive comparison of the advantages and disadvantages of mono-culture systems and synthetic consortia. Key considerations for engineering synthetic consortia based on recent advances are summarized, and simulation and computational tools for guiding the advancement of synthetic consortia are discussed. Moreover, further development of more efficient and cost-effective synthetic consortia with emerging technologies such as artificial intelligence and machine learning is highlighted.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Boyuan Xue
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hao Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
8
|
Li Z, Li S, Chen L, Sun T, Zhang W. Fast-growing cyanobacterial chassis for synthetic biology application. Crit Rev Biotechnol 2024; 44:414-428. [PMID: 36842999 DOI: 10.1080/07388551.2023.2166455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 12/28/2022] [Indexed: 02/28/2023]
Abstract
Carbon neutrality by 2050 has become one of the most urgent challenges the world faces today. To address the issue, it is necessary to develop and promote new technologies related with CO2 recycling. Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, capable of fixing CO2 into biomass under sunlight and serving as one of the most important primary producers on earth. Notably, recent progress on synthetic biology has led to utilizing model cyanobacteria such as Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 as chassis for "light-driven autotrophic cell factories" to produce several dozens of biofuels and various fine chemicals directly from CO2. However, due to the slow growth rate and low biomass accumulation in the current chassis, the productivity for most products is still lower than the threshold necessary for large-scale commercial application, raising the importance of developing high-efficiency cyanobacterial chassis with fast growth and/or higher biomass accumulation capabilities. In this article, we critically reviewed recent progresses on identification, systems biology analysis, and engineering of fast-growing cyanobacterial chassis. Specifically, fast-growing cyanobacteria identified in recent years, such as S. elongatus UTEX 2973, S. elongatus PCC 11801, S. elongatus PCC 11802 and Synechococcus sp. PCC 11901 was comparatively analyzed. In addition, the progresses on their recent application in converting CO2 into chemicals, and genetic toolboxes developed for these new cyanobacterial chassis were discussed. Finally, the article provides insights into future challenges and perspectives on the synthetic biology application of cyanobacterial chassis.
Collapse
Affiliation(s)
- Zhixiang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
9
|
Haavisto V, Landry Z, Pontrelli S. High-throughput profiling of metabolic responses to exogenous nutrients in Synechocystis sp. PCC 6803. mSystems 2024; 9:e0022724. [PMID: 38534128 PMCID: PMC11019784 DOI: 10.1128/msystems.00227-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
Cyanobacteria fix carbon dioxide and release carbon-containing compounds into the wider ecosystem, yet they are sensitive to small metabolites that may impact their growth and physiology. Several cyanobacteria can grow mixotrophically, but we currently lack a molecular understanding of how specific nutrients may alter the compounds they release, limiting our knowledge of how environmental factors might impact primary producers and the ecosystems they support. In this study, we develop a high-throughput phytoplankton culturing platform and identify how the model cyanobacterium Synechocystis sp. PCC 6803 responds to nutrient supplementation. We assess growth responses to 32 nutrients at two concentrations, identifying 15 that are utilized mixotrophically. Seven nutrient sources significantly enhance growth, while 19 elicit negative growth responses at one or both concentrations. High-throughput exometabolomics indicates that oxidative stress limits Synechocystis' growth but may be alleviated by antioxidant metabolites. Furthermore, glucose and valine induce strong changes in metabolite exudation in a possible effort to correct pathway imbalances or maintain intracellular elemental ratios. This study sheds light on the flexibility and limits of cyanobacterial physiology and metabolism, as well as how primary production and trophic food webs may be modulated by exogenous nutrients.IMPORTANCECyanobacteria capture and release carbon compounds to fuel microbial food webs, yet we lack a comprehensive understanding of how external nutrients modify their behavior and what they produce. We developed a high throughput culturing platform to evaluate how the model cyanobacterium Synechocystis sp. PCC 6803 responds to a broad panel of externally supplied nutrients. We found that growth may be enhanced by metabolites that protect against oxidative stress, and growth and exudate profiles are altered by metabolites that interfere with central carbon metabolism and elemental ratios. This work contributes a holistic perspective of the versatile response of Synechocystis to externally supplied nutrients, which may alter carbon flux into the wider ecosystem.
Collapse
Affiliation(s)
- Vilhelmiina Haavisto
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Zachary Landry
- Department of Civil, Environmental and Geomatic Engineering, Institute of Environmental Engineering, ETH Zürich, Zürich, Switzerland
| | - Sammy Pontrelli
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
10
|
Kratzl F, Urban M, Pandhal J, Shi M, Meng C, Kleigrewe K, Kremling A, Pflüger-Grau K. Pseudomonas putida as saviour for troubled Synechococcus elongatus in a synthetic co-culture - interaction studies based on a multi-OMICs approach. Commun Biol 2024; 7:452. [PMID: 38609451 PMCID: PMC11014904 DOI: 10.1038/s42003-024-06098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
In their natural habitats, microbes rarely exist in isolation; instead, they thrive in consortia, where various interactions occur. In this study, a defined synthetic co-culture of the cyanobacterium S. elongatus cscB, which supplies sucrose to the heterotrophic P. putida cscRABY, is investigated to identify potential interactions. Initial experiments reveal a remarkable growth-promoting effect of the heterotrophic partner on the cyanobacterium, resulting in an up to 80% increase in the growth rate and enhanced photosynthetic capacity. Vice versa, the presence of the cyanobacterium has a neutral effect on P. putida cscRABY, highlighting the resilience of pseudomonads against stress and their potential as co-culture partners. Next, a suitable reference process reinforcing the growth-promoting effect is established in a parallel photobioreactor system, which sets the basis for the analysis of the co-culture at the transcriptome, proteome, and metabolome levels. In addition to several moderate changes, including alterations in the metabolism and stress response in both microbes, this comprehensive multi-OMICs approach strongly hints towards the exchange of further molecules beyond the unidirectional feeding with sucrose. Taken together, these findings provide valuable insights into the complex dynamics between both co-culture partners, indicating multi-level interactions, which can be employed for further streamlining of the co-cultivation system.
Collapse
Affiliation(s)
- Franziska Kratzl
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Marlene Urban
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Mengxun Shi
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Andreas Kremling
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany
| | - Katharina Pflüger-Grau
- Professorship for Systems Biotechnology, TUM School of Engineering and Design, Technical University of Munich, Garching, Germany.
| |
Collapse
|
11
|
Yun L, Zegarac R, Ducat DC. Impact of irradiance and inorganic carbon availability on heterologous sucrose production in Synechococcus elongatus PCC 7942. FRONTIERS IN PLANT SCIENCE 2024; 15:1378573. [PMID: 38650707 PMCID: PMC11033428 DOI: 10.3389/fpls.2024.1378573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024]
Abstract
Cyanobacteria have been proposed as a potential alternative carbohydrate feedstock and multiple species have been successfully engineered to secrete fermentable sugars. To date, the most productive cyanobacterial strains are those designed to secrete sucrose, yet there exist considerable differences in reported productivities across different model species and laboratories. In this study, we investigate how cultivation conditions (specifically, irradiance, CO2, and cultivator type) affect the productivity of sucrose-secreting Synechococcus elongatus PCC 7942. We find that S. elongatus produces the highest sucrose yield in irradiances far greater than what is often experimentally utilized, and that high light intensities are tolerated by S. elongatus, especially under higher density cultivation where turbidity may attenuate the effective light experienced in the culture. By increasing light and inorganic carbon availability, S. elongatus cscB/sps produced a total of 3.8 g L-1 of sucrose and the highest productivity within that period being 47.8 mg L-1 h-1. This study provides quantitative description of the impact of culture conditions on cyanobacteria-derived sucrose that may assist to standardize cross-laboratory comparisons and demonstrates a significant capacity to improve productivity via optimizing cultivation conditions.
Collapse
Affiliation(s)
- Lisa Yun
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| | - Robert Zegarac
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Department of Energy-Michigan State University Plant Research Laboratories, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Shi M, Evans CA, McQuillan JL, Noirel J, Pandhal J. LFQRatio: A Normalization Method to Decipher Quantitative Proteome Changes in Microbial Coculture Systems. J Proteome Res 2024; 23:999-1013. [PMID: 38354288 PMCID: PMC10913063 DOI: 10.1021/acs.jproteome.3c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
The value of synthetic microbial communities in biotechnology is gaining traction due to their ability to undertake more complex metabolic tasks than monocultures. However, a thorough understanding of strain interactions, productivity, and stability is often required to optimize growth and scale up cultivation. Quantitative proteomics can provide valuable insights into how microbial strains adapt to changing conditions in biomanufacturing. However, current workflows and methodologies are not suitable for simple artificial coculture systems where strain ratios are dynamic. Here, we established a workflow for coculture proteomics using an exemplar system containing two members, Azotobacter vinelandii and Synechococcus elongatus. Factors affecting the quantitative accuracy of coculture proteomics were investigated, including peptide physicochemical characteristics such as molecular weight, isoelectric point, hydrophobicity, and dynamic range as well as factors relating to protein identification such as varying proteome size and shared peptides between species. Different quantification methods based on spectral counts and intensity were evaluated at the protein and cell level. We propose a new normalization method, named "LFQRatio", to reflect the relative contributions of two distinct cell types emerging from cell ratio changes during cocultivation. LFQRatio can be applied to real coculture proteomics experiments, providing accurate insights into quantitative proteome changes in each strain.
Collapse
Affiliation(s)
- Mengxun Shi
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Caroline A. Evans
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Josie L. McQuillan
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| | - Josselin Noirel
- GBCM
Laboratory (EA7528), Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, Paris 75003, France
| | - Jagroop Pandhal
- Department
of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, U.K.
| |
Collapse
|
13
|
Choix FJ, Palacios OA, Mondragón-Cortez P, Ocampo-Alvarez H, Becerril-Espinosa A, Lara-González MA, Juárez-Carrillo E. Synergic association of the consortium Arthrospira maxima with the microalga growth-promoting bacterium Azospirillum cultured under the stressful biogas composition. Bioprocess Biosyst Eng 2024; 47:181-193. [PMID: 38231212 DOI: 10.1007/s00449-023-02947-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/12/2023] [Indexed: 01/18/2024]
Abstract
The present study evaluates the association of the blue-green microalga Arthrospira maxima (Spirulina), which is known for its CO2 fixation, biomass, and high-value metabolite production, with the microalga growth-promoting bacterium Azospirillum brasilense under the stressful composition of biogas. The results demonstrated that A. maxima co-cultured with A. brasilense under the high CO2 (25%) and methane (CH4; 75%) concentrations of biogas recorded a CO2 fixation rate of 0.24 ± 0.03 g L-1 days-1, thereby attaining a biomass production of 1.8 ± 0.03 g L-1. Similarly, the biochemical composition quality of this microalga enhanced the attainment of higher contents of carbohydrates, proteins, and phycocyanin than cultured alone. However, metabolites other than tryptophan (Trp) and indole-3-acetic acid could have supported this beneficial interaction. Overall, the results demonstrate that this prokaryotic consortium of A. maxima-A. brasilense established a synergic association under biogas, which represents a sustainable strategy to improve the bio-refinery capacity of this microalga and increase the usefulness of A. brasilense in multiple economic sectors.
Collapse
Affiliation(s)
- Francisco J Choix
- CONAHCYT - Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
| | - Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México
| | - Pedro Mondragón-Cortez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Camino Arenero 1227, C.P. 45019, Zapopan, Jalisco, México
| | - Héctor Ocampo-Alvarez
- Departamento de Ecología, CUCBA-Universidad de Guadalajara, Ramón Padilla Sánchez 2100, C.P. 45200, Zapopan, Jalisco, México
| | - Amayaly Becerril-Espinosa
- CONAHCYT - Departamento de Ecología, CUCBA-Universidad de Guadalajara, Ramón Padilla Sánchez 2100, C.P. 45200, Zapopan, Jalisco, México
| | - Martha A Lara-González
- Departamento de Ecología, CUCBA-Universidad de Guadalajara, Ramón Padilla Sánchez 2100, C.P. 45200, Zapopan, Jalisco, México
| | - Eduardo Juárez-Carrillo
- Departamento de Ecología, CUCBA-Universidad de Guadalajara, Ramón Padilla Sánchez 2100, C.P. 45200, Zapopan, Jalisco, México
- Instituto de Limnología, CUCBA-Universidad de Guadalajara, Paseo de la Loma 22, C.P. 45920, Ajijic, Jalisco, México
| |
Collapse
|
14
|
Wang B, Zuniga C, Guarnieri MT, Zengler K, Betenbaugh M, Young JD. Metabolic engineering of Synechococcus elongatus 7942 for enhanced sucrose biosynthesis. Metab Eng 2023; 80:12-24. [PMID: 37678664 DOI: 10.1016/j.ymben.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/28/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
The capability of cyanobacteria to produce sucrose from CO2 and light has a remarkable societal and biotechnological impact since sucrose can serve as a carbon and energy source for a variety of heterotrophic organisms and can be converted into value-added products. However, most metabolic engineering efforts have focused on understanding local pathway alterations that drive sucrose biosynthesis and secretion in cyanobacteria rather than analyzing the global flux re-routing that occurs following induction of sucrose production by salt stress. Here, we investigated global metabolic flux alterations in a sucrose-secreting (cscB-overexpressing) strain relative to its wild-type Synechococcus elongatus 7942 parental strain. We used targeted metabolomics, 13C metabolic flux analysis (MFA), and genome-scale modeling (GSM) as complementary approaches to elucidate differences in cellular resource allocation by quantifying metabolic profiles of three cyanobacterial cultures - wild-type S. elongatus 7942 without salt stress (WT), wild-type with salt stress (WT/NaCl), and the cscB-overexpressing strain with salt stress (cscB/NaCl) - all under photoautotrophic conditions. We quantified the substantial rewiring of metabolic fluxes in WT/NaCl and cscB/NaCl cultures relative to WT and identified a metabolic bottleneck limiting carbon fixation and sucrose biosynthesis. This bottleneck was subsequently mitigated through heterologous overexpression of glyceraldehyde-3-phosphate dehydrogenase in an engineered sucrose-secreting strain. Our study also demonstrates that combining 13C-MFA and GSM is a useful strategy to both extend the coverage of MFA beyond central metabolism and to improve the accuracy of flux predictions provided by GSM.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, CA, 92093, USA; Department of Biology, San Diego State University, San Diego, CA, 92182, USA
| | - Michael T Guarnieri
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, CA, 92093, USA; Department of Bioengineering, University of California, San Diego, CA, 92093, USA; Center for Microbiome Innovation, University of California, San Diego, CA, 92093, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jamey D Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, 37235, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37235, USA.
| |
Collapse
|
15
|
Pan M, Wang Y, Krömer JO, Zhu X, Lin MKTH, Angelidaki I. A Coculture of Photoautotrophs and Hydrolytic Heterotrophs Enables Efficient Upcycling of Starch from Wastewater toward Biomass-Derived Products: Synergistic Interactions Impacting Metabolism of the Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15523-15532. [PMID: 37792456 DOI: 10.1021/acs.est.3c05321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Even with particular interest in sustainable development, due to the limited types of bioavailable carbon sources that could support heterotrophic/mixotrophic growth, microalgae-derived products still suffer from inconsistent yield and high costs. This study demonstrates a successful cocultivation of the photoautotroph Chlorella vulgaris with a hydrolytic-enzyme-abundant heterotroph, Saccharomycopsis fibuligera, enabling efficient starch upcycling from water/wastewater toward enhancing microalgae-dominant biomass and lipid production. The enzymatic activities of S. fibuligera contributed to the hydrolysis of starch into glucose, generating a 7-fold higher biomass through mixotrophic/heterotrophic growth of C. vulgaris. Further, scanning transmission electron microscopy (STEM) and quantitative analysis suggested a significantly induced accumulation of lipids in C. vulgaris. Results of meta-transcriptomics revealed the critical regulatory role of illumination in interaction shifting. Gene expression for glycolysis and lipid biosynthesis of C. vulgaris were highly activated during dark periods. Meanwhile, during illumination periods, genes coding for glucoamylase and the sulfur-related activities in S. fibuligera were significantly upregulated, leading to induced starch hydrolysis and potential increased competition for sulfur utilization, respectively. This study indicates that hydrolytic organisms could collaborate to make starch bioavailable for nonhydrolytic microalgae, thus broadening the substrate spectrum and making starch a novel biotechnological feedstock for microalgae-derived products, e.g., biofuels or single-cell protein.
Collapse
Affiliation(s)
- Minmin Pan
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
| | - Yiru Wang
- German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany
| | - Jens O Krömer
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research, UFZ, Leipzig 04318, Germany
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
| | - Marie Karen Tracy Hong Lin
- National Center for Nanofabrication and Characterization, Technical University of Denmark, Lyngby DK-2899, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby DK-2899, Denmark
| |
Collapse
|
16
|
Li C, Zheng H, Li H, Liu L, Wang J, Ni J. Synthetic Light-Driven Consortia for Carbon-Negative Biosynthesis. Chembiochem 2023; 24:e202300122. [PMID: 37401840 DOI: 10.1002/cbic.202300122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/07/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Synthetic light-driven consortia composed of phototrophs and heterotrophs have attracted increasing attention owing to their potential to be used in sustainable biotechnology. In recent years, synthetic phototrophic consortia have been used to produce bulk chemicals, biofuels, and other valuable bioproducts. In addition, autotrophic-heterotrophic symbiosis systems have potential applications in wastewater treatment, bioremediation, and as a method for phytoplankton bloom control. Here, we discuss progress made on the biosynthesis of phototrophic microbial consortia. In addition, strategies for optimizing the synthetic light-driven consortia are summarized. Moreover, we highlight current challenges and future research directions for the development of robust and controllable synthetic light-driven consortia.
Collapse
Affiliation(s)
- Chaofeng Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haotian Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengrun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liangxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Ni
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
17
|
Mager M, Pineda Hernandez H, Brandenburg F, López-Maury L, McCormick AJ, Nürnberg DJ, Orthwein T, Russo DA, Victoria AJ, Wang X, Zedler JAZ, Branco dos Santos F, Schmelling NM. Interlaboratory Reproducibility in Growth and Reporter Expression in the Cyanobacterium Synechocystis sp. PCC 6803. ACS Synth Biol 2023; 12:1823-1835. [PMID: 37246820 PMCID: PMC10278186 DOI: 10.1021/acssynbio.3c00150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Indexed: 05/30/2023]
Abstract
In recent years, a plethora of new synthetic biology tools for use in cyanobacteria have been published; however, their reported characterizations often cannot be reproduced, greatly limiting the comparability of results and hindering their applicability. In this interlaboratory study, the reproducibility of a standard microbiological experiment for the cyanobacterial model organism Synechocystis sp. PCC 6803 was assessed. Participants from eight different laboratories quantified the fluorescence intensity of mVENUS as a proxy for the transcription activity of the three promoters PJ23100, PrhaBAD, and PpetE over time. In addition, growth rates were measured to compare growth conditions between laboratories. By establishing strict and standardized laboratory protocols, reflecting frequently reported methods, we aimed to identify issues with state-of-the-art procedures and assess their effect on reproducibility. Significant differences in spectrophotometer measurements across laboratories from identical samples were found, suggesting that commonly used reporting practices of optical density values need to be supplemented by cell count or biomass measurements. Further, despite standardized light intensity in the incubators, significantly different growth rates between incubators used in this study were observed, highlighting the need for additional reporting requirements of growth conditions for phototrophic organisms beyond the light intensity and CO2 supply. Despite the use of a regulatory system orthogonal to Synechocystis sp. PCC 6803, PrhaBAD, and a high level of protocol standardization, ∼32% variation in promoter activity under induced conditions was found across laboratories, suggesting that the reproducibility of other data in the field of cyanobacteria might be affected similarly.
Collapse
Affiliation(s)
- Maurice Mager
- Institute
for Synthetic Microbiology, Heinrich Heine
University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Hugo Pineda Hernandez
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences,
Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Fabian Brandenburg
- Helmholtz
Centre for Environmental Research (UFZ), Permoserstrasse 15, 04318 Leipzig, Germany
| | - Luis López-Maury
- Instituto
de Bioquímica Vegetal y Fotosíntesis, University of Seville − CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
- Departamento
de Bioquímica Vegetal y Biología Molecular, Facultad
de Biología, University of Seville, Avenida Reina Mercedes, 41012 Sevilla, Spain
| | - Alistair J. McCormick
- Institute
of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, 1.04 Daniel Rutherford Building, King’s
Buildings, EH9 3BF Edinburgh, U.K.
| | - Dennis J. Nürnberg
- Department
of Physics, Experimental Biophysics, Freie
University Berlin, Arnimallee
14, 14195 Berlin, Germany
- Dahlem
Centre of Plant Sciences, Freie Universität
Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Tim Orthwein
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tuebingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - David A. Russo
- Institute
for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Angelo Joshua Victoria
- Institute
of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, 1.04 Daniel Rutherford Building, King’s
Buildings, EH9 3BF Edinburgh, U.K.
| | - Xiaoran Wang
- Department
of Physics, Experimental Biophysics, Freie
University Berlin, Arnimallee
14, 14195 Berlin, Germany
| | - Julie A. Z. Zedler
- Matthias
Schleiden Institute for Genetics, Bioinformatics and Molecular Botany,
Synthetic Biology of Photosynthetic Organisms, Friedrich Schiller University Jena, Dornburgerstrasse 159, 07743 Jena, Germany
| | - Filipe Branco dos Santos
- Molecular
Microbial Physiology Group, Swammerdam Institute for Life Sciences,
Faculty of Science, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Nicolas M. Schmelling
- Institute
for Synthetic Microbiology, Heinrich Heine
University Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| |
Collapse
|
18
|
Azuma Y, Tsuru S, Habuchi M, Takami R, Takano S, Yamamoto K, Hosoda K. Synthetic symbiosis between a cyanobacterium and a ciliate toward novel chloroplast-like endosymbiosis. Sci Rep 2023; 13:6104. [PMID: 37055487 PMCID: PMC10102011 DOI: 10.1038/s41598-023-33321-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Chloroplasts are thought to have co-evolved through endosymbiosis, after a cyanobacterial-like prokaryote was engulfed by a eukaryotic cell; however, it is impossible to observe the process toward chloroplasts. In this study, we constructed an experimental symbiosis model to observe the initial stage in the process from independent organisms to a chloroplast-like organelle. Our system of synthetic symbiosis is capable of long-term coculture of two model organisms: a cyanobacterium (Synechocystis sp. PCC6803) as a symbiont and a ciliate (Tetrahymena thermophila) as a host with endocytic ability. The experimental system was clearly defined, because we used a synthetic medium and the cultures were shaken to avoid spatial complexity. We determined the experimental conditions for sustainable coculture, by analyzing population dynamics using a mathematical model. We experimentally demonstrated that the coculture was sustainable for at least 100 generations, through serial transfers. Moreover, we found that cells isolated after the serial transfer improved the probability of coexistence of both species without extinction in re-coculture. The constructed system will be useful for understanding the initial stage of primary endosymbiosis from cyanobacteria to chloroplasts, i.e., the origin of algae and plants.
Collapse
Affiliation(s)
- Yuki Azuma
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Division of Hygienic Chemistry, Osaka Institute of Public Health, 1-3-3 Nakamichi, Higashinari-ku, Osaka, 537-0025, Japan.
| | - Saburo Tsuru
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Masumi Habuchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Risa Takami
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sotaro Takano
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kayo Yamamoto
- Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazufumi Hosoda
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Osaka, Japan.
| |
Collapse
|
19
|
Barone GD, Cernava T, Ullmann J, Liu J, Lio E, Germann AT, Nakielski A, Russo DA, Chavkin T, Knufmann K, Tripodi F, Coccetti P, Secundo F, Fu P, Pfleger B, Axmann IM, Lindblad P. Recent developments in the production and utilization of photosynthetic microorganisms for food applications. Heliyon 2023; 9:e14708. [PMID: 37151658 PMCID: PMC10161259 DOI: 10.1016/j.heliyon.2023.e14708] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 05/09/2023] Open
Abstract
The growing use of photosynthetic microorganisms for food and food-related applications is driving related biotechnology research forward. Increasing consumer acceptance, high sustainability, demand of eco-friendly sources for food, and considerable global economic concern are among the main factors to enhance the focus on the novel foods. In the cases of not toxic strains, photosynthetic microorganisms not only provide a source of sustainable nutrients but are also potentially healthy. Several published studies showed that microalgae are sources of accessible protein and fatty acids. More than 400 manuscripts were published per year in the last 4 years. Furthermore, industrial approaches utilizing these microorganisms are resulting in new jobs and services. This is in line with the global strategy for bioeconomy that aims to support sustainable development of bio-based sectors. Despite the recognized potential of the microalgal biomass value chain, significant knowledge gaps still exist especially regarding their optimized production and utilization. This review highlights the potential of microalgae and cyanobacteria for food and food-related applications as well as their market size. The chosen topics also include advanced production as mixed microbial communities, production of high-value biomolecules, photoproduction of terpenoid flavoring compounds, their utilization for sustainable agriculture, application as source of nutrients in space, and a comparison with heterotrophic microorganisms like yeast to better evaluate their advantages over existing nutrient sources. This comprehensive assessment should stimulate further interest in this highly relevant research topic.
Collapse
Affiliation(s)
- Giovanni D. Barone
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010, Graz, Austria
- Corresponding author.
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12/I, 8010, Graz, Austria
| | - Jörg Ullmann
- Roquette Klötze GmbH & Co. KG, Lockstedter Chaussee 1, D-38486, Klötze, Germany
| | - Jing Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Elia Lio
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Anna T. Germann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Andreas Nakielski
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - David A. Russo
- Friedrich Schiller University Jena, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Lessingstr. 8, D-07743, Jena, Germany
| | - Ted Chavkin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Farida Tripodi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Paola Coccetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126, Milano, Italy
| | - Francesco Secundo
- Institute of Chemical Sciences and Technologies (SCITEC) “Giulio Natta” Italian National Research Council (CNR), via Mario Bianco 9, 20131, Milan, Italy
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea Hainan University, 58 Renmin Avenue, Meilan District, Haikou, Hainan Province, 570228, PR China
| | - Brian Pfleger
- Knufmann GmbH, Bergstraße 23, D-38486, Klötze, Germany
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, D-40001, Düsseldorf, Germany
- Corresponding author. Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry–Ångström, Uppsala University, Box 523, SE-75120, Uppsala, Sweden
| |
Collapse
|
20
|
Feng J, Li J, Liu D, Xin Y, Sun J, Yin WB, Li T. Generation and comprehensive analysis of Synechococcus elongatus-Aspergillus nidulans co-culture system for polyketide production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:32. [PMID: 36859469 PMCID: PMC9979520 DOI: 10.1186/s13068-023-02283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/16/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Artificial microbial consortia composed of heterotrophic and photoautotrophic organisms represent a unique strategy for converting light energy and carbon dioxide into high-value bioproducts. Currently, the types of desired bioproducts are still limited, and microbial fitness benefit rendered by paired partner generally needs to be intensified. Exploring novel artificial microbial consortia at a laboratory scale is an essential step towards addressing this unmet need. This study aimed to conduct and analyze an artificial consortium composed of cyanobacterium Synechococcus elongatus FL130 with the filamentous fungus Aspergillus nidulans TWY1.1 for producing fungi-derived secondary metabolite of polyketide neosartoricin B. RESULTS Polyketide-producing A. nidulans TWY1.1 substantially ameliorated the growth and the survival of sucrose-secreting cyanobacterium S. elongatus FL130 in salt-stressed environments. Besides sucrose, comparable amounts of other carbohydrates were released from axenically cultured FL130 cells, which could be efficiently consumed by TWY1.1. Relative to axenically cultured FL130, less glycogen was accumulated in FL130 cells co-cultured with TWY1.1, and the glycogen phosphorylase gene catalyzing the first step for glycogen degradation had two-fold expression. Different from axenically cultured filamentous fungi, abundant vacuoles were observed in fungal hyphae of TWY1.1 co-cultured with cyanobacterium FL130. Meanwhile, FL130 cells displayed a characteristic pattern of interacting with its heterotrophic partner, densely dispersing along certain hyphae of TWY1.1. Finally, polyketide neosartoricin B was produced from TWY1.1 in FL130-TWY1.1 co-cultures, which was tightly adjusted by nitrogen level. CONCLUSION Overall, the results thoroughly proved the concept of pairing cyanobacteria with filamentous fungi to build artificial consortia for producing fungi-derived biomolecules.
Collapse
Affiliation(s)
- Jie Feng
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jingwei Li
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Dongxia Liu
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Yuxian Xin
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jingrong Sun
- grid.32566.340000 0000 8571 0482School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Wen-Bing Yin
- grid.9227.e0000000119573309State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 People’s Republic of China
| | - Tingting Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
21
|
Santos-Merino M, Yun L, Ducat DC. Cyanobacteria as cell factories for the photosynthetic production of sucrose. Front Microbiol 2023; 14:1126032. [PMID: 36865782 PMCID: PMC9971976 DOI: 10.3389/fmicb.2023.1126032] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 01/24/2023] [Indexed: 02/16/2023] Open
Abstract
Biofuels and other biologically manufactured sustainable goods are growing in popularity and demand. Carbohydrate feedstocks required for industrial fermentation processes have traditionally been supplied by plant biomass, but the large quantities required to produce replacement commodity products may prevent the long-term feasibility of this approach without alternative strategies to produce sugar feedstocks. Cyanobacteria are under consideration as potential candidates for sustainable production of carbohydrate feedstocks, with potentially lower land and water requirements relative to plants. Several cyanobacterial strains have been genetically engineered to export significant quantities of sugars, especially sucrose. Sucrose is not only naturally synthesized and accumulated by cyanobacteria as a compatible solute to tolerate high salt environments, but also an easily fermentable disaccharide used by many heterotrophic bacteria as a carbon source. In this review, we provide a comprehensive summary of the current knowledge of the endogenous cyanobacterial sucrose synthesis and degradation pathways. We also summarize genetic modifications that have been found to increase sucrose production and secretion. Finally, we consider the current state of synthetic microbial consortia that rely on sugar-secreting cyanobacterial strains, which are co-cultivated alongside heterotrophic microbes able to directly convert the sugars into higher-value compounds (e.g., polyhydroxybutyrates, 3-hydroxypropionic acid, or dyes) in a single-pot reaction. We summarize recent advances reported in such cyanobacteria/heterotroph co-cultivation strategies and provide a perspective on future developments that are likely required to realize their bioindustrial potential.
Collapse
Affiliation(s)
- María Santos-Merino
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Lisa Yun
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Daniel C. Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
22
|
Satta A, Esquirol L, Ebert BE. Current Metabolic Engineering Strategies for Photosynthetic Bioproduction in Cyanobacteria. Microorganisms 2023; 11:455. [PMID: 36838420 PMCID: PMC9964548 DOI: 10.3390/microorganisms11020455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Cyanobacteria are photosynthetic microorganisms capable of using solar energy to convert CO2 and H2O into O2 and energy-rich organic compounds, thus enabling sustainable production of a wide range of bio-products. More and more strains of cyanobacteria are identified that show great promise as cell platforms for the generation of bioproducts. However, strain development is still required to optimize their biosynthesis and increase titers for industrial applications. This review describes the most well-known, newest and most promising strains available to the community and gives an overview of current cyanobacterial biotechnology and the latest innovative strategies used for engineering cyanobacteria. We summarize advanced synthetic biology tools for modulating gene expression and their use in metabolic pathway engineering to increase the production of value-added compounds, such as terpenoids, fatty acids and sugars, to provide a go-to source for scientists starting research in cyanobacterial metabolic engineering.
Collapse
Affiliation(s)
- Alessandro Satta
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
- Department of Biology, University of Padua, 35100 Padua, Italy
| | - Lygie Esquirol
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Natha, QLD 4111, Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
23
|
Kokarakis E, Rillema R, Ducat DC, Sakkos JK. Developing Cyanobacterial Quorum Sensing Toolkits: Toward Interspecies Coordination in Mixed Autotroph/Heterotroph Communities. ACS Synth Biol 2023; 12:265-276. [PMID: 36573789 PMCID: PMC9872165 DOI: 10.1021/acssynbio.2c00527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 12/28/2022]
Abstract
There has been substantial recent interest in the promise of sustainable, light-driven bioproduction using cyanobacteria, including developing efforts for microbial bioproduction using mixed autotroph/heterotroph communities, which could provide useful properties, such as division of metabolic labor. However, building stable mixed-species communities of sufficient productivity remains a challenge, partly due to the lack of strategies for synchronizing and coordinating biological activities across different species. To address this obstacle, we developed an inter-species communication system using quorum sensing (QS) modules derived from well-studied pathways in heterotrophic microbes. In the model cyanobacterium, Synechococcus elongatus PCC 7942 (S. elongatus), we designed, integrated, and characterized genetic circuits that detect acyl-homoserine lactones (AHLs), diffusible signals utilized in many QS pathways. We showed that these receiver modules sense exogenously supplied AHL molecules and activate gene expression in a dose-dependent manner. We characterized these AHL receiver circuits in parallel with Escherichia coli W (E. coli W) to dissect species-specific properties, finding broad agreement, albeit with increased basal expression in S. elongatus. Our engineered "sender" E. coli strains accumulated biologically synthesized AHLs within the supernatant and activated receiver strains similarly to exogenous AHL activation. Our results will bolster the design of sophisticated genetic circuits in cyanobacterial/heterotroph consortia and the engineering of QS-like behaviors across cyanobacterial populations.
Collapse
Affiliation(s)
- Emmanuel
J. Kokarakis
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan48824-1312, United States
| | - Rees Rillema
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan48824-1312, United States
| | - Daniel C. Ducat
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan48824-1312, United States
| | - Jonathan K. Sakkos
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
| |
Collapse
|
24
|
Li C, Wang R, Wang J, Liu L, Li H, Zheng H, Ni J. A Highly Compatible Phototrophic Community for Carbon-Negative Biosynthesis. Angew Chem Int Ed Engl 2023; 62:e202215013. [PMID: 36378012 DOI: 10.1002/anie.202215013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
CO2 sequestration engineering is promising for carbon-negative biosynthesis, and artificial communities can solve more complex problems than monocultures. However, obtaining an ideal photosynthetic community is still a great challenge. Herein, we describe the development of a highly compatible photosynthetic community (HCPC) by integrating a sucrose-producing CO2 sequestration module and a super-coupled module. The cyanobacteria CO2 sequestration module was obtained using stepwise metabolic engineering and then coupled with the efficient sucrose utilization module Vibrio natriegens. Integrated omics analysis indicated that enhanced photosynthetic electron transport and extracellular vesicles promote intercellular communication. Additionally, the HCPC was used to channel CO2 into valuable chemicals, enabling the overall release of -22.27 to -606.59 kgCO2 e kg-1 in the end products. This novel light-driven community could facilitate circular economic implementation in the future.
Collapse
Affiliation(s)
- Chaofeng Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruoyu Wang
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawei Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liangxu Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengrun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haotian Zheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Ni
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
25
|
Kratzl F, Kremling A, Pflüger‐Grau K. Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO 2. Eng Life Sci 2023; 23:e2100156. [PMID: 36619884 PMCID: PMC9815089 DOI: 10.1002/elsc.202100156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Rationally designed synthetic microbial consortia carry a vast potential for biotechnological applications. The application of such a consortium in a bioprocess, however, requires tight and individual controllability of the involved microbes. Here, we present the streamlining of a co-cultivation process consisting of Synechococcus elongatus cscB and Pseudomonas putida for the production of polyhydroxyalkanoates (PHA) from light and CO2. First, the process was improved by employing P. putida cscRABY, a strain with a higher metabolic activity towards sucrose. Next, the individual controllability of the co-culture partners was addressed by providing different nitrogen sources, each exclusively available for one strain. By this, the growth rate of the co-culture partners could be regulated individually, and defined conditions could be set. The molC/molN ratio, a key value for PHA accumulation, was estimated from the experimental data, and the necessary feeding rates to obtain a specific ratio could be predicted. This information was then implemented in the co-cultivation process, following the concept of a DBTL-cycle. In total, the streamlining of the process resulted in an increased maximal PHA titer of 393 mg/L and a PHA production rate of 42.1 mg/(L•day).
Collapse
Affiliation(s)
- Franziska Kratzl
- Professorship of Systems BiotechnologyTechnical University of MunichGarchingGermany
| | - Andreas Kremling
- Professorship of Systems BiotechnologyTechnical University of MunichGarchingGermany
| | | |
Collapse
|
26
|
Tóth GS, Siitonen V, Nikkanen L, Sovic L, Kallio P, Kourist R, Kosourov S, Allahverdiyeva Y. Photosynthetically produced sucrose by immobilized Synechocystis sp. PCC 6803 drives biotransformation in E. coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:146. [PMID: 36575466 PMCID: PMC9795604 DOI: 10.1186/s13068-022-02248-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Whole-cell biotransformation is a promising emerging technology for the production of chemicals. When using heterotrophic organisms such as E. coli and yeast as biocatalysts, the dependence on organic carbon source impairs the sustainability and economic viability of the process. As a promising alternative, photosynthetic cyanobacteria with low nutrient requirements and versatile metabolism, could offer a sustainable platform for the heterologous production of organic compounds directly from sunlight and CO2. This strategy has been applied for the photoautotrophic production of sucrose by a genetically engineered cyanobacterium, Synechocystis sp. PCC 6803 strain S02. As the key concept in the current work, this can be further used to generate organic carbon compounds for different heterotrophic applications, including for the whole-cell biotransformation by yeast and bacteria. RESULTS Entrapment of Synechocystis S02 cells in Ca2+-cross-linked alginate hydrogel beads improves the specific sucrose productivity by 86% compared to suspension cultures during 7 days of cultivation under salt stress. The process was further prolonged by periodically changing the medium in the vials for up to 17 days of efficient production, giving the final sucrose yield slightly above 3000 mg l-1. We successfully demonstrated that the medium enriched with photosynthetically produced sucrose by immobilized Synechocystis S02 cells supports the biotransformation of cyclohexanone to ε-caprolactone by the E. coli WΔcscR Inv:Parvi strain engineered to (i) utilize low concentrations of sucrose and (ii) perform biotransformation of cyclohexanone to ε-caprolactone. CONCLUSION We conclude that cell entrapment in Ca2+-alginate beads is an effective method to prolong sucrose production by the engineered cyanobacteria, while allowing efficient separation of the cells from the medium. This advantage opens up novel possibilities to create advanced autotroph-heterotroph coupled cultivation systems for solar-driven production of chemicals via biotransformation, as demonstrated in this work by utilizing the photosynthetically produced sucrose to drive the conversion of cyclohexanone to ε-caprolactone by engineered E. coli.
Collapse
Affiliation(s)
- Gábor Szilveszter Tóth
- grid.1374.10000 0001 2097 1371Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Vilja Siitonen
- grid.1374.10000 0001 2097 1371Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- grid.1374.10000 0001 2097 1371Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lucija Sovic
- grid.410413.30000 0001 2294 748XCell and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Pauli Kallio
- grid.1374.10000 0001 2097 1371Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Robert Kourist
- grid.410413.30000 0001 2294 748XCell and Protein Engineering, Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | - Sergey Kosourov
- grid.1374.10000 0001 2097 1371Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Yagut Allahverdiyeva
- grid.1374.10000 0001 2097 1371Molecular Plant Biology, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| |
Collapse
|
27
|
Photobiological production of high-value pigments via compartmentalized co-cultures using Ca-alginate hydrogels. Sci Rep 2022; 12:22163. [PMID: 36550285 PMCID: PMC9780300 DOI: 10.1038/s41598-022-26437-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Engineered cyanobacterium Synechococcus elongatus can use light and CO2 to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem where S. elongatus is freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either β-carotene-producing Yarrowia lipolytica or indigoidine-producing Pseudomonas putida) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and β-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a β-carotene titer of 1.3 g/L hydrogel, amounts 15-22-fold higher than in a comparable co-culture without encapsulation. Moreover, 13C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions.
Collapse
|
28
|
Ma J, Guo T, Ren M, Chen L, Song X, Zhang W. Cross-feeding between cyanobacterium Synechococcus and Escherichia coli in an artificial autotrophic–heterotrophic coculture system revealed by integrated omics analysis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:69. [PMID: 35733176 PMCID: PMC9219151 DOI: 10.1186/s13068-022-02163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/04/2022] [Indexed: 01/21/2023]
Abstract
Background Light-driven consortia, which consist of sucrose-secreting cyanobacteria and heterotrophic species, have attracted considerable attention due to their capability for the sustainable production of valuable chemicals directly from CO2. In a previous study, we achieved a one-step conversion of sucrose secreted from cyanobacteria to fine chemicals by constructing an artificial coculture system consisting of sucrose-secreting Synechococcus elongateus cscB+ and 3-hydroxypropionic acid (3-HP) producing Escherichia coli ABKm. Analyses of the coculture system showed that the cyanobacterial cells grew better than their corresponding axenic cultures. To explore the underlying mechanism and to identify the metabolic nodes with the potential to further improve the coculture system, we conducted integrated transcriptomic, proteomic and metabolomic analyses. Results We first explored how the relieved oxidative stress affected cyanobacterial cell growth in a coculture system by supplementing additional ascorbic acid to CoBG-11 medium. We found that the cell growth of cyanobacteria was clearly improved with an additional 1 mM ascorbic acid under axenic culture; however, its growth was still slower than that in the coculture system, suggesting that the improved growth of Synechococcus cscB+ may be caused by multiple factors, including reduced oxidative stress. To further explore the cellular responses of cyanobacteria in the system, quantitative transcriptomics, proteomics and metabolomics were applied to Synechococcus cscB+. Analyses of differentially regulated genes/proteins and the abundance change of metabolites in the photosystems revealed that the photosynthesis of the cocultured Synechococcus cscB+ was enhanced. The decreased expression of the CO2 transporter suggested that the heterotrophic partner in the system might supplement additional CO2 to support the cell growth of Synechococcus cscB+. In addition, the differentially regulated genes and proteins involved in the nitrogen and phosphate assimilation pathways suggested that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient. Conclusion An artificial coculture system capable of converting CO2 to fine chemicals was established and then analysed by integrated omics analysis, which demonstrated that in the coculture system, the relieved oxidative stress and increased CO2 availability improved the cell growth of cyanobacteria. In addition, the results also showed that the supply of phosphate and nitrogen in the Co-BG11 medium might be insufficient, which paves a new path towards the optimization of the coculture system in the future. Taken together, these results from the multiple omics analyses provide strong evidence that beneficial interactions can be achieved from cross-feeding and competition between phototrophs and prokaryotic heterotrophs and new guidelines for engineering more intelligent artificial consortia in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02163-5.
Collapse
|
29
|
Cui Y, Rasul F, Jiang Y, Zhong Y, Zhang S, Boruta T, Riaz S, Daroch M. Construction of an artificial consortium of Escherichia coli and cyanobacteria for clean indirect production of volatile platform hydrocarbons from CO 2. Front Microbiol 2022; 13:965968. [PMID: 36338098 PMCID: PMC9635338 DOI: 10.3389/fmicb.2022.965968] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Ethylene and isoprene are essential platform chemicals necessary to produce polymers and materials. However, their current production methods based on fossil fuels are not very efficient and result in significant environmental pollution. For a successful transition more sustainable economic model, producing these key polymeric building blocks from renewable and sustainable resources such as biomass or CO2 is essential. Here, inspired by the symbiotic relationship of natural microbial communities, artificial consortia composed of E. coli strains producing volatile platform chemicals: ethylene and isoprene and two strains of cyanobacteria phototrophically synthesizing and exporting sucrose to feed these heterotrophs were developed. Disaccharide produced by transgenic cyanobacteria was used as a carbon and electron shuttle between the two community components. The E. coli cscB gene responsible for sucrose transport was inserted into two cyanobacterial strains, Thermosynechococcus elongatus PKUAC-SCTE542 and Synechococcus elongatus PCC7942, resulting in a maximal sucrose yield of 0.14 and 0.07 g/L, respectively. These organisms were co-cultured with E. coli BL21 expressing ethylene-forming enzyme or isoprene synthase and successfully synthesized volatile hydrocarbons. Productivity parameters of these co-cultures were higher than respective transgenic cultures of E. coli grown individually at similar sucrose concentrations, highlighting the positive impact of the artificial consortia on the production of these platform chemicals.
Collapse
Affiliation(s)
- Yixuan Cui
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Faiz Rasul
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yuqing Zhong
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Shanfa Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Sadaf Riaz
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| |
Collapse
|
30
|
Light-Driven Synthetic Biology: Progress in Research and Industrialization of Cyanobacterial Cell Factory. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101537. [PMID: 36294972 PMCID: PMC9605453 DOI: 10.3390/life12101537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
Light-driven synthetic biology refers to an autotrophic microorganisms-based research platform that remodels microbial metabolism through synthetic biology and directly converts light energy into bio-based chemicals. This technology can help achieve the goal of carbon neutrality while promoting green production. Cyanobacteria are photosynthetic microorganisms that use light and CO2 for growth and production. They thus possess unique advantages as "autotrophic cell factories". Various fuels and chemicals have been synthesized by cyanobacteria, indicating their important roles in research and industrial application. This review summarized the progresses and remaining challenges in light-driven cyanobacterial cell factory. The choice of chassis cells, strategies used in metabolic engineering, and the methods for high-value CO2 utilization will be discussed.
Collapse
|
31
|
Toribio AJ, Suárez-Estrella F, Jurado MM, López-González JA, Martínez-Gallardo MR, López MJ. Design and validation of cyanobacteria-rhizobacteria consortia for tomato seedlings growth promotion. Sci Rep 2022; 12:13150. [PMID: 35909166 PMCID: PMC9339543 DOI: 10.1038/s41598-022-17547-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/27/2022] [Indexed: 11/11/2022] Open
Abstract
The use of rhizobacteria provide great benefits in terms of nitrogen supply, suppression of plant diseases, or production of vitamins and phytohormones that stimulate the plant growth. At the same time, cyanobacteria can photosynthesize, fix nitrogen, synthesize substances that stimulate rhizogenesis, plant aerial growth, or even suppose an extra supply of carbon usable by heterotrophic bacteria, as well as act as biological control agents, give them an enormous value as plant growth promoters. The present study focused on the in vitro establishment of consortia using heterotrophic bacteria and cyanobacteria and the determination of their effectiveness in the development of tomato seedlings. Microbial collection was composed of 3 cyanobacteria (SAB-M612 and SAB-B866 belonging to Nostocaceae Family) and GS (unidentified cyanobacterium) and two phosphate and potassium solubilizing heterotrophic bacteria (Pseudomonas putida-BIO175 and Pantoea cypripedii-BIO175). The results revealed the influence of the culture medium, incubation time and the microbial components of each consortium in determining their success as biofertilizers. In this work, the most compatible consortia were obtained by combining the SAB-B866 and GS cyanobacteria with either of the two heterotrophic bacteria. Cyanobacteria GS promoted the growth of both rhizobacteria in vitro (increasing logarithmic units when they grew together). While Cyanobacteria SAB-B866 together with both rhizobacteria stimulated the growth of tomato seedlings in planta, leading to greater aerial development of the treated seedlings. Parameters such as fresh weight and stem diameter stood out in the plants treated with the consortia (SAB-B866 and both bacteria) compared to the untreated plants, where the values doubled. However, the increase was more discrete for the parameters stem length and number of leaves. These results suggest that the artificial formulation of microbial consortia can have positive synergistic effects on plant growth, which is of enormous agro-biotechnological interest.
Collapse
Affiliation(s)
- A J Toribio
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain.
| | - F Suárez-Estrella
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M M Jurado
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - J A López-González
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M R Martínez-Gallardo
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| | - M J López
- Department of Biology and Geology, CITE II-B, University of Almería, Agrifood Campus of International Excellence, ceiA3, CIAIMBITAL, 04120, Almeria, Spain
| |
Collapse
|
32
|
Malečková E. Rubisco responds to sucrose give and take in cyanobacteria. PLANT PHYSIOLOGY 2022; 189:444-446. [PMID: 35285507 PMCID: PMC9157106 DOI: 10.1093/plphys/kiac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Eva Malečková
- Singleron Biotechnologies GmbH, 51105 Cologne, Germany
| |
Collapse
|
33
|
Muth-Pawlak D, Kreula S, Gollan PJ, Huokko T, Allahverdiyeva Y, Aro EM. Patterning of the Autotrophic, Mixotrophic, and Heterotrophic Proteomes of Oxygen-Evolving Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2022; 13:891895. [PMID: 35694301 PMCID: PMC9175036 DOI: 10.3389/fmicb.2022.891895] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Proteomes of an oxygenic photosynthetic cyanobacterium, Synechocystis sp. PCC 6803, were analyzed under photoautotrophic (low and high CO2, assigned as ATLC and ATHC), photomixotrophic (MT), and light-activated heterotrophic (LAH) conditions. Allocation of proteome mass fraction to seven sub-proteomes and differential expression of individual proteins were analyzed, paying particular attention to photosynthesis and carbon metabolism–centered sub-proteomes affected by the quality and quantity of the carbon source and light regime upon growth. A distinct common feature of the ATHC, MT, and LAH cultures was low abundance of inducible carbon-concentrating mechanisms and photorespiration-related enzymes, independent of the inorganic or organic carbon source. On the other hand, these cells accumulated a respiratory NAD(P)H dehydrogenase I (NDH-11) complex in the thylakoid membrane (TM). Additionally, in glucose-supplemented cultures, a distinct NDH-2 protein, NdbA, accumulated in the TM, while the plasma membrane-localized NdbC and terminal oxidase decreased in abundance in comparison to both AT conditions. Photosynthetic complexes were uniquely depleted under the LAH condition but accumulated under the ATHC condition. The MT proteome displayed several heterotrophic features typical of the LAH proteome, particularly including the high abundance of ribosome as well as amino acid and protein biosynthesis machinery-related components. It is also noteworthy that the two equally light-exposed ATHC and MT cultures allocated similar mass fractions of the total proteome to the seven distinct sub-proteomes. Unique trophic condition-specific expression patterns were likewise observed among individual proteins, including the accumulation of phosphate transporters and polyphosphate polymers storing energy surplus in highly energetic bonds under the MT condition and accumulation under the LAH condition of an enzyme catalyzing cyanophycin biosynthesis. It is concluded that the rigor of cell growth in the MT condition results, to a great extent, by combining photosynthetic activity with high intracellular inorganic carbon conditions created upon glucose breakdown and release of CO2, besides the direct utilization of glucose-derived carbon skeletons for growth. This combination provides the MT cultures with excellent conditions for growth that often exceeds that of mere ATHC.
Collapse
|
34
|
Nowruzi B, Shishir MA, Porzani SJ, Ferdous UT. Exploring the Interactions between Algae and Bacteria. Mini Rev Med Chem 2022; 22:2596-2607. [PMID: 35507745 DOI: 10.2174/1389557522666220504141047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022]
Abstract
Humans have used algae for hundreds of years to make various products viz. agar, fertilizer, food, and pigments. Algae are also used in bioremediation to clean up polluted water and as essential laboratory tools in genomics, proteomics, and other research applications such as environmental warnings. Several special features of algae, including the oxygenic photosynthesis, higher yield in biomass, growth on the non-arable lands, their survival in a wide range of water supplies (contaminated or filtered waters), the production of necessary byproducts and biofuels, the enhancement of soil productivity, and the greenhouse gas emissions, etc. altogether rendered them as vital bio-resources in the sustainable development. Algae and bacteria have been assumed to coexist from the early stages of the development of the earth, and a wide variety of interactions were observed between them which have influenced the ecosystems ranging from the oceans to the lichens. Research has shown that bacteria and algae interact synergistically, especially roseobacter-algae interactions being the most common. These interactions are common to all ecosystems and characterize their primary efficiency. The commercialization of algae for industrial purposes, an important field, is also influenced by this interaction which frequently results in bacterial infections among the consumers. However, the recent findings have revealed that the bacteria improve algal growth and support flocculation which are very crucial in algal biotechnology. Some of the most exciting advancements in the area of algal biotic interactions and potential difficulties were reviewed in this article. Information gleaned in this study would provide a firm foundation for launching more contemporaneous research efforts in understanding and utilizing the algal species in biotechnology industries and medical sectors.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Samaneh J Porzani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Umme Tamanna Ferdous
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
35
|
Gao H, Manishimwe C, Yang L, Wang H, Jiang Y, Jiang W, Zhang W, Xin F, Jiang M. Applications of synthetic light-driven microbial consortia for biochemicals production. BIORESOURCE TECHNOLOGY 2022; 351:126954. [PMID: 35288267 DOI: 10.1016/j.biortech.2022.126954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Synthetic microbial consortia provide a versatile and efficient platform for biochemicals production through the labor division. Especially, microbial communities composed of phototrophs and heterotrophs offer a promising alternative, as they can directly convert carbon dioxide (CO2) into chemicals. Within this system, photoautotrophic microbes can convert CO2 into organic carbon for microbial growth and metabolites synthesis by the heterotrophic partners. In return, heterotrophs can provide additional CO2 to support the growth of photoautotrophic microbes. However, the unmatched growing conditions, low stability and production efficiency of synthetic microbial consortia hinder their further applications. Thus, design and construction of mutualistic and stable synthetic light-driven microbial consortia are urgently needed. In this review, the progress of synthetic light-driven microbial consortia for chemicals production was comprehensively summarized. In addition, space-efficient synthetic light-driven microbial consortia in hydrogel system were reviewed. Perspectives on orderly distribution of light-driven microbial consortia associated with 3D printing technology in biomanufacturing were also addressed.
Collapse
Affiliation(s)
- Hao Gao
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Clarisse Manishimwe
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Lu Yang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Hanxiao Wang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Yujia Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wankui Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Wenming Zhang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China.
| | - Min Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
36
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
37
|
Zhu Y, Ai M, Jia X. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose-Xylose Mixtures. Front Bioeng Biotechnol 2022; 9:794331. [PMID: 35083203 PMCID: PMC8784772 DOI: 10.3389/fbioe.2021.794331] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) have attracted much attention as a good substitute for petroleum-based plastics, especially mcl-PHA due to their superior physical and mechanical properties with broader applications. Artificial microbial consortia can solve the problems of low metabolic capacity of single engineered strains and low conversion efficiency of natural consortia while expanding the scope of substrate utilization. Therefore, the use of artificial microbial consortia is considered a promising method for the production of mcl-PHA. In this work, we designed and constructed a microbial consortium composed of engineered Escherichia coli MG1655 and Pseudomonas putida KT2440 based on the "nutrition supply-detoxification" concept, which improved mcl-PHA production from glucose-xylose mixtures. An engineered E. coli that preferentially uses xylose was engineered with an enhanced ability to secrete acetic acid and free fatty acids (FFAs), producing 6.44 g/L acetic acid and 2.51 g/L FFAs with 20 g/L xylose as substrate. The mcl-PHA producing strain of P. putida in the microbial consortium has been engineered to enhance its ability to convert acetic acid and FFAs into mcl-PHA, producing 0.75 g/L mcl-PHA with mixed substrates consisting of glucose, acetic acid, and octanoate, while also reducing the growth inhibition of E. coli by acetic acid. The further developed artificial microbial consortium finally produced 1.32 g/L of mcl-PHA from 20 g/L of a glucose-xylose mixture (1:1) after substrate competition control and process optimization. The substrate utilization and product synthesis functions were successfully divided into the two strains in the constructed artificial microbial consortium, and a mutually beneficial symbiosis of "nutrition supply-detoxification" with a relatively high mcl-PHA titer was achieved, enabling the efficient accumulation of mcl-PHA. The consortium developed in this study is a potential platform for mcl-PHA production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
38
|
Singh AK, Ducat DC. Generation of Stable, Light-Driven Co-cultures of Cyanobacteria with Heterotrophic Microbes. Methods Mol Biol 2022; 2379:277-291. [PMID: 35188668 DOI: 10.1007/978-1-0716-1791-5_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Co-cultivation of an autotrophic species with one or more heterotrophic microbes is a strategy for photobiological production of high-value compounds and is relatively underexplored in comparison to cyanobacterial or microalgal monocultures. Long-term stability of such consortia is required for useful collaboration between the partners, and this property can be increased by encapsulation of phototrophic partners within a hydrogel. Encapsulated cyanobacteria have advantages relative to planktonic cultures that may be useful to explore the potential for artificial microbial communities for targeted biomolecule synthesis, such as increased control over population sizes and reduced liquid handling requirements. In this chapter, we describe a method for encapsulation of genetically modified cyanobacterial strain (Synechococcus elongatus PCC 7942, CscB+) into a sodium alginate matrix, and the utilization of these encapsulated cells to construct stable, artificial autotroph/heterotroph co-cultures. This method has applications for the study of phototroph-based synthetic microbial consortia, and multi-species photobiological production.
Collapse
Affiliation(s)
- Amit K Singh
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Daniel C Ducat
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA.
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
García JL, Galán B. Integrating greenhouse gas capture and C1 biotechnology: a key challenge for circular economy. Microb Biotechnol 2021; 15:228-239. [PMID: 34905295 PMCID: PMC8719819 DOI: 10.1111/1751-7915.13991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- José L García
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| | - Beatriz Galán
- Environmental Biotechnology Laboratory, Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas Margarita Salas (CIB-MS, CSIC), Madrid, Spain
| |
Collapse
|
40
|
Xiao Z, Zheng Y, Gudi CR, Liu Y, Liao W, Tang YJ. Development of a kinetic model to describe six types of symbiotic interactions in a formate utilizing microalgae-bacteria cultivation system. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Lee H, Baek JI, Lee JY, Jeong J, Kim H, Lee DH, Kim DM, Lee SG. Syntrophic co-culture of a methanotroph and heterotroph for the efficient conversion of methane to mevalonate. Metab Eng 2021; 67:285-292. [PMID: 34298134 DOI: 10.1016/j.ymben.2021.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/07/2021] [Accepted: 07/18/2021] [Indexed: 10/20/2022]
Abstract
As the bioconversion of methane becomes increasingly important for bio-industrial and environmental applications, methanotrophs have received much attention for their ability to convert methane under ambient conditions. This includes the extensive reporting of methanotroph engineering for the conversion of methane to biochemicals. To further increase methane usability, we demonstrated a highly flexible and efficient modular approach based on a synthetic consortium of methanotrophs and heterotrophs mimicking the natural methane ecosystem to produce mevalonate (MVA) from methane. In the methane-conversion module, we used Methylococcus capsulatus Bath as a highly efficient methane biocatalyst and optimized the culture conditions for the production of high amounts of organic acids. In the MVA-synthesis module, we used Escherichia coli SBA01, an evolved strain with high organic acid tolerance and utilization ability, to convert organic acids to MVA. Using recombinant E. coli SBA01 possessing genes for the MVA pathway, 61 mg/L (0.4 mM) of MVA was successfully produced in 48 h without any addition of nutrients except methane. Our platform exhibited high stability and reproducibility with regard to cell growth and MVA production. We believe that this versatile system can be easily extended to many other value-added processes and has a variety of potential applications.
Collapse
Affiliation(s)
- Hyewon Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Ji In Baek
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, 34134, Republic of Korea
| | - Jin-Young Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Jiyeong Jeong
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Haseong Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Dae-Hee Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, 34134, Republic of Korea
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science & Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
42
|
Biorefinery-Based Approach to Exploit Mixed Cultures of Lipomyces starkeyi and Chloroidium saccharophilum for Single Cell Oil Production. ENERGIES 2021. [DOI: 10.3390/en14051340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The mutualistic interactions between the oleaginous yeast Lipomyces starkeyi and the green microalga Chloroidium saccharophilum in mixed cultures were investigated to exploit possible synergistic effects. In fact, microalga could act as an oxygen generator for the yeast, while the yeast could provide carbon dioxide to microalga. The behavior of the two microorganisms alone and in mixed culture was studied in two synthetic media (YEG and BBM + G) before moving on to a real model represented by the hydrolysate of Arundo donax, used as low-cost feedstock, and previously subjected to steam explosion and enzymatic hydrolysis. The overall lipid content and lipid productivity obtained in the mixed culture of YEG, BBM + G and for the hydrolysate of Arundo donax were equal to 0.064, 0.064 and 0.081 glipid·gbiomass−1 and 30.14, 35.56 and 37.22 mglipid·L−1·day−1, respectively. The mixed cultures, in all cases, proved to be the most performing compared to the individual ones. In addition, this study provided new input for the integration of Single Cell Oil (SCO) production with agro-industrial feedstock, and the fatty acid distribution mainly consisting of stearic (C18:0) and oleic acid (C18:1) allows promising applications in biofuels, cosmetics, food additives and other products of industrial interest.
Collapse
|
43
|
|
44
|
Diender M, Parera Olm I, Sousa DZ. Synthetic co-cultures: novel avenues for bio-based processes. Curr Opin Biotechnol 2021; 67:72-79. [PMID: 33517194 DOI: 10.1016/j.copbio.2021.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
In nature, microorganisms live in multi-species communities allowing microbial interactions. These interactions are lost upon establishing a pure culture, increasing the metabolic burden and limiting the metabolic potential of the isolated microbe. In the past years, synthetic microbial co-cultivation, using well-defined consortia of two or more microbes, was increasingly explored for innovative applications in biotechnology. As such, interspecies interactions take place without the complexity of an open mixed culture, minimizing undesired side reactions. Ultimately, synthetic co-cultivation allows to take well-characterized microbes 'off-the-shelf' to create ecosystems with improved process capabilities. This review highlights some of the recent developments on co-cultivation, focusing on waste-to-chemicals conversions. It also addresses fundamental knowledge on microbial interactions deriving from these studies, which is important to further develop our ability to engineer functional co-cultures for bioproduction.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
45
|
Clifford ER, Bradley RW, Wey LT, Lawrence JM, Chen X, Howe CJ, Zhang JZ. Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems. Chem Sci 2021; 12:3328-3338. [PMID: 34164103 PMCID: PMC8179378 DOI: 10.1039/d0sc05655c] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022] Open
Abstract
Bioelectrochemical approaches for energy conversion rely on efficient wiring of natural electron transport chains to electrodes. However, state-of-the-art exogenous electron mediators give rise to significant energy losses and, in the case of living systems, long-term cytotoxicity. Here, we explored new selection criteria for exogenous electron mediation by examining phenazines as novel low-midpoint potential molecules for wiring the photosynthetic electron transport chain of the cyanobacterium Synechocystis sp. PCC 6803 to electrodes. We identified pyocyanin (PYO) as an effective cell-permeable phenazine that can harvest electrons from highly reducing points of photosynthesis. PYO-mediated photocurrents were observed to be 4-fold higher than mediator-free systems with an energetic gain of 200 mV compared to the common high-midpoint potential mediator 2,6-dichloro-1,4-benzoquinone (DCBQ). The low-midpoint potential of PYO led to O2 reduction side-reactions, which competed significantly against photocurrent generation; the tuning of mediator concentration was important for outcompeting the side-reactions whilst avoiding acute cytotoxicity. DCBQ-mediated photocurrents were generally much higher but also decayed rapidly and were non-recoverable with fresh mediator addition. This suggests that the cells can acquire DCBQ-resistance over time. In contrast, PYO gave rise to steadier current enhancement despite the co-generation of undesirable reactive oxygen species, and PYO-exposed cells did not develop acquired resistance. Moreover, we demonstrated that the cyanobacteria can be genetically engineered to produce PYO endogenously to improve long-term prospects. Overall, this study established that energetic gains can be achieved via the use of low-potential phenazines in photosynthetic bioelectrochemical systems, and quantifies the factors and trade-offs that determine efficacious mediation in living bioelectrochemical systems.
Collapse
Affiliation(s)
- Eleanor R Clifford
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Robert W Bradley
- Department of Life Sciences Sir Alexander Fleming Building, Imperial College SW7 2AZ UK
| | - Laura T Wey
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1QW UK
| | - Joshua M Lawrence
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1QW UK
| | - Xiaolong Chen
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Christopher J Howe
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1QW UK
| | - Jenny Z Zhang
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
46
|
Liu H, Cao Y, Guo J, Xu X, Long Q, Song L, Xian M. Study on the isoprene-producing co-culture system of Synechococcus elongates-Escherichia coli through omics analysis. Microb Cell Fact 2021; 20:6. [PMID: 33413404 PMCID: PMC7791884 DOI: 10.1186/s12934-020-01498-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The majority of microbial fermentations are currently performed in the batch or fed-batch manner with the high process complexity and huge water consumption. The continuous microbial production can contribute to the green sustainable development of the fermentation industry. The co-culture systems of photo-autotrophic and heterotrophic species can play important roles in establishing the continuous fermentation mode for the bio-based chemicals production. RESULTS In the present paper, the co-culture system of Synechococcus elongates-Escherichia coli was established and put into operation stably for isoprene production. Compared with the axenic culture, the fermentation period of time was extended from 100 to 400 h in the co-culture and the isoprene production was increased to eightfold. For in depth understanding this novel system, the differential omics profiles were analyzed. The responses of BL21(DE3) to S. elongatus PCC 7942 were triggered by the oxidative pressure through the Fenton reaction and all these changes were linked with one another at different spatial and temporal scales. The oxidative stress mitigation pathways might contribute to the long-lasting fermentation process. The performance of this co-culture system can be further improved according to the fundamental rules discovered by the omics analysis. CONCLUSIONS The isoprene-producing co-culture system of S. elongates-E. coli was established and then analyzed by the omics methods. This study on the co-culture system of the model S. elongates-E. coli is of significance to reveal the common interactions between photo-autotrophic and heterotrophic species without natural symbiotic relation, which could provide the scientific basis for rational design of microbial community.
Collapse
Affiliation(s)
- Hui Liu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yujin Cao
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jing Guo
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xin Xu
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Qi Long
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Lili Song
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Mo Xian
- CAS Key Laboratory of Bio-Based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China.
| |
Collapse
|
47
|
Ai M, Zhu Y, Jia X. Recent advances in constructing artificial microbial consortia for the production of medium-chain-length polyhydroxyalkanoates. World J Microbiol Biotechnol 2021; 37:2. [PMID: 33392870 DOI: 10.1007/s11274-020-02986-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/20/2020] [Indexed: 11/29/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are a class of high-molecular-weight polyesters made from hydroxy fatty acid monomers. PHAs produced by microorganisms have diverse structures, variable physical properties, and good biodegradability. They exhibit similar physical properties to petroleum-based plastics but are much more environmentally friendly. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs), in particular, have attracted much interest because of their low crystallinity, low glass transition temperature, low tensile strength, high elongation at break, and customizable structure. Nevertheless, high production costs have hindered their practical application. The use of genetically modified organisms can reduce production costs by expanding the scope of substrate utilization, improving the conversion efficiency of substrate to product, and increasing the yield of mcl-PHAs. The yield of mcl-PHAs produced by a pure culture of an engineered microorganism was not high enough because of the limitations of the metabolic capacity of a single microorganism. The construction of artificial microbial consortia and the optimization of microbial co-cultivation have been studied. This type of approach avoids the addition of precursor substances and helps synthesize mcl-PHAs more efficiently. In this paper, we reviewed the design and construction principles and optimized control strategies for artificial microbial consortia that produce mcl-PHAs. We described the metabolic advantages of co-cultivating artificial microbial consortia using low-value substrates and discussed future perspectives on the production of mcl-PHAs using artificial microbial consortia.
Collapse
Affiliation(s)
- Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China.
| |
Collapse
|
48
|
Valorization of CO2 through lithoautotrophic production of sustainable chemicals in Cupriavidus necator. Metab Eng 2020; 62:207-220. [DOI: 10.1016/j.ymben.2020.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 12/28/2022]
|
49
|
Synthetic microbial communities of heterotrophs and phototrophs facilitate sustainable growth. Nat Commun 2020; 11:3803. [PMID: 32732991 PMCID: PMC7393147 DOI: 10.1038/s41467-020-17612-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/02/2020] [Indexed: 01/23/2023] Open
Abstract
Microbial communities comprised of phototrophs and heterotrophs hold great promise for sustainable biotechnology. Successful application of these communities relies on the selection of appropriate partners. Here we construct four community metabolic models to guide strain selection, pairing phototrophic, sucrose-secreting Synechococcus elongatus with heterotrophic Escherichia coli K-12, Escherichia coli W, Yarrowia lipolytica, or Bacillus subtilis. Model simulations reveae metabolic exchanges that sustain the heterotrophs in minimal media devoid of any organic carbon source, pointing to S. elongatus-E. coli K-12 as the most active community. Experimental validation of flux predictions for this pair confirms metabolic interactions and potential production capabilities. Synthetic communities bypass member-specific metabolic bottlenecks (e.g. histidine- and transport-related reactions) and compensate for lethal genetic traits, achieving up to 27% recovery from lethal knockouts. The study provides a robust modelling framework for the rational design of synthetic communities with optimized growth sustainability using phototrophic partners.
Collapse
|
50
|
Fedeson DT, Saake P, Calero P, Nikel PI, Ducat DC. Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microb Biotechnol 2020; 13:997-1011. [PMID: 32064751 PMCID: PMC7264894 DOI: 10.1111/1751-7915.13544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
In contrast to the current paradigm of using microbial mono-cultures in most biotechnological applications, increasing efforts are being directed towards engineering mixed-species consortia to perform functions that are difficult to programme into individual strains. In this work, we developed a synthetic microbial consortium composed of two genetically engineered microbes, a cyanobacterium (Synechococcus elongatus PCC 7942) and a heterotrophic bacterium (Pseudomonas putida EM173). These microbial species specialize in the co-culture: cyanobacteria fix CO2 through photosynthetic metabolism and secrete sufficient carbohydrates to support the growth and active metabolism of P. putida, which has been engineered to consume sucrose and to degrade the environmental pollutant 2,4-dinitrotoluene (2,4-DNT). By encapsulating S. elongatus within a barium-alginate hydrogel, cyanobacterial cells were protected from the toxic effects of 2,4-DNT, enhancing the performance of the co-culture. The synthetic consortium was able to convert 2,4-DNT with light and CO2 as key inputs, and its catalytic performance was stable over time. Furthermore, cycling this synthetic consortium through low nitrogen medium promoted the sucrose-dependent accumulation of polyhydroxyalkanoate, an added-value biopolymer, in the engineered P. putida strain. Altogether, the synthetic consortium displayed the capacity to remediate the industrial pollutant 2,4-DNT while simultaneously synthesizing biopolymers using light and CO2 as the primary inputs.
Collapse
Affiliation(s)
- Derek T. Fedeson
- DOE‐MSU Plant Research LaboratoriesMichigan State UniversityEast LansingMIUSA
- Genetics ProgramMichigan State UniversityEast LansingMIUSA
| | - Pia Saake
- Heinrich‐Heine UniversitätDüsseldorfGermany
| | - Patricia Calero
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs LyngbyDenmark
| | - Pablo Iván Nikel
- The Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKgs LyngbyDenmark
| | - Daniel C. Ducat
- DOE‐MSU Plant Research LaboratoriesMichigan State UniversityEast LansingMIUSA
- Genetics ProgramMichigan State UniversityEast LansingMIUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| |
Collapse
|