1
|
Yang J, Ai X, Zhang C, Guo T, Feng N. Application of plant-derived extracellular vesicles as novel carriers in drug delivery systems: a review. Expert Opin Drug Deliv 2025:1-17. [PMID: 40159727 DOI: 10.1080/17425247.2025.2487589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Plant-derived extracellular vesicles (P-EVs) are nanoscale, lipid bilayer vesicles capable of transporting diverse bioactive substances, enabling intercellular and interspecies communication and material transfer. With inherent pharmacological effects, targeting abilities, high safety, biocompatibility, and low production costs, P-EVs are promising candidates for drug delivery systems, offering significant application potential. AREAS COVERED A comprehensive review of studies on P-EVs was conducted through extensive database searches, including PubMed and Web of Science, spanning the years 1959 to 2025. Drawing on animal and cellular model research, this review systematically analyzes the pharmacological activities of P-EVs and their advantages as drug delivery carriers. It also explores P-EVs' drug loading methods, extraction techniques, and application prospects, including their benefits, clinical potential, and feasibility for commercial expansion. EXPERT OPINION Establishing unified preparation standards and conducting a more comprehensive analysis of molecular composition, structural characteristics, and mechanisms of P-EVs are essential for their widespread application. Greater attention should be given to the potential synergistic or antagonistic effects between P-EVs as carriers and the drugs they deliver, as this understanding will enhance their practical applications. In conclusion, P-EVs-based drug delivery systems represent a promising strategy to improve treatment efficacy, reduce side effects, and ensure drug stability.
Collapse
Affiliation(s)
- Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chenming Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Ranjan R. Development of Complex Generics and Similar Biological Products: An Industrial Perspective of Reverse Engineering. AAPS PharmSciTech 2025; 26:95. [PMID: 40140232 DOI: 10.1208/s12249-025-03087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Generic drugs are developed to be bioequivalent to innovator formulation, matching them in dosage form, safety, strength, quality and efficacy. Known as "interchangeable multi-source pharmaceutical products," generics play a crucial role in reducing therapeutic costs and enhancing patient compliance. Over the past decade, generics have accounted for more than 90% of prescriptions in the U.S., which has driven down the average price of these drugs to nearly match production costs once market competition grows. Simple generics of small-molecule drugs are often produced through trial and error based on existing data, but complex generics require advanced techniques like reverse engineering to replicate the brand drug's release profile. These complex generics include sophisticated drug delivery forms that ensure the therapeutic agent is released gradually, maximizing effectiveness. Conversely, similar biological products highly similar to approved biologics-undergo rigorous analytical and clinical evaluations due to their complexity and the nature of biologic production. The increased demand for similar biological products is driven by expiring biologic patents, economic incentives, and regulatory advancements, with the market expected to grow significantly by 2026. The Biologic Price Competition and Innovation Act (BPCIA) enable abbreviated approvals for similar biological products, promoting affordability. Despite minor differences from original biologics, similar biological products undergo extensive testing to ensure safety and efficacy, following global regulatory guidelines that emphasize strict quality standards. This framework is essential for expanding patient access to effective therapies for conditions like cancer and autoimmune diseases while supporting healthcare sustainability.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Faculty of Pharmacy, Gopal Narayan Singh University, Jamuhar, Sasaram, Bihar, 821305, India.
| |
Collapse
|
3
|
Mujawar SS, Arbade GK, Bisht N, Mane M, Tripathi V, Sharma RK, Kashte SB. 3D printed Aloe barbadensis loaded alginate-gelatin hydrogel for wound healing and scar reduction: In vitro and in vivo study. Int J Biol Macromol 2025; 296:139745. [PMID: 39800028 DOI: 10.1016/j.ijbiomac.2025.139745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/27/2024] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites. This study developed a 3D-printed hydrogel of sodium alginate and gelatin loaded with freeze-dried Aloe barbadensis extract for enhanced wound healing. The hydrogel was hydrophilic and showed an average pore size of 163.66 ± 14.45 μm, moderate swellability, and ideal mechanical properties with tensile strength(σ) of 16.39 ± 0.98 MPa, and Young's modulus of 17.43 ± 1.41 MPa. They showed potential antibacterial activity against Staphylococcus aureus (87.7 ± 4 % inhibition) and Pseudomonas aeruginosa (84.4 ± 6 % inhibition). These hydrogels were hemocompatible, biocompatible, and biodegradable. Cell cytotoxicity assay and scratch assay showed effective Normal Human Dermal Fibroblast cells (NHDF) viability, proliferation, and migration on the hydrogel. In vivo studies of the 3D-printed hydrogel demonstrated significantly improved wound closure, reduced wound contraction, enhanced epithelial regeneration with minimal inflammation, and decreased scar formation after 14 days of treatment. Therefore, this 3D-printed hydrogel can be promising for wound healing with scar reduction.
Collapse
Affiliation(s)
- Shahabaj S Mujawar
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India
| | - Gajanan K Arbade
- National Centre for Cell Sciences, Pune, India; Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Neema Bisht
- National Centre for Cell Sciences, Pune, India
| | - Mahadeo Mane
- Department of Pathology, D.Y Patil Medical College, Kolhapur, India
| | | | - Rakesh Kumar Sharma
- Department of Obstetrics and Gynecology, D.Y. Patil Medical College, Kolhapur, Maharashtra, India
| | - Shivaji B Kashte
- Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India.
| |
Collapse
|
4
|
Garg P, Shokrollahi P, Phan CM, Jones L. Biodegradable 3D-Printed Conjunctival Inserts for the Treatment of Dry Eyes. Polymers (Basel) 2025; 17:623. [PMID: 40076115 PMCID: PMC11902855 DOI: 10.3390/polym17050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
PURPOSE To fabricate 3D-printed, biodegradable conjunctival gelatin methacrylate (GelMA) inserts that can release polyvinyl alcohol (PVA) when exposed to an ocular surface enzyme. METHOD In this work, biodegradable conjunctival inserts were 3D-printed using a stereolithography-based technique. The release of PVA from these insert formulations (containing 10% GelMA and 5% PVA (P-Gel-5%)) was assessed along with different mathematical models of drug release. The biodegradation rates of these inserts were studied in the presence of a tear-film enzyme (matrix metalloproteinase-9; MMP9). The morphology of the inserts before and after enzymatic degradation was monitored using scanning electron microscopy. RESULTS The 3D-printed P-Gel-5% inserts formed a semi-interpenetrating network, which was mechanically stronger than GelMA inserts. The PVA release graphs demonstrate that at the end of 24 h, 222.7 ± 20.3 µg, 265.5 ± 27.1 µg, and 242.7 ± 30.4 µg of PVA were released when exposed to 25, 50, and 100 µg/mL of MMP9, respectively. The release profiles of the P-Gel-5% containing hydrogels in the presence of different concentrations of MMP9 showed the highest linearity with the Korsmeyer-Peppas model. The results suggest that the degradation rate over 24 h is a function of MMP9 enzyme concentration. Over 80% of P-Gel-5% inserts were degraded at the end of 8 h, 12 h, and 24 h in the presence of 100, 50, and 25 µg/mL MMP9 enzyme solutions, respectively. CONCLUSIONS These results demonstrate the potential for 3D printing of GelMA for use as conjunctival inserts. These inserts could be used to deliver PVA, which is a well-known therapeutic agent for dry eye disease. PVA release is influenced by multiple mechanisms, including diffusion and enzymatic degradation, which is supported by morphological studies and biodegradation results.
Collapse
Affiliation(s)
- Piyush Garg
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (C.-M.P.)
| | - Parvin Shokrollahi
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (C.-M.P.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (C.-M.P.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (C.-M.P.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| |
Collapse
|
5
|
Abraham N, Pandey G, Kolipaka T, Negi M, Srinivasarao DA, Srivastava S. Exploring advancements in polysaccharide-based approaches: The cornerstone of next-generation cartilage regeneration therapeutics. Int J Biol Macromol 2025; 306:141352. [PMID: 39986526 DOI: 10.1016/j.ijbiomac.2025.141352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Cartilage regeneration poses a formidable challenge in orthopaedics due to continuous wear and tear exertion and its limited intrinsic healing capacity, which demand exploration beyond current clinical approaches. Polysaccharides emerged as promising agents for cartilage regeneration, offering biocompatibility, biodegradability, bioactivity, and ECM mimicry. This article provides an overview of the pathophysiology of cartilage diseases and current clinical approaches, followed by polysaccharide-based strategies for cartilage repair, delineating the chemical and biological properties of various polysaccharides like alginates, hyaluronic acid, and chondroitin sulfate. The emphasis lies on innovative strategies such as sulphated and cross-linked polysaccharides, with injectable polysaccharide hydrogels offering adjustable mechanical properties and easy administration. Growth factor and cellular incorporation into hydrogels enhance their therapeutic potential. At the same time, biofabrication techniques, such as filamented light biofabrication, cartilage spheroid generation, and 3D printing, offer precise control over cartilage architecture, with bio-inks comprising alginate, gelatin, and hyaluronic acid showing promise. These advancements underscore the potential of polysaccharides to revolutionize cartilage regeneration strategies, offering hope for improved patient outcomes in the future. The article concludes by addressing regulatory hurdles and the future perspective of polysaccharide-based approaches in clinical translation for cartilage regeneration.
Collapse
Affiliation(s)
- Noella Abraham
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mansi Negi
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
6
|
Garg P, Shokrollahi P, Darge HF, Phan CM, Jones L. 3D-Printed Contact Lenses to Release Polyvinyl Alcohol as a Therapeutic Agent for the Treatment of Dry Eyes. Pharmaceutics 2025; 17:219. [PMID: 40006586 PMCID: PMC11859406 DOI: 10.3390/pharmaceutics17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Purpose: Dry eye disease is highly prevalent, and the most common treatment, lubricating eye drops, only remains effective for a very short period of time. This project aims to 3D print a proof-of-concept, custom-fit, polyvinyl alcohol (PVA)-eluting contact lens (CL) for the treatment of dry eye disease. PVA is a commonly used viscosity enhancer in eye drops, with the capability of reducing symptoms of dry eye by stabilizing the tear film and reducing tear evaporation. The protective effects of PVA could be attributed to its water-retaining ability, which provides moisturization and prevents the loss of water. Method: In this work, a low-cost stereolithography-based 3D printer was retrofitted with a humidity and temperature control kit to 3D print a PVA-loaded custom-fit CL. To evaluate the print quality of the 3D-printed CL, circularity was used to evaluate the shape fidelity in 3D printing. The PVA release from these lenses was assessed, along with its role in acting as a viscosity enhancer. The effect of PVA was further analyzed by a dry eye disease (desiccation stress) cell model. Results: The shape fidelity evaluation of the 3D-printed CL displayed excellent circularity. The diameter, sagittal depth, and base curve of the 3D-printed lenses were measured to be 14.27 ± 0.06 mm, 3.77 ± 0.16 mm, and 6.4 ± 0.24 mm, respectively. The PVA release curves showed that approximately 1300 µg of PVA was released over the study duration of 24 h. Conclusions: Overall, this work demonstrates that a 3D-printed PVA-eluting CL is a promising candidate for the treatment of dry eye.
Collapse
Affiliation(s)
- Piyush Garg
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (H.F.D.); (C.-M.P.)
| | - Parvin Shokrollahi
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (H.F.D.); (C.-M.P.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Haile Fentahun Darge
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (H.F.D.); (C.-M.P.)
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (H.F.D.); (C.-M.P.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; (P.G.); (P.S.); (H.F.D.); (C.-M.P.)
- Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| |
Collapse
|
7
|
Rahman Khan MM, Rumon MMH. Synthesis of PVA-Based Hydrogels for Biomedical Applications: Recent Trends and Advances. Gels 2025; 11:88. [PMID: 39996631 PMCID: PMC11854265 DOI: 10.3390/gels11020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
There is ongoing research for biomedical applications of polyvinyl alcohol (PVA)-based hydrogels; however, the execution of this has not yet been achieved at an appropriate level for commercialization. Advanced perception is necessary for the design and synthesis of suitable materials, such as PVA-based hydrogel for biomedical applications. Among polymers, PVA-based hydrogel has drawn great interest in biomedical applications owing to their attractive potential with characteristics such as good biocompatibility, great mechanical strength, and apposite water content. By designing the suitable synthesis approach and investigating the hydrogel structure, PVA-based hydrogels can attain superb cytocompatibility, flexibility, and antimicrobial activities, signifying that it is a good candidate for tissue engineering and regenerative medicine, drug delivery, wound dressing, contact lenses, and other fields. In this review, we highlight the current progresses on the synthesis of PVA-based hydrogels for biomedical applications explaining their diverse usage across a variety of areas. We explain numerous synthesis techniques and related phenomena for biomedical applications based on these materials. This review may stipulate a wide reference for future acumens of PVA-based hydrogel materials for their extensive applications in biomedical fields.
Collapse
Affiliation(s)
- Mohammad Mizanur Rahman Khan
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | | |
Collapse
|
8
|
Garg P, Shokrollahi P, Darge HF, Phan CM, Jones L. Controlled PVA Release from Chemical-Physical Interpenetrating Networks to Treat Dry Eyes. ACS OMEGA 2025; 10:1249-1260. [PMID: 39829547 PMCID: PMC11739979 DOI: 10.1021/acsomega.4c08667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
Dry eye disease is becoming increasingly prevalent, and lubricating eye drops, a mainstay of its treatment, have a short duration of time on the ocular surface. Although there are various drug delivery methods to increase the ocular surface residence time of a topical lubricant, the main problem is the burst release from these delivery systems. To overcome this limitation, herein, a chemical-physical interpenetrating network (IPN) was fabricated to take control over the release of poly(vinyl alcohol) (PVA), a well-known therapeutic agent used to stabilize tear film, from gelatin methacrylate (GelMA) hydrogels. In this report, PVA was specifically used as part of a GelMA-based polymeric hydrogel owing to its physical cross-linking ability via a simple freeze-thaw method. The interpenetrating polymer network was fabricated in a sequential manner where GelMA was chemically cross-linked by photo-cross-linking, followed by physical cross-linking of PVA using a relatively short freeze-thaw cycle. Interestingly, upon applying only one short freeze-thaw cycle (of 1 or 2 h), the crystalline domains in PVA were increased in the interpenetrating network. The endothermic peaks at 48 and 60 °C in differential scanning calorimetry (DSC) thermograms and 20°-2θ peaks in X-ray diffraction (XRD) patterns suggest the presence of these crystalline domains. With the help of a suite of characterization, we further delineate the role of freeze-thaw cycles in taking control over the release of PVA. The release profiles of the PVA-containing hydrogels showed highest linearity with the Korsmeyer-Peppas model (0.9944 < R 2 < 0.9952), indicating that these systems follow non-Fickian or anomalous transport.
Collapse
Affiliation(s)
- Piyush Garg
- Centre for
Ocular Research & Education (CORE), School of Optometry &
Vision Science, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, ON, Canada
| | - Parvin Shokrollahi
- Centre for
Ocular Research & Education (CORE), School of Optometry &
Vision Science, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, ON, Canada
- Centre for
Eye and Vision Research (CEVR), Science
Park, Hong Kong 17W, Hong Kong
| | - Haile Fentahun Darge
- Centre for
Ocular Research & Education (CORE), School of Optometry &
Vision Science, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, ON, Canada
| | - Chau-Minh Phan
- Centre for
Ocular Research & Education (CORE), School of Optometry &
Vision Science, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, ON, Canada
- Centre for
Eye and Vision Research (CEVR), Science
Park, Hong Kong 17W, Hong Kong
| | - Lyndon Jones
- Centre for
Ocular Research & Education (CORE), School of Optometry &
Vision Science, University of Waterloo, 200 University Avenue West, Waterloo N2L 3G1, ON, Canada
- Centre for
Eye and Vision Research (CEVR), Science
Park, Hong Kong 17W, Hong Kong
| |
Collapse
|
9
|
Siamalube B, Ehinmitan E, Ngotho M, Onguso J, Runo S. Simple and Fail-safe Method to Transform Miniprep Escherichia coli Strain K12 Plasmid DNA Into Viable Agrobacterium tumefaciens EHA105 Cells for Plant Genetic Transformation. Bio Protoc 2025; 15:e5174. [PMID: 39803315 PMCID: PMC11717716 DOI: 10.21769/bioprotoc.5174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 01/16/2025] Open
Abstract
Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology. It enables the introduction of foreign DNA into plant genomes. Conventionally, plant genetic transformation has relied on time-consuming, costly, and technically demanding procedures, such as electroporation and chimeric viruses or biolistic methods, which usually yield variable transformation efficiencies. This study presents a simple and fail-safe protocol that involves a modified freeze-thaw and heat-shock concoction method. This approach involves a streamlined plasmid miniprep procedure to isolate high-quality plasmid DNA from Escherichia coli K12 strain, followed by a target-specific transfer into A. tumefaciens EHA105 strain. The optimized method minimizes DNA degradation and maximizes uptake by Agrobacterium cells, making it a reproducible and accessible protocol for various genetic engineering applications. The transformation efficiency is consistently high, enhancing plasmid uptake while maintaining cell viability, requiring minimal specialized equipment and reagents. The proposed protocol offers significant advantages, including simplicity, reliability, and cost-effectiveness, positioning it as a valuable alternative to traditional techniques in the field of plant biotechnology. Key features • Uses liquid nitrogen as a proxy for freezing. • Plasmid DNA from competent bacterial cells is extracted using a user-friendly high-copy isolation kit. • A maximum of five consecutive days is sufficient to complete the procedures.
Collapse
Affiliation(s)
- Beenzu Siamalube
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Emmanuel Ehinmitan
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation, Nairobi, Kenya
| | - Maina Ngotho
- Department of Animal Science, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Justus Onguso
- Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
10
|
Dongmulati N, Wali A, Yang Z, Aili Y, Kelaimu R, Gao Y, Yili A, Aisa HA. Comparative extraction of antioxidant proteins from whole frogs ( Rana ridibunda Pollas). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 17:54-63. [PMID: 39564664 DOI: 10.1039/d4ay01636j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The forest frog (Rana ridibunda Pollas) is a traditional medicinal source rich in active protein compounds. In order to extract these compounds, six extraction methods were employed, including freeze-thaw and stirring techniques. Three different solvents were utilized in this process: 0.15 M sodium chloride (NaCl), 0.05 M phosphate buffer (PB), and 0.05 M phosphate-buffered saline (PBS). The objective was to identify the most effective extraction method. The extraction efficiencies, protein content, structure, and physicochemical properties of the extracts were compared. Additionally, antioxidant activity and free amino acid composition were analyzed. The highest-scoring extract, denoted as M1, obtained through freeze-thaw extraction using 0.15 M NaCl, exhibited an extraction rate of 7.79 ± 0.71% and a protein content of 60.36 ± 2.12%. M1 also showed antioxidant activity against DPPH˙, ABTS+˙, and ˙OH free radicals, with IC50 values of 0.41, 0.41, and 0.39 mg mL-1, respectively. The freeze-thaw extraction method utilizing 0.15 M NaCl has been identified as effective for extracting proteins from dried forest frogs, confirming their potential as a source of antioxidant proteins for scientific research and application.
Collapse
Affiliation(s)
- Naziermu Dongmulati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China.
- University of Chinese Academy of Sciences, Beijing 100039, PR China
- College of Pharmacy, Xinjiang Medical University, Urumqi, PR China
| | - Ahmidin Wali
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China.
| | - Zi Yang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China.
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Yusufujiang Aili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China.
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Rexili Kelaimu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China.
- University of Chinese Academy of Sciences, Beijing 100039, PR China
| | - Yanhua Gao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China.
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 40-1 Beijing Road, Urumqi 830011, Xinjiang, PR China.
| |
Collapse
|
11
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
12
|
Tiwari R, Sethi P, Rudrangi SRS, Padarthi PK, Kumar V, Rudrangi S, Vaghela K. Inulin: a multifaceted ingredient in pharmaceutical sciences. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2570-2595. [PMID: 39074033 DOI: 10.1080/09205063.2024.2384276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024]
Abstract
Inulin, a naturally occurring polysaccharide derived from plants such as chicory root, has emerged as a significant ingredient in pharmaceutical sciences due to its diverse therapeutic and functional properties. This review explores the multifaceted applications of inulin, focusing on its chemical structure, sources, and mechanisms of action. Inulin's role as a prebiotic is highlighted, with particular emphasis on its ability to modulate gut microbiota, enhance gut health, and improve metabolic processes. The review also delves into the therapeutic applications of inulin, including its potential in managing metabolic health issues such as diabetes and lipid metabolism, as well as its immune-modulating properties and benefits in gastrointestinal health. Furthermore, the article examines the incorporation of inulin in drug formulation and delivery systems, discussing its use as a stabilizing agent and its impact on enhancing drug bioavailability. Innovative inulin-based delivery systems, such as nanoparticles and hydrogels, are explored for their potential in controlled release formulations. The efficacy of inulin is supported by a review of clinical studies, underscoring its benefits in managing conditions like diabetes, cardiovascular health, and gastrointestinal disorders. Safety profiles, regulatory aspects, and potential side effects are also addressed. This comprehensive review concludes with insights into future research directions and the challenges associated with the application of inulin in pharmaceutical sciences.
Collapse
Affiliation(s)
- Ruchi Tiwari
- Psit-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, Uttar Pradesh, India
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula, India
| | | | | | - Vinod Kumar
- G D Goenka University, Gurugram, Sohna, Haryana, India
| | | | - Krishna Vaghela
- Department of Pharmacy, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar, Gujarat, India
| |
Collapse
|
13
|
Akbarbaglu Z, Mirzapour-Kouhdasht A, Ayaseh A, Ghanbarzadeh B, Oz F, Sarabandi K. Controlled release and biological properties of prochitosomes loaded with Arthrospira derived peptides: Membrane stability, chemical, morphological and structural monitoring. Int J Biol Macromol 2024; 281:136608. [PMID: 39414193 DOI: 10.1016/j.ijbiomac.2024.136608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
In this study, the effects of chitosan-coating on maintaining the integrity and stability of the membrane, structural, and morphological changes, and the release of loaded peptides inside nanoliposomes during various in vitro release, thermal, freeze-thaw, shear, and dehydration (spray-drying) tensions were evaluated. Among different peptidic fractions (100, 30, and 10 kDa), the Arthrospira derived PF-30 kDa showed a higher nutritional and biological value. PF-30kDa was loaded successfully (EE ~ 90 %) inside nanoliposomes (NLs) and its stabilization was done with chitosan coating (0.1-0.8 %). Nanochitosomes (NCs-0.4 %) had more structural stability (size, EE, and biological activity) at different temperatures, freeze-thaw tension, and digestive system. The placement of peptides in the vesicle structure was confirmed by FTIR analysis. Also, the changes in the morphological states, agglomeration, or destruction of the liposome membrane (SEM, AFM, and TEM) were evaluated before and after the tensions. Membrane coating led to the transformation of freeze-dried liposomes (FD-NLs) from thin, porous, and fragile layers to thick plates, rough and resistant structures (FD-NCs). These characteristics led to maintaining physical stability, homogeneity, zeta potential, and EE of nanoparticles (freeze and spray-dried) after reconstitution. The results of this study will effectively contribute to the production of solidified delivery systems with long-term durability, bioavailability, and biological activity of loaded nutrients and drugs.
Collapse
Affiliation(s)
- Zahra Akbarbaglu
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Armin Mirzapour-Kouhdasht
- Department of Chemical Sciences, SSPC, Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, University of Limerick, Castletroy, Limerick V94 T9PX, Ireland; Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Ali Ayaseh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz 5166616471, Iran
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Atatürk University, Erzurum 25240, Türkiye
| | - Khashayar Sarabandi
- Department of Food Chemistry, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran.
| |
Collapse
|
14
|
Horathal Pedige M, Sugawara A, Uyama H. Multifunctional Chitosan Nanofiber-Based Sponge Materials Using Freeze-Thaw and Post-Cross-Linking Method. ACS OMEGA 2024; 9:36464-36474. [PMID: 39220476 PMCID: PMC11359632 DOI: 10.1021/acsomega.4c04317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/04/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
The fabrication of porous sponge materials with stable structures via cross-linking diverse polymers presents significant challenges due to the simultaneous requirements for phase separation as a pore-forming step and cross-linking reactions during the fabrication process. To address these challenges, we developed a sponge material solely from natural-based polymers, specifically chitosan nanofibers (CSNFs) and dialdehyde carboxymethyl cellulose (DACMC), employing a straightforward, eco-friendly technique. This technique integrates a facile freeze-thaw method with subsequent cross-linking between CSNFs and DACMC. This method effectively addresses the difficulties associated with pore formation in materials, which typically arise from the rapid formation and precipitation of polyionic complexes during the mixing of anionic and cationic polymers, using ice crystals as a rigid template. The resultant sponge materials exhibit remarkable shape recoverability in their wet state and maintain light, stable porosity in the dry state. Furthermore, in comparison to commonly used commercial foams, this composite porous material demonstrates superior fire retardancy and thermal insulation properties in its dry state. Additionally, it shows effective adsorption capacities for both cationic and anionic dyes and metal ions. This method of using biobased polymers to produce porous composites offers a promising avenue for creating multifunctional materials, with potential applications across various industries.
Collapse
Affiliation(s)
| | - Akihide Sugawara
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry,
Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Bercea M. Recent Advances in Poly(vinyl alcohol)-Based Hydrogels. Polymers (Basel) 2024; 16:2021. [PMID: 39065336 PMCID: PMC11281164 DOI: 10.3390/polym16142021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(vinyl alcohol) (PVA) is a versatile synthetic polymer, used for the design of hydrogels, porous membranes and films. Its solubility in water, film- and hydrogel-forming capabilities, non-toxicity, crystallinity and excellent mechanical properties, chemical inertness and stability towards biological fluids, superior oxygen and gas barrier properties, good printability and availability (relatively low production cost) are the main aspects that make PVA suitable for a variety of applications, from biomedical and pharmaceutical uses to sensing devices, packaging materials or wastewater treatment. However, pure PVA materials present low stability in water, limited flexibility and poor biocompatibility and biodegradability, which restrict its use alone in various applications. PVA mixed with other synthetic polymers or biomolecules (polysaccharides, proteins, peptides, amino acids etc.), as well as with inorganic/organic compounds, generates a wide variety of materials in which PVA's shortcomings are considerably improved, and new functionalities are obtained. Also, PVA's chemical transformation brings new features and opens the door for new and unexpected uses. The present review is focused on recent advances in PVA-based hydrogels.
Collapse
Affiliation(s)
- Maria Bercea
- "Petru Poni" Institute of Macromolecular Chemistry, 41-A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
16
|
Hu Y, Zhang L, Wen QH, Cheng XP, Zhou LQ, Chen MS, Ke DW, Tu ZC. Prebiotic saccharides polymerization improves the encapsulation efficiency, stability, bioaccessibility and gut microbiota modulation of urolithin A liposomes. Int J Biol Macromol 2024; 273:133045. [PMID: 38942666 DOI: 10.1016/j.ijbiomac.2024.133045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/30/2024]
Abstract
This work was to investigate the effect of four prebiotic saccharides gum arabic (GA), fructooligosaccharide (FOS), konjac glucomannan (KGM), and inulin (INU) incorporation on the encapsulation efficiency (EE), physicochemical stability, and in vitro digestion of urolithin A-loaded liposomes (UroA-LPs). The regulation of liposomes on gut microbiota was also investigated by in vitro colonic fermentation. Results indicated that liposomes coated with GA showed the best EE, bioaccessibility, storage and thermal stability, the bioaccessibility was 1.67 times of that of UroA-LPs. The UroA-LPs coated with FOS showed the best freeze-thaw stability and transformation. Meanwhile, saccharides addition remarkably improved the relative abundance of Bacteroidota, reduced the abundances of Proteobacteria and Actinobacteria. The UroA-LPs coated with FOS, INU, and GA exhibited the highest beneficial bacteria abundance of Parabacteroides, Monoglobus, and Phascolarctobacterium, respectively. FOS could also decrease the abundance of harmful bacteria Collinsella and Enterococcus, and increase the levels of acetic acid, butyric acid and iso-butyric acid. Consequently, prebiotic saccharides can improve the EE, physicochemical stability, gut microbiota regulation of UroA-LPs, and promote the bioaccessibility of UroA, but the efficiency varied based on saccharides types, which can lay a foundation for the application of UroA in foods industry and for the enhancement of its bio-activities.
Collapse
Affiliation(s)
- Yue Hu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Lu Zhang
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China.
| | - Qing-Hui Wen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Xin-Peng Cheng
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Li-Qiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ming-Shun Chen
- School of Health, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Dai-Wei Ke
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Zong-Cai Tu
- National R&D Center of Freshwater Fish Processing, College of Life Science, Jiangxi Normal University, Nanchang, Jiangxi 330022, China; State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
17
|
Mariello M, Binetti E, Todaro MT, Qualtieri A, Brunetti V, Siciliano P, De Vittorio M, Blasi L. Eco-Friendly Production of Polyvinyl Alcohol/Carboxymethyl Cellulose Wound Healing Dressing Containing Sericin. Gels 2024; 10:412. [PMID: 38920958 PMCID: PMC11202596 DOI: 10.3390/gels10060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Wound dressing production represents an important segment in the biomedical healthcare field, but finding a simple and eco-friendly method that combines a natural compound and a biocompatible dressing production for biomedical application is still a challenge. Therefore, the aim of this study is to develop wound healing dressings that are environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. Hydrogel wound healing dressings were prepared from polyvinyl alcohol/carboxymethyl cellulose and sericin using the freeze-thawing method as a crosslinking method. The morphological characterization was carried out by scanning electron microscopy (SEM), whereas the mechanical analysis was carried out by dynamic mechanical analysis (DMA) to test the tensile strength and compression properties. Then, the healing property of the wound dressing material was tested by in vitro and ex vivo tests. The results show a three-dimensional microporous structure with no cytotoxicity, excellent stretchability with compressive properties similar to those of human skin, and excellent healing properties. The proposed hydrogel dressing was tested in vitro with HaCaT keratinocytes and ex vivo with epidermal tissues, demonstrating an effective advantage on wound healing acceleration. Accordingly, this study was successful in developing wound healing dressings using natural agents and a simple and green crosslinking method.
Collapse
Affiliation(s)
- Massimo Mariello
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Dipartimento Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Enrico Binetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Institute for Microelectronics and Microsystems IMM-CNR, UOS di Lecce Via Monteroni c/o Campus Universitario Ecotekne-Palazzina A3, 73100 Lecce, Italy
| | - Maria Teresa Todaro
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Institute of Nanotechnology NANOTEC-CNR, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Qualtieri
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
| | - Virgilio Brunetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
| | - Pietro Siciliano
- Institute for Microelectronics and Microsystems IMM-CNR, UOS di Lecce Via Monteroni c/o Campus Universitario Ecotekne-Palazzina A3, 73100 Lecce, Italy
| | - Massimo De Vittorio
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Dipartimento Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Laura Blasi
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Institute for Microelectronics and Microsystems IMM-CNR, UOS di Lecce Via Monteroni c/o Campus Universitario Ecotekne-Palazzina A3, 73100 Lecce, Italy
| |
Collapse
|
18
|
Jia XY, Huang CF, Meng X, Zhu DY, Chen ZP, Jiang T, Zeng YZ, Xu MS. Dynamically Cross-Linked Double-Network Hydrogels with Matched Mechanical Properties and Ideal Biocompatibility for Artificial Blood Vessels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28134-28146. [PMID: 38768602 DOI: 10.1021/acsami.4c03063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Vessel transplantation is currently considered the "gold standard" treatment for cardiovascular disease. However, ideal artificial vascular grafts should possess good biocompatibility and mechanical strength that match those of native autologous vascular tissue to promote in vivo tissue regeneration. In this study, a series of dynamic cross-linking double-network hydrogels and the resultant hydrogel tubes were prepared. The hydrogels (named PCO), composed of rigid poly(vinyl alcohol) (PVA), flexible carboxymethyl chitosan (CMCS), and a cross-linker of aldehyde-based β-cyclodextrin (OCD), were formed in a double-network structure with multiple dynamical cross-linking including dynamic imine bonds, hydrogen bonds, and microcrystalline regions. The PCO hydrogels exhibited superior mechanical strength, good network stability, and fatigue resistance. Additionally, it demonstrated excellent cell and blood compatibility. The results showed that the introduction of CMCS/OCD led to a significant increase in the proliferation rate of endothelial cells seeded on the surface of the hydrogel. The hemolysis rate in the test was lower than 0.3%, and both protein adsorption and platelet adhesion were reduced, indicating an excellent anticoagulant function. The plasma recalcification time test results showed that endogenous coagulation was alleviated to some extent. When formed into blood vessels and incubated with blood, no thrombus formation was observed, and there was minimal red blood cell aggregation. Therefore, this novel hydrogel tube, with excellent mechanical properties, exhibits antiadhesive characteristics toward blood cells and proteins, as well as antithrombotic properties, making it hold tremendous potential for applications in the biomedical and engineering fields.
Collapse
Affiliation(s)
- Xue Yi Jia
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Centre, Jieyang 515200, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Can Feng Huang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- Guangdong Foshan Lianchuang Graduate School of Engineering, Foshan 528000, China
| | - Xi Meng
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Dong Yu Zhu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Centre, Jieyang 515200, China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhi Peng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Tao Jiang
- Guangdong Foshan Lianchuang Graduate School of Engineering, Foshan 528000, China
| | - Yi Zi Zeng
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Mao Sheng Xu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Jaradat E, Meziane A, Lamprou DA. Conventional vs PEGylated loaded liposomal formulations by microfluidics for delivering hydrophilic chemotherapy. Int J Pharm 2024; 655:124077. [PMID: 38569975 DOI: 10.1016/j.ijpharm.2024.124077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 04/05/2024]
Abstract
Developing drug delivery systems (DDSs) is one of the approaches used to improve cancer treatment, with the main goal of loading cancer drugs into a carrier targeting a specific organ and avoiding the distribution to healthy tissues. Nanoparticles (NPs) have been shown to be one of the optimum carriers that can be used as DDSs. Lipid-based NPs, such as liposomes, have been investigated in the current study due to their low toxicity and ability to carry hydrophilic and hydrophobic molecules. In the current studies, conventional liposomes composed of DPPC, and cholesterol and PEGylated liposomes composed of DPPC, cholesterol, and DSPE-PEG2000 are manufactured and loaded with Carboplatin. The study focused on investigating and comparing the impact of modifying the carboplatin-loaded liposomes with different concentrations of DSPE-PEG2000 on the NP diameter, polydispersity, ζ-potential, encapsulation efficiency (EE%), and drug release. The hydrodynamic microfluidic system was used to investigate any possible improvement in the EE% over other conventional methods. The results showed the microfluidic system's promising effect in enhancing the EE% of the Carboplatin. Moreover, the results showed a smaller diameter and higher stability of the PEGylated liposome. However, conventional liposomes represent better homogeneity and higher encapsulation efficiency for hydrophilic molecules.
Collapse
Affiliation(s)
- Eman Jaradat
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|