1
|
Qneibi M, Hawash M, Bdir S, Bdair M, Idais T, Sarhan I, Touqan J. Regulating AMPA Receptors with Isoxazole-4-Carboxamide Derivatives: An Electrophysiological Study. J Xenobiot 2025; 15:40. [PMID: 40126258 PMCID: PMC11932207 DOI: 10.3390/jox15020040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025] Open
Abstract
Isoxazole carboxamide derivatives are intriguing modulators of ionotropic glutamate receptors; more specifically, their prospective analgesic activities based on non-opioid pathways have sparked widespread research. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, especially Ca2+-permeable subtypes that are highly expressed in the spinal dorsal horn, play a critical role in nociceptive transmission and inflammatory pain. Herein, the neuromodulatory effects of these derivatives on AMPA receptor activity have been studied, focusing on their potential as modulators of AMPA receptors, a target implicated in pain and neurological disorders. The whole-cell patch clamp technique for electrophysiological recordings was used to investigate the effect of twelve isoxazole-4-carboxamide derivatives (CIC-1-12) on AMPA receptors' whole-cell currents and kinetics, including deactivation and desensitization. The isoxazole-4-carboxamide derivatives tested as inhibitors of AMPA receptor activity were very potent, with an 8-fold inhibition by CIC-1 and a 7.8-fold reduction by CIC-2. Additionally, these compounds profoundly altered the biophysical gating properties of both homomeric and heteromeric receptor subunits. These findings emphasize the therapeutic promise of isoxazole-4-carboxamide derivatives due to their potential as AMPA receptor modulators. Their ability to affect receptor activity and gating properties makes them promising candidates for future treatments for controlling pain.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Mohammed Hawash
- Pharmaceutical Chemistry and Technology Division, Faculty of Pharmacy, An-Najah National University, P400 Nablus, Palestine;
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Mohammad Bdair
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Tala Idais
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Iyas Sarhan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| | - Joud Touqan
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P400 Nablus, Palestine; (S.B.); (M.B.); (T.I.); (I.S.); (J.T.)
| |
Collapse
|
2
|
Gangwar SP, Yelshanskaya MV, Aktolun M, Yen LY, Newton TP, Strømgaard K, Kurnikova MG, Sobolevsky AI. Trapping of spermine, Kukoamine A, and polyamine toxin blockers in GluK2 kainate receptor channels. Nat Commun 2024; 15:10257. [PMID: 39592599 PMCID: PMC11599716 DOI: 10.1038/s41467-024-54538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Kainate receptors (KARs) are a subtype of ionotropic glutamate receptor (iGluR) channels, a superfamily of ligand-gated ion channels which mediate the majority of excitatory neurotransmission in the central nervous system. KARs modulate neuronal circuits and plasticity during development and are implicated in neurological disorders, including epilepsy, depression, schizophrenia, anxiety, and autism. Calcium-permeable KARs undergo ion channel block, but the therapeutic potential of channel blockers remains underdeveloped, mainly due to limited structural knowledge. Here, we present closed-state structures of GluK2 KAR homotetramers in complex with ion channel blockers NpTx-8, PhTx-74, Kukoamine A, and spermine. We find that blockers reside inside the GluK2 ion channel pore, intracellular to the closed M3 helix bundle-crossing gate, with their hydrophobic heads filling the central cavity and positively charged polyamine tails spanning the selectivity filter. Molecular dynamics (MD) simulations of our structures illuminate interactions responsible for different affinity and binding poses of the blockers. Our structures elucidate the trapping mechanism of KAR channel block and provide a template for designing new blockers that can selectively target calcium-permeable KARs in neuropathologies.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
| | - Muhammed Aktolun
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
- Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Thomas P Newton
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Maria G Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Han S, Wang J, Zhang W, Tian X. Chronic Pain-Related Cognitive Deficits: Preclinical Insights into Molecular, Cellular, and Circuit Mechanisms. Mol Neurobiol 2024; 61:8123-8143. [PMID: 38470516 DOI: 10.1007/s12035-024-04073-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Cognitive impairment is a common comorbidity of chronic pain, significantly disrupting patients' quality of life. Despite this comorbidity being clinically recognized, the underlying neuropathological mechanisms remain unclear. Recent preclinical studies have focused on the fundamental mechanisms underlying the coexistence of chronic pain and cognitive decline. Pain chronification is accompanied by structural and functional changes in the neural substrate of cognition. Based on the developments in electrophysiology and optogenetics/chemogenetics, we summarized the relevant neural circuits involved in pain-induced cognitive impairment, as well as changes in connectivity and function in brain regions. We then present the cellular and molecular alternations related to pain-induced cognitive impairment in preclinical studies, mainly including modifications in neuronal excitability and structure, synaptic plasticity, glial cells and cytokines, neurotransmitters and other neurochemicals, and the gut-brain axis. Finally, we also discussed the potential treatment strategies and future research directions.
Collapse
Affiliation(s)
- Siyi Han
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China
| | - Jie Wang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| | - Xuebi Tian
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Kader L, Willits AB, Meriano S, Christianson JA, La JH, Feng B, Knight B, Kosova G, Deberry JJ, Coates MD, Hyams JS, Baumbauer KM, Young EE. Identification of Arginine-Vasopressin Receptor 1a (Avpr1a/Avpr1a) as a Novel Candidate Gene for Chronic Visceral Pain Sheds Light on the Potential Role of Enteric Neurons in the Development of Visceral Hypersensitivity. THE JOURNAL OF PAIN 2024; 25:104572. [PMID: 38768798 PMCID: PMC11571697 DOI: 10.1016/j.jpain.2024.104572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024]
Abstract
Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of arginine-vasopressin receptor 1A (Avpr1a) as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing 2 C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan instillation, a validated preclinical model for postinflammatory IBS. Using whole-genome sequencing, we identified a single-nucleotide polymorphism differentiating the 2 strains in the 5' intergenic region upstream of Avpr1a, encoding the protein Avpr1a. We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the 2 BL/6 substrains did not differ across other gastrointestinal phenotypes (eg, fecal water retention), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. These results parallel findings that patients' colonic Avpr1a mRNA expression corresponded to higher pain ratings. Moreover, neurons of the enteric nervous system were hyperresponsive to the Avpr1a agonist arginine-vasopressin, suggesting a role for enteric neurons in the pathology underlying VH. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH susceptibility as well as a potential therapeutic target specific to VH. PERSPECTIVE: This article presents evidence of Avpr1a as a novel candidate gene for VH in a mouse model of IBS. Avpr1a genotype and/or tissue-specific expression represents a potential biomarker for chronic abdominal pain susceptibility.
Collapse
Affiliation(s)
- Leena Kader
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas
| | - Adam B Willits
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas
| | - Sebastian Meriano
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Julie A Christianson
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Jun-Ho La
- Department of Neurobiology, University of University of Texas Medical Branch, Galveston, Texas
| | - Bin Feng
- Biomedical Engineering Department, University of Connecticut, Storrs, Connecticut
| | - Brittany Knight
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut
| | - Gulum Kosova
- Division of Statistical Genetics,TenSixteen Bio, Suffolk, Massachusetts
| | - Jennifer J Deberry
- Department of Anesthesiology & Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Matthew D Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, Pennsylvania
| | - Jeffrey S Hyams
- Department of Gastroenterology, Connecticut Children's Medical Center, Hartford, Connecticut
| | - Kyle M Baumbauer
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas
| | - Erin E Young
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, Kansas; Neuroscience Graduate Program, KU Medical Center, Kansas City, Kansas; Department of Cell Biology and Physiology, KU Medical Center, Kansas City, Kansas.
| |
Collapse
|
5
|
Zhang W, Zhang X, Lei M, Zhang D, Qin G, Zhou J, Ji L, Chen L. Dopamine D2 Receptor Activation Blocks GluA2/ROS Positive Feedback Loop to Alienate Chronic-Migraine-Associated Pain Sensitization. Antioxidants (Basel) 2024; 13:725. [PMID: 38929165 PMCID: PMC11201052 DOI: 10.3390/antiox13060725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chronic migraine is a disabling disorder without effective therapeutic medicine. AMPA receptors have been proven to be essential to pathological pain and headaches, but the related regulatory mechanisms in chronic migraine have not yet been explored. In this study, we found that the level of surface GluA2 was reduced in chronic migraine rats. Tat-GluR23Y (a GluA2 endocytosis inhibitor) reduced calcium inward flow and weakened synaptic structures, thus alleviating migraine-like pain sensitization. In addition, the inhibition of GluA2 endocytosis reduced the calcium influx and alleviated mitochondrial calcium overload and ROS generation in primary neurons. Furthermore, our results showed that ROS can induce allodynia and GluA2 endocytosis in rats, thus promoting migraine-like pain sensitization. In our previous study, the dopamine D2 receptor was identified as a potential target in the treatment of chronic migraine, and here we found that dopamine D2 receptor activation suppressed chronic-migraine-related pain sensitization through blocking the GluA2/ROS positive feedback loop in vivo and in vitro. Additionally, ligustrazine, a core component of ligusticum chuanxiong, was shown to target the dopamine D2 receptor, thereby alleviating ROS production and abnormal nociception in CM rats. This study provides valuable insight into the treatment of chronic migraine.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Xiaoyan Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China; (X.Z.); (J.Z.)
| | - Ming Lei
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China; (X.Z.); (J.Z.)
| | - Lichun Ji
- Department of Respiration, The Thirteenth People’s Hospital of Chongqing, Chongqing 400016, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; (W.Z.); (G.Q.)
| |
Collapse
|
6
|
Beckers P, Belo Do Nascimento I, Charlier M, Desmet N, Massie A, Hermans E. Implication of system x c- in neuroinflammation during the onset and maintenance of neuropathic pain. J Neuroinflammation 2024; 21:117. [PMID: 38715127 PMCID: PMC11077843 DOI: 10.1186/s12974-024-03112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Despite the high prevalence of neuropathic pain, treating this neurological disease remains challenging, given the limited efficacy and numerous side effects associated with current therapies. The complexity in patient management is largely attributed to an incomplete understanding of the underlying pathological mechanisms. Central sensitization, that refers to the adaptation of the central nervous system to persistent inflammation and heightened excitatory transmission within pain pathways, stands as a significant contributor to persistent pain. Considering the role of the cystine/glutamate exchanger (also designated as system xc-) in modulating glutamate transmission and in supporting neuroinflammatory responses, we investigated the contribution of this exchanger in the development of neuropathic pain. METHODS We examined the implication of system xc- by evaluating changes in the expression/activity of this exchanger in the dorsal spinal cord of mice after unilateral partial sciatic nerve ligation. In this surgical model of neuropathic pain, we also examined the consequence of the genetic suppression of system xc- (using mice lacking the system xc- specific subunit xCT) or its pharmacological manipulation (using the pharmacological inhibitor sulfasalazine) on the pain-associated behavioral responses. Finally, we assessed the glial activation and the inflammatory response in the spinal cord by measuring mRNA and protein levels of GFAP and selected M1 and M2 microglial markers. RESULTS The sciatic nerve lesion was found to upregulate system xc- at the spinal level. The genetic deletion of xCT attenuated both the amplitude and the duration of the pain sensitization after nerve surgery, as evidenced by reduced responses to mechanical and thermal stimuli, and this was accompanied by reduced glial activation. Consistently, pharmacological inhibition of system xc- had an analgesic effect in lesioned mice. CONCLUSION Together, these observations provide evidence for a role of system xc- in the biochemical processes underlying central sensitization. We propose that the reduced hypersensitivity observed in the transgenic mice lacking xCT or in sulfasalazine-treated mice is mediated by a reduced gliosis in the lumbar spinal cord and/or a shift in microglial M1/M2 polarization towards an anti-inflammatory phenotype in the absence of system xc-. These findings suggest that drugs targeting system xc- could contribute to prevent or reduce neuropathic pain.
Collapse
Affiliation(s)
- Pauline Beckers
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Inês Belo Do Nascimento
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Mathilde Charlier
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Nathalie Desmet
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium
| | - Ann Massie
- Neuro-Aging & Viro-Immunotherapy, Center for Neurosciences, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, Brussels, 1090, Belgium
| | - Emmanuel Hermans
- Institute of Neuroscience, Group of Neuropharmacology, Université catholique de Louvain (UCLouvain), Avenue Hippocrate 53 (B1.53.01), Brussels, 1200, Belgium.
| |
Collapse
|
7
|
Sabnis SS, Narasimhan KKS, Chettiar PB, Gakare SG, Shelkar GP, Asati DG, Thakur SS, Dravid SM. Intravenous recombinant cerebellin 1 treatment restores signalling by spinal glutamate delta 1 receptors and mitigates chronic pain. Br J Pharmacol 2024; 181:1421-1437. [PMID: 38044332 PMCID: PMC11288346 DOI: 10.1111/bph.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Chronic pain remains a major clinical problem that needs effective therapeutic agents. Glutamate delta 1 (GluD1) receptors and the protein cerebellin 1 (Cbln1) are down-regulated in the central amygdala (CeA) in models of inflammatory and neuropathic pain. One treatment with Cbln1, intracerebroventricularly (ICV) or in CeA, normalized GluD1 and reduced AMPA receptor expression, resulting in lasting (7-10 days) pain relief. Unlike many CNS-targeting biological agents, the structure of Cbln1 suggests potential blood-brain barrier penetration. Here, we have tested whether systemic administration of Cbln1 provides analgesic effects via action in the CNS. EXPERIMENTAL APPROACH Analgesic effects of intravenous recombinant Cbln1 was assessed in complete Freund's adjuvant inflammatory pain model in mice. GluD1 knockout and a mutant form of Cbln1 were used. KEY RESULTS A single intravenous injection of Cbln1 mitigated nocifensive and averse behaviour in both inflammatory and neuropathic pain models. This effect of Cbln1 was dependent on GluD1 receptors and required binding to the amino terminal domain of GluD1. Time course of analgesic effect was similar to previously reported ICV and intra-CeA injection. GluD1 in both spinal cord and CeA was down -regulated in the inflammatory pain model, whereas GluD1 expression in spinal cord but not in CeA, was partly normalized by intravenous Cbln1. Importantly, recombinant Cbln1 was detected in the synaptoneurosomes in spinal cord but not in the CeA. CONCLUSIONS AND IMPLICATIONS Our results describe a novel mechanism by which systemic Cbln1 induces analgesia potentially by central actions involving normalization of signalling by spinal cord GluD1 receptors.
Collapse
Affiliation(s)
- Siddhesh S. Sabnis
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Kishore Kumar S. Narasimhan
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Poojashree B. Chettiar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Sukanya G. Gakare
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Gajanan P. Shelkar
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Devansh G. Asati
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Shriti S. Thakur
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| | - Shashank M. Dravid
- Department of Pharmacology and Neuroscience, Creighton University, 2500 California Plaza, Omaha, Nebraska 68178, USA
| |
Collapse
|
8
|
Kader L, Willits A, Meriano S, Christianson JA, La JH, Feng B, Knight B, Kosova G, Deberry J, Coates M, Hyams J, Baumbauer K, Young EE. Identification of arginine-vasopressin receptor 1a (Avpr1a/AVPR1A) as a novel candidate gene for chronic visceral pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572390. [PMID: 38187732 PMCID: PMC10769202 DOI: 10.1101/2023.12.19.572390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Chronic abdominal pain in the absence of ongoing disease is the hallmark of disorders of gut-brain interaction (DGBIs), including irritable bowel syndrome (IBS). While the etiology of DGBIs remains poorly understood, there is evidence that both genetic and environmental factors play a role. In this study, we report the identification and validation of Avpr1a as a novel candidate gene for visceral hypersensitivity (VH), a primary peripheral mechanism underlying abdominal pain in DGBI/IBS. Comparing two C57BL/6 (BL/6) substrains (C57BL/6NTac and C57BL/6J) revealed differential susceptibility to the development of chronic VH following intrarectal zymosan (ZYM) instillation, a validated preclinical model for post-inflammatory IBS. Using whole genome sequencing, we identified a SNP differentiating the two strains in the 5' intergenic region upstream of Avpr1a, encoding the protein arginine-vasopressin receptor 1A (AVPR1A). We used behavioral, histological, and molecular approaches to identify distal colon-specific gene expression differences and neuronal hyperresponsiveness covarying with Avpr1a genotype and VH susceptibility. While the two BL/6 substrains did not differ across other gastrointestinal (GI) phenotypes (e.g., GI motility), VH-susceptible BL/6NTac mice had higher colonic Avpr1a mRNA and protein expression. Moreover, neurons of the enteric nervous system were hyperresponsive to the AVPR1A agonist AVP, suggesting a role for enteric neurons in the pathology underlying VH. These results parallel our findings that patients' colonic Avpr1a mRNA expression was higher in patients with higher pain ratings. Taken together, these findings implicate differential regulation of Avpr1a as a novel mechanism of VH-susceptibility as well as a potential therapeutic target specific to VH.
Collapse
Affiliation(s)
- Leena Kader
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
| | - Adam Willits
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
| | - Sebastian Meriano
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Julie A. Christianson
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Jun-Ho La
- Department of Neurobiology, University of University of Texas Medical Branch, Galveston, TX
| | - Bin Feng
- Biomedical Engineering Department, University of Connecticut, Storrs, CT
| | - Brittany Knight
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, United States
| | | | - Jennifer Deberry
- Department of Anesthesiology & Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Matthew Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State College of Medicine, Hershey, PA, United States
| | - Jeffrey Hyams
- Department of Gastroenterology, Connecticut Children’s Medical Center, Hartford, CT
| | - Kyle Baumbauer
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| | - Erin E. Young
- Department of Anesthesiology, Pain, and Perioperative Medicine, KU Medical Center, Kansas City, KS, United States
- Neuroscience Graduate Program, KU Medical Center, Kansas City, KS, United States
- Department of Cell Biology and Physiology, KU Medical Center, Kansas City, KS, United States
| |
Collapse
|
9
|
Li XH, Shi W, Chen QY, Hao S, Miao HH, Miao Z, Xu F, Bi GQ, Zhuo M. Activation of the glutamatergic cingulate cortical-cortical connection facilitates pain in adult mice. Commun Biol 2023; 6:1247. [PMID: 38071375 PMCID: PMC10710420 DOI: 10.1038/s42003-023-05589-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
The brain consists of the left and right cerebral hemispheres and both are connected by callosal projections. Less is known about the basic mechanism of this cortical-cortical connection and its functional importance. Here we investigate the cortical-cortical connection between the bilateral anterior cingulate cortex (ACC) by using the classic electrophysiological and optogenetic approach. We find that there is a direct synaptic projection from one side ACC to the contralateral ACC. Glutamate is the major excitatory transmitter for bilateral ACC connection, including projections to pyramidal cells in superficial (II/III) and deep (V/VI) layers of the ACC. Both AMPA and kainate receptors contribute to synaptic transmission. Repetitive stimulation of the projection also evoked postsynaptic Ca2+ influx in contralateral ACC pyramidal neurons. Behaviorally, light activation of the ACC-ACC connection facilitated behavioral withdrawal responses to mechanical stimuli and noxious heat. In an animal model of neuropathic pain, light inhibitory of ACC-ACC connection reduces both primary and secondary hyperalgesia. Our findings provide strong direct evidence for the excitatory or facilitatory contribution of ACC-ACC connection to pain perception, and this mechanism may provide therapeutic targets for future treatment of chronic pain and related emotional disorders.
Collapse
Affiliation(s)
- Xu-Hui Li
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, 266000, China
| | - Wantong Shi
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, 266000, China
| | - Qi-Yu Chen
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, 266000, China
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, 518055, China
| | - Shun Hao
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, 266000, China
| | - Hui-Hui Miao
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, 10th Tieyi Road, Haidian District, Beijing, 100038, China
| | - Zhuang Miao
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada
| | - Fang Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, 518055, China
| | - Guo-Qiang Bi
- CAS Key Laboratory of Brain Connectome and Manipulation, Interdisciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, 518055, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
- Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada.
- Institute of Brain Research, Qingdao International Academician Park, Qingdao, Shandong, 266000, China.
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510130, China.
| |
Collapse
|
10
|
Zhang MM, Zhang MZ, Wei Y, Lu YC, Wang J, Yang SM, Zhu Z, Chen Q, Zhao M, Dong J, Yang X, Yang K. Postsynaptic glutamate response downregulates within presynaptic exaggerated glutamate release by activating TRPV1 in the spinal dorsal horn. Biochem Biophys Res Commun 2022; 625:75-80. [DOI: 10.1016/j.bbrc.2022.07.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022]
|
11
|
Ostrom KF, LaVigne JE, Brust TF, Seifert R, Dessauer CW, Watts VJ, Ostrom RS. Physiological roles of mammalian transmembrane adenylyl cyclase isoforms. Physiol Rev 2022; 102:815-857. [PMID: 34698552 PMCID: PMC8759965 DOI: 10.1152/physrev.00013.2021] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. Mammals possess nine isoforms of transmembrane ACs, dubbed AC1-9, that serve as major effector enzymes of G protein-coupled receptors (GPCRs). The transmembrane ACs display varying expression patterns across tissues, giving the potential for them to have a wide array of physiological roles. Cells express multiple AC isoforms, implying that ACs have redundant functions. Furthermore, all transmembrane ACs are activated by Gαs, so it was long assumed that all ACs are activated by Gαs-coupled GPCRs. AC isoforms partition to different microdomains of the plasma membrane and form prearranged signaling complexes with specific GPCRs that contribute to cAMP signaling compartments. This compartmentation allows for a diversity of cellular and physiological responses by enabling unique signaling events to be triggered by different pools of cAMP. Isoform-specific pharmacological activators or inhibitors are lacking for most ACs, making knockdown and overexpression the primary tools for examining the physiological roles of a given isoform. Much progress has been made in understanding the physiological effects mediated through individual transmembrane ACs. GPCR-AC-cAMP signaling pathways play significant roles in regulating functions of every cell and tissue, so understanding each AC isoform's role holds potential for uncovering new approaches for treating a vast array of pathophysiological conditions.
Collapse
Affiliation(s)
| | - Justin E LaVigne
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, Florida
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, Indiana
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, Indiana
| | - Rennolds S Ostrom
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California
| |
Collapse
|
12
|
Lyubashina OA, Sivachenko IB, Panteleev SS. Supraspinal Mechanisms of Intestinal Hypersensitivity. Cell Mol Neurobiol 2022; 42:389-417. [PMID: 33030712 PMCID: PMC11441296 DOI: 10.1007/s10571-020-00967-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Gut inflammation or injury causes intestinal hypersensitivity (IHS) and hyperalgesia, which can persist after the initiating pathology resolves, are often referred to somatic regions and exacerbated by psychological stress, anxiety or depression, suggesting the involvement of both the spinal cord and the brain. The supraspinal mechanisms of IHS remain to be fully elucidated, however, over the last decades the series of intestinal pathology-associated neuroplastic changes in the brain has been revealed, being potentially responsible for the phenomenon. This paper reviews current clinical and experimental data, including the authors' own findings, on these functional, structural, and neurochemical/molecular changes within cortical, subcortical and brainstem regions processing and modulating sensory signals from the gut. As concluded in the review, IHS can develop and maintain due to the bowel inflammation/injury-induced persistent hyperexcitability of viscerosensory brainstem and thalamic nuclei and sensitization of hypothalamic, amygdala, hippocampal, anterior insular, and anterior cingulate cortical areas implicated in the neuroendocrine, emotional and cognitive modulation of visceral sensation and pain. An additional contribution may come from the pathology-triggered dysfunction of the brainstem structures inhibiting nociception. The mechanism underlying IHS-associated regional hyperexcitability is enhanced NMDA-, AMPA- and group I metabotropic receptor-mediated glutamatergic neurotransmission in association with altered neuropeptide Y, corticotropin-releasing factor, and cannabinoid 1 receptor signaling. These alterations are at least partially mediated by brain microglia and local production of cytokines, especially tumor necrosis factor α. Studying the IHS-related brain neuroplasticity in greater depth may enable the development of new therapeutic approaches against chronic abdominal pain in inflammatory bowel disease.
Collapse
Affiliation(s)
- Olga A Lyubashina
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia.
| | - Ivan B Sivachenko
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| | - Sergey S Panteleev
- Laboratory of Cortico-Visceral Physiology, Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Nab. Makarova, Saint Petersburg, 199034, Russia
| |
Collapse
|
13
|
Matisz C, Gruber A. Neuroinflammatory remodeling of the anterior cingulate cortex as a key driver of mood disorders in gastrointestinal disease and disorders. Neurosci Biobehav Rev 2022; 133:104497. [DOI: 10.1016/j.neubiorev.2021.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
|
14
|
Ren D, Li JN, Qiu XT, Wan FP, Wu ZY, Fan BY, Zhang MM, Chen T, Li H, Bai Y, Li YQ. Anterior Cingulate Cortex Mediates Hyperalgesia and Anxiety Induced by Chronic Pancreatitis in Rats. Neurosci Bull 2021; 38:342-358. [PMID: 34907496 PMCID: PMC9068840 DOI: 10.1007/s12264-021-00800-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
Central sensitization is essential in maintaining chronic pain induced by chronic pancreatitis (CP), but cortical modulation of painful CP remains elusive. Here, we examined the role of the anterior cingulate cortex (ACC) in the pathogenesis of abdominal hyperalgesia in a rat model of CP induced by intraductal administration of trinitrobenzene sulfonic acid (TNBS). TNBS treatment resulted in long-term abdominal hyperalgesia and anxiety in rats. Morphological data indicated that painful CP induced a significant increase in FOS-expressing neurons in the nucleus tractus solitarii (NTS) and ACC, and some FOS-expressing neurons in the NTS projected to the ACC. In addition, a larger portion of ascending fibers from the NTS innervated pyramidal neurons, the neural subpopulation primarily expressing FOS under the condition of painful CP, rather than GABAergic neurons within the ACC. CP rats showed increased expression of vesicular glutamate transporter 1, and increased membrane trafficking and phosphorylation of the N-methyl-D-aspartate receptor (NMDAR) subunit NR2B and the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit GluR1 within the ACC. Microinjection of NMDAR and AMPAR antagonists into the ACC to block excitatory synaptic transmission significantly attenuated abdominal hyperalgesia in CP rats, which was similar to the analgesic effect of endomorphins injected into the ACC. Specifically inhibiting the excitability of ACC pyramidal cells via chemogenetics reduced both hyperalgesia and comorbid anxiety, whereas activating these neurons via optogenetics failed to aggravate hyperalgesia and anxiety in CP rats. Taken together, these findings provide neurocircuit, biochemical, and behavioral evidence for involvement of the ACC in hyperalgesia and anxiety in CP rats, as well as novel insights into the cortical modulation of painful CP, and highlights the ACC as a potential target for neuromodulatory interventions in the treatment of painful CP.
Collapse
Affiliation(s)
- Dan Ren
- Department of Anatomy, Guangxi Medical University, Nanning, 510000, China.,Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Ni Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Fa-Ping Wan
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China.,Department of Anatomy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhen-Yu Wu
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xi'an, 710004, China
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Yang Bai
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China. .,Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yun-Qing Li
- Department of Anatomy, Guangxi Medical University, Nanning, 510000, China. .,Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China. .,Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, 570216, China. .,Department of Human Anatomy, College of Basic Medicine, Dali University, Dali, 671000, China.
| |
Collapse
|
15
|
Yang LK, Lu L, Feng B, Wang XS, Yue J, Li XB, Zhuo M, Liu SB. FMRP acts as a key messenger for visceral pain modulation. Mol Pain 2021; 16:1744806920972241. [PMID: 33243040 PMCID: PMC7786421 DOI: 10.1177/1744806920972241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Visceral pain is a common clinical symptom, which is caused by mechanical stretch, spasm, ischemia and inflammation. Fragile X syndrome (FXS) with lack of fragile X mental retardation protein (FMRP) protein is an inherited disorder that is characterized by moderate or severe intellectual and developmental disabilities. Previous studies reported that FXS patients have self-injurious behavior, which may be associated with deficits in nociceptive sensitization. However, the role of FMRP in visceral pain is still unclear. In this study, the FMR1 knock out (KO) mice and SH-SY5Y cell line were employed to demonstrate the role of FMRP in the regulation of visceral pain. The data showed that FMR1 KO mice were insensitive to zymosan treatment. Recording in the anterior cingulate cortex (ACC), a structure involved in pain process, showed less presynaptic glutamate release and postsynaptic responses in the FMR1 KO mice as compared to the wild type (WT) mice after zymosan injection. Zymosan treatment caused enhancements of adenylyl cyclase 1 (AC1), a pain-related enzyme, and NMDA GluN2B receptor in the ACC. However, these up-regulations were attenuated in the ACC of FMR1 KO mice. Last, we found that zymosan treatment led to increase of FMRP levels in the ACC. These results were further confirmed in SH-SY5Y cells in vitro. Our findings demonstrate that FMRP is required for NMDA GluN2B and AC1 upregulation, and GluN2B/AC1/FMRP forms a positive feedback loop to modulate visceral pain.
Collapse
Affiliation(s)
- Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, 12644Fourth Military Medical University, Xi'an, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, 12644Fourth Military Medical University, Xi'an, China
| | - Ban Feng
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, 12644Fourth Military Medical University, Xi'an, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, 12644Fourth Military Medical University, Xi'an, China
| | - Jiao Yue
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Department of Pharmacy, School of Stomatology, 12644Fourth Military Medical University, Xi'an, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, 12644Fourth Military Medical University, Xi'an, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiao Tong University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, 12644Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Hu J, Chen X, Cheng J, Kong F, Xia H, Wu J. Mammalian target of rapamycin signaling pathway is involved in synaptic plasticity of the spinal dorsal horn and neuropathic pain in rats by regulating autophagy. Neuroreport 2021; 32:925-935. [PMID: 34145195 DOI: 10.1097/wnr.0000000000001684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Unveiling the etiology and the underlying mechanism of neuropathic pain, a poorly treated disease, is essential for the development of effective therapies. This study aimed to explore the role of mammalian target of rapamycin (mTOR) signaling in autophagy-mediated neuropathic pain. We established a spared nerve injury (SNI) model in adult male SD rats by ligating the common peroneal nerve and tibial, with the distal end cutoff. The paw withdrawal threshold (PWT) and C/A-fiber evoked field potentials were determined by electrophysiologic tests at day 0 (before operation), day 7 and day 14 postoperation, and SNI significantly increased field potentials (P < 0.05). Immunohistochemistry and western blots using spinal cord tissues showed that the expressions of GluR1, GluR2, Beclin-1, p62, mTOR and 4EBP1 were significantly increased after SNI (all P < 0.05), whereas the expressions of LC3 and LAMP2 were significantly decreased after SNI (all P < 0.05). Rapamycin efficiently counteracted the effect of SNI and restored the phenotypes to the level comparable to the sham control. In conclusion, rapamycin inhibits C/A-fiber-mediated long-term potentiation in the SNI rat model of neuropathic pain, which might be mediated by activation of autophagy signaling and downregulation of GluRs expression.
Collapse
Affiliation(s)
- Jijun Hu
- Department of Anesthesiology, Hubei Tongcheng People's Hospital, Tongcheng
| | - Xueling Chen
- Department of Anesthesiology, Wuhan Children Hospital, Wuhan, China
| | - Jie Cheng
- Department of Anesthesiology, Wuhan Children Hospital, Wuhan, China
| | - Fanli Kong
- Department of Anesthesiology, Wuhan Children Hospital, Wuhan, China
| | - Hui Xia
- Department of Anesthesiology, Wuhan Children Hospital, Wuhan, China
| | - Jiang Wu
- Department of Anesthesiology, Wuhan Children Hospital, Wuhan, China
| |
Collapse
|
17
|
Wang X, Ali N, Lin CLG. Emerging role of glutamate in the pathophysiology and therapeutics of Gulf War illness. Life Sci 2021; 280:119609. [PMID: 33991547 DOI: 10.1016/j.lfs.2021.119609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/20/2022]
Abstract
Gulf War illness (GWI) is a chronic and multi-symptomatic disorder affecting veterans who served in the Gulf War. The commonly reported symptoms in GWI veterans include mood problems, cognitive impairment, muscle and joint pain, migraine/headache, chronic fatigue, gastrointestinal complaints, skin rashes, and respiratory problems. Neuroimaging studies have revealed significant brain structure alterations in GWI veterans, including subcortical atrophy, decreased volume of the hippocampus, reduced total grey and white matter, and increased brain white matter axial diffusivity. These brain changes may contribute to or increase the severities of the GWI-related symptoms. Epidemiological studies have revealed that neurotoxic exposures and stress may be significant contributors to the development of GWI. However, the mechanism underlying how the exposure and stress could contribute to the multi-symptomatic disorder of GWI remains unclear. We and others have demonstrated that rodent models exposed to GW-related agents and stress exhibited higher extracellular glutamate levels, as well as impaired structure and function of glutamatergic synapses. Restoration of the glutamatergic synapses ameliorated the GWI-related pathological and behavioral deficits. Moreover, recent studies showed that a low-glutamate diet reduced multiple symptoms in GWI veterans, suggesting an important role of the glutamatergic system in GWI. Currently, growing evidence has indicated that abnormal glutamate neurotransmission may contribute to the GWI symptoms. This review summarizes the potential roles of glutamate dyshomeostasis and dysfunction of the glutamatergic system in linking the initial cause to the multi-symptomatic outcomes in GWI and suggests the glutamatergic system as a therapeutic target for GWI.
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Noor Ali
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Chien-Liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Darvish-Ghane S, Quintana C, Beaulieu JM, Martin LJ. D1 receptors in the anterior cingulate cortex modulate basal mechanical sensitivity threshold and glutamatergic synaptic transmission. Mol Brain 2020; 13:121. [PMID: 32891169 PMCID: PMC7487672 DOI: 10.1186/s13041-020-00661-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
The release of dopamine (DA) into target brain areas is considered an essential event for the modulation of many physiological effects. While the anterior cingulate cortex (ACC) has been implicated in pain related behavioral processes, DA modulation of synaptic transmission within the ACC and pain related phenotypes remains unclear. Here we characterized a Crispr/Cas9 mediated somatic knockout of the D1 receptor (D1R) in all neuronal subtypes of the ACC and find reduced mechanical thresholds, without affecting locomotion and anxiety. Further, the D1R high-efficacy agonist SKF 81297 and low efficacy agonist (±)-SKF-38393 inhibit α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) currents in the ACC. Paradoxically, the D1R antagonists SCH-23390 and SCH 33961 when co-applied with D1R agonists produced a robust short-term synergistic depression of AMPAR currents in the ACC, demonstrating an overall inhibitory role for D1R ligands. Overall, our data indicate that absence of D1Rs in the ACC enhanced peripheral sensitivity to mechanical stimuli and D1R activation decreased glutamatergic synaptic transmission in ACC neurons.
Collapse
Affiliation(s)
- Soroush Darvish-Ghane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Clémentine Quintana
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Jean-Martin Beaulieu
- Department of Pharmacology and Toxicology, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| | - Loren J Martin
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Rd, Mississauga, ON, L5L1C6, Canada.
| |
Collapse
|
19
|
Jarrin S, Pandit A, Roche M, Finn DP. Differential Role of Anterior Cingulate Cortical Glutamatergic Neurons in Pain-Related Aversion Learning and Nociceptive Behaviors in Male and Female Rats. Front Behav Neurosci 2020; 14:139. [PMID: 32848657 PMCID: PMC7431632 DOI: 10.3389/fnbeh.2020.00139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 07/21/2020] [Indexed: 11/16/2022] Open
Abstract
Pain is comprised of both sensory and affective components. The anterior cingulate cortex (ACC) is a key brain region involved in the emotional processing of pain. Specifically, glutamatergic transmission within the ACC has been shown to modulate pain-related aversion. In the present study, we use in vivo optogenetics to activate or silence, using channelrhodopsin (ChR2) and archaerhodopsin (ArchT) respectively, calmodulin-kinase IIα (CaMKIIα)-expressing excitatory glutamatergic neurons of the ACC during a formalin-induced conditioned place aversion (F-CPA) behavioral paradigm in both female and male adult Sprague-Dawley rats. Expression of c-Fos, a marker of neuronal activity, was assessed within the ACC using immunohistochemistry. Optogenetic inhibition of glutamatergic neurons of the ACC abolished F-CPA without affecting formalin-induced nociceptive behavior during conditioning. In male rats, optogenetic activation of ACC glutamatergic neurons decreased formalin-induced nociceptive behavior during conditioning without affecting F-CPA. Interestingly, the opposite effect was seen in females, where optogenetic activation of glutamatergic neurons of the ACC increased formalin-induced nociceptive behavior during conditioning. The abolition of F-CPA following optogenetic inhibition of glutamatergic neurons of the ACC was associated with a reduction in c-Fos immunoreactivity in the ACC in male rats, but not female rats. These results suggest that excitatory glutamatergic neurons of the ACC play differential and sex-dependent roles in the aversion learning and acute sensory components of pain.
Collapse
Affiliation(s)
- Sarah Jarrin
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| | - Michelle Roche
- Centre for Pain Research, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland.,Physiology, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, National University of Ireland Galway, Galway, Ireland.,Centre for Pain Research, National University of Ireland Galway, Galway, Ireland.,Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland.,Centre for Research in Medical Devices (CURAM), National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
20
|
Zhang H, Bramham CR. Bidirectional Dysregulation of AMPA Receptor-Mediated Synaptic Transmission and Plasticity in Brain Disorders. Front Synaptic Neurosci 2020; 12:26. [PMID: 32754026 PMCID: PMC7366028 DOI: 10.3389/fnsyn.2020.00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
AMPA receptors (AMPARs) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmission throughout the brain. Changes in the properties and postsynaptic abundance of AMPARs are pivotal mechanisms in synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission. A wide range of neurodegenerative, neurodevelopmental and neuropsychiatric disorders, despite their extremely diverse etiology, pathogenesis and symptoms, exhibit brain region-specific and AMPAR subunit-specific aberrations in synaptic transmission or plasticity. These include abnormally enhanced or reduced AMPAR-mediated synaptic transmission or plasticity. Bidirectional reversal of these changes by targeting AMPAR subunits or trafficking ameliorates drug-seeking behavior, chronic pain, epileptic seizures, or cognitive deficits. This indicates that bidirectional dysregulation of AMPAR-mediated synaptic transmission or plasticity may contribute to the expression of many brain disorders and therefore serve as a therapeutic target. Here, we provide a synopsis of bidirectional AMPAR dysregulation in animal models of brain disorders and review the preclinical evidence on the therapeutic targeting of AMPARs.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
21
|
Comparative proteomic analysis of the brain and colon in three rat models of irritable bowel syndrome. Proteome Sci 2020; 18:1. [PMID: 32123521 PMCID: PMC7041085 DOI: 10.1186/s12953-020-0157-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 01/20/2020] [Indexed: 02/08/2023] Open
Abstract
Background Irritable bowel syndrome (IBS) has been gradually recognized as a disorder of the brain-gut interaction, but the molecular changes in the brain and colon that occur in disease development remain poorly understood. We employed proteomic analysis to identify differentially expressed proteins in both the brain and colon of three IBS models. Methods To explore the relevant protein abundance changes in the brain and colon, isobaric tags for relative and absolute quantitation (iTRAQ), liquid chromatography and tandem mass spectrometry (LC-MS) and Western blotting methods were used in three IBS models, including maternal separation (MS, group B), chronic wrap restraint stress (CWRS, group C) and a combination of MS and CWRS (group D). Results We identified 153, 280, and 239 proteins that were common and differentially expressed in the two tissue types of groups B, C and D, respectively; 43 differentially expressed proteins showed the same expression changes among the three groups, including 25 proteins upregulated in the colon and downregulated in the brain, 7 proteins downregulated in the colon and upregulated in the brain, and 3 proteins upregulated and 8 downregulated in both tissues. Gene ontology analysis showed that the differentially expressed proteins were mainly associated with cellular assembly and organization and cellular function and maintenance. Protein interaction network and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the differentiated proteins were mainly involved in the protein ubiquitination pathway and mitochondrial dysfunction. Conclusions Taken together, the data presented represent a comprehensive and quantitative proteomic analysis of the brain and colon in IBS models, providing new evidence of an abnormal brain-gut interaction in IBS. These data may be useful for further investigation of potential targets in the diagnosis and treatment of IBS.
Collapse
|
22
|
Liu SB, Wang XS, Yue J, Yang L, Li XH, Hu LN, Lu JS, Song Q, Zhang K, Yang Q, Zhang MM, Bernabucci M, Zhao MG, Zhuo M. Cyclic AMP-dependent positive feedback signaling pathways in the cortex contributes to visceral pain. J Neurochem 2020; 153:252-263. [PMID: 31665810 DOI: 10.1111/jnc.14903] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/01/2019] [Accepted: 10/12/2019] [Indexed: 01/02/2023]
Abstract
Cortical areas including the anterior cingulate cortex (ACC) play critical roles in different types of chronic pain. Most of previous studies focus on the sensory inputs from somatic areas, and less information about plastic changes in the cortex for visceral pain. In this study, chronic visceral pain animal model was established by injection with zymosan into the colon of adult male C57/BL6 mice. Whole cell patch-clamp recording, behavioral tests, western blot, and Cannulation and ACC microinjection were employed to explore the role of adenylyl cyclase 1 (AC1) in the ACC of C57/BL6 and AC1 knock out mice. Integrative approaches were used to investigate possible changes of neuronal AC1 in the ACC after the injury. We found that AC1, a key enzyme for pain-related cortical plasticity, was significantly increased in the ACC in an animal model of irritable bowel syndrome. Inhibiting AC1 activity by a selective AC1 inhibitor NB001 significantly reduced the up-regulation of AC1 protein in the ACC. Furthermore, we found that AC1 is required for NMDA GluN2B receptor up-regulation and increases of NMDA receptor-mediated currents. These results suggest that AC1 may form a positive regulation in the cortex during chronic visceral pain. Our findings demonstrate that the up-regulation of AC1 protein in the cortex may underlie the pathology of chronic visceral pain; and inhibiting AC1 activity may be beneficial for the treatment of visceral pain.
Collapse
Affiliation(s)
- Shui-Bing Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Xin-Shang Wang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jiao Yue
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xu-Hui Li
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Li-Ning Hu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jing-Shan Lu
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Song
- Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Kun Zhang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Qi Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-Ming Zhang
- Department of Anatomy, Histology, Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Matteo Bernabucci
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China.,Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
23
|
Bai Y, Chen YB, Qiu XT, Chen YB, Ma LT, Li YQ, Sun HK, Zhang MM, Zhang T, Chen T, Fan BY, Li H, Li YQ. Nucleus tractus solitarius mediates hyperalgesia induced by chronic pancreatitis in rats. World J Gastroenterol 2019; 25:6077-6093. [PMID: 31686764 PMCID: PMC6824279 DOI: 10.3748/wjg.v25.i40.6077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Central sensitization plays a pivotal role in the maintenance of chronic pain induced by chronic pancreatitis (CP). We hypothesized that the nucleus tractus solitarius (NTS), a primary central site that integrates pancreatic afferents apart from the thoracic spinal dorsal horn, plays a key role in the pathogenesis of visceral hypersensitivity in a rat model of CP.
AIM To investigate the role of the NTS in the visceral hypersensitivity induced by chronic pancreatitis.
METHODS CP was induced by the intraductal injection of trinitrobenzene sulfonic acid (TNBS) in rats. Pancreatic hyperalgesia was assessed by referred somatic pain via von Frey filament assay. Neural activation of the NTS was indicated by immunohistochemical staining for Fos. Basic synaptic transmission within the NTS was assessed by electrophysiological recordings. Expression of vesicular glutamate transporters (VGluTs), N-methyl-D-aspartate receptor subtype 2B (NR2B), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subtype 1 (GluR1) was analyzed by immunoblotting. Membrane insertion of NR2B and GluR1 was evaluated by electron microscopy. The regulatory role of the NTS in visceral hypersensitivity was detected via pharmacological approach and chemogenetics in CP rats.
RESULTS TNBS treatment significantly increased the number of Fos-expressing neurons within the caudal NTS. The excitatory synaptic transmission was substantially potentiated within the caudal NTS in CP rats (frequency: 5.87 ± 1.12 Hz in CP rats vs 2.55 ± 0.44 Hz in sham rats, P < 0.01; amplitude: 19.60 ± 1.39 pA in CP rats vs 14.71 ± 1.07 pA in sham rats; P < 0.01). CP rats showed upregulated expression of VGluT2, and increased phosphorylation and postsynaptic trafficking of NR2B and GluR1 within the caudal NTS. Blocking excitatory synaptic transmission via the AMPAR antagonist CNQX and the NMDAR antagonist AP-5 microinjection reversed visceral hypersensitivity in CP rats (abdominal withdraw threshold: 7.00 ± 1.02 g in CNQX group, 8.00 ± 0.81 g in AP-5 group and 1.10 ± 0.27 g in saline group, P < 0.001). Inhibiting the excitability of NTS neurons via chemogenetics also significantly attenuated pancreatic hyperalgesia (abdominal withdraw threshold: 13.67 ± 2.55 g in Gi group, 2.00 ± 1.37 g in Gq group, and 2.36 ± 0.67 g in mCherry group, P < 0.01).
CONCLUSION Our findings suggest that enhanced excitatory transmission within the caudal NTS contributes to pancreatic pain and emphasize the NTS as a pivotal hub for the processing of pancreatic afferents, which provide novel insights into the central sensitization of painful CP.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ying-Biao Chen
- Department of Anatomy, Fujian Health College, Fuzhou 350101, Fujian Province, China
| | - Xin-Tong Qiu
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yan-Bing Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Li-Tian Ma
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ying-Qi Li
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hong-Ke Sun
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Ming-Ming Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Ting Zhang
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Tao Chen
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Bo-Yuan Fan
- Department of Cardiology, The Second Affiliated Hospital of Xian Jiaotong University, Xian Jiaotong University, Xi'an 710004, Shaanxi Province, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi’an 710032, Shaanxi Province, China
- Joint Laboratory of Neuroscience at Hainan Medical University and Fourth Military Medical University, Hainan Medical University, Haikou 571199, Hainan Province, China
| |
Collapse
|
24
|
Cortical plasticity as synaptic mechanism for chronic pain. J Neural Transm (Vienna) 2019; 127:567-573. [PMID: 31493094 DOI: 10.1007/s00702-019-02071-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/24/2019] [Indexed: 12/12/2022]
Abstract
Adult brain structures such as the hippocampus are highly plastic to learning and gaining new experiences. Recent studies reveal that cortical areas that respond to sensory noxious stimuli (stimuli that cause pain in humans) are also highly plastic, like the learning-related hippocampus. Long-term potentiation (LTP), a key cellular model for learning and memory, is reported in the anterior cingulate cortex (ACC) and insular cortex (IC), two key cortical areas for pain perception. ACC and IC LTP exist in at least two major forms: presynaptically expressed LTP, and postsynaptically expressed LTP (post-LTP). In this short review, I will review, recent progress made in cortical LTPs, and explore potential roles of other forms of LTPs such as synaptic tagging. Their contribution to chronic pain as well as emotional changes caused by injury will be discussed.
Collapse
|
25
|
Wang XS, Yue J, Hu LN, Tian Z, Yang LK, Lu L, Zhao MG, Liu SB. Effects of CPEB1 in the anterior cingulate cortex on visceral pain in mice. Brain Res 2019; 1712:55-62. [DOI: 10.1016/j.brainres.2019.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/28/2018] [Accepted: 02/03/2019] [Indexed: 02/07/2023]
|
26
|
Wang XS, Guan SY, Liu A, Yue J, Hu LN, Zhang K, Yang LK, Lu L, Tian Z, Zhao MG, Liu SB. Anxiolytic effects of Formononetin in an inflammatory pain mouse model. Mol Brain 2019; 12:36. [PMID: 30961625 PMCID: PMC6454770 DOI: 10.1186/s13041-019-0453-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 03/25/2019] [Indexed: 12/24/2022] Open
Abstract
Chronic pain is commonly accompanied with anxiety disorder, which complicates treatment. In this study, we investigated the analgesic and anxiolytic effects of Formononetin (FMNT), an active component of traditional Chinese medicine red clover (Trifolium pratense L.) that is capable of protecting neurons from N-methyl-D-aspartate (NMDA)-evoked excitotoxic injury, on mice suffering from complete Freund’s adjuvant (CFA)-induced chronic inflammatory pain. The results show that FMNT administration significantly reduces anxiety-like behavior but does not affect the nociceptive threshold in CFA-injected mice. The treatment reverses the upregulation of NMDA, GluA1, and GABAA receptors, as well as PSD95 and CREB in the basolateral amygdala (BLA). The effects of FMNT on NMDA receptors and CREB binding protein (CBP) were further confirmed by the potential structure combination between these compounds, which was analyzed by in silico docking technology. FMNT also inhibits the activation of the NF-κB signaling pathway and microglia in the BLA of mice suffering from chronic inflammatory pain. Therefore, the anxiolytic effects of FMNT are partially due to the attenuation of inflammation and neuronal hyperexcitability through the inhibition of NMDA receptor and CBP in the BLA.
Collapse
Affiliation(s)
- Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shao-Yu Guan
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - An Liu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Jiao Yue
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Li-Ning Hu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liu-Kun Yang
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhen Tian
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.,The 154th Central Hospital of PLA, Xinyang, 464000, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, and Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
27
|
Taylor BK, Sinha GP, Donahue RR, Grachen CM, Morón JA, Doolen S. Opioid receptors inhibit the spinal AMPA receptor Ca 2+ permeability that mediates latent pain sensitization. Exp Neurol 2019; 314:58-66. [PMID: 30660616 DOI: 10.1016/j.expneurol.2019.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/24/2018] [Accepted: 01/05/2019] [Indexed: 01/02/2023]
Abstract
Acute inflammation induces sensitization of nociceptive neurons and triggers the accumulation of calcium permeable (CP) α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) in the dorsal horn of the spinal cord. This coincides with behavioral signs of acute inflammatory pain, but whether CP-AMPARs contribute to chronic pain remains unclear. To evaluate this question, we first constructed current-voltage (IV) curves of C-fiber stimulus-evoked, AMPAR-mediated EPSCs in lamina II to test for inward rectification, a key characteristic of CP-AMPARs. We found that the intraplantar injection of complete Freund's adjuvant (CFA) induced an inward rectification at 3 d that persisted to 21 d after injury. Furthermore, the CP- AMPAR antagonist IEM-1460 (50 μM) inhibited AMPAR-evoked Ca2+ transients 21d after injury but had no effect in uninflamed mice. We then used a model of long-lasting vulnerability for chronic pain that is determined by the balance between latent central sensitization (LCS) and mu opioid receptor constitutive activity (MORCA). When administered 21 d after the intraplantar injection of CFA, intrathecal administration of the MORCA inverse agonist naltrexone (NTX, 1 μg, i.t.) reinstated mechanical hypersensitivity, and superfusion of spinal cord slices with NTX (10 μM) increased the peak amplitude of AMPAR-evoked Ca2+ transients in lamina II neurons. The CP-AMPAR antagonist naspm (0-10 nmol, i.t.) inhibited these NTX-induced increases in mechanical hypersensitivity. NTX had no effect in uninflamed mice. Subsequent western blot analysis of the postsynaptic density membrane fraction from lumbar dorsal horn revealed that CFA increased GluA1 expression at 2 d and GluA4 expression at both 2 and 21 d post-injury, indicating that not just the GluA1 subunit, but also the GluA4 subunit, contributes to the expression of CP-AMPARs and synaptic strength during hyperalgesia. GluA2 expression increased at 21 d, an unexpected result that requires further study. We conclude that after tissue injury, dorsal horn AMPARs retain a Ca2+ permeability that underlies LCS. Because of their effectiveness in reducing naltrexone-induced reinstatement of hyperalgesia and potentiation of AMPAR-evoked Ca2+ signals, CP-AMPAR inhibitors are a promising class of agents for the treatment of chronic inflammatory pain.
Collapse
Affiliation(s)
- Bradley K Taylor
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| | - Ghanshyam P Sinha
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| | - Renee R Donahue
- Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| | - Carolyn M Grachen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| | - Jose A Morón
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, 600 South Euclid, St Louis, MO 63110, USA.
| | - Suzanne Doolen
- Department of Anesthesiology, Pittsburgh Center for Pain Research, University of Pittsburgh School of Medicine, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Physiology, University of Kentucky School of Medicine, 800 Rose, St. Lexington, KY 40536-0298, USA.
| |
Collapse
|
28
|
Abstract
Increasing evidence consistently indicates that cortical mechanisms play important roles in chronic pain and its emotional disorders. Central synapses, especially excitatory synapses, are undergoing long-term memory-like plastic changes after peripheral injury. These changes not only occur at the single synaptic level, but also take place at cortical and subcortical circuits. Consequently, neuronal responses to peripheral sensory stimuli, or even to sensory inputs triggered by normal physiological signals such as touch and movement, are significantly potentiated or increased. Such prolonged cortical excitation likely contributes to chronic pain and its related emotional changes. In this short review article, I will summarize recent progress using animal models and explore possible different mechanisms that may contribute to chronic pain in the brain.
Collapse
Affiliation(s)
- Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A8, Canada; Centre for the Study of Pain, University of Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
29
|
Cheng Y, Huang P, Meng B, Gan L, Wu D, Cao Y. Antinociceptive effects of the adenylyl cyclase inhibitor ST034307 on tooth-movement-induced nociception in rats. Arch Oral Biol 2018; 98:81-86. [PMID: 30465937 DOI: 10.1016/j.archoralbio.2018.11.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/31/2018] [Accepted: 11/12/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study aimed to investigate the antinociceptive effects of the selective adenylyl cyclase type 1 (AC1) inhibitor ST034307 on tooth movement nociception through orofacial nociceptive behavior tests and molecular examination. METHODS We placed fixed nickel-titanium alloy closed-coil springs around the incisors of male Sprague-Dawley rats to induce tooth movement. We subsequently administered ST034307 (3 mg/kg), for 2 days, intraperitoneally, and then subjected the rats to a battery of behavioral tests (n = 10/group) to assess orofacial nociception. The changes in the expression of key molecules in the anterior cingulate cortex were measured by ELISA (n = 8/group) and Western blotting (n = 8/group). RESULTS Tooth movement increased face-grooming activities and rat grimace scale scores. Tooth movement was also associated with enhanced cyclic adenosine monophosphate (cAMP) generation as well as protein kinase A (PKA) activation. Moreover, the phosphorylation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and expression of N-methyl-d-aspartate (NMDA) receptors in the anterior cingulate cortex increased during tooth movement. ST034307 significantly decreased mouth wiping and rat grimace scale scores, accompanied by reductions in cAMP generation, PKA activation, AMPA receptor phosphorylation, and NMDA receptor expression in the anterior cingulate cortex. CONCLUSIONS These results suggest that adenylyl cyclase type 1 plays an important role in the development of orthodontic tooth movement nociception. Furthermore, ST034307 can be used as an effective pharmacotherapy for orthodontic nociception.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Peina Huang
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Bowen Meng
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lei Gan
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Dongle Wu
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yang Cao
- Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
30
|
Zhang F, Weng ZJ, Wu LY, Bao CH, Yang L, Zhao M, Wu HZ, Liu HR, Zhou CL. Etiology related irritable bowel syndrome animal models. Shijie Huaren Xiaohua Zazhi 2018; 26:1772-1777. [DOI: 10.11569/wcjd.v26.i30.1772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common chronic functional disease of the gastrointestinal tract. Its incidence is increasing worldwide. However, its etiology and pathogenesis are not clear yet, although some factors, such as visceral hypersensitivity, intestinal infection, mental state, gastrointestinal hormones, intestinal flora, and genetic factors, are widely accepted. Great progress has been made in the study of animal models related to the etiology and pathogenesis of IBS. This article summarizes the domestic and international etiology related animal models of IBS, in order to provide reference for choosing appropriate animal models in the basic research of IBS.
Collapse
Affiliation(s)
- Fang Zhang
- Department of Acupuncture and Immunity, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200030, China
| | - Zhi-Jun Weng
- Department of Acupuncture and Immunity, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200030, China
| | - Lu-Yi Wu
- Shanghai Qigong Research Institute, Shanghai 200030, China
| | - Chun-Hui Bao
- Department of Acupuncture and Immunity, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200030, China
| | - Ling Yang
- Department of Acupuncture and Immunity, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200030, China
| | - Min Zhao
- Department of Acupuncture and Immunity, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200030, China
| | - Huan-Zhen Wu
- Department of Acupuncture and Immunity, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200030, China
| | - Hui-Rong Liu
- Department of Acupuncture and Immunity, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200030, China
| | - Ci-Li Zhou
- Department of Acupuncture and Immunity, Shanghai Institute of Acupuncture and Moxibustion, Shanghai 200030, China
| |
Collapse
|
31
|
Twomey EC, Yelshanskaya MV, Vassilevski AA, Sobolevsky AI. Mechanisms of Channel Block in Calcium-Permeable AMPA Receptors. Neuron 2018; 99:956-968.e4. [PMID: 30122377 PMCID: PMC6181147 DOI: 10.1016/j.neuron.2018.07.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 01/14/2023]
Abstract
AMPA receptors mediate fast excitatory neurotransmission and are critical for CNS development and function. Calcium-permeable subsets of AMPA receptors are strongly implicated in acute and chronic neurological disorders. However, despite the clinical importance, the therapeutic landscape for specifically targeting them, and not the calcium-impermeable AMPA receptors, remains largely undeveloped. To address this problem, we used cryo-electron microscopy and electrophysiology to investigate the mechanisms by which small-molecule blockers selectively inhibit ion channel conductance in calcium-permeable AMPA receptors. We determined the structures of calcium-permeable GluA2 AMPA receptor complexes with the auxiliary subunit stargazin bound to channel blockers, including the orb weaver spider toxin AgTx-636, the spider toxin analog NASPM, and the adamantane derivative IEM-1460. Our structures provide insights into the architecture of the blocker binding site and the mechanism of trapping, which are critical for development of small molecules that specifically target calcium-permeable AMPA receptors.
Collapse
Affiliation(s)
- Edward C Twomey
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Alexander A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow Oblast 141700, Russia
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
32
|
Koga K, Shimoyama S, Yamada A, Furukawa T, Nikaido Y, Furue H, Nakamura K, Ueno S. Chronic inflammatory pain induced GABAergic synaptic plasticity in the adult mouse anterior cingulate cortex. Mol Pain 2018; 14:1744806918783478. [PMID: 29956582 PMCID: PMC6096674 DOI: 10.1177/1744806918783478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Chronic pain is a persistent unpleasant sensation that produces pathological synaptic plasticity in the central nervous system. Both human imaging study and animal studies consistently demonstrate that the anterior cingulate cortex is a critical cortical area for nociceptive and chronic pain processing. Thus far, the mechanisms of excitatory synaptic transmission and plasticity have been well characterized in the anterior cingulate cortex for various models of chronic pain. By contrast, the potential contribution of inhibitory synaptic transmission in the anterior cingulate cortex, in models of chronic pain, is not fully understood. Methods Chronic inflammation was induced by complete Freund adjuvant into the adult mice left hindpaw. We performed in vitro whole-cell patch-clamp recordings from layer II/III pyramidal neurons in two to three days after the complete Freund adjuvant injection and examined if the model could cause plastic changes, including transient and tonic type A γ-aminobutyric acid (GABAA) receptor-mediated inhibitory synaptic transmission, in the anterior cingulate cortex. We analyzed miniature/spontaneous inhibitory postsynaptic currents, GABAA receptor-mediated tonic currents, and evoked inhibitory postsynaptic currents. Finally, we studied if GABAergic transmission-related proteins in the presynapse and postsynapse of the anterior cingulate cortex were altered. Results The complete Freund adjuvant model reduced the frequency of both miniature and spontaneous inhibitory postsynaptic currents compared with control group. By contrast, the average amplitude of these currents was not changed between two groups. Additionally, the complete Freund adjuvant model did not change GABAA receptor-mediated tonic currents nor the set of evoked inhibitory postsynaptic currents when compared with control group. Importantly, protein expression of vesicular GABA transporter was reduced within the presynpase of the anterior cingulate cortex in complete Freund adjuvant model. In contrast, the complete Freund adjuvant model did not change the protein levels of GABAA receptors subunits such as α1, α5, β2, γ2, and δ. Conclusion Our results suggest that the induction phase of inflammatory pain involves spontaneous GABAergic plasticity at presynaptic terminals of the anterior cingulate cortex.
Collapse
Affiliation(s)
- Kohei Koga
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan.,2 Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Shuji Shimoyama
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan.,3 Research Center for Child Mental Development, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Akihiro Yamada
- 2 Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Tomonori Furukawa
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Yoshikazu Nikaido
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Hidemasa Furue
- 2 Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kazuhiko Nakamura
- 3 Research Center for Child Mental Development, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Shinya Ueno
- 1 Department of Neurophysiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| |
Collapse
|
33
|
Li XH, Song Q, Chen T, Zhuo M. Characterization of postsynaptic calcium signals in the pyramidal neurons of anterior cingulate cortex. Mol Pain 2018; 13:1744806917719847. [PMID: 28726541 PMCID: PMC5524231 DOI: 10.1177/1744806917719847] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Calcium signaling is critical for synaptic transmission and plasticity. N-methyl-D-aspartic acid (NMDA) receptors play a key role in synaptic potentiation in the anterior cingulate cortex. Most previous studies of calcium signaling focus on hippocampal neurons, little is known about the activity-induced calcium signals in the anterior cingulate cortex. In the present study, we show that NMDA receptor-mediated postsynaptic calcium signals induced by different synaptic stimulation in anterior cingulate cortex pyramidal neurons. Single and multi-action potentials evoked significant suprathreshold Ca2+ increases in somas and spines. Both NMDA receptors and voltage-gated calcium channels contributed to this increase. Postsynaptic Ca2+signals were induced by puff-application of glutamate, and a NMDA receptor antagonist AP5 blocked these signals in both somas and spines. Finally, long-term potentiation inducing protocols triggered postsynaptic Ca2+ influx, and these influx were NMDA receptor dependent. Our results provide the first study of calcium signals in the anterior cingulate cortex and demonstrate that NMDA receptors play important roles in postsynaptic calcium signals in anterior cingulate cortex pyramidal neurons.
Collapse
Affiliation(s)
- Xu-Hui Li
- 1 Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qian Song
- 1 Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Tao Chen
- 1 Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,2 Department of Anatomy, K.K. Leung Brain Research Center, Fourth Military Medical University, Xi'an, China
| | - Min Zhuo
- 1 Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,3 Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast 2018; 2018:5701348. [PMID: 29849559 PMCID: PMC5903346 DOI: 10.1155/2018/5701348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/29/2018] [Indexed: 12/11/2022] Open
Abstract
The majority of neuronal proteins involved in cellular signaling undergo different posttranslational modifications significantly affecting their functions. One of these modifications is a covalent attachment of a 16-C palmitic acid to one or more cysteine residues (S-palmitoylation) within the target protein. Palmitoylation is a reversible modification, and repeated cycles of palmitoylation/depalmitoylation might be critically involved in the regulation of multiple signaling processes. Palmitoylation also represents a common posttranslational modification of the neurotransmitter receptors, including G protein-coupled receptors (GPCRs) and ligand-gated ion channels (LICs). From the functional point of view, palmitoylation affects a wide span of neurotransmitter receptors activities including their trafficking, sorting, stability, residence lifetime at the cell surface, endocytosis, recycling, and synaptic clustering. This review summarizes the current knowledge on the palmitoylation of neurotransmitter receptors and its role in the regulation of receptors functions as well as in the control of different kinds of physiological and pathological behavior.
Collapse
|
35
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
36
|
Abstract
It is documented that sensory transmission, including pain, is subject to endogenous inhibitory and facilitatory modulation at the dorsal horn of the spinal cord. Descending facilitation has received a lot of attention, due to its potentially important roles in chronic pain. Recent investigation using neurobiological approaches has further revealed the link between cortical potentiation and descending facilitation. Cortical-spinal top-down facilitation, including those relayed through brainstem neurons, provides powerful control for pain transmission at the level of the spinal cord. It also provides the neuronal basis to link emotional disorders such as anxiety, depression, and loss of hope to somatosensory pain and sufferings. In this review, I will review a brief history of the discovery of brainstem-spinal descending facilitation and explore new information and hypothesis for descending facilitation in chronic pain.
Collapse
Affiliation(s)
- Min Zhuo
- 1 Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China.,2 Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Wang YJ, Zuo ZX, Wu C, Liu L, Feng ZH, Li XY. Cingulate Alpha-2A Adrenoceptors Mediate the Effects of Clonidine on Spontaneous Pain Induced by Peripheral Nerve Injury. Front Mol Neurosci 2017; 10:289. [PMID: 28955200 PMCID: PMC5600928 DOI: 10.3389/fnmol.2017.00289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/25/2017] [Indexed: 12/25/2022] Open
Abstract
The anterior cingulate cortex (ACC) is an important brain area for the regulation of neuropathic pain. The α2A adrenoceptor is a good target for pain management. However, the role of cingulate α2A adrenoceptors in the regulation of neuropathic pain has been less studied. In this study, we investigated the involvement of cingulate α2A adrenoceptors in the regulation of neuropathic pain at different time points after peripheral nerve injury in mice. The application of clonidine, either systemically (0.5 mg/kg intraperitoneally) or specifically to the ACC, increased paw withdrawal thresholds (PWTs) and induced conditioned place preference (CPP) at day 7 after nerve injury, suggesting that cingulate α2 adrenoceptors are involved in the regulation of pain-like behaviors. Quantitative real-time PCR data showed that α2A adrenoceptors are the dominant α2 adrenoceptors in the ACC. Furthermore, the expression of cingulate α2A adrenoceptors was increased at day 3 and day 7 after nerve injury, but decreased at day 14, while no change was detected in the concentration of adrenaline or noradrenaline. BRL-44408 maleate, a selective antagonist of α2A adrenoceptors, was microinfused into the ACC. This blocking of cingulate α2A adrenoceptors activity abolished the CPP induced by clonidine (0.5 mg/kg intraperitoneally) but not the effects on PWTs at day 7. However, clonidine applied systemically or specifically to the ACC at day 14 increased the PWTs but failed to induce CPP; this negative effect was reversed by the overexpression of cingulate α2A adrenoceptors. These results suggest that cingulate α2A adrenoceptors are necessary for the analgesic effects of clonidine on spontaneous pain.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China.,The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Zhen-Xing Zuo
- Department of Surgery, Tongji Hospital, School of Medicine, Tongji UniversityShanghai, China
| | - Cheng Wu
- Department of Physiology, Institute of Neuroscience, School of Medicine, Zhejiang UniversityHangzhou, China
| | - Li Liu
- Core Facility of School of Medicine, Zhejiang UniversityHangzhou, China
| | - Zhi-Hui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong UniversityXi'an, China.,The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong UniversityXi'an, China
| | - Xiang-Yao Li
- Department of Physiology, Institute of Neuroscience, School of Medicine, Zhejiang UniversityHangzhou, China
| |
Collapse
|
38
|
Tsuda M, Koga K, Chen T, Zhuo M. Neuronal and microglial mechanisms for neuropathic pain in the spinal dorsal horn and anterior cingulate cortex. J Neurochem 2017; 141:486-498. [DOI: 10.1111/jnc.14001] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Makoto Tsuda
- Department of Life Innovation; Graduate School of Pharmaceutical Sciences; Kyushu University; Fukuoka Japan
| | - Kohei Koga
- Department of Neurophysiology; Hirosaki University Graduate School of Medicine; Hirosaki Japan
- Department of Physiology; University of Toronto; Toronto Canada
| | - Tao Chen
- Department of Physiology; University of Toronto; Toronto Canada
- Department of Anatomy, Histology and Embryology; Fourth Military Medical University; Xi'an Shaanxi China
- Center for Neuron and Disease; Frontier Institutes of Science and Technology; Xi'an Jiaotong University; Xi'an Shanxi China
| | - Min Zhuo
- Department of Physiology; University of Toronto; Toronto Canada
- Center for Neuron and Disease; Frontier Institutes of Science and Technology; Xi'an Jiaotong University; Xi'an Shanxi China
| |
Collapse
|
39
|
Blum E, Procacci P, Conte V, Sartori P, Hanani M. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia. Exp Cell Res 2017; 350:236-241. [DOI: 10.1016/j.yexcr.2016.11.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 02/08/2023]
|
40
|
Kang WB, Yang Q, Guo YY, Wang L, Wang DS, Cheng Q, Li XM, Tang J, Zhao JN, Liu G, Zhuo M, Zhao MG. Analgesic effects of adenylyl cyclase inhibitor NB001 on bone cancer pain in a mouse model. Mol Pain 2016; 12:12/0/1744806916652409. [PMID: 27612915 PMCID: PMC5019365 DOI: 10.1177/1744806916652409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/06/2016] [Indexed: 12/15/2022] Open
Abstract
Background Cancer pain, especially the one caused by metastasis in bones, is a severe type of pain. Pain becomes chronic unless its causes and consequences are resolved. With improvements in cancer detection and survival among patients, pain has been considered as a great challenge because traditional therapies are partially effective in terms of providing relief. Cancer pain mechanisms are more poorly understood than neuropathic and inflammatory pain states. Chronic inflammatory pain and neuropathic pain are influenced by NB001, an adenylyl cyclase 1 (AC1)-specific inhibitor with analgesic effects. In this study, the analgesic effects of NB001 on cancer pain were evaluated. Results Pain was induced by injecting osteolytic murine sarcoma cell NCTC 2472 into the intramedullary cavity of the femur of mice. The mice injected with sarcoma cells for four weeks exhibited significant spontaneous pain behavior and mechanical allodynia. The continuous systemic application of NB001 (30 mg/kg, intraperitoneally, twice daily for three days) markedly decreased the number of spontaneous lifting but increased the mechanical paw withdrawal threshold. NB001 decreased the concentrations of cAMP and the levels of GluN2A, GluN2B, p-GluA1 (831), and p-GluA1 (845) in the anterior cingulate cortex, and inhibited the frequency of presynaptic neurotransmitter release in the anterior cingulate cortex of the mouse models. Conclusions NB001 may serve as a novel analgesic to treat bone cancer pain. Its analgesic effect is at least partially due to the inhibition of AC1 in anterior cingulate cortex.
Collapse
Affiliation(s)
- Wen-Bo Kang
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yan-Yan Guo
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Lu Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Dong-Sheng Wang
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Qiang Cheng
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Xiao-Ming Li
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Jun Tang
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Jian-Ning Zhao
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Gang Liu
- Department of Orthopedics, Nanjing General Hospital of Nanjing Military Command, Second Military Medical University, Nanjing, China
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China Center for Neuron and Disease, Frontier Institutes of Life Science and of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
41
|
Darvish-Ghane S, Yamanaka M, Zhuo M. Dopaminergic Modulation of Excitatory Transmission in the Anterior Cingulate Cortex of Adult Mice. Mol Pain 2016; 12:12/0/1744806916648153. [PMID: 27317578 PMCID: PMC4955973 DOI: 10.1177/1744806916648153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/20/2016] [Indexed: 12/28/2022] Open
Abstract
Dopamine (DA) possesses potent neuromodulatory properties in the central nervous system. In the anterior cingulate cortex, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPAR) are key ion channels in mediating nerve injury induced long-term potentiation (LTP) and chronic pain phenotype. In the present study, we reported the effects of DA on glutamate mediated excitatory post-synaptic currents (EPSCs) in pyramidal neurons of layer II/III of the ACC in adult mice. Bath application of DA (50 μM) caused a significant, rapid and reversible inhibition of evoked EPSCs (eEPSC). This inhibitory effect is dose-related and was absent in lower concentration of DA (5 μM). Furthermore, selective postsynaptic application of GDP-β-S (1.6 mM) in the internal solution completely abolished the inhibitory effects of DA (50 μM). We also investigated modulation of spontaneous EPSCs (sEPSCs) and TTX sensitive, miniature EPSCs (mEPSCs) by DA. Our results indicated mixed effects of potentiation and inhibition of frequency and amplitude for sEPSCs and mEPSCs. Furthermore, high doses of SCH23390 (100 μM) and sulpiride (100 μM) revealed that, inhibition of eEPSCs is mediated by postsynaptic D2-receptors (D2R). Our finding posits a pre- and postsynaptic mode of pyramidal neuron EPSC modulation in mice ACC by DA.
Collapse
Affiliation(s)
- Soroush Darvish-Ghane
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Manabu Yamanaka
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto Centre for the Study of Pain, Toronto, ON, Canada Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, China
| |
Collapse
|
42
|
Ko HG, Oh SB, Zhuo M, Kaang BK. Reduced acute nociception and chronic pain in Shank2-/- mice. Mol Pain 2016; 12:12/0/1744806916647056. [PMID: 27145803 PMCID: PMC4956181 DOI: 10.1177/1744806916647056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/04/2016] [Indexed: 01/29/2023] Open
Abstract
Autism spectrum disorder is a debilitating mental illness and social issue. Autism spectrum disorder patients suffer from social isolation, cognitive deficits, compulsive behavior, and sensory deficits, including hyposensitivity to pain. However, recent studies argued that autism spectrum disorder patients show physiological pain response and, in some cases, even extremely intense pain response to harmless stimulation. Recently, Shank gene family was reported as one of the genetic risk factors of autism spectrum disorder. Thus, in this study, we used Shank2−/− (Shank2 knock-out, KO) mice to investigate the controversial pain sensitivity issue and found that Shank2 KO mice showed reduced tactile perception and analgesia to chronic pain.
Collapse
Affiliation(s)
- Hyoung-Gon Ko
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Seog-Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Pain Cognitive Function Research Center, Dental Research Institute Department of Neurobiology and Physiology, School of Dentistry, Seoul National University, Seoul, Korea
| | - Min Zhuo
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
43
|
Zhou Y, Li RJ, Li M, Liu X, Zhu HY, Ju Z, Miao X, Xu GY. Overexpression of GRK6 attenuates neuropathic pain via suppression of CXCR2 in rat dorsal root ganglion. Mol Pain 2016; 12:12/0/1744806916646381. [PMID: 27145805 PMCID: PMC4956389 DOI: 10.1177/1744806916646381] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 03/29/2016] [Indexed: 12/14/2022] Open
Abstract
G protein-coupled kinase (GRK) 6 is a member of the GRK family that mediates agonist-induced desensitization and signaling of G protein-coupled receptors (GPCRs), thus involving in a wide variety of processes including inflammation and nociception. Recent studies have indicated that chemokines play an important role in chronic pain via increased expression of respective GPCRs. This study was designed to investigate the role of GRK6 and its interaction with substrate chemokine receptors in dorsal root ganglion (DRG) in a rat model of neuropathic pain induced by chronic constriction injury (CCI). Following induction of CCI, GRK6 expression was significantly downregulated in rat DRGs at L4-L6 segments. Overexpression of GRK6 using lentiviral-mediated production strategy via sciatic nerve injection markedly attenuated mechanical allodynia and thermal hyperalgesia in CCI rats. Overexpression of GRK6 also drastically reversed the hyperexcitability of DRG neurons innervating the hind paw and suppressed the enhanced expression of CXCR2 in DRGs of CCI rats. In addition, co-immunoprecipitation, immunofluorescence, and correlation analysis supported the interaction between GRK6 and CXCR2. These results suggest that GRK6 might be a key molecular involved in peripheral mechanism of neuropathic pain and that overexpression of GRK6 might be a potential strategy for treatment for neuropathic pain through inhibition of CXCR2 signal pathway.
Collapse
Affiliation(s)
- Yuan Zhou
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong, P.R. China
| | - Rong-Ji Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Meng Li
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Xuelian Liu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Hong-Yan Zhu
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Zhong Ju
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China
| | - Xiuhua Miao
- Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases, Institute of Neuroscience, Soochow University, Suzhou, P.R. China Center for Translational Medicine, Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, P.R. China
| |
Collapse
|