1
|
Jeyaraman N, Jeyaraman M, Dhanpal P, Ramasubramanian S, Nallakumarasamy A, Muthu S, Santos GS, da Fonseca LF, Lana JF. Integrative review of the gut microbiome’s role in pain management for orthopaedic conditions. World J Exp Med 2025; 15:102969. [DOI: 10.5493/wjem.v15.i2.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/03/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
The gut microbiome, a complex ecosystem of microorganisms, has a significant role in modulating pain, particularly within orthopaedic conditions. Its impact on immune and neurological functions is underscored by the gut-brain axis, which influences inflammation, pain perception, and systemic immune responses. This integrative review examines current research on how gut dysbiosis is associated with various pain pathways, notably nociceptive and neuroinflammatory mechanisms linked to central sensitization. We highlight advancements in meta-omics technologies, such as metagenomics and metaproteomics, which deepen our understanding of microbiome-host interactions and their implications in pain. Recent studies emphasize that gut-derived short-chain fatty acids and microbial metabolites play roles in modulating neuroinflammation and nociception, contributing to pain management. Probiotics, prebiotics, synbiotics, and faecal microbiome transplants are explored as potential therapeutic strategies to alleviate pain through gut microbiome modulation, offering an adjunct or alternative to opioids. However, variability in individual microbiomes poses challenges to standardizing these treatments, necessitating further rigorous clinical trials. A multidisciplinary approach combining microbiology, immunology, neurology, and orthopaedics is essential to develop innovative, personalized pain management strategies rooted in gut health, with potential to transform orthopaedic pain care.
Collapse
Affiliation(s)
- Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
| | - Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai 600077, Tamil Nadu, India
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Priya Dhanpal
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai 600002, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research–Karaikal, Puducherry 609602, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore 641045, Tamil Nadu, India
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Chennai 631552, Tamil Nadu, India
| | - Gabriel Silva Santos
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - Lucas Furtado da Fonseca
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| | - José Fábio Lana
- Department of Orthopaedics, Brazilian Institute of Regenerative Medicine, Indaiatuba 13334-170, São Paulo, Brazil
| |
Collapse
|
2
|
Lou L, Zhou L, Wang Y. Gut Microbiota: A Modulator and Therapeutic Target for Chronic Pain. Mol Neurobiol 2025; 62:5875-5890. [PMID: 39652283 DOI: 10.1007/s12035-024-04663-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/04/2024] [Indexed: 03/29/2025]
Abstract
Chronic pain is a prevalent condition, impacting nearly one-fifth of the global population. Despite the availability of various clinical treatments, each comes with inherent limitations, and few offer a complete cure, resulting in a significant social and economic burden. Therefore, it is important to determine the pathogenesis and causes of chronic pain. Numerous studies have shown a close link between the intestinal microflora and chronic pain. The gut microbiota can exert their effects on chronic pain through both central and peripheral mechanisms and is able to communicate with the brain through its own components or metabolites. They also can regulate chronic pain by affecting pro- and anti-inflammatory cells. This review is aimed at reviewing the connection between gut flora and different types of chronic pain, including visceral pain, neuropathic pain, inflammatory pain, musculoskeletal pain, migraine, and chronic cancer pain; exploring the central and peripheral mechanisms of the influence of gut flora on chronic pain; and attempting to provide novel treatment options for chronic pain, that is, the gut microbiota can be regulated by probiotics, fecal microbial transplantation, and natural products to treat chronic pain. By examining the intricate relationship between gut flora and chronic pain, the review sought to pave the way for new treatment strategies that target the gut microbiota, offering hope for more effective pain management.
Collapse
Affiliation(s)
- Linsen Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Liujing Zhou
- Hangzhou Medical College, Hangzhou, 310053, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Yuan Z, Zhao X, Zhang Y, Jiao Y, Liu Y, Gao C, Zhang J, Ma Y, Wang Z, Li T. Using Integrated Network Pharmacology and Metabolomics to Reveal the Mechanisms of the Combined Intervention of Ligustrazine and Sinomenine in CCI-Induced Neuropathic Pain Rats. Int J Mol Sci 2025; 26:2604. [PMID: 40141247 PMCID: PMC11942381 DOI: 10.3390/ijms26062604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
Neuropathic pain (NP) is a type of chronic pain resulting from injury or dysfunction of the nerves or spinal cord. Previous studies have shown that the combination of ligustrazine (LGZ) and sinomenine (SIN) exerts a synergistic antinociceptive effect in peripheral and central NP models. On this basis, a comprehensive analgesic evaluation was performed in a chronic constriction injury (CCI)-induced NP model in rats. Sciatic nerve histopathological changes were observed, and 22 cytokines and chemokines levels were analyzed. We also combined network pharmacology and metabolomics to explore their molecular mechanisms. Results showed that the combination of LGZ and SIN significantly alleviated the pain-like behaviors in CCI rats in a time- and dose-dependent manner, demonstrating superior therapeutic effects compared to LGZ or SIN alone. It also improved pathological damage to sciatic nerves and regulated inflammatory cytokine levels. Network pharmacology identified shared and distinct pain-related targets for LGZ and SIN, while metabolomics revealed 54 differential metabolites in plasma, and 17 differential metabolites in CSF were associated with the combined intervention of LGZ and SIN. Finally, through an integrated analysis of the core targets and differential metabolites, tyrosine metabolism, phenylalanine metabolism, and arginine and proline metabolism were identified as potential key metabolic pathways underlying the therapeutic effects of LGZ and SIN in CCI treatment. In conclusion, our study provides evidence to support the clinical application of LGZ and SIN in the treatment of NP.
Collapse
Affiliation(s)
- Zhaoyue Yuan
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Xiaoliang Zhao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Yan Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Yue Jiao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Yang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Chang Gao
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Jidan Zhang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Yanyan Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Zhiguo Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
| | - Tao Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Z.Y.); (X.Z.)
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| |
Collapse
|
4
|
Pratt ML, Plumb AN, Manjrekar A, Cardona LM, Chan CK, John JM, Sadler KE. Microbiome contributions to pain: a review of the preclinical literature. Pain 2025; 166:262-281. [PMID: 39258679 PMCID: PMC11723818 DOI: 10.1097/j.pain.0000000000003376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 09/12/2024]
Abstract
ABSTRACT Over the past 2 decades, the microbiome has received increasing attention for the role that it plays in health and disease. Historically, the gut microbiome was of particular interest to pain scientists studying nociplastic visceral pain conditions given the anatomical juxtaposition of these microorganisms and the neuroimmune networks that drive pain in such diseases. More recently, microbiomes both inside and across the surface of the body have been recognized for driving sensory symptoms in a broader set of diseases. Microbiomes have never been a more popular topic in pain research, but to date, there has not been a systematic review of the preclinical microbiome pain literature. In this article, we identified all animal studies in which both the microbiome was manipulated and pain behaviors were measured. Our analysis included 303 unique experiments across 97 articles. Microbiome manipulation methods and behavioral outcomes were recorded for each experiment so that field-wide trends could be quantified and reported. This review specifically details the animal species, injury models, behavior measures, and microbiome manipulations used in preclinical pain research. From this analysis, we were also able to conclude how manipulations of the microbiome alter pain thresholds in naïve animals and persistent pain intensity and duration in cutaneous and visceral pain models. This review summarizes by identifying existing gaps in the literature and providing recommendations for how to best plan, implement, and interpret data collected in preclinical microbiome pain experiments.
Collapse
Affiliation(s)
- McKenna L Pratt
- Department of Neuroscience, Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, United States
| | | | | | | | | | | | | |
Collapse
|
5
|
Small SL. Precision neurology. Ageing Res Rev 2025; 104:102632. [PMID: 39657848 DOI: 10.1016/j.arr.2024.102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/23/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Over the past several decades, high-resolution brain imaging, blood and cerebrospinal fluid analyses, and other advanced technologies have changed diagnosis from an exercise depending primarily on the history and physical examination to a computer- and online resource-aided process that relies on larger and larger quantities of data. In addition, randomized controlled trials (RCT) at a population level have led to many new drugs and devices to treat neurological disease, including disease-modifying therapies. We are now at a crossroads. Combinatorially profound increases in data about individuals has led to an alternative to population-based RCTs. Genotyping and comprehensive "deep" phenotyping can sort individuals into smaller groups, enabling precise medical decisions at a personal level. In neurology, precision medicine that includes prediction, prevention and personalization requires that genomic and phenomic information further incorporate imaging and behavioral data. In this article, we review the genomic, phenomic, and computational aspects of precision medicine for neurology. After defining biological markers, we discuss some applications of these "-omic" and neuroimaging measures, and then outline the role of computation and ultimately brain simulation. We conclude the article with a discussion of the relation between precision medicine and value-based care.
Collapse
Affiliation(s)
- Steven L Small
- Department of Neuroscience, University of Texas at Dallas, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, The University of Chicago, Chicago, IL, USA; Department of Neurology, University of California, Irvine, Orange, CA, USA.
| |
Collapse
|
6
|
Feng C, Pan H, Zhang Y, Ye Z, Zhou Y, Zou H, Wang K. Electroacupuncture Alleviates Neuropathic Pain and Negative Emotion in Mice by Regulating Gut Microbiota. J Pain Res 2025; 18:341-352. [PMID: 39867538 PMCID: PMC11761536 DOI: 10.2147/jpr.s501642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/09/2025] [Indexed: 01/28/2025] Open
Abstract
Background Neuropathic pain (NP) is a prevalent chronic condition frequently accompanied by adverse emotional states. Previous research has demonstrated the clinical efficacy of electroacupuncture (EA) in mitigating neuropathic pain and its associated mood disorders. Recent studies have underscored a correlation between gut microbiota and both NP and negative emotional states. Nevertheless, the relationship between the modulation of gut microbiota by EA and the amelioration of NP remains inadequately understood. Methods Mice were randomly assigned to one of the three groups: the Control (Con) group, the EA group, and the Chronic Constrictive Injury (CCI) group (n = 12 each). Starting from the 8th day post-CCI induction, the EA group underwent EA treatment once every two days, for a total of 20 sessions. To investigate the impact of gut microbiota on CCI mice, we employed a variety of methods, including various behavioral tests and 16S ribosomal DNA (rDNA) sequencing. Results The results indicated that EA significantly ameliorated mechanical allodynia and emotional dysfunction induced by CCI in mice. Analysis through 16S rDNA sequencing revealed that the gut microbiota of NP model mice exhibited a marked increase in diversity. However, EA could partially reverse changes in the diversity of gut microbiota. The abundance of Alloprevotella, A2, Roseburia, Muribaculum, Ruminiclostridium, and Rikenella was increased, and the abundance levels of Bacteroides were decreased at the genus level in CCI mice. Following EA treatment, the relative abundance of Alistipes, A2, Roseburia, and Rikenella was decreased, whereas the relative abundance of Alloprevotella and Parabacteroides was increased in EA group when compared with the CCI group. Conclusion These findings suggested that EA exerted a significant therapeutic effect on NP, potentially through modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chenchen Feng
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Haotian Pan
- School of Pharmacy, Nanjing University of Traditional Chinese Medicine, Nanjing, People’s Republic of China
| | - Yanan Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, People’s Republic of China
| | - Zi Ye
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yiren Zhou
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Hong Zou
- Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Babu DD, Mehdi S, Krishna KL, Lalitha MS, Someshwara CK, Pathak S, Pesaladinne UR, Rajashekarappa RK, Mylaralinga PS. Diabetic neuropathy: understanding the nexus of diabetic neuropathy, gut dysbiosis and cognitive impairment. J Diabetes Metab Disord 2024; 23:1589-1600. [PMID: 39610501 PMCID: PMC11599548 DOI: 10.1007/s40200-024-01447-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 11/30/2024]
Abstract
Objectives Diabetic neuropathy is a traditional and one of the most prevalent complications of diabetes mellitus. The exact pathophysiology of diabetic neuropathy is not fully understood. However, oxidative stress and inflammation are proven to be one of the major underlying mechanisms of neuropathy which is described in detail. Gut dysbiosis is being studied for various neurological disorders and its impact on diabetic neuropathy is also explained. Diabetic neuropathy also causes loss in an individual's quality of life and one such adverse event is cognitive dysfunction. The interrelation between the neuropathy, cognitive dysfunction and gut is reviewed. Methods The exact mechanism is not understood but several hypotheses, cross-sectional studies and systematic reviews suggest a relationship between cognition and neuropathy. The review has collected data from various review and research publications that justifies this inter-relationship. Results The multifactorial etiology and pathophysiology of diabetic neuropathy is described with special emphasis on the role of gut dysbiosis. There might exist a correlation between the neuropathy and cognitive impairment caused simultaneously in diabetic patients. Conclusions This review summarizes the relationship that might exist between diabetic neuropathy, cognitive dysfunction and the impact of disturbed gut microbiome on its development and progression.
Collapse
Affiliation(s)
- Divya Durai Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Kamsagara Linganna Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Mankala Sree Lalitha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Chethan Konasuru Someshwara
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577201 India
| | - Ujwal Reddy Pesaladinne
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | | | | |
Collapse
|
8
|
Rykalo N, Riehl L, Kress M. The gut microbiome and the brain. Curr Opin Support Palliat Care 2024; 18:282-291. [PMID: 39250732 DOI: 10.1097/spc.0000000000000717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
PURPOSE OF REVIEW The importance of the gut microbiome for human health and well-being is generally accepted, and elucidating the signaling pathways between the gut microbiome and the host offers novel mechanistic insight into the (patho)physiology and multifaceted aspects of healthy aging and human brain functions. RECENT FINDINGS The gut microbiome is tightly linked with the nervous system, and gut microbiota are increasingly emerging as important regulators of emotional and cognitive performance. They send and receive signals for the bidirectional communication between gut and brain via immunological, neuroanatomical, and humoral pathways. The composition of the gut microbiota and the spectrum of metabolites and neurotransmitters that they release changes with increasing age, nutrition, hypoxia, and other pathological conditions. Changes in gut microbiota (dysbiosis) are associated with critical illnesses such as cancer, cardiovascular, and chronic kidney disease but also neurological, mental, and pain disorders, as well as chemotherapies and antibiotics affecting brain development and function. SUMMARY Dysbiosis and a concomitant imbalance of mediators are increasingly emerging both as causes and consequences of diseases affecting the brain. Understanding the microbiota's role in the pathogenesis of these disorders will have major clinical implications and offer new opportunities for therapeutic interventions.
Collapse
Affiliation(s)
- Nadiia Rykalo
- Department of Physiology and Medical Physics, Institute of Physiology, Medical University Innsbruck, Austria
| | | | | |
Collapse
|
9
|
Wu S, Zhou XC, Li T, Sun JY, Chen LH, Wei ZC, Wang KZ, Hong SW, Xu HN, Lv ZZ, Lv LJ. Assessing the Genetic Causal Effects Between Blood Metabolites and Spinal Pain: A Bidirectional Two-Sample Mendelian Randomization Study. J Pain Res 2024; 17:3897-3918. [PMID: 39583190 PMCID: PMC11585999 DOI: 10.2147/jpr.s487156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Background Previous metabolomics studies have indicated a close association between blood metabolites and pain. However, the causal relationship between blood metabolites and spinal pain (SP) remains unclear. This study employs a bidirectional two-sample Mendelian randomization (MR) analysis to evaluate the causal relationship between 452 blood metabolites and SP. Methods We used bidirectional two-sample MR analysis to assess the causal relationship between blood metabolites and SP, including neck pain (NP), thoracic spine pain (TSP), low back pain (LBP), and back pain (BP). Genome-wide association studies (GWAS) data for 452 metabolites (7,824 participants) were used as exposure variables. Summary data for NP were obtained from the UK Biobank, for TSP from the FinnGen Biobank, and for LBP from both the UK Biobank and the FinnGen Biobank. Summary data for BP were obtained from the UK Biobank. Inverse-variance weighting (IVW) was used to estimate the causal relationships between metabolites and SP, complemented by various sensitivity analyses to account for pleiotropy and heterogeneity, ensuring robust results. Results The IVW analysis identified 155 metabolites associated with SP risk and 142 metabolites influenced by SP. No significant heterogeneity or horizontal pleiotropy was observed through other analytical methods. Conclusion This study demonstrates potential causal effects between blood metabolites and SP, providing new insights into the pathogenesis of SP. These findings lay a theoretical foundation for preventing and treating SP through targeted interventions on specific blood metabolites, potentially elucidating underlying biological mechanisms.
Collapse
Affiliation(s)
- Shuang Wu
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xing-chen Zhou
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Tao Li
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jia-yu Sun
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Long-hao Chen
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zi-cheng Wei
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Kai-zheng Wang
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Shuang-wei Hong
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hui-nan Xu
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhi-zhen Lv
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| | - Li-jiang Lv
- The Third Affiliated Hospital of Zhejiang, Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou, Zhejiang, People’s Republic of China
- The Third School of Clinical Medicine (School of Rehabilitation Medicine), Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
10
|
Pan H, Liu CX, Zhu HJ, Zhang GF. Immune cells mediate the effects of gut microbiota on neuropathic pain: a Mendelian randomization study. J Headache Pain 2024; 25:196. [PMID: 39528917 PMCID: PMC11555962 DOI: 10.1186/s10194-024-01906-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND The gut microbiota may be involved in neuropathic pain. However, the causal association between gut microbiota and neuropathic pain remains unclear. Whether immune cells and inflammatory factors mediate the pathway from gut microbiota to neuropathic pain has not been elucidated. METHODS We obtained the summary data of 412 gut microbiota, 731 immune cells, 91 inflammatory factors, and five types of neuropathic pain (drug-induced neuropathy, postherpetic neuralgia, sciatica, trigeminal neuralgia, and unspecified neuralgia) from large-scale genome-wide association study (GWAS) datasets and the FinnGen database. We used bidirectional Mendelian randomization (MR) analysis to explore the causal association between gut microbiota and neuropathic pain. Additionally, we conducted a mediation analysis to identify whether immune cells and inflammatory factors act as mediators within these causal relationships. RESULTS Our study revealed 30 causal relationships between 26 gut bacterial taxa and five types of neuropathic pain, including four associated with drug-induced neuropathy, six with postherpetic neuralgia, five with sciatica, eight with trigeminal neuralgia, and seven with unspecified neuralgia. Moreover, we identified 35 gut bacterial pathway abundances causally involved in neuropathic pain. The reverse MR analysis showed no evidence of reverse causality from gut microbiota to neuropathic pain. Mediation analysis demonstrated that the immune cell phenotype "HLA-DR++ monocyte % leukocyte" mediated the causal relationship between p_Proteobacteria and sciatica with a mediation proportion of 36.15% (P = 0.038), whereas "CD11c on CD62L+ myeloid dendritic cell" mediated the causal pathway from assimilatory sulfate reduction to trigeminal neuralgia with a mediation proportion of 27.90% (P = 0.041). CONCLUSION This study identified the causal relationships between several specific gut microbiota and various neuropathic pain subtypes. Additionally, two immune cells may act as potential mediators in the pathways from gut microbiota to neuropathic pain.
Collapse
Affiliation(s)
- Hao Pan
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, PR China
| | - Cheng-Xiao Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, PR China
| | - Hui-Juan Zhu
- Department of Anesthesiology, Jinan Seventh People's Hospital, Jinan, 250021, Shandong, PR China
| | - Guang-Fen Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, PR China.
| |
Collapse
|
11
|
Casini I, Massai L, Solomita E, Ortenzi K, Pieretti S, Aloisi AM. Gastrointestinal Conditions Affect Chronic Pain and Quality of Life in Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1435. [PMID: 39595703 PMCID: PMC11593551 DOI: 10.3390/ijerph21111435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024]
Abstract
Pain is a chronic condition in many women; drugs used for its treatment are often accompanied by detrimental effects on many organs, including the gut. Once inflamed, the gut can affect pain processes. The aim of this study was to evaluate the general health of women suffering chronic pain, with particular attention to gastrointestinal (GI) conditions. The possibility to improve pain and quality of life through personalized nutritional advice was also tested. Forty women suffering from chronic pain were contacted for the administration of questionnaires to define their pain features and gastrointestinal conditions. Their psychological, clinical and reproductive states were also recorded. Pain scores were correlated with GI, psychological and clinical scores. Diet suggestions were given, and evaluation was repeated after 4 weeks. Thirty-eight women were included in the study: 32 suffered chronic widespread pain and had 6 pelvic pain. Pain had been present in all women for years; more than 80% of women reported various types of disorders related to the gut. Pain scores were worse in the women intolerant to milk and dairy products. The GI score was positively correlated with the pain score. The Dietary Inflammatory Index was very high in all subjects. Personalized nutritional advice followed by 26 subjects for 4 weeks resulted in a significant improvement of pain and quality of life parameters. We describe women with chronic pain as being particularly affected by GI alterations. The change in feeding habits had a beneficial effect on pain and other quality of life parameters.
Collapse
Affiliation(s)
- Ilenia Casini
- Pain and Stress Neurophysiology Laboratory, Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (L.M.); (E.S.); (K.O.)
| | - Lauretta Massai
- Pain and Stress Neurophysiology Laboratory, Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (L.M.); (E.S.); (K.O.)
| | - Erminia Solomita
- Pain and Stress Neurophysiology Laboratory, Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (L.M.); (E.S.); (K.O.)
| | - Kathleen Ortenzi
- Pain and Stress Neurophysiology Laboratory, Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (L.M.); (E.S.); (K.O.)
| | - Stefano Pieretti
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy;
| | - Anna Maria Aloisi
- Pain and Stress Neurophysiology Laboratory, Department of Medicine, Surgery and Neuroscience, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; (I.C.); (L.M.); (E.S.); (K.O.)
| |
Collapse
|
12
|
Guo J, Xu G, Li S, Li Z, Liu J, Wang W, Qi X, Ding W, Li X. Impact of Lumbar Fusion Internal Fixation on Lumbar Disc Herniation in Young Patients: A Retrospective Study. Med Sci Monit 2024; 30:e944570. [PMID: 39462889 PMCID: PMC11529090 DOI: 10.12659/msm.944570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Lumbar fusion and internal fixation techniques have shown promise in treating lumbar disc herniation (LDH), yet the impact on lumbar function in young patients remains unclear. This study aimed to investigate the impact of lumbar fusion on lumbar function in young patients. MATERIAL AND METHODS A retrospective analysis was conducted on 330 patients diagnosed with LDH admitted to our hospital. Patients were divided into 2 groups: a control group (n=264) that underwent a minimally invasive procedure with a keyhole lens, and a research group (n=66) that underwent lumbar fusion internal fixation. Clinical features and therapeutic outcomes were assessed using Oswestry Disability Index (ODI) and Japanese Orthopedic Association (JOA) Lumbar Scores before surgery and 12 months postoperatively. Additionally, intervertebral space height, degree of vertebral spondylolisthesis (grades I, II, and III), incidence of adverse effects, and treatment efficacy were measured pre-and post-surgically. RESULTS No significant difference in ODI and JOA scores was found between the groups before surgery (P>0.05). Postoperatively, the research group had lower ODI scores, higher JOA scores, and lower intervertebral space heights compared to the control group (P=0.001). While grade 1 and 2 spondylolisthesis showed slight improvement (P>0.05), a significant difference was observed in grade III spondylolisthesis between the 2 groups (P=0.001). Additionally, the research group had a lower incidence of adverse effects (P=0.049) and higher treatment efficacy, although the difference was not statistically significant (P>0.05). CONCLUSIONS Lumbar fusion with internal fixation produced better postoperative outcomes and fewer adverse effects than minimally invasive procedures in young patients with lumbar disc herniation.
Collapse
|
13
|
Lv S, Yan L, Dong Y, Lou F, Luo S, Xu J, Kang N, Luo Z, Liu Y, Pu J, Jin X. Perturbed saliva microbiome is gender-specific in patients with oral lichen planus. Microb Pathog 2024; 197:107066. [PMID: 39442818 DOI: 10.1016/j.micpath.2024.107066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE To understand the gender characteristics of oral lichen planus (OLP) by identifying the gender-specific salivary microbiome and its potential biomarkers. METHODS A gender-based study was undertaken, commencing with the collection of saliva samples, followed by 16S rRNA gene sequencing, to explore the differences in the composition of saliva microbiome in OLP patients (40 males and 56 females) and healthy controls (40 males and 56 females), respectively. RESULTS Both male and female OLP patients had significant differences in saliva microbiome composition from healthy controls, especially in female patients. Notably, Pseudomonas was only enriched in female patients. Rhodococcus (AUC: 0.91) and Pseudomonas (AUC: 0.97) had great potential as diagnostic biomarkers in male and female patients, respectively. The KEGG results showed metabolic dysfunction was more pronounced in female patients and a high level of microbial metabolism in diverse environments, ABC transporters, Quorum sensing and Two-component system. Capnocytophaga was negatively correlated with the erosion area in male patients. Neisseria was negatively correlated with the erosion area and Rothia was positively correlated with the pain level in female patients. CONCLUSIONS Our study revealed gender-specific perturbation in salivary microbiome within OLP patients, suggesting that the male and female patients with OLP may have different pathogenesis.
Collapse
Affiliation(s)
- Shiping Lv
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
| | - Li Yan
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Yunmei Dong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
| | - Fangzhi Lou
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
| | - Shihong Luo
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
| | - Jingyi Xu
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
| | - Ning Kang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
| | - Zhuoyan Luo
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Xin Jin
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases, Chongqing, 401147, China.
| |
Collapse
|
14
|
Yang Y, Qiu Y, Hu J, Rosen-Zvi M, Guan Q, Cheng F. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. CELL REPORTS METHODS 2024; 4:100865. [PMID: 39341201 PMCID: PMC11573792 DOI: 10.1016/j.crmeth.2024.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/11/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Artificial intelligence (AI) and deep learning technologies hold promise for identifying effective drugs for human diseases, including pain. Here, we present an interpretable deep-learning-based ligand image- and receptor's three-dimensional (3D)-structure-aware framework to predict compound-protein interactions (LISA-CPI). LISA-CPI integrates an unsupervised deep-learning-based molecular image representation (ImageMol) of ligands and an advanced AlphaFold2-based algorithm (Evoformer). We demonstrated that LISA-CPI achieved ∼20% improvement in the average mean absolute error (MAE) compared to state-of-the-art models on experimental CPIs connecting 104,969 ligands and 33 G-protein-coupled receptors (GPCRs). Using LISA-CPI, we prioritized potential repurposable drugs (e.g., methylergometrine) and identified candidate gut-microbiota-derived metabolites (e.g., citicoline) for potential treatment of pain via specifically targeting human GPCRs. In summary, we presented that the integration of molecular image and protein 3D structural representations using a deep learning framework offers a powerful computational drug discovery tool for treating pain and other complex diseases if broadly applied.
Collapse
Affiliation(s)
- Yuxin Yang
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Computer Science, Kent State University, Kent, OH 44242, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yunguang Qiu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jianying Hu
- IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - Michal Rosen-Zvi
- AI for Accelerated Healthcare and Life Sciences Discovery, IBM Research-Israel, Haifa 3498825, Israel
| | - Qiang Guan
- Department of Computer Science, Kent State University, Kent, OH 44242, USA.
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.
| |
Collapse
|
15
|
Di Z, Zhenni C, Zifeng Z, Bei J, Yong C, Yixuan L, Yuwei P, Li G, Jiaxu C, Guoping Z. Danggui Sini Decoction normalizes the intestinal microbiota and serum metabolite levels to treat sciatica. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155740. [PMID: 39059091 DOI: 10.1016/j.phymed.2024.155740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 07/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Sini Decoction (DGSD), which is commonly used to treat sciatica, has been shown to have an analgesic effect, but the underlying mechanisms are unclear. Here, Danggui Sini Decoction was shown to normalize the intestinal microbiota and serum metabolite levels to exert an analgesic effect. AIM OF THE STUDY This study aimed to elucidate the therapeutic effects of DGSD on sciatica and the underlying mechanisms involved. METHODS In this study, we conducted chronic constriction injury (CCI) model. Mecobalamin and DGSD were administered to CCI rats. Behavioural tests were used to examine the therapeutic effects of the drugs. UHPLC was used to identify DGSD components. 16S rRNA gene sequencing analysis of the intestinal flora was used to analyse the effect of DGSD on the intestinal microbiota. UHPLC‒MS/MS was used to identify blood metabolites. KEGG pathway analysis of differentially abundant metabolites was subsequently conducted. ELISA was used to measure the serum inflammatory factor levels, and correlation analysis between the serum inflammatory factor levels and intestinal microbe abundance was conducted. PCR, western blotting, and immunohistochemical staining were used to validate the results of the KEGG pathway analysis. RESULTS After CCI, the rats exhibited obvious thermal hyperalgesia; disruption of sciatic nerve structure; increased IL1α, SP, CCL5, and PGE2 levels; decreased IL10 levels in the blood; increased IL1β, IL6, COX2, MMP9, nNOS, and p-NF-κB levels; and decreased IL4 levels in the sciatic nerve. In addition, CCI led to increased abundances of Peptostreptococcaceae, Leuconostocaceae, Christensenellaceae, Akkermansiaceae, Staphylococcaceae, Romboutsia, Marvinbryantia, Turicibacter, Weissella, UCG-005, Christensenellaceae_R-7_group, Akkermansia, Staphylococcus, Romboutsia_ilealis, Weissella_paramesenteroides, and Akkermansia_muciniphila and decreased abundances of Lactobacillaceae, Lactobacillus, Lactobacillus_murinus, and Lactobacillus_johnsonii. Correlation analysis indicated that Turicibacter abundance was most strongly related to IL1α, PGE2, IL10, and CCL5 levels, while norank_o_Coriobacteriales abundance had the weakest relationship with SP levels. KEGG pathway analysis of the differentially abundant metabolites revealed that the 'NF-kappa B signalling pathway' was involved in sciatica. DGSD reduced the levels of inflammatory factors, including IL1α, SP, CCL5, PGE2, IL6, COX2, and MMP9, in the blood and sciatic nerve and inhibited nNOS and NF-κB phosphorylation. DGSD improved the abundance of probiotics, including Lactobacillus and Blautia, and lowered the abundance of harmful bacteria, including Romboutsia, Turicibacter, and Weissella. DGSD promoted the repair of the injured sciatic nerve. CONCLUSIONS DGSD can treat sciatica by inhibiting intestinal microbiota disorders induced by CCI in rats, normalizing inflammatory factor levels, and promoting nerve repair.
Collapse
Affiliation(s)
- Zhang Di
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Chen Zhenni
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhuang Zifeng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jing Bei
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Cao Yong
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li Yixuan
- Guangzhou Medical University Affiliated Traditional Chinese Medicine Hospital, China
| | - Pan Yuwei
- Guangzhou Medical University Affiliated Traditional Chinese Medicine Hospital, China
| | - Gao Li
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Chen Jiaxu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Zhao Guoping
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Xue Y, Zhang Y, Wu Y, Zhao T. Activation of GPER-1 Attenuates Traumatic Brain Injury-Induced Neurological Impairments in Mice. Mol Neurobiol 2024; 61:5614-5627. [PMID: 38217667 DOI: 10.1007/s12035-024-03919-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/01/2024] [Indexed: 01/15/2024]
Abstract
This study aimed to investigate the effects of G1-activated G protein-coupled estrogen receptor 1 (GPER1) on neurological impairments and neuroinflammation in traumatic brain injury (TBI) mice. The controlled cortical impingement (CCI) method was used to establish the TBI model. The mice were subjected to ovariectomy (OVX) for two weeks prior to modeling. GPER1 agonist G1 was administered by intracerebroventricular injection. Brain tissue water content was detected by wet/dry method, and blood-brain barrier damage was detected by Evans blue extravasation. The neurological impairments in mice were evaluated by open field test, Y-maze test, nest-building test, object location memory test and novel object recognition test. Ionized calcium-binding adapter molecule 1 (Iba1) staining was used to indicate the activation of microglia. Expression of M1/M2-type microglia markers and inflammatory factors were evaluated by ELISA and qRT-PCR. The G1 administration significantly reduced cerebral edema and Evans blue extravasation at injury ipsilateral cortex and basal ganglia in TBI mice. Activation of GPER1 by G1 improved the anxiety behavior and the cognitive dysfunction of mice induced by TBI. G1 administration significantly decreased Iba1-positive staining cells and the mRNA levels of CD86, macrophage cationic peptide 1 (Mcp-1), nitric oxide synthase 2 (Nos2), interleukin 1 beta (IL-1β), and macrophage inflammatory protein-2 (MIP-2), while increased the mRNA levels of interleukin 10 (IL-10), arginase1 (Arg-1) and CD206. Activation of GPER1 through G1 administration has the potential to ameliorate cognitive dysfunction induced by TBI in mice. It may also inhibit the activation of M1 microglia in cortical tissue resulting from TBI, while promoting the activation of M2 microglia and contributing to the regulation of inflammatory responses.
Collapse
Affiliation(s)
- Yafei Xue
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Yunze Zhang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China
| | - Yingxi Wu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China.
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Baqiao District, Xi'an, 710038, Shaanxi, China.
| |
Collapse
|
17
|
Reynders A, Anissa Jhumka Z, Gaillard S, Mantilleri A, Malapert P, Magalon K, Etzerodt A, Salio C, Ugolini S, Castets F, Saurin AJ, Serino M, Hoeffel G, Moqrich A. Gut microbiota promotes pain chronicity in Myosin1A deficient male mice. Brain Behav Immun 2024; 119:750-766. [PMID: 38710336 DOI: 10.1016/j.bbi.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Chronic pain is a heavily debilitating condition and a huge socio-economic burden, with no efficient treatment. Over the past decade, the gut microbiota has emerged as an important regulator of nervous system's health and disease states. Yet, its contribution to the pathogenesis of chronic somatic pain remains poorly documented. Here, we report that male but not female mice lacking Myosin1a (KO) raised under single genotype housing conditions (KO-SGH) are predisposed to develop chronic pain in response to a peripheral tissue injury. We further underscore the potential of MYO1A loss-of-function to alter the composition of the gut microbiota and uncover a functional connection between the vulnerability to chronic pain and the dysbiotic gut microbiota of KO-SGH males. As such, parental antibiotic treatment modifies gut microbiota composition and completely rescues the injury-induced pain chronicity in male KO-SGH offspring. Furthermore, in KO-SGH males, this dysbiosis is accompanied by a transcriptomic activation signature in the dorsal root ganglia (DRG) macrophage compartment, in response to tissue injury. We identify CD206+CD163- and CD206+CD163+ as the main subsets of DRG resident macrophages and show that both are long-lived and self-maintained and exhibit the capacity to monitor the vasculature. Consistently, in vivo depletion of DRG macrophages rescues KO-SGH males from injury-induced chronic pain underscoring a deleterious role for DRG macrophages in a Myo1a-loss-of function context. Together, our findings reveal gene-sex-microbiota interactions in determining the predisposition to injury-induced chronic pain and point-out DRG macrophages as potential effector cells.
Collapse
Affiliation(s)
- Ana Reynders
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| | - Z Anissa Jhumka
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | | | - Annabelle Mantilleri
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Pascale Malapert
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Karine Magalon
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Anders Etzerodt
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Chiara Salio
- Department of Veterinary Sciences, University of Turin, Grugliasco, TO, Italy
| | - Sophie Ugolini
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Francis Castets
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Andrew J Saurin
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France
| | - Matteo Serino
- Institut de Recherche en Santé Digestive, Université de Toulouse-Paul Sabatier, INSERM, INRAe, ENVT, UPS, Toulouse, France
| | - Guillaume Hoeffel
- Aix-Marseille-Université, CNRS, INSER, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Aziz Moqrich
- Aix-Marseille-Université, CNRS, Institut de Biologie du Développement de Marseille, Marseille, France.
| |
Collapse
|
18
|
Gao L, Zhang AP, Fu L, Li QW, Qin XM, Zhao J. Huangqin decoction attenuates spared nerve injury (SNI)-induced neuropathic pain by modulating microglial M1/M2 polarization partially mediated by intestinal nicotinamide metabolism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155594. [PMID: 38614040 DOI: 10.1016/j.phymed.2024.155594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND The incidence of neuropathic pain is progressively increasing over time. The activation of M1-type microglia plays a crucial role in the initiation and progression of neuropathic pain. Huangqin Decoction (HQD) is traditionally used to alleviate dysentery and abdominal pain. However, it remains unclear whether HQD can effectively mitigate neuropathic pain and the underlying mechanisms. PURPOSE The present study aims to investigate the impact of HQD on neuropathic pain induced by spared nerve injury (SNI) in mice, and to elucidate whether the analgesic effect of HQD is associated with microglia polarization. METHODS The analgesic effect of HQD on SNI mice was investigated through assessments of mechanical pain threshold, thermal pain threshold, cold pain threshold, and motor ability. We elucidated the molecular mechanisms of HQD in alleviating SNI-induced neuropathic pain by focusing on microglia polarization and intestinal metabolite abnormalities. The expression levels of markers associated with microglia polarization (Iba-1, CD68, CD206, iNOS) was detected by immunofluorescence and Western blot, and the levels of inflammatory factors (IL-4, IL-10, IL-6, TNF-α) were assessed by ELISA. UPLC-QTOF-MS metabolomics was utilized to identify differential metabolites in the intestines of SNI mice. We screened the differential metabolites related to microglial polarization by correlation analysis, subsequently nicotinamide was selected for validation in LPS-induced BV-2 cells. RESULTS Our findings demonstrated that HQD (20 g/kg) significantly enhanced the mechanical pain threshold, thermal pain threshold, and cold pain threshold, and protected the injured DRG neurons of SNI mice. Moreover, HQD (20 g/kg) obviously suppressed the expression of microglia M1 polarization markers (Iba-1, CD68, iNOS, IL-6, TNF-α), and promoted the expression of microglia M2 polarization markers (CD206, IL-10, IL-4) in the spinal cord of SNI mice. Additionally, HQD (20 g/kg) prominently ameliorated intestinal barrier damage by upregulating Claudin 1 and Occludin expression in the colon of SNI mice. Furthermore, HQD (20 g/kg) rectified 19 metabolite abnormalities in the intestine. Notably, nicotinamide (100 μM), an amide derivative with anti-inflammatory property, effectively suppresses microglia activation and polarization in LPS-induced BV-2 cells by downregulating IL-6 level and CD68 expression while upregulating IL-4 level and CD206 expression. CONCLUSION In summary, HQD alleviates neuropathic pain in SNI mice by regulating the activation and polarization of microglia, partially mediated through intestinal nicotinamide metabolism.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China.
| | - Ai-Ping Zhang
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Lei Fu
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Qian-Wen Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, Shanxi, PR China; The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, PR China; The Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, PR China
| | - Jing Zhao
- Wolfson Institute for Biomedical Research, University College London, UK, London.
| |
Collapse
|
19
|
Gong Z, Xue Q, Luo Y, Yu B, Hua B, Liu Z. The interplay between the microbiota and opioid in the treatment of neuropathic pain. Front Microbiol 2024; 15:1390046. [PMID: 38919504 PMCID: PMC11197152 DOI: 10.3389/fmicb.2024.1390046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Neuropathic pain (NP) is characterized by its complex and multifactorial nature and limited responses to opioid therapy; NP is associated with risks of drug resistance, addiction, difficulty in treatment cessation, and psychological disorders. Emerging research on gut microbiota and their metabolites has demonstrated their effectiveness in alleviating NP and augmenting opioid-based pain management, concurrently mitigating the adverse effects of opioids. This review addresses the following key points: (1) the current advances in gut microbiota research and the challenges in using opioids to treat NP, (2) the reciprocal effects and benefits of gut microbiota on NP, and (3) the interaction between opioids with gut microbiota, as well as the benefits of gut microbiota in opioid-based treatment of NP. Through various intricate mechanisms, gut microbiota influences the onset and progression of NP, ultimately enhancing the efficacy of opioids in the management of NP. These insights pave the way for further pragmatic clinical research, ultimately enhancing the efficacy of opioid-based pain management.
Collapse
Affiliation(s)
- Zexiong Gong
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qingsheng Xue
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yan Luo
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Buwei Yu
- Department of Anesthesiology, School of Medicine, Ruijin Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Bo Hua
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiheng Liu
- Department of Anesthesiology, Health Science Center, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
20
|
Wu ZJ, Zhao YY, Hao SJ, Dong BB, Zheng YX, Liu B, Li J. Combining fecal 16 S rRNA sequencing and spinal cord metabolomics analysis to explain the modulatory effect of PPARα on neuropathic pain. Brain Res Bull 2024; 211:110943. [PMID: 38614408 DOI: 10.1016/j.brainresbull.2024.110943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/19/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Existing evidence suggests that the composition of the gut microbiota is associated with neuropathic pain (NP), but the mechanistic link is elusive. Peroxisome proliferator-activated receptor α (PPARα) has been shown to be a pharmacological target for the treatment of metabolic disorders, and its expression is also involved in inflammatory regulation. The aim of this study was to investigate the important modulatory effects of PPARα on gut microbiota and spinal cord metabolites in mice subjected to chronic constriction injury. METHODS We analyzed fecal microbiota and spinal cord metabolic alterations in mice from the sham, CCI, GW7647 (PPARα agonist) and GW6471 (PPARα antagonist) groups by 16 S rRNA amplicon sequencing and untargeted metabolomics analysis. On this basis, the intestinal microbiota and metabolites that were significantly altered between treatment groups were analyzed in a combined multiomics analysis. We also investigated the effect of PPARα on the polarization fractionation of spinal microglia. RESULTS PPARα agonist significantly reduce paw withdrawal threshold and paw withdrawal thermal latency, while PPARα antagonist significantly increase paw withdrawal threshold and paw withdrawal thermal latency. 16 S rRNA gene sequencing showed that intraperitoneal injection of GW7647 or GW6471 significantly altered the abundance, homogeneity and composition of the gut microbiome. Analysis of the spinal cord metabolome showed that the levels of spinal cord metabolites were shifted after exposure to GW7647 or GW6471. Alterations in the composition of gut microbiota were significantly associated with the abundance of various spinal cord metabolites. The abundance of Licheniformes showed a significant positive correlation with nicotinamide, benzimidazole, eicosanoids, and pyridine abundance. Immunofluorescence results showed that intraperitoneal injection of GW7647 or GW6471 altered microglial activation and polarization levels. CONCLUSION Our study shows that PPARα can promote M2-type microglia polarization, as well as alter gut microbiota and metabolites in CCI mice. This study enhances our understanding of the mechanism of PPARα in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Zi-Jun Wu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Ying Zhao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Shu-Jing Hao
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bei-Bei Dong
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Yu-Xin Zheng
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China
| | - Bin Liu
- Department of Critical Care Medicine, General Hospital of Tianjin Medical University, Tianjin 300052, China; Center for Critical Care Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300020, China.
| | - Jing Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, Tianjin 300052, China.
| |
Collapse
|
21
|
Chen X, Gan Y, Au NPB, Ma CHE. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2024; 17:1345811. [PMID: 38660386 PMCID: PMC11039947 DOI: 10.3389/fnmol.2024.1345811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yumeng Gan
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Chi Him Eddie Ma
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
22
|
Nhu NT, Chen DYT, Yang YCSH, Lo YC, Kang JH. Associations Between Brain-Gut Axis and Psychological Distress in Fibromyalgia: A Microbiota and Magnetic Resonance Imaging Study. THE JOURNAL OF PAIN 2024; 25:934-945. [PMID: 37866648 DOI: 10.1016/j.jpain.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
An altered brain-gut axis is suspected to be one of the pathomechanisms in fibromyalgia (FM). This cross-sectional study investigated the associations among altered microbiota, psychological distress, and brain functional connectivity (FC) in FM. We recruited 25 FM patients and 25 healthy people in the present study. Psychological distress was measured using standardized questionnaires. Microbiota analysis was performed on the participants' stools. Functional magnetic resonance imaging data were acquired, and seed-based resting-state FC (rs-FC) analysis was conducted with the salience network nodes as seeds. Linear regression and mediation analyses evaluated microbiota, symptoms, and rs-FCs associations. We found altered microbiota diversity in FM, of which Phascolarctobacterium and Lachnoclostridium taxa increased the most and Faecalibacterium taxon decreased the most compared to controls. The Phascolarctobacterium abundance significantly predicted Beck depression inventory (BDI-II) scores in FM (β = 6.83; P = .033). Rs-FCs from salience network nodes were reduced in FM, of which rs-FCs from the right lateral rostral prefrontal cortex (RPFC) to the lateral occipital cortex, superior division right (RPFC-sLOC) could be predicted by BDI-II scores in patients (β = -.0064; P = .0054). In addition, the BDI-II score was a mediator in the association between Phascolarctobacterium abundance and rs-FCs of RPFC-sLOC (ab = -.06; 95% CI: -.16 to -9.10-3). In conclusion, microbial dysbiosis might be associated with altered neural networks mediated by psychological distress in FM, emphasizing the critical role of the brain-gut axis in FM's non-pain symptoms and supporting further analysis of mechanism-targeted therapies to reduce FM symptoms. PERSPECTIVE: Our study suggests microbial dysbiosis might be associated with psychological distress and the altered salience network, supporting the role of brain-gut axis dysfunction in fibromyalgia pathomechanisms. Further targeting therapies for microbial dysbiosis should be investigated to manage fibromyalgia patients in the future.
Collapse
Affiliation(s)
- Nguyen Thanh Nhu
- International PhD program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Faculty of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - David Yen-Ting Chen
- Department of Medical Imaging, Taipei Medical University - Shuang-Ho Hospital, New Taipei City, Taiwan; Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jiunn-Horng Kang
- International PhD program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
23
|
Shen CL, Wang R, Santos JM, Elmassry MM, Stephens E, Kim N, Neugebauer V. Ginger alleviates mechanical hypersensitivity and anxio-depressive behavior in rats with diabetic neuropathy through beneficial actions on gut microbiome composition, mitochondria, and neuroimmune cells of colon and spinal cord. Nutr Res 2024; 124:73-84. [PMID: 38402829 PMCID: PMC11466295 DOI: 10.1016/j.nutres.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/27/2024]
Abstract
The relationship among gut microbiota, mitochondrial dysfunction/neuroinflammation, and diabetic neuropathic pain (DNP) has received increased attention. Ginger has antidiabetic and analgesic effects because of its anti-inflammatory property. We examined the effects of gingerols-enriched ginger (GEG) supplementation on pain-associated behaviors, gut microbiome composition, and mitochondrial function and neuroinflammation of colon and spinal cord in DNP rats. Thirty-three male rats were randomly divided into 3 groups: control group, DNP group (high-fat diet plus single dose of streptozotocin at 35 mg/kg body weight, and GEG group (DNP+GEG at 0.75% in the diet for 8 weeks). Von Frey and open field tests were used to assess pain sensitivity and anxio-depressive behaviors, respectively. Colon and spinal cord were collected for gene expression analysis. 16S rRNA gene sequencing was done from cecal samples and microbiome data analysis was performed using QIIME 2. GEG supplementation mitigated mechanical hypersensitivity and anxio-depressive behavior in DNP animals. GEG supplementation suppressed the dynamin-related protein 1 protein expression (colon) and gene expression (spinal cord), astrocytic marker GFAP gene expression (colon and spinal cord), and tumor necrosis factor-α gene expression (colon, P < .05; spinal cord, P = .0974) in DNP rats. GEG supplementation increased microglia/macrophage marker CD11b gene expression in colon and spinal cord of DNP rats. GEG treatment increased abundance of Acinetobacter, Azospirillum, Colidextribacter, and Fournierella but decreased abundance of Muribaculum intestinale in cecal feces of rats. This study demonstrates that GEG supplementation decreased pain, anxio-depression, and neuroimmune cells, and improved the composition of gut microbiomes and mitochondrial function in rats with diabetic neuropathy.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Moamen M Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Emily Stephens
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nicole Kim
- Department of Biology, Texas Tech University, Lubbock, TX, USA
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
24
|
Pak R, Cho M, Pride K, Abd-Elsayed A. The Gut Microbiota and Chronic Pain. Curr Pain Headache Rep 2024; 28:259-269. [PMID: 38345694 DOI: 10.1007/s11916-024-01221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/16/2024]
Abstract
PURPOSE OF REVIEW To examine the effects and interactions between gut microbia and chronic pain. RECENT FINDINGS The gut microbiome has been an area of interest in both the scientific and general audience due to a growing body of evidence suggesting its influence in a variety of health and disease states. Communication between the central nervous system (CNS) and gut microbiome is said to be bidirectional, in what is referred to as the gut-brain axis. Chronic pain is a prevalent costly personal and public health burden and so, there is a vested interest in devising safe and efficacious treatments. Numerous studies, many of which are animal studies, have been conducted to examine the gut microbiome's role in the pathophysiology of chronic pain states, such as neuropathy, inflammation, visceral pain, etc. As the understanding of this relationship grows, so does the potential for therapeutic targeting of the gut microbiome in chronic pain.
Collapse
Affiliation(s)
- Ray Pak
- Department of Physical Medicine and Rehabilitation, New York Medical College/Metropolitan, New York, NY, USA
| | - Michelle Cho
- Department of Physical Medicine and Rehabilitation, New York Medical College/Metropolitan, New York, NY, USA
| | - Keth Pride
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, B6/319 CSC, Madison, WI, 53792-3272, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, B6/319 CSC, Madison, WI, 53792-3272, USA.
| |
Collapse
|
25
|
Al-Wardat M, Grillo P, Schirinzi T, Pavese C, Salimei C, Pisani A, Natoli S. Constipation and pain in Parkinson's disease: a clinical analysis. J Neural Transm (Vienna) 2024; 131:165-172. [PMID: 37897509 PMCID: PMC10791917 DOI: 10.1007/s00702-023-02696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/06/2023] [Indexed: 10/30/2023]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder characterized by both motor and non-motor symptoms (NMS). Among NMS, constipation and pain are both highly prevalent and debilitating affecting up to 80% of PD patients and impairing their quality of life. Here, we investigated the relationship between constipation and pain in PD patients. This is a retrospective study assessing the relationship between pain and constipation in a PD patient population from a clinical database of patients attending the outpatient clinic of the movement disorders division, Neurology Unit of Policlinico Tor Vergata, in Rome. Subjects were assessed with the Unified Parkinson's Disease Rating Scale (UPDRS) part III, Hoehn and Yahr (H&Y) stage, King's Parkinson's Disease Pain Scale (KPPS), Brief Pain Inventory (BPI), Non-Motor Symptoms Scale (NMSS) and Beck Depression Inventory (BDI). Patients were further divided in two groups (Group 1, 32 patients with constipation and Group 2, 35 PD patients without constipation) ANOVA and ANCOVA analysis were used to compare the two groups. PD patients with constipation had significantly higher pain severity and pain interference, as measured by the BPI scale and higher total KPPS score, fluctuation-related pain, nocturnal pain, and radicular pain when compared to PD patients without constipation. This study highlights for the first time a possible interplay between constipation and pain in PD that deserves further investigations.
Collapse
Affiliation(s)
- Mohammad Al-Wardat
- Department of Rehabilitation Sciences, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Piergiorgio Grillo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, Tor Vergata University of Rome, 00133, Rome, Italy
| | - Chiara Pavese
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation and Spinal Unit of Pavia Institute, Pavia, Italy
| | - Chiara Salimei
- Deptartment of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Silvia Natoli
- Deptartment of Clinical Science and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
26
|
Corriero A, Giglio M, Inchingolo F, Moschetta A, Varrassi G, Puntillo F. Gut Microbiota Modulation and Its Implications on Neuropathic Pain: A Comprehensive Literature Review. Pain Ther 2024; 13:33-51. [PMID: 38087070 PMCID: PMC10796891 DOI: 10.1007/s40122-023-00565-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 01/19/2024] Open
Abstract
Neuropathic pain (NP) is a chronic pain disorder arising from somatosensory nervous system impairment. Extensive evidence supports the notion that the gut microbiota (GM) is crucial in maintaining human health by performing vital tasks. At the same time, its disruption has been linked to the emergence and advancement of an expanding range of disorders, including NP, in which GM could play a role in its pathophysiology. The crosstalk between the nervous system and GM happens through immune mediators, metabolites, and nervous structures and involves both central and peripheral nervous systems. This literature review aims to thoroughly investigate the function of modulating GM in the treatment of NP. It will achieve this by integrating existing knowledge, identifying underlying mechanisms, and evaluating the possible clinical consequences of exploiting the gut-brain axis. We will cover the main therapeutic applications of the described GM-modulators, such as probiotics, faecal microbiota transplantation, dietary supplements and emotional support, to the main kinds of NP in which any evidence, even if only pre-clinical, has been unravelled in recent years. The explored NP areas include chemotherapy-induced peripheral neuropathy, diabetic neuropathy, trauma-induced neuropathic pain, trigeminal neuralgia, postherpetic neuralgia and low back pain.
Collapse
Affiliation(s)
- Alberto Corriero
- Department of Interdisciplinary Medicine - ICU Section, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| | - Mariateresa Giglio
- Department of Interdisciplinary Medicine - ICU Section, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine - Dental Medicine Section, University of Bari "Aldo Moro", 70124, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Piazza Giulio Cesare 11, 70124, Bari, Italy
| | | | - Filomena Puntillo
- Department of Interdisciplinary Medicine - ICU Section, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
27
|
Riehl L, Fürst J, Kress M, Rykalo N. The importance of the gut microbiome and its signals for a healthy nervous system and the multifaceted mechanisms of neuropsychiatric disorders. Front Neurosci 2024; 17:1302957. [PMID: 38249593 PMCID: PMC10797776 DOI: 10.3389/fnins.2023.1302957] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Increasing evidence links the gut microbiome and the nervous system in health and disease. This narrative review discusses current views on the interaction between the gut microbiota, the intestinal epithelium, and the brain, and provides an overview of the communication routes and signals of the bidirectional interactions between gut microbiota and the brain, including circulatory, immunological, neuroanatomical, and neuroendocrine pathways. Similarities and differences in healthy gut microbiota in humans and mice exist that are relevant for the translational gap between non-human model systems and patients. There is an increasing spectrum of metabolites and neurotransmitters that are released and/or modulated by the gut microbiota in both homeostatic and pathological conditions. Dysbiotic disruptions occur as consequences of critical illnesses such as cancer, cardiovascular and chronic kidney disease but also neurological, mental, and pain disorders, as well as ischemic and traumatic brain injury. Changes in the gut microbiota (dysbiosis) and a concomitant imbalance in the release of mediators may be cause or consequence of diseases of the central nervous system and are increasingly emerging as critical links to the disruption of healthy physiological function, alterations in nutrition intake, exposure to hypoxic conditions and others, observed in brain disorders. Despite the generally accepted importance of the gut microbiome, the bidirectional communication routes between brain and gut are not fully understood. Elucidating these routes and signaling pathways in more detail offers novel mechanistic insight into the pathophysiology and multifaceted aspects of brain disorders.
Collapse
Affiliation(s)
| | | | | | - Nadiia Rykalo
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
28
|
Wang C, Wu L, Zhou R, Song C, Chen P, Huang S, Ali Khan A, Lu D, Hu Y, Chen L. Integration of microbiota and metabolomics reveals the analgesic mechanisms of emodin against neuropathic pain. Int Immunopharmacol 2023; 125:111170. [PMID: 37944218 DOI: 10.1016/j.intimp.2023.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/11/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Neuropathic pain (NeP) induced dysbiosis of intestinal microbiota in chronic constriction injury (CCI) rats. Emodin has analgesic effect but the detailed mechanism is not clear at the present time. This study aims to explore the underling mechanism of action of emodin against NeP with in CCI model. METHODS Male SD rats (180-220 g) were randomly divided into three groups: sham group, CCI group, and emodin group. Behavioral tests were performed to evaluate the therapeutic effects of emodin on CCI model. Feces and spinal cords of all rats were collected 15 days after surgery. 16S rDNA sequencing, untargeted metabolomics, qPCR and ELISA were performed. RESULTS Mechanical withdrawal thresholds (MWT), thermal withdrawal latency (TWL) and Sciatic functional index (SFI) in emodin group were significantly higher than CCI group (P < 0.05). Emodin not only inhibited the expression of pro-inflammatory cytokines in the spinal cords and colonic tissue, but also increased the expression of tight junction protein in colonic tissue. 16S rDNA sequencing showed that emodin treatment changed the community structure of intestinal microbiota in CCI rats. Untargeted metabolomics analysis showed that 33 differential metabolites were screened out between CCI group and emodin group. After verification, we found that emodin increased the level of S-adenosylmethionine (SAM) and Histamine in the spinal cord of CCI rats. CONCLUSION Emodin was effective in relieving neuropathic pain, which is linked to inhibition inflammatory response, increasing the proportion of beneficial bacteria and beneficial metabolites.
Collapse
Affiliation(s)
- Chen Wang
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lulu Wu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Runjin Zhou
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiwen Song
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Shiying Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ahsan Ali Khan
- Section of Neurosurgery, The Aga Khan University, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan
| | - Deng Lu
- Department of Neurosurgery, The Second People's Hospital of Pingnan, Pingnan, Guangxi, China
| | - Yong Hu
- Department of Orthopedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China.
| |
Collapse
|
29
|
Xu W, Xue W, Zhou Z, Wang J, Qi H, Sun S, Jin T, Yao P, Zhao JY, Lin F. Formate Might Be a Novel Potential Serum Metabolic Biomarker for Type 2 Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2023; 16:3147-3160. [PMID: 37842336 PMCID: PMC10576463 DOI: 10.2147/dmso.s428933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Background As one of the most frequent complications of type 2 diabetes mellitus (T2DM), diabetic peripheral neuropathy (DPN) shows a profound impact on 50% of patients with symptoms of neuropathic pain, numbness and other paresthesia. No valid serum biomarkers for the prediction of DPN have been identified in the clinic so far. This study is to investigate the potential serum biomarkers for DPN firstly based on 1H-Nuclear Magnetic Resonance (1H-NMR)-based metabolomics technique. Methods Thirty-six patients enrolled in this study were divided into two groups: 18 T2DM patients without DPN (T2DM group) and 18 T2DM patients with DPN (DPN group). Serum metabolites were measured via 1H-NMR spectroscopy. Bioinformatic approaches including principal component analysis (PCA), orthogonal partial least squares-discriminant analysis (OPLS-DA), independent sample t-test, Fisher's test, Pearson and Spearman correlation analysis, Stepwise multiple linear regression analysis and receiver operating characteristic (ROC) curve analysis were used to identify the potential altered serum biomarkers. Results A total of 20 metabolites were obtained and further analyzed. Formate was identified as the only potential biomarker that decreased in the DPN group with statistical significance after multiple comparisons (p<0.05). Formate also displayed a negative relationship with some elevated clinical markers in DPN. ROC curve analysis showed a good discriminative ability for formate in DPN with an area under the curve (AUC) value of 0.981. Conclusion Formate could be considered a potential serum metabolic biomarker for DPN. The reduced level of formate in DPN may be associated with mitochondrial dysfunction and gut microbiota alteration. Monitoring the level of serum formate would be an important strategy for the early diagnosis of DPN and a supplement of formate may be a promising treatment for DPN in the future.
Collapse
Affiliation(s)
- Weisheng Xu
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
- School of Medicine, Tongji University, Shanghai, 200331, People’s Republic of China
| | - Wangsheng Xue
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Zeyu Zhou
- School of Life Sciences, Fudan University, Shanghai, 200433, People’s Republic of China
| | - Jiying Wang
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Hui Qi
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Shiyu Sun
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Tong Jin
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Ping Yao
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200090, People’s Republic of China
| | - Fuqing Lin
- Department of Pain Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, 200072, People’s Republic of China
| |
Collapse
|
30
|
Jiao B, Cao X, Zhang C, Zhang W, Yu S, Zhang M, Zhang X. Alterations of the gut microbiota in patients with postherpetic neuralgia. AMB Express 2023; 13:108. [PMID: 37803181 PMCID: PMC10558420 DOI: 10.1186/s13568-023-01614-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/24/2023] [Indexed: 10/08/2023] Open
Abstract
Postherpetic neuralgia (PHN) is a prevalent, intricate, and intractable form of neuropathic pain. The available evidence indicates that alterations in the gut microbiota are significant environmental determinants in the development of chronic neuropathic pain. Nevertheless, the correlation between the gut microbiota and PHN remains elusive. A cross-sectional study was performed on a cohort of 27 patients diagnosed with PHN and 27 matched healthy controls. Fecal samples were collected and subjected to microbiota analysis using 16S ribosomal RNA gene sequencing. Comparable levels of bacterial richness and diversity were observed in the gut microbiota of PHN patients and healthy controls. A significant difference was observed in 37 genera between the two groups. Furthermore, the LEfSe method revealed that the abundance levels of Escherichia-Shigella, Streptococcus, Ligilactobacillus, and Clostridia_UCG-014_unclassified were elevated in PHN patients, while Eubacterium_hallii_group, Butyricicoccus, Tyzzerella, Dorea, Parasutterella, Romboutsia, Megamonas, and Agathobacter genera were reduced in comparison to healthy controls. Significantly, the discriminant model utilizing the predominant microbiota exhibited efficacy in distinguishing PHN patients from healthy controls, with an area under the curve value of 0.824. Moreover, Spearman correlation analysis demonstrated noteworthy correlations between various gut microbiota and clinical symptoms, including disease course, anxiety state, sleep quality, heat pain, pain intensity, and itching intensity. Gut microbiota dysbiosis exists in PHN patients, microbiome differences could be used to distinguish PHN patients from normal healthy individuals with high sensitivity and specificity, and altered gut microbiota are related to clinical manifestations, suggesting potentially novel prevention and therapeutic directions of PHN.
Collapse
Affiliation(s)
- Bo Jiao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xueqin Cao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Caixia Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wencui Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Shangchen Yu
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mi Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei Province, China.
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China.
| |
Collapse
|
31
|
Lu L, Mei L, Li X, Lin Y, Wang H, Yang G. Metabolomics profiling in predicting of post-herpetic neuralgia induced by varicella zoster. Sci Rep 2023; 13:14940. [PMID: 37697028 PMCID: PMC10495364 DOI: 10.1038/s41598-023-42363-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023] Open
Abstract
To explore potential metabolomics biomarkers in predicting post-herpetic neuralgia (PHN) induced by herpes zoster (HZ). A total of 90 eligible patients were prospectively enrolled and assigned into an acute pain (ACP) group and a PHN group. Serum samples were collected before clinical intervention to perform metabolomics profiling analyses using gas chromatography mass spectrometry (GC-MS). Key metabolites were identified using partial least squares discriminant analysis (PLS-DA). A binary logistic regression was used to build a combined biomarker model to predict PHN from ACP. The discriminating efficiency of the combined biomarker model was investigated and validated by internal validation. Six metabolites were identified as the key metabolites related to PHN. All these metabolites (N-Acetyl-5-hydroxytryptaMine, glucose, dehydroascorbic acid, isopropyl-beta-D-thiogalactopyranoside, 1,5-anhydro-D-sorbitol, and glutamic acid) were found elevated in the PHN group. Pathway analyses showed that glucose-alanine cycle, tryptophan metabolism, tyrosine metabolism, lactose degradation, malate-aspartate shuttle were top five metabolic pathways evolved in PHN. The AUC was 0.85 (95% CI 0.76-0.93) for the combined biomarker model, and was 0.91 (95% CI 0.84-1.00) for the internal validation data set to predict PHN. Metabolomics analyses of key metabolites could be used to predict PHN induced by HZ.
Collapse
Affiliation(s)
- Lina Lu
- Department of Dermatology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Lihong Mei
- Department of Dermatology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Xushuo Li
- Department of Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yanhua Lin
- Department of Clinical Laboratory, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Hongfeng Wang
- Department of Dermatology, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Gao Yang
- Department of Dermatology, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
32
|
Shi H, Chen M, Zheng C, Yinglin B, Zhu B. Fecal Microbiota Transplantation Alleviated Paclitaxel-Induced Peripheral Neuropathy by Interfering with Astrocytes and TLR4/p38MAPK Pathway in Rats. J Pain Res 2023; 16:2419-2432. [PMID: 37483406 PMCID: PMC10361291 DOI: 10.2147/jpr.s415642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/09/2023] [Indexed: 07/25/2023] Open
Abstract
Purpose Paclitaxel-induced peripheral neuropathy (PIPN) constitutes a refractory and progressive adverse consequence of paclitaxel treatment, causing pain and sensory anomalies in cancer survivors. Although the gut-brain axis is involved in multiple disorders including cancer, its impact on peripheral pain conditions remains elusive. Thus, we assessed the importance of gut microbiota and related mechanisms in PIPN. Methods By implementing fecal microbiota transplantation (FMT) in a rat PIPN model (ie, rats treated with paclitaxel; hereafter as PIPN rats), we explored the effect of gut microbiota on PIPN rats using multiple methods, including different behavioral tests, 16S ribosomal DNA (rDNA) sequencing, and biochemical techniques. Results Sequencing of 16S rDNA revealed that the abundance of genera Bacteroides and UCG-005 increased, while that of genera Turicibacter, Clostridium sensu stricto 1 and Corynebacterium decreased in the PIPN rats. However, when treated with FMT using fecal from normal rats, the mechanical allodynia and thermal hyperalgesia in PIPN rats were significantly alleviated. In addition, FMT treatment reduced the expression of toll-like receptor 4 (TLR4), phospho-p38 mitogen-activated protein kinase (p-p38MAPK), and the astrocytic marker glial fibrillary acidic protein in the colon and spinal dorsal horn. TAK242 (a TLR4 inhibitor) significantly alleviated the behavioral hypersensitivity of PIPN rats and inhibited the TLR4/p38MAPK pathway in astrocytes in these rats. Conclusion The gut microbiota played a critical role in PIPN. Future therapies treating PIPN should consider microbe-based treatment as an option.
Collapse
Affiliation(s)
- Haibin Shi
- Department of Anesthesiology, the Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
| | - Minmin Chen
- Department of Anesthesiology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Caihong Zheng
- Department of Anesthesiology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Bian Yinglin
- Department of Anesthesiology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| | - Bin Zhu
- Department of Anesthesiology, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
33
|
Nawarathna G, Fakhruddin KS, Shorbagi AISA, Samaranayake LP. The gut microbiota-neuroimmune crosstalk and neuropathic pain: a scoping review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2023; 4:e10. [PMID: 39295900 PMCID: PMC11406377 DOI: 10.1017/gmb.2023.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 09/21/2024]
Abstract
Environmental stressors can disrupt the gut-brain relationship and alter the gut microbial composition, potentially leading to chronic pain, including neuropathic pain (NP). To understand this complex relationship, we conducted a systematic scoping review to examine the gut microbial-neuroimmune connection to NP and the potential therapeutic targets. The review includes English-language manuscripts in databases such as MEDLINE, Cochrane, and DOAJ between January 2000 and April 2022. Out of the 48 full texts examined, only 15 articles met the inclusion criteria. These included a randomised controlled trial involving 327 individuals, an in vitro, and 13 animal model studies. The findings suggest that the gut flora plays a role in the immunological, neurological, and metabolic signalling pathways associated with NP. Animal studies have been the primary focus in this area, indicating that an imbalanced-gut microbiome and subsequent activation of biochemical and neuro-immunologic pathways may influence the development of NP. This review provides a comprehensive summary of the gut microbiome-immune-NP axis and identifies potential therapeutic targets. However, since most of the evidence comes from animal studies, future research should include clinical trials to gain a better understanding of the role of gut microbiota in NP and discover new therapeutic strategies.
Collapse
Affiliation(s)
- Gayani Nawarathna
- Department of Basic Sciences, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Kausar S. Fakhruddin
- Department of Preventive and Restorative Dentistry, University of Sharjah, Sharjah, UAE
| | - Ali I. S. A. Shorbagi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
34
|
Bai X, Batallé G, Martínez-Martel I, Pol O. Hydrogen Sulfide Interacting with Cannabinoid 2 Receptors during Sciatic Nerve Injury-Induced Neuropathic Pain. Antioxidants (Basel) 2023; 12:1179. [PMID: 37371911 DOI: 10.3390/antiox12061179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Hydrogen sulfide (H2S) donors make opioids more effective in inhibiting nociception during inflammatory and neuropathic pain. We examined whether the analgesic, anxiolytic and/or antidepressant actions of the cannabinoid 2 receptor (CB2R) agonist, JWH-133, might be improved by pretreatment with H2S donors, DADS and GYY4137 in mice with sciatic nerve injury-provoked neuropathy (CCI). The reversion of the antinociceptive effects of these treatments with the CB2R antagonist, AM630, and the regulatory actions of H2S in the phosphorylation of NF-κB inhibitor alpha (IKBα) and in the brain-derived neurotrophic factor (BDNF), CB2R, Nrf2 and heme oxygenase 1 (HO-1) levels in prefrontal cortex (PFC), ventral hippocampus (vHIP) and periaqueductal gray matter (PAG), were examined. Data showed that the analgesic effects of JWH-133, systemically and locally administered, were improved by the DADS or GYY4137 pretreatment. The co-treatment of GYY4137 with JWH-133 also stopped anxiodepressive-like activities that concur with neuropathy. Our data likewise showed that both H2S donors normalized the inflammatory (p-IKBα), neurotrophic (BDNF) variations caused by CCI, increased the expression of CB2R and activated the Nrf2/HO-1 antioxidant pathway in PFC, v-HIP and/or PAG of animals with neuropathic pain. In addition, the blockade of the analgesia produced by high doses of DADS and GYY4137 with AM630 indicated the contribution of the endocannabinoid system in the effects of H2S during neuropathic pain, thus supporting the positive interaction between H2S and CB2R. Therefore, this study demonstrates the potential use of CB2R agonists combined with H2S donors as a possible treatment for peripheral nerve injury-caused neuropathic pain and the associated emotional disturbances.
Collapse
Affiliation(s)
- Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Ignacio Martínez-Martel
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
35
|
Chen P, Wang C, Gong Q, Chai Y, Chen Y, Song C, Wu Y, Wang L. Alterations of endogenous pain-modulatory system of the cerebral cortex in the neuropathic pain. iScience 2023; 26:106668. [PMID: 37168579 PMCID: PMC10165265 DOI: 10.1016/j.isci.2023.106668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/23/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023] Open
Abstract
Neuropathic pain (NeP) remains a significant clinical challenge owing to insufficient awareness of its pathological mechanisms. We elucidated the aberrant metabolism of the cerebral cortex in NeP induced by the chronic constriction injury (CCI) using metabolomics and proteomics analyses. After CCI surgery, the values of MWT and TWL markedly reduced and maintained at a low level. CCI induced the significant dysregulation of 57 metabolites and 31 proteins in the cerebral cortex. Integrative analyses showed that the differentially expressed metabolites and proteins were primarily involved in alanine, aspartate and glutamate metabolism, GABAergic synapse, and retrograde endocannabinoid signaling. Targeted metabolomics and western blot analysis confirmed the alterations of some key metabolites and proteins in endogenous pain-modulatory system. In conclusion, our study revealed the alterations of endocannabinoids system and purinergic system in the CCI group, and provided a novel perspective on the roles of endogenous pain-modulatory system in the pathological mechanisms of NeP.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
- Corresponding author
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, Guangdong, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Yihui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Yunzhi Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Cuiwen Song
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
| | - Yuanhua Wu
- The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China
- Corresponding author
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
- Corresponding author
| |
Collapse
|
36
|
Chen P, Huang NY, Pang B, Ye ZJ, Luo RX, Liu C, Gong Q, Wang C, Wang L. Proteomic and metabolomic approaches elucidate the molecular mechanism of emodin against neuropathic pain through modulating the gamma-aminobutyric acid (GABA)-ergic pathway and PI3K/AKT/NF-κB pathway. Phytother Res 2023; 37:1883-1899. [PMID: 36723382 DOI: 10.1002/ptr.7704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/12/2022] [Accepted: 11/20/2022] [Indexed: 02/02/2023]
Abstract
Neuropathic pain (NeP) is a major health concern. Due to the complex pathological mechanisms, management of NeP is challenging. Emodin, a natural anthraquinone derivative, exerts excellent analgesic effects. However, its mechanisms of action are still poorly understood. In this study, we investigated the mechanisms underlying pain-relief effects of emodin in the cerebral cortex using proteomic and metabolomic approaches. After 15 days of emodin administration, the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) values in the emodin groups were significantly higher than those in the chronic constriction injury (CCI) group (p < .05), suggesting emodin treatment could reverse CCI-induced hyperalgesia. Emodin treatment evoked the expression alteration of 402 proteins (153 up-regulated and 249 down-regulated) in the CCI models, which were primarily involved in PI3K/AKT signaling pathway, gamma-aminobutyric acid (GABA) receptor signaling, complement and coagulation cascades, cGMP/PKG signaling pathway, MAPK signaling pathway, and calcium signaling pathway. In parallel, emodin intervention regulated the abundance alteration of 27 brain metabolites (20 up-regulated and 7 down-regulated) in the CCI rats, which were primarily implicated in carbon metabolism, biosynthesis of amino acids, pentose phosphate pathway, and glucagon signaling pathway. After a comprehensive analysis and western blot validation, we demonstrated that emodin alleviated NeP mainly through regulating GABAergic pathway and PI3K/AKT/NF-κB pathway.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China
| | - Bo Pang
- Medical Ward, Traditional Chinese Medicine Hospital of Huangpu District, Guangzhou, China
| | - Zeng-Jie Ye
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui-Xi Luo
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chang Liu
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chen Wang
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China
| |
Collapse
|
37
|
Calabrò S, Kankowski S, Cescon M, Gambarotta G, Raimondo S, Haastert-Talini K, Ronchi G. Impact of Gut Microbiota on the Peripheral Nervous System in Physiological, Regenerative and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24098061. [PMID: 37175764 PMCID: PMC10179357 DOI: 10.3390/ijms24098061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
It has been widely demonstrated that the gut microbiota is responsible for essential functions in human health and that its perturbation is implicated in the development and progression of a growing list of diseases. The number of studies evaluating how the gut microbiota interacts with and influences other organs and systems in the body and vice versa is constantly increasing and several 'gut-organ axes' have already been defined. Recently, the view on the link between the gut microbiota (GM) and the peripheral nervous system (PNS) has become broader by exceeding the fact that the PNS can serve as a systemic carrier of GM-derived metabolites and products to other organs. The PNS as the communication network between the central nervous system and the periphery of the body and internal organs can rather be affected itself by GM perturbation. In this review, we summarize the current knowledge about the impact of gut microbiota on the PNS, with regard to its somatic and autonomic divisions, in physiological, regenerative and pathological conditions.
Collapse
Affiliation(s)
- Sonia Calabrò
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Department of Biology, University of Padova, Viale G. Colombo 3, 35131 Padova, Italy
| | - Svenja Kankowski
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Giovanna Gambarotta
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Kirsten Haastert-Talini
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Center for Systems Neuroscience Hannover (ZSN), Buenteweg 2, 30559 Hannover, Germany
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences & Neuroscience Institute Cavalieri Ottolenghi (NICO), University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| |
Collapse
|
38
|
Jin MY, Everett ES, Abd-Elsayed A. Microbiological and Physiological Effects of Pain. Curr Pain Headache Rep 2023; 27:165-173. [PMID: 37086365 PMCID: PMC10122082 DOI: 10.1007/s11916-023-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Pain is an important innate defense mechanism that can dramatically alter a person's quality of life. Understanding the microbiological and physiological effects of pain may be important in the pursuit of novel pain interventions. The three descriptors of pain recognized by the International Association for the Study of Pain are nociceptive, neuropathic, and nociplastic pain. Our review examined the current understanding of all three pain types, focusing on the key molecules involved in the manifestation of each type as well as physiological effects. Additionally, we compared the differences in painful and painless neuropathies and discussed the neuroimmune interaction involved in the manifestation of pain.
Collapse
Affiliation(s)
- Max Y Jin
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Erin S Everett
- Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
39
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
40
|
Zhang JL, Xian H, Zhao R, Luo C, Xie RG, Tian T, Cong R. Brachial plexus avulsion induced changes in gut microbiota promotes pain related anxiety-like behavior in mice. Front Neurol 2023; 14:1084494. [PMID: 36846129 PMCID: PMC9944865 DOI: 10.3389/fneur.2023.1084494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/24/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Brachial plexus avulsion (BPA) injury develops frequent and intense neuropathic pain, involving in both peripheral and central nervous systems. The incidence of anxiety or depression caused by BPA-induced neuropathic pain is high, but the underlying mechanism remains unclear. Methods We established a BPA mice model and assessed its negative emotions through behavioral tests. To further explore the role of the microbiota-gut-brain axis in the unique emotional behavior after BPA, we performed intestinal fecal 16s and metabolomics assays. Psychobiotics (PB) supplementation was administered to BPA mice to check the probiotics effects on BPA-induced anxiety behaviors. Results Pain related anxiety-like behavior was observed at the early stage after BPA (7 days), while no depression-like behavior was detected. Intriguingly, gut microbiota diversity was increased in BPA mice, and the most abundant probiotics, Lactobacillus, showed obvious changes. Lactobacillus_reuteri was significantly decreased in BPA mice. Metabolomics analysis showed that Lactobacillus_reuteri-related bile acid pathway and some neurotransmitter amino acids were significantly altered. Further PB (dominated by Lactobacillus_reuteri) supplementation could significantly relieve BPA-induced anxiety-like behaviors in mice. Conclusion Our study suggests that pathological neuralgia after BPA could alter intestinal microbiota diversity, especially Lactobacillus, and the changes in neurotransmitter amino acid metabolites may be the key reason for the onset of anxiety-like behaviors in BPA mice.
Collapse
Affiliation(s)
- Jian-lei Zhang
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Hang Xian
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Rou-gang Xie
- Department of Neurobiology, School of Basic Medicine, Air Force Medical University, Xi'an, China
| | - Tong Tian
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, Air Force Medical University, Xi'an, China,*Correspondence: Rui Cong ✉
| |
Collapse
|
41
|
Gut microbiota in chronic pain: Novel insights into mechanisms and promising therapeutic strategies. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
42
|
Altered serum bile acid profile in fibromyalgia is associated with specific gut microbiome changes and symptom severity. Pain 2023; 164:e66-e76. [PMID: 35587528 DOI: 10.1097/j.pain.0000000000002694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Alterations in the composition and function of the gut microbiome in women with fibromyalgia have recently been demonstrated, including changes in the relative abundance of certain bile acid-metabolizing bacteria. Bile acids can affect multiple physiological processes, including visceral pain, but have yet to be explored for association to the fibromyalgia gut microbiome. In this study, 16S rRNA sequencing and targeted metabolomic approaches were used to characterize the gut microbiome and circulating bile acids in a cohort of 42 women with fibromyalgia and 42 healthy controls. Alterations in the relative abundance of several bacterial species known to metabolize bile acids were observed in women with fibromyalgia, accompanied by significant alterations in the serum concentration of secondary bile acids, including a marked depletion of α-muricholic acid. Statistical learning algorithms could accurately detect individuals with fibromyalgia using the concentration of these serum bile acids. Serum α-muricholic acid was highly correlated with symptom severity, including pain intensity and fatigue. Taken together, these findings suggest serum bile acid alterations are implicated in nociplastic pain. The changes observed in the composition of the gut microbiota and the concentration of circulating secondary bile acids seem congruent with the phenotype of increased nociception and are quantitatively correlated with symptom severity. This is a first demonstration of circulating bile acid alteration in individuals with fibromyalgia, potentially secondary to upstream gut microbiome alterations. If corroborated in independent studies, these observations may allow for the development of molecular diagnostic aids for fibromyalgia as well as mechanistic insights into the syndrome.
Collapse
|
43
|
Mázala-de-Oliveira T, Jannini de Sá YAP, Carvalho VDF. Impact of gut-peripheral nervous system axis on the development of diabetic neuropathy. Mem Inst Oswaldo Cruz 2023; 118:e220197. [PMID: 36946851 PMCID: PMC10027071 DOI: 10.1590/0074-02760220197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/14/2023] [Indexed: 03/22/2023] Open
Abstract
Diabetes is a chronic metabolic disease caused by a reduction in the production and/or action of insulin, with consequent development of hyperglycemia. Diabetic patients, especially those who develop neuropathy, presented dysbiosis, with an increase in the proportion of pathogenic bacteria and a decrease in the butyrate-producing bacteria. Due to this dysbiosis, diabetic patients presented a weakness of the intestinal permeability barrier and high bacterial product translocation to the bloodstream, in parallel to a high circulating levels of pro-inflammatory cytokines such as TNF-α. In this context, we propose here that dysbiosis-induced increased systemic levels of bacterial products, like lipopolysaccharide (LPS), leads to an increase in the production of pro-inflammatory cytokines, including TNF-α, by Schwann cells and spinal cord of diabetics, being crucial for the development of neuropathy.
Collapse
Affiliation(s)
| | | | - Vinicius de Frias Carvalho
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Rio de Janeiro, RJ, Brasil
- + Corresponding author:
| |
Collapse
|
44
|
Tonelli Enrico V, Vo N, Methe B, Morris A, Sowa G. An unexpected connection: A narrative review of the associations between Gut Microbiome and Musculoskeletal Pain. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2022; 31:3603-3615. [PMID: 36308543 PMCID: PMC9617047 DOI: 10.1007/s00586-022-07429-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.
Collapse
Affiliation(s)
- Valerio Tonelli Enrico
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA.
- Department of Physical Therapy, University of Pittsburgh, 100 Technology Dr, Pittsburgh, PA, 15219, USA.
| | - Nam Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
| | - Barbara Methe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Alison Morris
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, 1218 Scaife Hall 3550 Terrace Street, Pittsburgh, PA, 15261, USA
| | - Gwendolyn Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, 200 Lothrop Street, Room E1612, BST, Pittsburgh, PA, 15261, USA
- Department of Physical Medicine and Rehabilitation, School of Medicine, University of Pittsburgh, Kaufmann Medical Building, Suite 910, 3471 Fifth Avenue, Pittsburgh, PA, 15213, USA
| |
Collapse
|
45
|
Chung S, Kim H, Kim D, Lee JM, Lee CJ, Oh SB. Common bacterial metabolite indole directly activates nociceptive neuron through transient receptor potential ankyrin 1 channel. Pain 2022; 163:1530-1541. [PMID: 34817438 DOI: 10.1097/j.pain.0000000000002542] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Nociceptors are known to directly recognize bacterial cell wall components or secreted toxins, thereby leading to pain induced by bacterial infection. However, direct activation of nociceptors by bacterial metabolites remains unclear although bacteria produce numerous metabolites related to health and disease. In this study, we investigated whether and how a common bacterial metabolite, indole, which is produced by normal microflora of the gastrointestinal tract and oral cavity, can directly activate nociceptive sensory neurons. We found that indole elicits calcium response and evokes inward currents in subsets of dorsal root ganglia (DRG) neurons. Intraplantar (i.pl.) injection of indole produced nocifensive behaviors in adult mice, which were enhanced in complete Freund's adjuvant-induced chronic inflammatory condition. Indole increased calcitonin gene-related peptide release in DRG neurons, and i.pl. injection of indole increased hind paw thickness, suggesting its role in generation of neurogenic inflammation. These in vitro and in vivo indole-induced responses were pharmacologically blocked by transient receptor potential ankyrin 1 (TRPA1) antagonist, HC-030031, and significantly abolished in TRPA1 knockout (KO) mice, indicating that indole targets TRPA1 for its action in DRG neurons. Nocifensive licking behavior induced by the injection of live Escherichia coli was significantly decreased in tryptophanase mutant (TnaA KO) E. coli- injected mice that lack indole production, further supporting the idea that bacteria-derived indole can induce pain during infection. Identifying the mechanism of action of indole through TRPA1 provides insights into bacteria-neuron interactions and the role of bacterial metabolites in pain signaling, especially in inflammation-accompanied bacterial infection.
Collapse
Affiliation(s)
- Sena Chung
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hayun Kim
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Doyun Kim
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Jung Moo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Seog Bae Oh
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Neuroscience, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Bai X, Batallé G, Balboni G, Pol O. Hydrogen Sulfide Increases the Analgesic Effects of µ- and δ-Opioid Receptors during Neuropathic Pain: Pathways Implicated. Antioxidants (Basel) 2022; 11:antiox11071321. [PMID: 35883812 PMCID: PMC9311550 DOI: 10.3390/antiox11071321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Recent studies have revealed that hydrogen sulfide (H2S) increases the analgesic actions of the δ-opioid receptor (DOR) in inflammatory pain. However, the possible improvement of the analgesia of μ-opioid receptor (MOR) and DOR agonists during neuropathic pain, through pretreatment with two slow-releasing H2S donors—DADS (diallyl disulfide) and GYY4137 (morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate dichloromethane complex)—is still unknown. In male C57BL/6J mice with neuropathic pain incited by chronic constriction of the sciatic nerve (CCI), we evaluated: (1) the influence of DADS (3.5 mg/kg) and GYY4137 (0.7 mg/kg) on the inhibition of the allodynia and hyperalgesia produced by the systemic or local administration of morphine (3 mg/kg or 65 µg) and UFP-512 (1 mg/kg or 12.5 µg); (2) the reversion of the antinociceptive actions of high doses of DADS (30 mg/kg) and GYY4137 (24 mg/kg) with MOR and DOR antagonists; and (3) the effects of H2S donors on oxidative stress, apoptotic responses, and MOR and DOR expression in the medial septum (MS) and dorsal root ganglia (DRG). The results revealed that both DADS and GYY4137 improved the antiallodynic effects of morphine and UFP-512, possibly by up-regulating MOR and DOR expression in DRG. The administration of MOR and DOR antagonists blocked the analgesic properties of DADS and GYY4137, revealing the feasible participation of the endogenous opioid system in H2S analgesic effects. Moreover, both H2S donors inhibited oxidative stress and apoptosis generated by CCI in the MS and/or DRG. This study suggests the co-treatment of H2S donors with MOR or DOR agonists as a potential therapy for neuropathic pain.
Collapse
Affiliation(s)
- Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gianfranco Balboni
- Unit of Pharmaceutical, Pharmacological and Nutraceutical Sciences, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy;
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (X.B.); (G.B.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
47
|
Chen P, Zhang J, Wang C, Chai YH, Wu AG, Huang NY, Wang L. The pathogenesis and treatment mechanism of Parkinson's disease from the perspective of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154044. [PMID: 35338993 DOI: 10.1016/j.phymed.2022.154044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with no treatment currently available to modify its progression. Traditional Chinese medicine (TCM) has gained attention for its unique theoretical basis and clinical effects. Many studies have reported on the clinical effects and pharmacological mechanisms of Chinese herbs in PD. However, few studies have focused on the treatment mechanisms of anti-PD TCM drugs from the perspective of TCM itself. PURPOSE To elaborate the treatment mechanisms of anti-PD TCM drugs in the perspective of TCM. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others up to July 2021. RESULTS TCM theory states that PD is caused by a dysfunction of the zang-fu organs (liver, spleen, kidney, and lung) and subsequent pathogenic factors (wind, fire, phlegm, and blood stasis). Based on the pathogenesis, removing pathogenic factors and restoring visceral function are two primary treatment principles for PD in TCM. The former includes dispelling wind, clearing heat, resolving phlegm, and promoting blood circulation, while the latter involves nourishing the liver and kidney and strengthening the spleen. The anti-PD mechanisms of the active ingredients of TCM compounds and herbs at different levels include anti-apoptosis, anti-inflammation, and anti-oxidative stress, as well as the restoration of mitochondrial function and the regulation of autophagy and neurotransmitters. CONCLUSION Chinese herbs and prescriptions can be used to treat PD by targeting multiple pharmacological mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Jie Zhang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Hui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
48
|
Role of gut microbiota in neuropathy and neuropathic pain states: A systematic preclinical review. Neurobiol Dis 2022; 170:105773. [PMID: 35623598 DOI: 10.1016/j.nbd.2022.105773] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/29/2022] [Accepted: 05/16/2022] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota has implications in Central Nervous System (CNS) disorders. Our study systematically identified preclinical studies aimed to investigate the possible gut microbiota contribution in neuropathy and neuropathic pain. The systematic review is reported in accordance with PRISMA checklist and guidelines outlined updated to 2020. We included research articles reporting neuropathy-related behavioral evaluations and/or neurological scores coupled to gut microbiota analysis performed by high-throughput technologies in the last ten years. Two investigators performed a search through 3 electronic bibliographic databases for full-text articles (PubMed, Scopus, and EMBASE) and three registries (Prospero, SyRF, and bioRxiv), cross-references, and linear searches. We assessed the methodological quality via the CAMARADES checklist and appraised the heterogeneous body of evidence by narrative synthesis. In total, there were 19 eligible studies. The most of these reports showed significant changes in gut microbiota setting in neuropathy conditions. The major gut microbiome remodeling was through fecal microbiome transplantation. Mechanistic proof of the gut-CNS communication was achieved by measuring inflammatory mediators, metabolic products, or neurotransmitters. As a limitation, we found considerable heterogeneity across eligible studies. We conclude that the current understanding of preclinical findings suggested an association between neuropathy and/or neuropathic pain and gut microbiota modifications. Our analysis provides the basis for further studies targeting microbiota for managing symptoms of neuropathy or other neuroinflammation-based CNS disorders. The systematic review protocol was registered on the international database Prospero under the registration number (# 257628).
Collapse
|
49
|
Cheng X, Chu J, Zhang L, Suo Z, Tang W. Intracellular and extracellular untargeted metabolomics reveal the effect of acute uranium exposure in HK-2 cells. Toxicology 2022; 473:153196. [PMID: 35525329 DOI: 10.1016/j.tox.2022.153196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 04/30/2022] [Indexed: 11/15/2022]
Abstract
Uranium exposure poses a serious threat to the health of occupational populations and the public. Although metabolomics is a promising research approach to study the toxicological mechanisms of uranium exposure, in vitro studies using human cells are scarce. Applying cultured cell metabolomics, we exhaustively analyzed the intracellular and extracellular differential metabolites upon uranium exposure and characterized the possible biological effects of uranium exposure on human kidney cells. Uranium exposure significantly induced disturbance in the amino acid biosynthesis and linoleic acid metabolism of the cells. Cells exposed to uranium produce excessive amounts of arachidonic acid, which has the potential to cause oxidative stress and damage cells. The results provide new evidence for an oxidative stress mechanism of uranium-induced renal cell injury. Cell metabolomics has proven to be a useful diagnostic tool to study the molecular mechanisms of uranium poisoning.
Collapse
Affiliation(s)
- Xuedan Cheng
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; Center for Medical Radiation Biology, 903 Hospital, Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Jian Chu
- Center for Medical Radiation Biology, 903 Hospital, Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Liandong Zhang
- Center for Medical Radiation Biology, 903 Hospital, Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Zhirong Suo
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Wei Tang
- Center for Medical Radiation Biology, 903 Hospital, Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China.
| |
Collapse
|
50
|
Abstract
The gut microbiome plays critical roles in human health and disease. Recent studies suggest it may also be associated with chronic pain and postoperative pain outcomes. In animal models, the composition of the gut microbiome changes after general anesthesia and affects the host response to medications, including anesthetics and opioids. In humans, the gut microbiome is associated with the development of postoperative pain and neurocognitive disorders. Additionally, the composition of the gut microbiome has been associated with pain conditions including visceral pain, nociplastic pain, complex regional pain syndrome, and headaches, partly through altered concentration of circulating bacterial-derived metabolites. Furthermore, animal studies demonstrate the critical role of the gut microbiome in neuropathic pain via immunomodulatory mechanisms. This article reviews basic concepts of the human gut microbiome and its interactions with the host and provide a comprehensive overview of the evidence linking the gut microbiome to anesthesiology, critical care, and pain medicine.
Collapse
|