1
|
Odaira-Satoh T, Nakagawasai O, Takahashi K, Ono R, Wako M, Nemoto W, Tan-No K. Captopril prevents depressive-like behavior in an animal model of depression by enhancing hippocampal neurogenesis via activation of the ACE2/Ang (1-7)/Mas receptor/AMPK/BDNF pathway. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111198. [PMID: 39561916 DOI: 10.1016/j.pnpbp.2024.111198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/23/2024] [Accepted: 11/15/2024] [Indexed: 11/21/2024]
Abstract
The brain's Renin-Angiotensin System plays an important role in the modulation of mental state. Previously we demonstrated that activated angiotensin (Ang) converting enzyme (ACE) 2, which converts Ang II into Ang (1-7), or the intracerebroventricular administration of Ang (1-7) produced an antidepressant-like effect in mice via Mas receptors (MasR). Since the ACE inhibitor Captopril (Cap) increases Ang (1-7) in the brain, it remains unknown whether Cap affects the depressive-like behavior of olfactory bulbectomized (OBX) mice, an animal model of depression. We tested the effect of Cap on the depressive-like behavior of these mice in the tail-suspension test, quantified ACE2, p-AMP activated protein kinase (AMPK), and brain-derived neurotrophic factor (BDNF) using western blots, and examined the changes in Ang (1-7) level, neurogenesis, and in the expression of ACE2 and MasR on various cell types in the hippocampus using immunohistochemistry. While OBX mice exhibited a depressive-like behavior in the tail-suspension test, as well as a reduction in ACE2, Ang (1-7), p-AMPK, BDNF, and hippocampal neurogenesis, these changes were prevented by Cap administration. The intracerebroventricular administration of Ang (1-7) improved the OBX-induced depressive-like behavior. Except for the changes in ACE2 and Ang (1-7), the effects of Cap were inhibited by the coadministration of A779 (MasR inhibitor) or Compound-C (AMPK inhibitor). ACE2 localized to all cell types, while MasR localized to microglia and neurons. Our results suggest that Cap may act on ACE2-positive cells in the hippocampus to increase ACE2 expression level, thereby enhancing signaling in the ACE2/Ang (1-7)/MasR/AMPK/BDNF pathway and producing antidepressant-like effects.
Collapse
Affiliation(s)
- Takayo Odaira-Satoh
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Kohei Takahashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan; Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Ryotaro Ono
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Miharu Wako
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
2
|
Nakagawasai O, Takahashi K, Suzuki T, Yamagata R, Nemoto W, Tan-No K. Long-term effects of a single high-dose intraperitoneal injection of lipopolysaccharide on depression-like behavior in adolescent mice. Neurosci Lett 2024; 842:137989. [PMID: 39276844 DOI: 10.1016/j.neulet.2024.137989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The commonly used lipopolysaccharide (LPS)-induced depression models often evaluate depression-like behaviors in the acute phase after a single intraperitoneal injection of LPS, and are not suitable for examining long-term depression-like behaviors. To overcome this limitation, we developed a mice LPS model for elucidating the long-term pathophysiology of depression. Using the tail-suspension test, we show that a single intraperitoneal injection of a high dose (1.66 mg/kg) of LPS prolonged depression-like behavior to 14 days after LPS administration unlike 4 days after administration for the most commonly used LPS dose (0.83 mg/kg). Upon high-LPS dose administration, TNF-α levels in the cerebrospinal fluid were increased only on the first day after administration. Moreover, LPS-induced depression-like behavior on day 10 after LPS administration was prevented by imipramine or minocycline. Immunohistochemical analysis revealed reduced neurogenesis in the hippocampal dentate gyrus of LPS-treated mice on day 10 of LPS administration. The LPS model, in which a single intraperitoneal administration of LPS at a dose double of the standard dose used currently, exhibits depression-like behavior via reduced neurogenesis mediated by neuroinflammation, and should be useful for elucidating the long-term pathophysiology of depression and for studying antidepressant drugs.
Collapse
Affiliation(s)
- Osamu Nakagawasai
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Kohei Takahashi
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan; Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, Ohtawara, Tochigi 324-8501, Japan
| | - Takuto Suzuki
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Ryota Yamagata
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Wataru Nemoto
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| | - Koichi Tan-No
- Division of Pharmacology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan
| |
Collapse
|
3
|
Yang G, Khan A, Liang W, Xiong Z, Stegbauer J. Aortic aneurysm: pathophysiology and therapeutic options. MedComm (Beijing) 2024; 5:e703. [PMID: 39247619 PMCID: PMC11380051 DOI: 10.1002/mco2.703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin-angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1-7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1-7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1-7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1-7)/MasR's clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.
Collapse
Affiliation(s)
- Guang Yang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Institute of Translational Medicine Shenzhen Second People's Hospital The First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Life Sciences Yuncheng University Yuncheng China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Abbas Khan
- Department of Nutrition and Health Promotion University of Home Economics Lahore Pakistan Lahore Pakistan
| | - Wei Liang
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Zibo Xiong
- Division of Renal Medicine Peking University Shenzhen Hospital Shenzhen China
- Shenzhen Clinical Research Center for Urology and Nephrology Shenzhen China
| | - Johannes Stegbauer
- Department of Nephrology Medical Faculty University Hospital Düsseldorf Heinrich Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
4
|
Ma YS, Deng SQ, Zhang P, Thomsen JS, Andreasen A, Chang SJ, Zhang J, Gu L, Zhai XY. Identification of countercurrent tubule-vessel arrangements in the early development of mouse kidney based on immunohistochemistry and computer-assisted 3D visualization. PLoS One 2024; 19:e0307223. [PMID: 39137214 PMCID: PMC11321558 DOI: 10.1371/journal.pone.0307223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
Nephron loop-vessel countercurrent arrangement in the medulla provides the structural basis for the formation of concentrated urine. To date, the morphogenesis of it and relevant water and solutes transportation has not been fully elucidated. In this study, with immunohistochemistry for aquaporins (AQP) and Na-K-2Cl co-transporter (NKCC2), as well as 3D visualization, we noticed in embryonic day 14.5 kidneys that the countercurrent arrangement of two pairs of loop-vessel was established as soon as the loop and vessel both extended into the medulla. One pair happened between descending limb and ascending vasa recta, the other occurred between thick ascending limb and descending vasa recta. Meanwhile, the immunohistochemical results showed that the limb and vessel expressing AQP-1 such as descending thick and thin limb and descending vasa recta was always accompanied with AQP-1 negative ascending vasa recta or capillaries and thick ascending limb, respectively. Moreover, the thick ascending limb expressing NKCC2 closely contacted with descending vasa recta without expressing NKCC2. As kidney developed, an increasing number of loop-vessels in countercurrent arrangement extended into the interstitium of the medulla. In addition, we observed that the AQP-2 positive ureteric bud and their branches were separated from those pairs of tubule-vessels by a relatively large and thin-walled veins or capillaries. Thus, the present study reveals that the loop-vessel countercurrent arrangement is formed at the early stage of nephrogenesis, which facilitates the efficient transportation of water and electrolytes to maintain the medullary osmolality and to form a concentrated urine.
Collapse
Affiliation(s)
- Yun-Sheng Ma
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
- Department of Morphology, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Si-Qi Deng
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
- Department of Pathology, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ping Zhang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
- Department of Morphology, Medical College of Jinzhou Medical University, Jinzhou, Liaoning, China
| | | | - Arne Andreasen
- Department of Biomedicine–Anatomy, Aarhus University, Aarhus, Denmark
| | - Shi-Jie Chang
- Department of Biomedical Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
| | - Jie Zhang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
| | - Ling Gu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, China
- Institute of Nephropathology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Passaglia P, Kanashiro A, Batista Silva H, Carlos Carvalho Navegantes L, Lacchini R, Capellari Cárnio E, Branco LGS. Diminazene aceturate attenuates systemic inflammation via microbiota gut-5-HT brain-spleen sympathetic axis in male mice. Brain Behav Immun 2024; 119:105-119. [PMID: 38548186 DOI: 10.1016/j.bbi.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The sympathetic arm of the inflammatory reflex is the efferent pathway through which the central nervous system (CNS) can control peripheral immune responses. Diminazene aceturate (DIZE) is an antiparasitic drug that has been reported to exert protective effects on various experimental models of inflammation. However, the pathways by which DIZE promotes a protective immunomodulatory effects still need to be well established, and no studies demonstrate the capacity of DIZE to modulate a neural reflex to control inflammation. C57BL/6 male mice received intraperitoneal administration of DIZE (2 mg/Kg) followed by lipopolysaccharide (LPS, 5 mg/Kg, i.p.). Endotoxemic animals showed hyperresponsiveness to inflammatory signals, while those treated with DIZE promoted the activation of the inflammatory reflex to attenuate the inflammatory response during endotoxemia. The unilateral cervical vagotomy did not affect the anti-inflammatory effect of DIZE in the spleen and serum. At the same time, splenic denervation attenuated tumor necrosis factor (TNF) synthesis in the spleen and serum. Using broad-spectrum antibiotics for two weeks showed that LPS modulated the microbiota to induce a pro-inflammatory profile in the intestine and reduced the serum concentration of tryptophan and serotonin (5-HT), while DIZE restored serum tryptophan and increased the hypothalamic 5-HT levels. Furthermore, the treatment with 4-Chloro-DL-phenylalanine (pcpa, an inhibitor of 5-HT synthesis) abolished the anti-inflammatory effects of the DIZE in the spleen. Our results indicate that DIZE promotes microbiota modulation to increase central 5-HT levels and activates the efferent sympathetic arm of the inflammatory reflex to control splenic TNF production in endotoxemic mice.
Collapse
Affiliation(s)
- Patrícia Passaglia
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Alexandre Kanashiro
- Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Hadder Batista Silva
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Evelin Capellari Cárnio
- Department of General Nursing, School of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Oral and Basic Biology Ribeirão Preto, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
6
|
Villapol S, Janatpour ZC, Affram KO, Symes AJ. The Renin Angiotensin System as a Therapeutic Target in Traumatic Brain Injury. Neurotherapeutics 2023; 20:1565-1591. [PMID: 37759139 PMCID: PMC10684482 DOI: 10.1007/s13311-023-01435-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) is a major public health problem, with limited pharmacological options available beyond symptomatic relief. The renin angiotensin system (RAS) is primarily known as a systemic endocrine regulatory system, with major roles controlling blood pressure and fluid homeostasis. Drugs that target the RAS are used to treat hypertension, heart failure and kidney disorders. They have now been used chronically by millions of people and have a favorable safety profile. In addition to the systemic RAS, it is now appreciated that many different organ systems, including the brain, have their own local RAS. The major ligand of the classic RAS, Angiotensin II (Ang II) acts predominantly through the Ang II Type 1 receptor (AT1R), leading to vasoconstriction, inflammation, and heightened oxidative stress. These processes can exacerbate brain injuries. Ang II receptor blockers (ARBs) are AT1R antagonists. They have been shown in several preclinical studies to enhance recovery from TBI in rodents through improvements in molecular, cellular and behavioral correlates of injury. ARBs are now under consideration for clinical trials in TBI. Several different RAS peptides that signal through receptors distinct from the AT1R, are also potential therapeutic targets for TBI. The counter regulatory RAS pathway has actions that oppose those stimulated by AT1R signaling. This alternative pathway has many beneficial effects on cells in the central nervous system, bringing about vasodilation, and having anti-inflammatory and anti-oxidative stress actions. Stimulation of this pathway also has potential therapeutic value for the treatment of TBI. This comprehensive review will provide an overview of the various components of the RAS, with a focus on their direct relevance to TBI pathology. It will explore different therapeutic agents that modulate this system and assess their potential efficacy in treating TBI patients.
Collapse
Affiliation(s)
- Sonia Villapol
- Department of Neurosurgery, Houston Methodist Hospital, Houston, TX, USA
| | - Zachary C Janatpour
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Kwame O Affram
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Aviva J Symes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|