1
|
Lu CH, Lee CE, Nakamoto ML, Cui B. Cellular Signaling at the Nano-Bio Interface: Spotlighting Membrane Curvature. Annu Rev Phys Chem 2025; 76:251-277. [PMID: 40258240 PMCID: PMC12043246 DOI: 10.1146/annurev-physchem-090722-021151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
No longer viewed as a passive consequence of cellular activities, membrane curvature-the physical shape of the cell membrane-is now recognized as an active constituent of biological processes. Nanoscale topographies on extracellular matrices or substrate surfaces impart well-defined membrane curvatures on the plasma membrane. This review examines biological events occurring at the nano-bio interface, the physical interface between the cell membrane and surface nanotopography, which activates intracellular signaling by recruiting curvature-sensing proteins. We encompass a wide range of biological processes at the nano-bio interface, including cell adhesion, endocytosis, glycocalyx redistribution, regulation of mechanosensitive ion channels, cell migration, and differentiation. Despite the diversity of processes, we call attention to the critical role of membrane curvature in each process. We particularly highlight studies that elucidate molecular mechanisms involving curvature-sensing proteins with the hope of providing comprehensive insights into this rapidly advancing area of research.
Collapse
Affiliation(s)
- Chih-Hao Lu
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Christina E Lee
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA
| | - Melissa L Nakamoto
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California, USA;
- Wu-Tsai Neuroscience Institute and Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Qu Z, Li Y, Yuan Q, Yang S. Genetic factors associated with erectile dysfunction- mendelian randomisation analysis. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2025; 13:57-68. [PMID: 40124574 PMCID: PMC11928829 DOI: 10.62347/bvhs3637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/10/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Studies have established a strong link between erectile dysfunction (ED) and genetic factors. However, the genetic protective genes associated with ED have yet to be identified. In this study, we used Mendelian randomization (MR) analysis to investigate potential genetic protective genes related to ED. METHODS We used ED-associated GWAS data and whole blood expression quantitative trait loci (eQTLs) data from the Finnish database, which included 1,154 cases and 94,024 controls, for our analysis, resulting in a total of 95,178 individuals for Mendelian randomization (MR) analysis. To further identify potential causative genes and explore their functional roles and relationship to phenotype, we conducted PPI and single-cell analysis using the GSE206528 dataset. RESULTS The MR analysis identified 263 genes associated with ED, with TRIP10 showing the highest degree, exhibiting an odds ratio (OR) of 0.58. Located on chromosome 7, TRIP10 plays a protective role in ED. Single-cell sequencing analysis revealed that TRIP10 is most highly expressed in endothelial cells and tissue stem cells, particularly in endothelial cells. Through PPI and single-cell analysis, we further identified potential causative genes, shedding light on their functions and their connection to the phenotype. CONCLUSIONS Our study found that among the 263 genes associated with ED, TRIP10 was strongly linked to a decreased risk of ED. These findings offer valuable insights for the personalized treatment of ED from a genetic perspective.
Collapse
Affiliation(s)
- Zejie Qu
- Department of Urology, The Xinlicheng Jinyi Hospital of ChongqingChongqing 401120, The People’s Republic of China
| | - Yurong Li
- Department of Urology, The Xinlicheng Jinyi Hospital of ChongqingChongqing 401120, The People’s Republic of China
| | - Quangang Yuan
- Department of Urology, The Hechuan Hongren Hospital of ChongqingChongqing 401520, The People’s Republic of China
| | - Siming Yang
- Department of Urology, The Hechuan Hongren Hospital of ChongqingChongqing 401520, The People’s Republic of China
| |
Collapse
|
3
|
Song S, Li T, Stevens AO, Shorty T, He Y. Molecular Dynamics Reveal Key Steps in BAR-Related Membrane Remodeling. Pathogens 2024; 13:902. [PMID: 39452773 PMCID: PMC11510478 DOI: 10.3390/pathogens13100902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Endocytosis plays a complex role in pathogen-host interactions. It serves as a pathway for pathogens to enter the host cell and acts as a part of the immune defense mechanism. Endocytosis involves the formation of lipid membrane vesicles and the reshaping of the cell membrane, a task predominantly managed by proteins containing BAR (Bin1/Amphiphysin/yeast RVS167) domains. Insights into how BAR domains can remodel and reshape cell membranes provide crucial information on infections and can aid the development of treatment. Aiming at deciphering the roles of the BAR dimers in lipid membrane bending and remodeling, we conducted extensive all-atom molecular dynamics simulations and discovered that the presence of helix kinks divides the BAR monomer into two segments-the "arm segment" and the "core segment"-which exhibit distinct movement patterns. Contrary to the prior hypothesis of BAR domains working as a rigid scaffold, we found that it functions in an "Arms-Hands" mode. These findings enhance the understanding of endocytosis, potentially advancing research on pathogen-host interactions and aiding in the identification of new treatment strategies targeting BAR domains.
Collapse
Affiliation(s)
- Shenghan Song
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Tongtong Li
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Amy O. Stevens
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Temair Shorty
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - Yi He
- Department of Chemistry & Chemical Biology, The University of New Mexico, Albuquerque, NM 87131, USA
- Translational Informatics Division, Department of Internal Medicine, The University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
4
|
Rana S, Nasr L, Chang D, Axis J, Amsler K. Na-caprate-induced increase in MDCK II epithelial cell leak pathway permeability and opening number is associated with disruption of basal F-actin organization. Am J Physiol Cell Physiol 2024; 327:C913-C928. [PMID: 39159387 DOI: 10.1152/ajpcell.00534.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Confluent populations of the epithelial cell line, MDCK II, develop circumferential tight junctions joining adjacent cells to create a barrier to the paracellular movement of solutes and water. Treatment of MDCK II cell populations from the apical surface with 1 mM Na-caprate increased permeability to macromolecules (Leak Pathway) without increasing monolayer disruption or cell death. Graphical analysis of the apparent permeability versus solute Stokes radius for a size range of fluorescein-dextran species indicates apical 1 mM Na-caprate enhances Leak Pathway permeability by increasing the number of Leak Pathway openings without significantly affecting opening size. Na-caprate treatment did not alter the content of any tight junction protein examined. Treatment of MDCK II cell populations with apical 1 mM Na-caprate disrupted basal F-actin stress fibers and decreased the tortuosity of the tight junctions. Treatment of MDCK II cell populations with blebbistatin, a myosin ATPase inhibitor, alone had little effect on Leak Pathway permeability but synergistically increased Leak Pathway permeability when added with 1 mM Na-caprate. Na-caprate exhibited a similar ability to increase Leak Pathway permeability in wild-type MDCK II cell monolayers and ZO-1 knockdown MDCK II cell monolayers but an enhanced ability to increase Leak Pathway permeability in monolayers of TOCA-1 knockout MDCK II cells. These results demonstrate that Na-caprate increases MDCK II cell population Leak Pathway permeability by increasing the number of Leak Pathway openings. This action is likely mediated by alterations in F-actin organization, primarily involving disruption of basal F-actin stress fibers.NEW & NOTEWORTHY This study determines the underlying change in the openings in the epithelial tight junction permeability barrier structure that leads to a change in the paracellular permeability to macromolecules (the Leak Pathway) and connects this to disruption of specific F-actin structures within the cells. It provides important and novel insights into how tight junction permeability to macromolecules is modulated by specific changes to cellular and tight junction composition/organization.
Collapse
Affiliation(s)
- Shivani Rana
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Leyla Nasr
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Daniel Chang
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Josephine Axis
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| | - Kurt Amsler
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, New York, United States
| |
Collapse
|
5
|
Mallik B, Pippadpally S, Bisht A, Bhat S, Mukherjee S, Kumar V. Distinct Bin/Amphiphysin/Rvs (BAR) family proteins may assemble on the same tubule to regulate membrane organization in vivo. Heliyon 2024; 10:e33672. [PMID: 39040266 PMCID: PMC11261073 DOI: 10.1016/j.heliyon.2024.e33672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Intracellular membrane tubules play a crucial role in diverse cellular processes, and their regulation is facilitated by Bin-Amphiphysin-Rvs (BAR) domain-containing proteins. This study investigates the roles of Drosophila ICA69 (dICA69) (an N-BAR protein) and Drosophila CIP4 (dCIP4) (an F-BAR protein), focusing on their impact on in vivo membrane tubule organization. In contrast to the prevailing models of BAR-domain protein function, we observed colocalization of endogenous dICA69 with dCIP4-induced tubules, indicating their potential recruitment for tubule formation and maintenance. Moreover, actin-regulatory proteins such as Wasp, SCAR, and Arp2/3 were recruited at the site of CIP4-induced tubule formation. An earlier study indicated that F-BAR proteins spontaneously segregate from the N-BAR domain proteins during membrane tubule formation. In contrast, our observation supports a model in which different BAR-domain family members can associate with the same tubule and cooperate to fine-tune the tubule width, possibly by recruiting actin modulators during the generation of tubules. Our data suggests that cooperative activities of distinct BAR-domain family proteins may determine the length and width of the membrane tubule in vivo.
Collapse
Affiliation(s)
| | | | | | - Sajad Bhat
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Indore bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Surabhi Mukherjee
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Indore bypass Road, Bhopal 462 066, Madhya Pradesh, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Indore bypass Road, Bhopal 462 066, Madhya Pradesh, India
| |
Collapse
|
6
|
Yuan X, Sabzvar MK, Patil AD, Chinnaswamy K, Howie KL, Andhavaram R, Wang B, Siegler MA, Dumaz A, Stuckey JA, Corey SJ, Maciejewski JP, Visconte V, Yang CY. Comprehensive Analyses of the Effects of the Small-Molecule Inhibitor of the UHM Domain in the Splicing Factor U2AF1 in Leukemia Cells. RESEARCH SQUARE 2024:rs.3.rs-4477663. [PMID: 38883705 PMCID: PMC11177969 DOI: 10.21203/rs.3.rs-4477663/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mutations in RNA splicing factor genes including SF3B1, U2AF1, SRSF2, and ZRSR2 have been reported to contribute to development of myeloid neoplasms including myelodysplastic syndrome (MDS) and secondary acute myeloid leukemia (sAML). Chemical tools targeting cells carrying these mutant genes remain limited and underdeveloped. Among the four proteins, mutant U2AF1 (U2AF1mut) acquires an altered 3' splice site selection preference and co-operates with the wild-type U2AF1 (U2AF1wt) to change various gene isoform patterns to support MDS cells survival and proliferation. U2AF1 mutations in MDS cells are always heterozygous and the cell viability is reduced when exposed to additional insult affecting U2AF1wt function. To investigate if the pharmacological inhibition of U2AF1wt function can provoke drug-induced vulnerability of cells harboring U2AF1 mut , we conducted a fragment-based library screening campaign to discover compounds targeting the U2AF homology domain (UHM) in U2AF1 that is required for the formation of the U2AF1/U2AF2 complex to define the 3' splice site. The most promising hit (SF1-8) selectively inhibited growth of leukemia cell lines overexpressingU2AF1 mut and human primary MDS cells carrying U2AF1 mut . RNA-seq analysis of K562-U2AF1mut following treatment with SF1-8 further revealed alteration of isoform patterns for a set of proteins that impair or rescue pathways associated with endocytosis, intracellular vesicle transport, and secretion. Our data suggested that further optimization of SF1-8 is warranted to obtain chemical probes that can be used to evaluate the therapeutic concept of inducing lethality to U2AF1 mut cells by inhibiting the U2AF1wt protein.
Collapse
Affiliation(s)
- Xinrui Yuan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mona Kazemi Sabzvar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Amol D Patil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | - Kathryn L Howie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ramaraju Andhavaram
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Borwyn Wang
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Maxime A Siegler
- Department of Chemistry, John Hopkins University, Baltimore, MD, 21218, USA
| | - Arda Dumaz
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jeanne A Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Seth J Corey
- Departments of Pediatrics and Cancer Biology, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Chao-Yie Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
7
|
Kushwaha S, Mallik B, Bisht A, Mushtaq Z, Pippadpally S, Chandra N, Das S, Ratnaparkhi G, Kumar V. dAsap regulates cellular protrusions via an Arf6-dependent actin regulatory pathway in S2R+ cells. FEBS Lett 2024; 598:1491-1505. [PMID: 38862211 DOI: 10.1002/1873-3468.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Membrane protrusions are fundamental to cellular functions like migration, adhesion, and communication and depend upon dynamic reorganization of the cytoskeleton. GAP-dependent GTP hydrolysis of Arf proteins regulates actin-dependent membrane remodeling. Here, we show that dAsap regulates membrane protrusions in S2R+ cells by a mechanism that critically relies on its ArfGAP domain and relocalization of actin regulators, SCAR, and Ena. While our data reinforce the preference of dAsap for Arf1 GTP hydrolysis in vitro, we demonstrate that induction of membrane protrusions in S2R+ cells depends on Arf6 inactivation. This study furthers our understanding of how dAsap-dependent GTP hydrolysis maintains a balance between active and inactive states of Arf6 to regulate cell shape.
Collapse
Affiliation(s)
- Shikha Kushwaha
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Bhagaban Mallik
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Anjali Bisht
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Srikanth Pippadpally
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Nitika Chandra
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| | - Subhradip Das
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Girish Ratnaparkhi
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Pune, India
| | - Vimlesh Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, India
| |
Collapse
|
8
|
Lee W, Stone DL, Hoffmann P, Rosenzweig S, Tsai WL, Gadina M, Romeo T, Lee CCR, Randazzo D, Pimpale Chavan P, Manthiram K, Canna S, Park YH, Ombrello AK, Aksentijevich I, Kastner DL, Chae JJ. Interrupting an IFN-γ-dependent feedback loop in the syndrome of pyogenic arthritis with pyoderma gangrenosum and acne. Ann Rheum Dis 2024; 83:787-798. [PMID: 38408849 PMCID: PMC11103328 DOI: 10.1136/ard-2023-225085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/03/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES To study the molecular pathogenesis of PAPA (pyogenic arthritis, pyoderma gangrenosum and acne) syndrome, a debilitating hereditary autoinflammatory disease caused by dominant mutation in PSTPIP1. METHODS Gene knock-out and knock-in mice were generated to develop an animal model. THP1 and retrovirally transduced U937 human myeloid leukaemia cell lines, peripheral blood mononuclear cells, small interfering RNA (siRNA) knock-down, site-directed mutagenesis, cytokine immunoassays, coimmunoprecipitation and immunoblotting were used to study inflammasome activation. Cytokine levels in the skin were evaluated by immunohistochemistry. Responsiveness to Janus kinase (JAK) inhibitors was evaluated ex vivo with peripheral blood mononuclear cells and in vivo in five treatment-refractory PAPA patients. RESULTS The knock-in mouse model of PAPA did not recapitulate the human disease. In a human myeloid cell line model, PAPA-associated PSTPIP1 mutations activated the pyrin inflammasome, but not the NLRP3, NLRC4 or AIM2 inflammasomes. Pyrin inflammasome activation was independent of the canonical pathway of pyrin serine dephosphorylation and was blocked by the p.W232A PSTPIP1 mutation, which disrupts pyrin-PSTPIP1 interaction. IFN-γ priming of monocytes from PAPA patients led to IL-18 release in a pyrin-dependent manner. IFN-γ was abundant in the inflamed dermis of PAPA patients, but not patients with idiopathic pyoderma gangrenosum. Ex vivo JAK inhibitor treatment attenuated IFN-γ-mediated pyrin induction and IL-18 release. In 5/5 PAPA patients, the addition of JAK inhibitor therapy to IL-1 inhibition was associated with clinical improvement. CONCLUSION PAPA-associated PSTPIP1 mutations trigger a pyrin-IL-18-IFN-γ positive feedback loop that drives PAPA disease activity and is a target for JAK inhibition.
Collapse
Affiliation(s)
- Wonyong Lee
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Deborah L Stone
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Patrycja Hoffmann
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Sofia Rosenzweig
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Wanxia Li Tsai
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Massimo Gadina
- Translational Immunology Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Tina Romeo
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Chyi-Chia Richard Lee
- Translational Autoinflammatory Diseases Section, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Davide Randazzo
- Office of Science and Technology, Light Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland, USA
| | - Pallavi Pimpale Chavan
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Kalpana Manthiram
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, USA
| | - Scott Canna
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon, Gyeonggi-do, Korea (the Republic of)
| | - Amanda K Ombrello
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| | - Jae Jin Chae
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Zhu K, Guo X, Chandrasekaran A, Miao X, Rangamani P, Zhao W, Miao Y. Membrane curvature catalyzes actin nucleation through nano-scale condensation of N-WASP-FBP17. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591054. [PMID: 38712166 PMCID: PMC11071460 DOI: 10.1101/2024.04.25.591054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Actin remodeling is spatiotemporally regulated by surface topographical cues on the membrane for signaling across diverse biological processes. Yet, the mechanism dynamic membrane curvature prompts quick actin cytoskeletal changes in signaling remain elusive. Leveraging the precision of nanolithography to control membrane curvature, we reconstructed catalytic reactions from the detection of nano-scale curvature by sensing molecules to the initiation of actin polymerization, which is challenging to study quantitatively in living cells. We show that this process occurs via topographical signal-triggered condensation and activation of the actin nucleation-promoting factor (NPF), Neuronal Wiskott-Aldrich Syndrome protein (N-WASP), which is orchestrated by curvature-sensing BAR-domain protein FBP17. Such N-WASP activation is fine-tuned by optimizing FBP17 to N-WASP stoichiometry over different curvature radii, allowing a curvature-guided macromolecular assembly pattern for polymerizing actin network locally. Our findings shed light on the intricate relationship between changes in curvature and actin remodeling via spatiotemporal regulation of NPF/BAR complex condensation.
Collapse
|
10
|
Malinick AS, Stuart DD, Lambert AS, Cheng Q. Curved Membrane Mimics for Quantitative Probing of Protein-Membrane Interactions by Surface Plasmon Resonance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:84-94. [PMID: 38128131 DOI: 10.1021/acsami.3c12922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A majority of biomimetic membranes used for current biophysical studies rely on planar structures such as supported lipid bilayer (SLB) and self-assembled monolayers (SAMs). While they have facilitated key information collection, the lack of curvature makes these models less effective for the investigation of curvature-dependent protein binding. Here, we report the development and characterization of curved membrane mimics on a solid substrate with tunable curvature and ease in incorporation of cellular membrane components for the study of protein-membrane interactions. The curved membranes were generated with an underlayer lipid membrane composed of DGS-Ni-NTA and POPC lipids on the substrate, followed by the attachment of histidine-tagged cholera toxin (his-CT) as a capture layer. Lipid vesicles containing different compositions of gangliosides, including GA1, GM1, GT1b, and GQ1b, were anchored to the capture layer, providing fixation of the curved membranes with intact structures. Characterization of the curved membrane was accomplished with surface plasmon resonance (SPR), fluorescence recovery after photobleaching (FRAP), and nano-tracking analysis (NTA). Further optimization of the interface was achieved through principal component analysis (PCA) to understand the effect of ganglioside type, percentage, and vesicle dimensions on their interactions with proteins. In addition, Monte Carlo simulations were employed to predict the distribution of the gangliosides and interaction patterns with single point and multipoint binding models. This work provides a reliable approach to generate robust, component-tuning, and curved membranes for investigating protein interactions more pertinently than what a traditional planar membrane offers.
Collapse
Affiliation(s)
- Alexander S Malinick
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Daniel D Stuart
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Alexander S Lambert
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Quan Cheng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Hivare P, Mujmer K, Swarup G, Gupta S, Bhatia D. Endocytic pathways of pathogenic protein aggregates in neurodegenerative diseases. Traffic 2023; 24:434-452. [PMID: 37392160 DOI: 10.1111/tra.12906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/14/2023] [Accepted: 06/11/2023] [Indexed: 07/03/2023]
Abstract
Endocytosis is the fundamental uptake process through which cells internalize extracellular materials and species. Neurodegenerative diseases (NDs) are characterized by a progressive accumulation of intrinsically disordered protein species, leading to neuronal death. Misfolding in many proteins leads to various NDs such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and other disorders. Despite the significance of disordered protein species in neurodegeneration, their spread between cells and the cellular uptake of extracellular species is not entirely understood. This review discusses the major internalization mechanisms of the different conformer species of these proteins and their endocytic mechanisms. We briefly introduce the broad types of endocytic mechanisms found in cells and then summarize what is known about the endocytosis of monomeric, oligomeric and aggregated conformations of tau, Aβ, α-Syn, Huntingtin, Prions, SOD1, TDP-43 and other proteins associated with neurodegeneration. We also highlight the key players involved in internalizing these disordered proteins and the several techniques and approaches to identify their endocytic mechanisms. Finally, we discuss the obstacles involved in studying the endocytosis of these protein species and the need to develop better techniques to elucidate the uptake mechanisms of a particular disordered protein species.
Collapse
Affiliation(s)
- Pravin Hivare
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Kratika Mujmer
- Center for Brain and Cognitive Sciences, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Gitanjali Swarup
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat, India
| |
Collapse
|
12
|
Singh P, Zhou L, Shah DA, Cejas RB, Crossman DK, Jouni M, Magdy T, Wang X, Sharafeldin N, Hageman L, McKenna DE, Horvath S, Armenian SH, Balis FM, Hawkins DS, Keller FG, Hudson MM, Neglia JP, Ritchey AK, Ginsberg JP, Landier W, Burridge PW, Bhatia S. Identification of novel hypermethylated or hypomethylated CpG sites and genes associated with anthracycline-induced cardiomyopathy. Sci Rep 2023; 13:12683. [PMID: 37542143 PMCID: PMC10403495 DOI: 10.1038/s41598-023-39357-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
Anthracycline-induced cardiomyopathy is a leading cause of late morbidity in childhood cancer survivors. Aberrant DNA methylation plays a role in de novo cardiovascular disease. Epigenetic processes could play a role in anthracycline-induced cardiomyopathy but remain unstudied. We sought to examine if genome-wide differential methylation at 'CpG' sites in peripheral blood DNA is associated with anthracycline-induced cardiomyopathy. This report used participants from a matched case-control study; 52 non-Hispanic White, anthracycline-exposed childhood cancer survivors with cardiomyopathy were matched 1:1 with 52 survivors with no cardiomyopathy. Paired ChAMP (Chip Analysis Methylation Pipeline) with integrated reference-based deconvolution of adult peripheral blood DNA methylation was used to analyze data from Illumina HumanMethylation EPIC BeadChip arrays. An epigenome-wide association study (EWAS) was performed, and the model was adjusted for GrimAge, sex, interaction terms of age at enrollment, chest radiation, age at diagnosis squared, and cardiovascular risk factors (CVRFs: diabetes, hypertension, dyslipidemia). Prioritized genes were functionally validated by gene knockout in human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) using CRISPR/Cas9 technology. DNA-methylation EPIC array analyses identified 32 differentially methylated probes (DMP: 15 hyper-methylated and 17 hypo-methylated probes) that overlap with 23 genes and 9 intergenic regions. Three hundred and fifty-four differential methylated regions (DMRs) were also identified. Several of these genes are associated with cardiac dysfunction. Knockout of genes EXO6CB, FCHSD2, NIPAL2, and SYNPO2 in hiPSC-CMs increased sensitivity to doxorubicin. In addition, EWAS analysis identified hypo-methylation of probe 'cg15939386' in gene RORA to be significantly associated with anthracycline-induced cardiomyopathy. In this genome-wide DNA methylation profile study, we observed significant differences in DNA methylation at the CpG level between anthracycline-exposed childhood cancer survivors with and without cardiomyopathy, implicating differential DNA methylation of certain genes could play a role in pathogenesis of anthracycline-induced cardiomyopathy.
Collapse
Affiliation(s)
- Purnima Singh
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Liting Zhou
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Disheet A Shah
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Romina B Cejas
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mariam Jouni
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Tarek Magdy
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
- Department of Pathology and Translational Pathobiology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Xuexia Wang
- Department of Biostatistics, Florida International University, Miami, FL, USA
| | - Noha Sharafeldin
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donald E McKenna
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Saro H Armenian
- Department of Population Sciences, City of Hope, Duarte, CA, USA
| | - Frank M Balis
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Frank G Keller
- Children's Healthcare of Atlanta, Emory University, Atlanta, GA, USA
| | | | | | - A Kim Ritchey
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Paul W Burridge
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
13
|
Soto DC, Uribe-Salazar JM, Shew CJ, Sekar A, McGinty S, Dennis MY. Genomic structural variation: A complex but important driver of human evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 181 Suppl 76:118-144. [PMID: 36794631 PMCID: PMC10329998 DOI: 10.1002/ajpa.24713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/21/2023] [Accepted: 02/05/2023] [Indexed: 02/17/2023]
Abstract
Structural variants (SVs)-including duplications, deletions, and inversions of DNA-can have significant genomic and functional impacts but are technically difficult to identify and assay compared with single-nucleotide variants. With the aid of new genomic technologies, it has become clear that SVs account for significant differences across and within species. This phenomenon is particularly well-documented for humans and other primates due to the wealth of sequence data available. In great apes, SVs affect a larger number of nucleotides than single-nucleotide variants, with many identified SVs exhibiting population and species specificity. In this review, we highlight the importance of SVs in human evolution by (1) how they have shaped great ape genomes resulting in sensitized regions associated with traits and diseases, (2) their impact on gene functions and regulation, which subsequently has played a role in natural selection, and (3) the role of gene duplications in human brain evolution. We further discuss how to incorporate SVs in research, including the strengths and limitations of various genomic approaches. Finally, we propose future considerations in integrating existing data and biospecimens with the ever-expanding SV compendium propelled by biotechnology advancements.
Collapse
Affiliation(s)
- Daniela C. Soto
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - José M. Uribe-Salazar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Colin J. Shew
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Aarthi Sekar
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Sean McGinty
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| | - Megan Y. Dennis
- Genome Center, MIND Institute, and Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
- Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA, USA
| |
Collapse
|
14
|
Sadhu RK, Iglič A, Gov NS. A minimal cell model for lamellipodia-based cellular dynamics and migration. J Cell Sci 2023; 136:jcs260744. [PMID: 37497740 DOI: 10.1242/jcs.260744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
One ubiquitous cellular structure for performing various tasks, such as spreading and migration over external surfaces, is the sheet-like protrusion called a lamellipodium, which propels the leading edge of the cell. Despite the detailed knowledge about the many components of this cellular structure, it is not yet fully understood how these components self-organize spatiotemporally to form lamellipodia. We review here recent theoretical works where we have demonstrated that membrane-bound protein complexes that have intrinsic curvature and recruit the protrusive forces of the cytoskeleton result in a simple, yet highly robust, organizing feedback mechanism that organizes the cytoskeleton and the membrane. This self-organization mechanism accounts for the formation of flat lamellipodia at the leading edge of cells spreading over adhesive substrates, allowing for the emergence of a polarized, motile 'minimal cell' model. The same mechanism describes how lamellipodia organize to drive robust engulfment of particles during phagocytosis and explains in simple physical terms the spreading and migration of cells over fibers and other curved surfaces. This Review highlights that despite the complexity of cellular composition, there might be simple general physical principles that are utilized by the cell to drive cellular shape dynamics.
Collapse
Affiliation(s)
- Raj Kumar Sadhu
- Institut Curie, PSL Research University, CNRS, UMR 168, Paris 75005, France
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
15
|
Zhang Y, Xiong X, Sun R, Zhu X, Wang C, Jiang B, Yang X, Li D, Fan G. Development of the non-receptor tyrosine kinase FER-targeting PROTACs as a potential strategy for antagonizing ovarian cancer cell motility and invasiveness. J Biol Chem 2023:104825. [PMID: 37196766 DOI: 10.1016/j.jbc.2023.104825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/23/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Aberrant overexpression of non-receptor tyrosine kinase FER has been reported in various ovarian carcinoma-derived tumor cells and is a poor prognosis factor for patient survival. It plays an essential role in tumor cell migration and invasion, acting concurrently in both kinase-dependent and -independent manners, which is not easily suppressed by conventional enzymatic inhibitors. Nevertheless, the proteolysis-targeting chimeras (PROTACs) technology offers superior efficacy over traditional activity-based inhibitors by simultaneously targeting enzymatic and scaffold functions. Hence in this study, we report the development of two PROTAC compounds that promote robust FER degradation in a cereblon-dependent manner. Both PROTAC degraders outperform an FDA-approved drug, Brigatinib, in ovarian cancer cell motility suppression. Importantly, these PROTAC compounds also degrade multiple oncogenic FER fusion proteins identified in human tumor samples. These results lay an experimental foundation to apply the PROTAC strategy to antagonize cell motility and invasiveness in ovarian and other types of cancers with aberrant expression of FER kinase and highlight PROTACs as a superior strategy for targeting proteins with multiple tumor-promoting functions.
Collapse
Affiliation(s)
- Yanchun Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuexue Xiong
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Renhong Sun
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China
| | - Xiaotong Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chen Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., Shanghai, China.
| | - Dake Li
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
16
|
Morales-Heil DJ, Cao L, Sweeney C, Malara A, Brown F, Milam P, Anadkat M, Kaffenberger J, Kaffenberger B, Nagele P, Kirby B, Roberson ED. Rare missense variants in the SH3 domain of PSTPIP1 are associated with hidradenitis suppurativa. HGG ADVANCES 2023; 4:100187. [PMID: 37013170 PMCID: PMC10066561 DOI: 10.1016/j.xhgg.2023.100187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Hidradenitis suppurativa (HS) is a chronic, debilitating skin disease for which few treatment options are available. While most HS is sporadic, some rare kindred show a high-penetrance, autosomal-dominant inheritance. We wanted to identify rare variants that could contribute to HS risk in sporadic cases using candidate gene sequencing. We ultimately identified 21 genes for our capture panel. We included genes of the γ-secretase complex (n = 6) because rare variants in these genes sometimes cause familial HS. We added Notch receptor and ligand genes (n = 13) because γ-secretase is critical for processing Notch receptor signaling. Clinically, some people with PAPA (pyogenic arthritis, pyoderma gangrenosum, and acne) syndrome, a rare inflammatory disease, have concurrent HS. Rare variants in PSTPIP1 are known to cause PAPA syndrome, so we included PSTPIP1 and PSTPIP2 in the capture panel. We screened 117 individuals with HS for rare variations and calculated the expected burden using Genome Aggregation Database (gnomAD) allele frequencies. We discovered two pathogenic loss-of-function variants in NCSTN. This class of NCSTN variant can cause familial HS. There was no increased burden of rare variations in any γ-secretase complex gene. We did find that individuals with HS had a significantly increased number of rare missense variants in the SH3 domain of PSTPIP1. This finding, therefore, implicates PSTPIP1 variation in sporadic HS and further supports dysregulated immunity in HS. Our data also suggests that population-scale HS genetic research will yield valuable insights into disease pathology.
Collapse
Affiliation(s)
- David J. Morales-Heil
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - Li Cao
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
| | - Cheryl Sweeney
- Department of Dermatology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Anna Malara
- Department of Dermatology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Frank Brown
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| | - Philip Milam
- Department of Internal Medicine, Division of Dermatology, Ohio State University, Columbus, OH, USA
| | - Milan Anadkat
- Department of Medicine, Division of Dermatology, Washington University, St. Louis, MO, USA
| | - Jessica Kaffenberger
- Department of Internal Medicine, Division of Dermatology, Ohio State University, Columbus, OH, USA
| | - Benjamin Kaffenberger
- Department of Internal Medicine, Division of Dermatology, Ohio State University, Columbus, OH, USA
| | - Peter Nagele
- Department of Anesthesiology, Washington University, St. Louis, MO, USA
| | - Brian Kirby
- Department of Dermatology, St. Vincent’s University Hospital, Dublin, Ireland
| | - Elisha D.O. Roberson
- Department of Medicine, Division of Rheumatology, Washington University, St. Louis, MO, USA
- Department of Genetics, Washington University, St. Louis, MO, USA
| |
Collapse
|
17
|
Fortner A, Chera A, Tanca A, Bucur O. Apoptosis regulation by the tyrosine-protein kinase CSK. Front Cell Dev Biol 2022; 10:1078180. [PMID: 36578781 PMCID: PMC9792154 DOI: 10.3389/fcell.2022.1078180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.
Collapse
Affiliation(s)
- Andra Fortner
- Victor Babes National Institute of Pathology, Bucharest, Romania,Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA, United States,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| |
Collapse
|
18
|
Tavares S, Liv N, Pasolli M, Opdam M, Rätze MAK, Saornil M, Sluimer LM, Hengeveld RCC, van Es R, van Werkhoven E, Vos H, Rehmann H, Burgering BMT, Oosterkamp HM, Lens SMA, Klumperman J, Linn SC, Derksen PWB. FER regulates endosomal recycling and is a predictor for adjuvant taxane benefit in breast cancer. Cell Rep 2022; 39:110584. [PMID: 35385742 DOI: 10.1016/j.celrep.2022.110584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/28/2021] [Accepted: 03/07/2022] [Indexed: 11/18/2022] Open
Abstract
Elevated expression of non-receptor tyrosine kinase FER is an independent prognosticator that correlates with poor survival of high-grade and basal/triple-negative breast cancer (TNBC) patients. Here, we show that high FER levels are also associated with improved outcomes after adjuvant taxane-based combination chemotherapy in high-risk, HER2-negative patients. In TNBC cells, we observe a causal relation between high FER levels and sensitivity to taxanes. Proteomics and mechanistic studies demonstrate that FER regulates endosomal recycling, a microtubule-dependent process that underpins breast cancer cell invasion. Using chemical genetics, we identify DCTN2 as a FER substrate. Our work indicates that the DCTN2 tyrosine 6 is essential for the development of tubular recycling domains in early endosomes and subsequent propagation of TNBC cell invasion in 3D. In conclusion, we show that high FER expression promotes endosomal recycling and represents a candidate predictive marker for the benefit of adjuvant taxane-containing chemotherapy in high-risk patients, including TNBC patients.
Collapse
Affiliation(s)
- Sandra Tavares
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Milena Pasolli
- Cell Biology, Neurobiology, and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584CH Utrecht, the Netherlands
| | - Mark Opdam
- Department of Molecular Pathology, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Max A K Rätze
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Manuel Saornil
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Lilian M Sluimer
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Rutger C C Hengeveld
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Robert van Es
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Erik van Werkhoven
- Department of Molecular Pathology, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Harmjan Vos
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Holger Rehmann
- Flensburg University of Applied Sciences, 24943 Flensburg, Germany
| | - Boudewijn M T Burgering
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Hendrika M Oosterkamp
- Department of Medical Oncology, Haaglanden Medisch Centrum, 2501 CK The Hague, the Netherlands
| | - Susanne M A Lens
- Oncode Institute, Department of Molecular Cancer Research, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands
| | - Sabine C Linn
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands; Department of Molecular Pathology, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands; Department of Medical Oncology, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Patrick W B Derksen
- Department of Pathology, University Medical Center Utrecht, 3584CX Utrecht, the Netherlands.
| |
Collapse
|
19
|
Monaco A, Axis J, Amsler K. Simple graphical approach to investigate differences in transepithelial paracellular leak pathway permeability. Physiol Rep 2022; 10:e15202. [PMID: 35274827 PMCID: PMC8915387 DOI: 10.14814/phy2.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023] Open
Abstract
Although many studies have reported differences in epithelial paracellular Leak Pathway permeability following genetic manipulations and treatment with various agents, the basis for these differences remains mostly unclear. Two primary mechanisms which could underlie differences in Leak Pathway permeability are differences in the density of Leak Pathway openings and differences in the opening size. Using a computational approach, we demonstrate that these two possibilities can be readily distinguished graphically by comparing the apparent paracellular permeabilities of a size panel of solutes measured across different cell layers. Using this approach, we demonstrated that depletion of ZO-1 protein in MDCK Type II renal epithelial cells decreased Leak Pathway opening size and increased opening density. Depletion of ZO-2 protein either had no effect or minimally decreased opening size and did not markedly change opening density. Comparison of MDCK Type II cells with MDCK Type I cells revealed that Type I cells exhibited a substantially smaller Leak Pathway permeability than did Type II cells. This lower permeability was due to a decrease in opening density with little or no change in opening size. These results demonstrate the utility of this approach to provide insights into the basis for observed differences in epithelial Leak Pathway permeability. This approach has wide applications including analysis of the molecular basis for Leak Pathway permeability, the effects of specific manipulations on Leak Pathway permeability properties, and the effects of permeation enhancers on Leak Pathway permeability properties.
Collapse
Affiliation(s)
- Ashley Monaco
- Department of Biomedical SciencesNYIT College of Osteopathic MedicineOld WestburyNew YorkUSA
| | - Josephine Axis
- Department of Biomedical SciencesNYIT College of Osteopathic MedicineOld WestburyNew YorkUSA
| | - Kurt Amsler
- Department of Biomedical SciencesNYIT College of Osteopathic MedicineOld WestburyNew YorkUSA
| |
Collapse
|
20
|
CIP4 targeted to recruit GTP-Cdc42 involving in invadopodia formation via NF-κB signaling pathway promotes invasion and metastasis of CRC. Mol Ther Oncolytics 2022; 24:873-886. [PMID: 35317515 PMCID: PMC8924540 DOI: 10.1016/j.omto.2022.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Cdc42-interacting protein 4 (CIP4), a member of the F-BAR family, which plays an important role in regulating cell membrane and actin, has been reported to interact with Cdc42 and be closely associated with tumor invadopodia formation. In this study, we found that CIP4 expression was significantly higher in human CRC tissues and correlated with the CRC infiltrating depth and metastasis, as well as the lower survival rate in patients. In cultured CRC cells, knockdown of CIP4 inhibited cell migration and invasion ability in vitro and tumor metastasis in vivo, while the overexpression of CIP4 promoted invadopodia formation and matrix degradation ability. We then identified GTP-Cdc42 as a directly interactive protein of CIP4, which was upregulated and recruited by CIP4. Furthermore, activated NF-κB signaling pathway was found in CIP4 overexpression of CRC cells contributing to invadopodia formation, while the inhibition of either CIP4 or Cdc42 led to the suppression of the NF-κB pathway and resulted in a decreased quantity of invadopodia. Our findings suggested that CIP4 targets to recruit GTP-Cdc42 and directly combines with it to accelerate invadopodia formation and function by activating NF-κB signaling pathway, thus promoting CRC infiltration and metastasis.
Collapse
|
21
|
Lomize AL, Todd SC, Pogozheva ID. Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Sci 2022; 31:209-220. [PMID: 34716622 PMCID: PMC8740824 DOI: 10.1002/pro.4219] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Cellular protrusions, invaginations, and many intracellular organelles have strongly curved membrane regions. Transmembrane and peripheral membrane proteins that induce, sense, or stabilize such regions cannot be properly fitted into a single flat bilayer. To treat such proteins, we developed a new method and a web tool, PPM 3.0, for positioning proteins in curved or planar, single or multiple membranes. This method determines the energetically optimal spatial position, the hydrophobic thickness, and the radius of intrinsic curvature of a membrane-deforming protein structure by arranging it in a single or several sphere-shaped or planar membrane sections. In addition, it can define the lipid-embedded regions of a protein that simultaneously spans several membranes or determine the optimal position of a peptide in a spherical micelle. The PPM 3.0 web server operates with 17 types of biological membranes and 4 types of artificial bilayers. It is publicly available at https://opm.phar.umich.edu/ppm_server3. PPM 3.0 was applied to identify and characterize arrangements in membranes of 128 proteins with a significant intrinsic curvature, such as BAR domains, annexins, Piezo, and MscS mechanosensitive channels, cation-chloride cotransporters, as well as mitochondrial ATP synthases, calcium uniporters, and TOM complexes. These proteins form large complexes that are mainly localized in mitochondria, plasma membranes, and endosomes. Structures of bacterial drug efflux pumps, AcrAB-TolC, MexAB-OrpM, and MacAB-TolC, were positioned in both membranes of the bacterial cell envelop, while structures of multimeric gap-junction channels were arranged in two opposed cellular membranes.
Collapse
Affiliation(s)
- Andrei L. Lomize
- College of Pharmacy, Department of Medicinal ChemistryUniversity of MichiganAnn ArborMichiganUSA
| | - Spencer C. Todd
- Department of Electrical Engineering and Computer Science, College of EngineeringUniversity of MichiganAnn ArborMichiganUSA
| | - Irina D. Pogozheva
- College of Pharmacy, Department of Medicinal ChemistryUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
22
|
Low expression of CIP4 in predicting worse overall survival: A potential biomarker for laryngeal cancer. PLoS One 2021; 16:e0253545. [PMID: 34570775 PMCID: PMC8475988 DOI: 10.1371/journal.pone.0253545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Previous reports indicate that Cdc42-interacting protein-4 (CIP4) has previously been reported to plays an important role in the progression of various cancers. However, its correlation with laryngeal cancer (LC) remains unreported. Data from TCGA and GEO databases were used to evaluate the role of CIP4 in LC. Based on GEO and TCGA datasets, we analyzed the differences in CIP4 expression between normal and tumor samples. The Wilcoxon signed-rank test was used to analyze the relationship between clinical features and CIP4. Cox regression and the Kaplan-Meier analyses were used to identify the clinical characteristics associated with the overall survival. Also, the GEPIA database was used to confirm the relationship between CIP4 and overall survival. Lastly, Gene Set Enrichment Analysis (GSEA) was performed based on the TCGA dataset. CIP4 expression in LC was significantly associated with gender and tumor stage (p-values<0.05). Similar to GEPIA validation, Kaplan-Meier survival analysis demonstrated that LC with CIP4-low exhibited a worse prognosis than that with CIP4-high. Univariate analysis revealed that CIP4-high significantly correlated with better overall survival (HR: 0.522, 95% CI: 0.293–0.830, P = 0.026). Besides, multivariate analysis revealed that CIP4 remained independently associated with the overall survival (HR: 0.61, 95% CI: 0.326–0.912, P = 0.012). GSEA showed that the p53, WNT signaling, TGF-β signaling pathways, etc. were enriched in a phenotype high CIP4 expression. In summary, the CIP4 gene is a potential prognostic molecular marker for patients diagnosed with laryngeal cancer. Moreover, the p53, WNT signaling, and TGF-β signaling pathways are potentially associated with CIP4 in LC.
Collapse
|
23
|
Recent developments in membrane curvature sensing and induction by proteins. Biochim Biophys Acta Gen Subj 2021; 1865:129971. [PMID: 34333084 DOI: 10.1016/j.bbagen.2021.129971] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/11/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Membrane-bound intracellular organelles have characteristic shapes attributed to different local membrane curvatures, and these attributes are conserved across species. Over the past decade, it has been confirmed that specific proteins control the large curvatures of the membrane, whereas many others due to their specific structural features can sense the curvatures and bind to the specific geometrical cues. Elucidating the interplay between sensing and induction is indispensable to understand the mechanisms behind various biological processes such as vesicular trafficking and budding. SCOPE OF REVIEW We provide an overview of major classes of membrane proteins and the mechanisms of curvature sensing and induction. We then discuss the importance of membrane elastic characteristics to induce the membrane shapes similar to intracellular organelles. Finally, we survey recently available assays developed for studying the curvature sensing and induction by many proteins. MAJOR CONCLUSIONS Recent theoretical/computational modeling along with experimental studies have uncovered fascinating connections between lipid membrane and protein interactions. However, the phenomena of protein localization and synchronization to generate spatiotemporal dynamics in membrane morphology are yet to be fully understood. GENERAL SIGNIFICANCE The understanding of protein-membrane interactions is essential to shed light on various biological processes. This further enables the technological applications of many natural proteins/peptides in therapeutic treatments. The studies of membrane dynamic shapes help to understand the fundamental functions of membranes, while the medicinal roles of various macromolecules (such as proteins, peptides, etc.) are being increasingly investigated.
Collapse
|
24
|
Monaco A, Ovryn B, Axis J, Amsler K. The Epithelial Cell Leak Pathway. Int J Mol Sci 2021; 22:ijms22147677. [PMID: 34299297 PMCID: PMC8305272 DOI: 10.3390/ijms22147677] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 01/08/2023] Open
Abstract
The epithelial cell tight junction structure is the site of the transepithelial movement of solutes and water between epithelial cells (paracellular permeability). Paracellular permeability can be divided into two distinct pathways, the Pore Pathway mediating the movement of small ions and solutes and the Leak Pathway mediating the movement of large solutes. Claudin proteins form the basic paracellular permeability barrier and mediate the movement of small ions and solutes via the Pore Pathway. The Leak Pathway remains less understood. Several proteins have been implicated in mediating the Leak Pathway, including occludin, ZO proteins, tricellulin, and actin filaments, but the proteins comprising the Leak Pathway remain unresolved. Many aspects of the Leak Pathway, such as its molecular mechanism, its properties, and its regulation, remain controversial. In this review, we provide a historical background to the evolution of the Leak Pathway concept from the initial examinations of paracellular permeability. We then discuss current information about the properties of the Leak Pathway and present current theories for the Leak Pathway. Finally, we discuss some recent research suggesting a possible molecular basis for the Leak Pathway.
Collapse
Affiliation(s)
- Ashley Monaco
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Ben Ovryn
- Department of Physics, New York Institute of Technology, Northern Boulevard, Old Westbury, NY 11568, USA;
| | - Josephine Axis
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
| | - Kurt Amsler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, Old Westbury, NY 11568, USA; (A.M.); (J.A.)
- Correspondence: ; Tel.: +1-516-686-3716
| |
Collapse
|
25
|
Xu JJ, Li HD, Du XS, Li JJ, Meng XM, Huang C, Li J. Role of the F-BAR Family Member PSTPIP2 in Autoinflammatory Diseases. Front Immunol 2021; 12:585412. [PMID: 34262554 PMCID: PMC8273435 DOI: 10.3389/fimmu.2021.585412] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Proline-serine-threonine-phosphatase-interacting protein 2 (PSTPIP2) belongs to the Fes/CIP4 homology-Bin/Amphiphysin/Rvs (F-BAR) domain family. It exhibits lipid-binding, membrane deformation, and F-actin binding activity, suggesting broader roles at the membrane–cytoskeleton interface. PSTPIP2 is known to participate in macrophage activation, neutrophil migration, cytokine production, and osteoclast differentiation. In recent years, it has been observed to play important roles in innate immune diseases and autoinflammatory diseases (AIDs). Current research indicates that the protein tyrosine phosphatase PTP-PEST, Src homology domain-containing inositol 5’-phosphatase 1 (SHIP1), and C‐terminal Src kinase (CSK) can bind to PSTPIP2 and inhibit the development of AIDs. However, the mechanisms underlying the function of PSTPIP2 have not been fully elucidated. This article reviews the research progress and mechanisms of PSTPIP2 in AIDs. PSTPIP2 also provides a new therapeutic target for the treatment of AIDs.
Collapse
Affiliation(s)
- Jie-Jie Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hai-Di Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Sa Du
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Juan-Juan Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
26
|
Identification of SRGAP2 as a potential oncogene and a prognostic biomarker in hepatocellular carcinoma. Life Sci 2021; 277:119592. [PMID: 33984363 DOI: 10.1016/j.lfs.2021.119592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the common malignancies worldwide. Slit-Robo GTPase-activating proteins (SRGAPs) have been shown to regulate the occurrence and development of various tumors. However, their specific roles in HCC remain elusive. METHODS The expression pattern, genetic alteration and prognostic value of SRGAPs in HCC are analyzed by bioinformatics tools. The biological functions of SRGAP2 in HCC cells are demonstrated by in vitro experiments. The high-throughput RNA sequencing is conducted to explore the underlying molecular mechanisms of SRGAP2 in HCC cells. RESULTS The expression levels of SRGAP1 and SRGAP2 are significantly elevated in HCC tissues compared to the normal both in Oncomine and TCGA datasets, and SRGAP2 are dramatically upregulated both in mRNA and protein levels. Moreover, higher SRGAP2 is significantly related to the clinical stages of HCC. Meanwhile, SRGAP2 might be an independent prognostic indicator, as it correlates negatively with the clinical outcomes of HCC patients. Further SRGAP2-silencing experiments imply that SRGAP2 might remarkably promote the migration and invasion of HCC cells in an EMT-independent pattern. Based on the high-throughput RNA sequencing of SRGAP2-knockdown HCC cells, enrichment and network analyses demonstrate that SRGAP2 is closely associated with cellular metabolic signaling. CONCLUSIONS Our study firstly illustrates the crucial role of SRGAP2 in the metastasis of HCC and explores its underlying molecular mechanisms. We identify SRGAP2 as a promising prognostic biomarker and a novel therapeutic target for HCC patients.
Collapse
|
27
|
Dong Z, Yeo KS, Lopez G, Zhang C, Dankert Eggum EN, Rokita JL, Ung CY, Levee TM, Her ZP, Howe CJ, Hou X, van Ree JH, Li S, He S, Tao T, Fritchie K, Torres-Mora J, Lehman JS, Meves A, Razidlo GL, Rathi KS, Weroha SJ, Look AT, van Deursen JM, Li H, Westendorf JJ, Maris JM, Zhu S. GAS7 Deficiency Promotes Metastasis in MYCN-Driven Neuroblastoma. Cancer Res 2021; 81:2995-3007. [PMID: 33602789 DOI: 10.1158/0008-5472.can-20-1890] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/04/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022]
Abstract
One of the greatest barriers to curative treatment of neuroblastoma is its frequent metastatic outgrowth prior to diagnosis, especially in cases driven by amplification of the MYCN oncogene. However, only a limited number of regulatory proteins that contribute to this complex MYCN-mediated process have been elucidated. Here we show that the growth arrest-specific 7 (GAS7) gene, located at chromosome band 17p13.1, is preferentially deleted in high-risk MYCN-driven neuroblastoma. GAS7 expression was also suppressed in MYCN-amplified neuroblastoma lacking 17p deletion. GAS7 deficiency led to accelerated metastasis in both zebrafish and mammalian models of neuroblastoma with overexpression or amplification of MYCN. Analysis of expression profiles and the ultrastructure of zebrafish neuroblastoma tumors with MYCN overexpression identified that GAS7 deficiency led to (i) downregulation of genes involved in cell-cell interaction, (ii) loss of contact among tumor cells as critical determinants of accelerated metastasis, and (iii) increased levels of MYCN protein. These results provide the first genetic evidence that GAS7 depletion is a critical early step in the cascade of events culminating in neuroblastoma metastasis in the context of MYCN overexpression. SIGNIFICANCE: Heterozygous deletion or MYCN-mediated repression of GAS7 in neuroblastoma releases an important brake on tumor cell dispersion and migration to distant sites, providing a novel mechanism underlying tumor metastasis in MYCN-driven neuroblastoma.See related commentary by Menard, p. 2815.
Collapse
Affiliation(s)
- Zhiwei Dong
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Kok Siong Yeo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cheng Zhang
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Erin N Dankert Eggum
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Choong Yong Ung
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Taylor M Levee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Zuag Paj Her
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Cassie J Howe
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Xiaonan Hou
- Departments of Oncology, Radiation Oncology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Janine H van Ree
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Shuai Li
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ting Tao
- Children's Hospital, Zhejiang University School of Medicine; National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Karen Fritchie
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jorge Torres-Mora
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Julia S Lehman
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota
| | - Alexander Meves
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota
| | - Gina L Razidlo
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - S John Weroha
- Departments of Oncology, Radiation Oncology, and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jan M van Deursen
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Jennifer J Westendorf
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota.,Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - John M Maris
- Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Family Cancer Research Institute, Philadelphia, Pennsylvania
| | - Shizhen Zhu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic Cancer Center, Rochester, Minnesota. .,Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota
| |
Collapse
|
28
|
Abstract
Caveolin-1 (CAV1) is commonly considered to function as a cell surface protein, for instance in the genesis of caveolae. Nonetheless, it is also present in many intracellular organelles and compartments. The contributions of these intracellular pools to CAV1 function are generally less well understood, and this is also the case in the context of cancer. This review will summarize literature available on the role of CAV1 in cancer, highlighting particularly our understanding of the canonical (CAV1 in the plasma membrane) and non-canonical pathways (CAV1 in organelles and exosomes) linked to the dual role of the protein as a tumor suppressor and promoter of metastasis. With this in mind, we will focus on recently emerging concepts linking CAV1 function to the regulation of intracellular organelle communication within the same cell where CAV1 is expressed. However, we now know that CAV1 can be released from cells in exosomes and generate systemic effects. Thus, we will also elaborate on how CAV1 participates in intracellular communication between organelles as well as signaling between cells (non-canonical pathways) in cancer.
Collapse
|
29
|
Leite DM, Matias D, Battaglia G. The Role of BAR Proteins and the Glycocalyx in Brain Endothelium Transcytosis. Cells 2020; 9:E2685. [PMID: 33327645 PMCID: PMC7765129 DOI: 10.3390/cells9122685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Within the brain, endothelial cells lining the blood vessels meticulously coordinate the transport of nutrients, energy metabolites and other macromolecules essential in maintaining an appropriate activity of the brain. While small molecules are pumped across specialised molecular transporters, large macromolecular cargos are shuttled from one side to the other through membrane-bound carriers formed by endocytosis on one side, trafficked to the other side and released by exocytosis. Such a process is collectively known as transcytosis. The brain endothelium is recognised to possess an intricate vesicular endosomal network that mediates the transcellular transport of cargos from blood-to-brain and brain-to-blood. However, mounting evidence suggests that brain endothelial cells (BECs) employ a more direct route via tubular carriers for a fast and efficient transport from the blood to the brain. Here, we compile the mechanism of transcytosis in BECs, in which we highlight intracellular trafficking mediated by tubulation, and emphasise the possible role in transcytosis of the Bin/Amphiphysin/Rvs (BAR) proteins and glycocalyx (GC)-a layer of sugars covering BECs, in transcytosis. Both BAR proteins and the GC are intrinsically associated with cell membranes and involved in the modulation and shaping of these membranes. Hence, we aim to summarise the machinery involved in transcytosis in BECs and highlight an uncovered role of BAR proteins and the GC at the brain endothelium.
Collapse
Affiliation(s)
- Diana M. Leite
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
| | - Diana Matias
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Samantha Dickson Brain Cancer Unit, Cancer Institute, University College London, London WC1E 06DD, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
| | - Giuseppe Battaglia
- Department of Chemistry, University College London, London WC1H 0AJ, UK; (D.M.L.); (D.M.)
- Institute of the Physics and Living Systems, University College London, London WC1H 0AJ, UK
- Cancer Research UK, City of London Centre, London WC1E 06DD, UK
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institute for Research and Advanced Studies, 08010 Barcelona, Spain
| |
Collapse
|
30
|
Orbach R, Su X. Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling. Front Immunol 2020; 11:2187. [PMID: 33013920 PMCID: PMC7516127 DOI: 10.3389/fimmu.2020.02187] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/11/2020] [Indexed: 01/22/2023] Open
Abstract
Microvilli are finger-like membrane protrusions, supported by the actin cytoskeleton, and found on almost all cell types. A growing body of evidence suggests that the dynamic lymphocyte microvilli, with their highly curved membranes, play an important role in signal transduction leading to immune responses. Nevertheless, challenges in modulating local membrane curvature and monitoring the high dynamicity of microvilli hampered the investigation of the curvature-generation mechanism and its functional consequences in signaling. These technical barriers have been partially overcome by recent advancements in adapted super-resolution microscopy. Here, we review the up-to-date progress in understanding the mechanisms and functional consequences of microvillus formation in T cell signaling. We discuss how the deformation of local membranes could potentially affect the organization of signaling proteins and their biochemical activities. We propose that curved membranes, together with the underlying cytoskeleton, shape microvilli into a unique compartment that sense and process signals leading to lymphocyte activation.
Collapse
Affiliation(s)
- Ron Orbach
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, United States
- Yale Cancer Center, Yale University, New Haven, CT, United States
| |
Collapse
|
31
|
Li X, Li J, Martinez EC, Froese A, Passariello CL, Henshaw K, Rusconi F, Li Y, Yu Q, Thakur H, Nikolaev VO, Kapiloff MS. Calcineurin Aβ-Specific Anchoring Confers Isoform-Specific Compartmentation and Function in Pathological Cardiac Myocyte Hypertrophy. Circulation 2020; 142:948-962. [PMID: 32611257 DOI: 10.1161/circulationaha.119.044893] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The Ca2+/calmodulin-dependent phosphatase calcineurin is a key regulator of cardiac myocyte hypertrophy in disease. An unexplained paradox is how the β isoform of the calcineurin catalytic A-subunit (CaNAβ) is required for induction of pathological myocyte hypertrophy, despite calcineurin Aα expression in the same cells. It is unclear how the pleiotropic second messenger Ca2+ drives excitation-contraction coupling while not stimulating hypertrophy by calcineurin in the normal heart. Elucidation of the mechanisms conferring this selectivity in calcineurin signaling should reveal new strategies for targeting the phosphatase in disease. METHODS Primary adult rat ventricular myocytes were studied for morphology and intracellular signaling. New Förster resonance energy transfer reporters were used to assay Ca2+ and calcineurin activity in living cells. Conditional gene deletion and adeno-associated virus-mediated gene delivery in the mouse were used to study calcineurin signaling after transverse aortic constriction in vivo. RESULTS CIP4 (Cdc42-interacting protein 4)/TRIP10 (thyroid hormone receptor interactor 10) was identified as a new polyproline domain-dependent scaffold for CaNAβ2 by yeast 2-hybrid screen. Cardiac myocyte-specific CIP4 gene deletion in mice attenuated pressure overload-induced pathological cardiac remodeling and heart failure. Blockade of CaNAβ polyproline-dependent anchoring using a competing peptide inhibited concentric hypertrophy in cultured myocytes; disruption of anchoring in vivo using an adeno-associated virus gene therapy vector inhibited cardiac hypertrophy and improved systolic function after pressure overload. Live cell Förster resonance energy transfer biosensor imaging of cultured myocytes revealed that Ca2+ levels and calcineurin activity associated with the CIP4 compartment were increased by neurohormonal stimulation, but minimally by pacing. Conversely, Ca2+ levels and calcineurin activity detected by nonlocalized Förster resonance energy transfer sensors were induced by pacing and minimally by neurohormonal stimulation, providing functional evidence for differential intracellular compartmentation of Ca2+ and calcineurin signal transduction. CONCLUSIONS These results support a structural model for Ca2+ and CaNAβ compartmentation in cells based on an isoform-specific mechanism for calcineurin protein-protein interaction and localization. This mechanism provides an explanation for the specific role of CaNAβ in hypertrophy and its selective activation under conditions of pathologic stress. Disruption of CaNAβ polyproline-dependent anchoring constitutes a rational strategy for therapeutic targeting of CaNAβ-specific signaling responsible for pathological cardiac remodeling in cardiovascular disease deserving of further preclinical investigation.
Collapse
Affiliation(s)
- Xiaofeng Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Jinliang Li
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Eliana C Martinez
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Alexander Froese
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Catherine L Passariello
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Kathryn Henshaw
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Francesca Rusconi
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.)
| | - Yang Li
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Qian Yu
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Hrishikesh Thakur
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (A.F., V.O.N.)
| | - Michael S Kapiloff
- Interdisciplinary Stem Cell Institute, Department of Pediatrics, Leonard M. Miller School of Medicine, University of Miami, FL (X.L., J.L., E.C.M., C.L.P., K.H., F.R., H.T., M.S.K.).,Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA (J.L., Y.L., Q.Y., H.T., M.S.K.)
| |
Collapse
|
32
|
Liu Y, McDonald NA, Naegele SM, Gould KL, Wu JQ. The F-BAR Domain of Rga7 Relies on a Cooperative Mechanism of Membrane Binding with a Partner Protein during Fission Yeast Cytokinesis. Cell Rep 2020; 26:2540-2548.e4. [PMID: 30840879 PMCID: PMC6425953 DOI: 10.1016/j.celrep.2019.01.112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/30/2019] [Indexed: 12/17/2022] Open
Abstract
F-BAR proteins bind the plasma membrane (PM) to scaffold and organize the actin cytoskeleton. To understand how F-BAR proteins achieve their PM association, we studied the localization of a Schizosaccharomyces pombe F-BAR protein Rga7, which requires the coiled-coil protein Rng10 for targeting to the division site during cytokinesis. We find that the Rga7 F-BAR domain directly binds a motif in Rng10 simultaneously with the PM, and that an adjacent Rng10 motif independently binds the PM. Together, these multivalent interactions significantly enhance Rga7 F-BAR avidity for membranes at physiological protein concentrations, ensuring the division site localization of Rga7. Moreover, the requirement for the F-BAR domain in Rga7 localization and function in cytokinesis is bypassed by tethering an Rga7 construct lacking its F-BAR to Rng10, indicating that at least some F-BAR domains are necessary but not sufficient for PM targeting and are stably localized to specific cortical positions through adaptor proteins. Liu et al. show that the Rga7 F-BAR domain binds an adaptor protein Rng10, which contains a second membrane-binding module, to enhance Rga7 membrane avidity and stabilize its membrane association. The authors reveal a mechanism by which F-BAR domains can achieve high-avidity binding with the plasma membrane.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Nathan A McDonald
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Shelby M Naegele
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA.
| | - Jian-Qiu Wu
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
33
|
Franca R, Stocco G, Favretto D, Giurici N, Del Rizzo I, Locatelli F, Vinti L, Biondi A, Colombini A, Fagioli F, Barisone E, Pelin M, Martellossi S, Ventura A, Decorti G, Rabusin M. PACSIN2 rs2413739 influence on thiopurine pharmacokinetics: validation studies in pediatric patients. THE PHARMACOGENOMICS JOURNAL 2020; 20:415-425. [PMID: 31792371 DOI: 10.1038/s41397-019-0130-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
The aim of the study was to validate the impact of the single-nucleotide polymorphism rs2413739 (T > C) in the PACSIN2 gene on thiopurines pharmacological parameters and clinical response in an Italian cohort of pediatric patients with acute lymphoblastic leukemia (ALL) and inflammatory bowel disease (IBD). In ALL, PACSIN2 rs2413739 T allele was associated with a significant reduction of TPMT activity in erythrocytes (p = 0.0094, linear mixed-effect model, multivariate analysis considering TPMT genotype) and increased severe gastrointestinal toxicity during consolidation therapy (p = 0.049). A similar trend was present also for severe hematological toxicity during maintenance. In IBD, no significant effect of rs2413739 could be found on TPMT activity, however azathioprine effectiveness was reduced in patients carrying the T allele (linear mixed effect, p = 0.0058). In PBMC from healthy donors, a positive correlation between PACSIN2 and TPMT protein concentration could be detected (linear mixed effect, p = 0.045). These results support the role of PACSIN2 polymorphism on TPMT activity and mercaptopurine adverse effects in patients with ALL. Further evidence on PBMC and pediatric patients with IBD supports an association between PACSIN2 variants, TPMT activity, and thiopurines effects, even if more studies are needed since some of these effects may be tissue specific.
Collapse
Affiliation(s)
- Raffaella Franca
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", Trieste, Italy
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Diego Favretto
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", Trieste, Italy
| | - Nagua Giurici
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", Trieste, Italy
| | - Irene Del Rizzo
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", Trieste, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Pediatric Hospital, University of Pavia, Rome, Italy
| | - Luciana Vinti
- Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Pediatric Hospital, University of Pavia, Rome, Italy
| | - Andrea Biondi
- Pediatric Clinic, University Milano-Bicocca, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Antonella Colombini
- Pediatric Clinic, University Milano-Bicocca, Fondazione MBBM/San Gerardo Hospital, Monza, Italy
| | - Franca Fagioli
- Division of Pediatric Oncohematology and Stem Cell Transplant Center, Ospedale Pediatrico Regina Margherita, Turin, Italy
| | - Elena Barisone
- Division of Pediatric Oncohematology and Stem Cell Transplant Center, Ospedale Pediatrico Regina Margherita, Turin, Italy
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Stefano Martellossi
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", Trieste, Italy
- Department of Maternal and Child Health, Ospedale Ca' Foncello, Treviso, Italy
| | - Alessandro Ventura
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuliana Decorti
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy.
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", Trieste, Italy.
| | - Marco Rabusin
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
34
|
Ebrahimkutty MP, Galic M. Receptor‐Free Signaling at Curved Cellular Membranes. Bioessays 2019; 41:e1900068. [DOI: 10.1002/bies.201900068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/09/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Mirsana P. Ebrahimkutty
- DFG Cluster of Excellence “Cells in Motion”University of Muenster Muenster 48149 Germany
- Institute of Medical Physics and BiophysicsUniversity of Muenster Muenster 48149 Germany
- CIM‐IMRPS Graduate School Muenster 48149 Germany
| | - Milos Galic
- DFG Cluster of Excellence “Cells in Motion”University of Muenster Muenster 48149 Germany
- Institute of Medical Physics and BiophysicsUniversity of Muenster Muenster 48149 Germany
| |
Collapse
|
35
|
Le Roux AL, Quiroga X, Walani N, Arroyo M, Roca-Cusachs P. The plasma membrane as a mechanochemical transducer. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180221. [PMID: 31431176 PMCID: PMC6627014 DOI: 10.1098/rstb.2018.0221] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
Cells are constantly submitted to external mechanical stresses, which they must withstand and respond to. By forming a physical boundary between cells and their environment that is also a biochemical platform, the plasma membrane (PM) is a key interface mediating both cellular response to mechanical stimuli, and subsequent biochemical responses. Here, we review the role of the PM as a mechanosensing structure. We first analyse how the PM responds to mechanical stresses, and then discuss how this mechanical response triggers downstream biochemical responses. The molecular players involved in PM mechanochemical transduction include sensors of membrane unfolding, membrane tension, membrane curvature or membrane domain rearrangement. These sensors trigger signalling cascades fundamental both in healthy scenarios and in diseases such as cancer, which cells harness to maintain integrity, keep or restore homeostasis and adapt to their external environment. This article is part of a discussion meeting issue 'Forces in cancer: interdisciplinary approaches in tumour mechanobiology'.
Collapse
Affiliation(s)
- Anabel-Lise Le Roux
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Xarxa Quiroga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Nikhil Walani
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Marino Arroyo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- LaCàN, Universitat Politècnica de Catalunya-BarcelonaTech, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
- Department of Biomedical Sciences, Universitat de Barcelona, Barcelona 08036, Spain
| |
Collapse
|
36
|
Taylor KL, Taylor RJ, Richters KE, Huynh B, Carrington J, McDermott ME, Wilson RL, Dent EW. Opposing functions of F-BAR proteins in neuronal membrane protrusion, tubule formation, and neurite outgrowth. Life Sci Alliance 2019; 2:2/3/e201800288. [PMID: 31160379 PMCID: PMC6549137 DOI: 10.26508/lsa.201800288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Neurite formation is a fundamental antecedent to axon and dendrite formation, but the mechanisms that underlie this important process are poorly characterized. Here, we demonstrate that two F-BAR proteins, CIP4 and FBP17, have opposing functions in early cortical neuron development. The F-BAR family of proteins play important roles in many cellular processes by regulating both membrane and actin dynamics. The CIP4 family of F-BAR proteins is widely recognized to function in endocytosis by elongating endocytosing vesicles. However, in primary cortical neurons, CIP4 concentrates at the tips of extending lamellipodia and filopodia and inhibits neurite outgrowth. Here, we report that the highly homologous CIP4 family member, FBP17, induces tubular structures in primary cortical neurons and results in precocious neurite formation. Through domain swapping and deletion experiments, we demonstrate that a novel polybasic region between the F-BAR and HR1 domains is required for membrane bending. Moreover, the presence of a poly-PxxP region in longer splice isoforms of CIP4 and FBP17 largely reverses the localization and function of these proteins. Thus, CIP4 and FBP17 function as an antagonistic pair to fine-tune membrane protrusion, endocytosis, and neurite formation during early neuronal development.
Collapse
Affiliation(s)
- Kendra L Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Russell J Taylor
- University of Wisconsin-Madison, Neuroscience Training Program, Madison, WI, USA
| | - Karl E Richters
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Brandon Huynh
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Justin Carrington
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Maeve E McDermott
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Rebecca L Wilson
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| | - Erik W Dent
- University of Wisconsin-Madison, Department of Neuroscience, Madison, WI, USA
| |
Collapse
|
37
|
RNAi Screen in Tribolium Reveals Involvement of F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects. G3-GENES GENOMES GENETICS 2019; 9:1141-1151. [PMID: 30733382 PMCID: PMC6469413 DOI: 10.1534/g3.118.200996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a large-scale RNAi screen in Tribolium castaneum for genes with knock-down phenotypes in the larval somatic musculature, one recurring phenotype was the appearance of larval muscle fibers that were significantly thinner than those in control animals. Several of the genes producing this knock-down phenotype corresponded to orthologs of Drosophila genes that are known to participate in myoblast fusion, particularly via their effects on actin polymerization. A new gene previously not implicated in myoblast fusion but displaying a similar thin-muscle knock-down phenotype was the Tribolium ortholog of Nostrin, which encodes an F-BAR and SH3 domain protein. Our genetic studies of Nostrin and Cip4, a gene encoding a structurally related protein, in Drosophila show that the encoded F-BAR proteins jointly contribute to efficient myoblast fusion during larval muscle development. Together with the F-Bar protein Syndapin they are also required for normal embryonic midgut morphogenesis. In addition, Cip4 is required together with Nostrin during the profound remodeling of the midgut visceral musculature during metamorphosis. We propose that these F-Bar proteins help govern proper morphogenesis particularly of the longitudinal midgut muscles during metamorphosis.
Collapse
|
38
|
Role for ERK1/2-dependent activation of FCHSD2 in cancer cell-selective regulation of clathrin-mediated endocytosis. Proc Natl Acad Sci U S A 2018; 115:E9570-E9579. [PMID: 30249660 DOI: 10.1073/pnas.1810209115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) regulates the uptake of cell-surface receptors as well as their downstream signaling activities. We recently reported that signaling can reciprocally regulate CME in cancer cells and that this crosstalk can contribute to cancer progression. To further explore the nature and extent of the crosstalk between signaling and CME in cancer cell biology, we analyzed a panel of oncogenic signaling kinase inhibitors for their effects on CME across a panel of normal and cancerous cells. Inhibition of several kinases selectively affected CME in cancer cells, including inhibition of ERK1/2, which selectively inhibited CME by decreasing the rate of clathrin-coated pit (CCP) initiation. We identified an ERK1/2 substrate, the FCH/F-BAR and SH3 domain-containing protein FCHSD2, as being essential for the ERK1/2-dependent effects on CME and CCP initiation. Our data suggest that ERK1/2 phosphorylation activates FCHSD2 and regulates EGF receptor (EGFR) endocytic trafficking as well as downstream signaling activities. Loss of FCHSD2 activity in nonsmall cell lung cancer (NSCLC) cells leads to increased cell-surface expression and altered signaling downstream of EGFR, resulting in enhanced cell proliferation and migration. The expression level of FCHSD2 is positively correlated with higher NSCLC patient survival rates, suggesting that FCHSD2 can negatively affect cancer progression. These findings provide insight into the mechanisms and consequences of the reciprocal regulation of signaling and CME in cancer cells.
Collapse
|
39
|
Maiorano AM, Lourenco DL, Tsuruta S, Ospina AMT, Stafuzza NB, Masuda Y, Filho AEV, Cyrillo JNDSG, Curi RA, Silva JAIIDV. Assessing genetic architecture and signatures of selection of dual purpose Gir cattle populations using genomic information. PLoS One 2018; 13:e0200694. [PMID: 30071036 PMCID: PMC6071998 DOI: 10.1371/journal.pone.0200694] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/02/2018] [Indexed: 12/31/2022] Open
Abstract
Gir is one of the main cattle breeds raised in tropical South American countries. Strong artificial selection through its domestication resulted in increased genetic differentiation among the countries in recent years. Over the years, genomic studies in Gir have become more common. However, studies of population structure and signatures of selection in divergent Gir populations are scarce and need more attention to better understand genetic differentiation, gene flow, and genetic distance. Genotypes of 173 animals selected for growth traits and 273 animals selected for milk production were used in this study. Clear genetic differentiation between beef and dairy populations was observed. Different criteria led to genetic divergence and genetic differences in allele frequencies between the two populations. Gene segregation in each population was forced by artificial selection, promoting isolation, and increasing genetic variation between them. Results showed evidence of selective forces in different regions of the genome. A total of 282 genes were detected under selection in the test population based on the fixation index (Fst), integrated haplotype score (iHS), and cross-population extend haplotype homozygosity (XP-EHH) approaches. The QTL mapping identified 35 genes associated with reproduction, milk composition, growth, meat and carcass, health, or body conformation traits. The investigation of genes and pathways showed that quantitative traits associated to fertility, milk production, beef quality, and growth were involved in the process of differentiation of these populations. These results would support further investigations of population structure and differentiation in the Gir breed.
Collapse
Affiliation(s)
- Amanda Marchi Maiorano
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
- * E-mail:
| | - Daniela Lino Lourenco
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Shogo Tsuruta
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Alejandra Maria Toro Ospina
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
| | - Nedenia Bonvino Stafuzza
- Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Sao Paulo, Brazil
| | - Yutaka Masuda
- Animal and Dairy Science, Animal Breeding and Genetics, University of Georgia, Athens, Georgia, United States of America
| | | | | | - Rogério Abdallah Curi
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu, Sao Paulo, Brazil
| | | |
Collapse
|
40
|
Bilal S, Jaggi S, Janosevic D, Shah N, Teymour S, Voronina A, Watari J, Axis J, Amsler K. ZO-1 protein is required for hydrogen peroxide to increase MDCK cell paracellular permeability in an ERK 1/2-dependent manner. Am J Physiol Cell Physiol 2018; 315:C422-C431. [PMID: 29874107 DOI: 10.1152/ajpcell.00185.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogen peroxide (H2O2) increases paracellular permeability of Madin-Darby canine kidney (MDCK) cells, but the mechanism mediating this effect remains unclear. Treatment of MDCK cells with H2O2 activated ERK 1/2. Inhibition of ERK 1/2 activation blocked the ability of H2O2 to increase paracellular permeability. Knockdown of zonula occludens-1 (ZO-1) protein but not occludin eliminated the ability of H2O2 to increase paracellular permeability. H2O2 treatment did not, however, affect the total cell content or contents of the Triton X-100-soluble and -insoluble fractions for occludin, ZO-1, or ZO-2. H2O2 treatment decreased the number of F-actin stress fibers in the basal portion of the cells. Similar to wild-type MDCK cells, H2O2 increased ERK 1/2 activation in ZO-1 knockdown and occludin knockdown cells. Inhibition of ERK 1/2 activation blocked the increase in paracellular permeability in occludin knockdown cells. ZO-1 knockdown cell paracellular permeability was regulated by PP1, an src inhibitor, indicating that the loss of response to H2O2 was not a general loss of the ability to regulate the paracellular barrier. Inhibition of myosin ATPase activity with blebbistatin increased paracellular permeability in ZO-1 knockdown cells but not in wild-type MDCK cells. H2O2 treatment sensitized wild-type MDCK cells to inhibition of myosin ATPase. Knockdown of TOCA-1 protein, which promotes formation of local branched actin networks, reproduced the effects of ZO-1 protein knockdown. These results demonstrate that H2O2 increases MDCK cell paracellular permeability through activation of ERK 1/2. This H2O2 action requires ZO-1 protein and TOCA-1 protein, suggesting involvement of the actin cytoskeleton.
Collapse
Affiliation(s)
- Sahar Bilal
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Shirin Jaggi
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Danielle Janosevic
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Nikita Shah
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Shereen Teymour
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Angelina Voronina
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Jessica Watari
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Josephine Axis
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| | - Kurt Amsler
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York
| |
Collapse
|
41
|
de la Zerda A, Kratochvil MJ, Suhar NA, Heilshorn SC. Review: Bioengineering strategies to probe T cell mechanobiology. APL Bioeng 2018; 2:021501. [PMID: 31069295 PMCID: PMC6324202 DOI: 10.1063/1.5006599] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/29/2018] [Indexed: 01/08/2023] Open
Abstract
T cells play a major role in adaptive immune response, and T cell dysfunction can lead to the progression of several diseases that are often associated with changes in the mechanical properties of tissues. However, the concept that mechanical forces play a vital role in T cell activation and signaling is relatively new. The endogenous T cell microenvironment is highly complex and dynamic, involving multiple, simultaneous cell-cell and cell-matrix interactions. This native complexity has made it a challenge to isolate the effects of mechanical stimuli on T cell activation. In response, researchers have begun developing engineered platforms that recapitulate key aspects of the native microenvironment to dissect these complex interactions in order to gain a better understanding of T cell mechanotransduction. In this review, we first describe some of the unique characteristics of T cells and the mounting research that has shown they are mechanosensitive. We then detail the specific bioengineering strategies that have been used to date to measure and perturb the mechanical forces at play during T cell activation. In addition, we look at engineering strategies that have been used successfully in mechanotransduction studies for other cell types and describe adaptations that may make them suitable for use with T cells. These engineering strategies can be classified as 2D, so-called 2.5D, or 3D culture systems. In the future, findings from this emerging field will lead to an optimization of culture environments for T cell expansion and the development of new T cell immunotherapies for cancer and other immune diseases.
Collapse
Affiliation(s)
- Adi de la Zerda
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | | | - Nicholas A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
42
|
Chang JW, Kuo WH, Lin CM, Chen WL, Chan SH, Chiu MF, Chang IS, Jiang SS, Tsai FY, Chen CH, Huang PH, Chang KJ, Lin KT, Lin SC, Wang MY, Uen YH, Tu CW, Hou MF, Tsai SF, Shen CY, Tung SL, Wang LH. Wild-type p53 upregulates an early onset breast cancer-associated gene GAS7 to suppress metastasis via GAS7-CYFIP1-mediated signaling pathway. Oncogene 2018; 37:4137-4150. [PMID: 29706651 PMCID: PMC6062498 DOI: 10.1038/s41388-018-0253-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 01/07/2018] [Accepted: 03/14/2018] [Indexed: 01/13/2023]
Abstract
The early onset breast cancer patients (age ≤ 40) often display higher incidence of axillary lymph node metastasis, and poorer five-year survival than the late-onset patients. To identify the genes and molecules associated with poor prognosis of early onset breast cancer, we examined gene expression profiles from paired breast normal/tumor tissues, and coupled with Gene Ontology and public data base analysis. Our data showed that the expression of GAS7b gene was lower in the early onset breast cancer patients as compared to the elder patients. We found that GAS7 was associated with CYFIP1 and WAVE2 complex to suppress breast cancer metastasis via blocking CYFIP1 and Rac1 protein interaction, actin polymerization, and β1-integrin/FAK/Src signaling. We further demonstrated that p53 directly regulated GAS7 gene expression, which was inversely correlated with p53 mutations in breast cancer specimens. Our study uncover a novel regulatory mechanism of p53 in early onset breast cancer progression through GAS7-CYFIP1-mediated signaling pathways.
Collapse
Affiliation(s)
- Jer-Wei Chang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chiao-Mei Lin
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Wen-Ling Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Shih-Hsuan Chan
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan.,Institute of Molecular Medicine, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan.,Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Meng-Fan Chiu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - King-Jen Chang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Taiwan Adventist Hospital, Taipei, Taiwan
| | - Kai-Ti Lin
- Institute of Biotechnology, College of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Sheng-Chieh Lin
- College of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yih-Huei Uen
- Department of Surgery, Asia University Hospital, Taichung, Taiwan
| | - Chi-Wen Tu
- Department of General Surgery, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Municipal Hsiao Kang Hospital, Kaohsiung, Taiwan.,Division of Breast Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shih-Feng Tsai
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shiao-Lin Tung
- Department of Hematology and Oncology, Ton-Yen General Hospital, Hsinchu, Taiwan
| | - Lu-Hai Wang
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Miaoli, Taiwan. .,College of Chinese Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
43
|
SRGAP1, a crucial target of miR-340 and miR-124, functions as a potential oncogene in gastric tumorigenesis. Oncogene 2017; 37:1159-1174. [PMID: 29234151 PMCID: PMC5861093 DOI: 10.1038/s41388-017-0029-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Slit-Robo GTPase-activating protein 1 (SRGAP1) functions as a GAP for Rho-family GTPases and downstream of Slit-Robo signaling. We aim to investigate the biological function of SRGAP1 and reveal its regulation by deregulated microRNAs (miRNAs) in gastric cancer (GC). mRNA and protein expression of SRGAP1 were examined by quantitative reverse transcription PCR (qRT-PCR) and western blot. The biological role of SRGAP1 was demonstrated through siRNA-mediated knockdown experiments. The regulation of SRGAP1 by miR-340 and miR-124 was confirmed by western blot, dual luciferase activity assays and rescue experiments. SRGAP1 is overexpressed in 9 out of 12 (75.0%) GC cell lines. In primary GC samples from TCGA cohort, SRGAP1 shows gene amplification in 5/258 (1.9%) of cases and its mRNA expression demonstrates a positive correlation with copy number gain. Knockdown of SRGAP1 in GC cells suppressed cell proliferation, reduced colony formation, and significantly inhibited cell invasion and migration. Luciferase reporter assays revealed that SRGAP1 knockdown significantly inhibited Wnt/β-catenin pathway. In addition, SRGAP1 was found to be a direct target of two tumor-suppressive miRNAs, miR-340 and miR-124. Concordantly, these two miRNAs were downregulated in primary gastric tumors and these decreasing levels w5ere associated with poor outcomes. Expression of miR-340 and SRGAP1 displayed a reverse relationship in primary samples and re-expressed SRGAP1, rescued the anti-cancer effects of miR-340. Taken together, these data strongly suggest that, apart from gene amplification and mutation, the activation of SRGAP1 in GC is partly due to the downregulation of tumor-suppressive miRNAs, miR-340 and miR-124. Thus SRGAP1 is overexpressed in gastric carcinogenesis and plays an oncogenic role through activating Wnt/β-catenin pathway.
Collapse
|
44
|
Mallik B, Dwivedi MK, Mushtaq Z, Kumari M, Verma PK, Kumar V. Regulation of neuromuscular junction organization by Rab2 and its effector ICA69 in Drosophila. Development 2017; 144:2032-2044. [PMID: 28455372 DOI: 10.1242/dev.145920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying synaptic differentiation, which involves neuronal membrane and cytoskeletal remodeling, are not completely understood. We performed a targeted RNAi-mediated screen of Drosophila BAR-domain proteins and identified islet cell autoantigen 69 kDa (ICA69) as one of the key regulators of morphological differentiation of the larval neuromuscular junction (NMJ). We show that Drosophila ICA69 colocalizes with α-Spectrin at the NMJ. The conserved N-BAR domain of ICA69 deforms liposomes in vitro Full-length ICA69 and the ICAC but not the N-BAR domain of ICA69 induce filopodia in cultured cells. Consistent with its cytoskeleton regulatory role, ICA69 mutants show reduced α-Spectrin immunoreactivity at the larval NMJ. Manipulating levels of ICA69 or its interactor PICK1 alters the synaptic level of ionotropic glutamate receptors (iGluRs). Moreover, reducing PICK1 or Rab2 levels phenocopies ICA69 mutation. Interestingly, Rab2 regulates not only synaptic iGluR but also ICA69 levels. Thus, our data suggest that: (1) ICA69 regulates NMJ organization through a pathway that involves PICK1 and Rab2, and (2) Rab2 functions genetically upstream of ICA69 and regulates NMJ organization and targeting/retention of iGluRs by regulating ICA69 levels.
Collapse
Affiliation(s)
- Bhagaban Mallik
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manish Kumar Dwivedi
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Zeeshan Mushtaq
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| | - Manisha Kumari
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), New Delhi 110067, India
| | - Vimlesh Kumar
- Department of Biological Sciences, AB-3, Indian Institute of Science Education and Research, Bhauri, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
45
|
Li T, Niu X, Zhang X, Wang S, Liu Z. Recombinant Human IFNα-2b Response Promotes Vaginal Epithelial Cells Defense against Candida albicans. Front Microbiol 2017; 8:697. [PMID: 28473823 PMCID: PMC5397410 DOI: 10.3389/fmicb.2017.00697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 04/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classical antifungal drugs have been subjected to restrictions due to drug toxicity, drug resistance, bioavailability, and detrimental drug interactions. Type I interferon (IFN) exerts direct distinct immunostimulatory or immunomodulatory actions; however, little is known regarding the anti-fungal reactions of vaginal epithelial cells (VECs) induced by the type I IFN response. Therefore, in the present study, we evaluated the cytotoxic activity, immunocompetent cytokine responses, and non-B IgG production of the VK2/E6E7 VEC line following recombinant human IFN α-2b (rhIFNα-2b) treatment in response to Candida albicans. When treated with rhIFNα-2b, the production of IL-2, IL-4, and IL-17 were significantly up-regulated compared to the infected control cells (P < 0.05). Our scanning electron microscopy results revealed that C. albicans can invade VECs by inducing both endocytosis and active penetration. RhIFNα-2b was able to transform the VECs into a thallus and stretched pattern, promoting the fusion of filopodia to form a lamellipodium and enhancing the mobility and the repair capacity of the VECs. In addition, rhIFNα-2b could effectively inhibit the adhesion, hyphal formation, and proliferation of C. albicans. Collectively, these responses restored the immune function of the infected VECs against C. albicans in vitro, providing a theoretical basis for this novel treatment strategy.
Collapse
Affiliation(s)
- Ting Li
- Department of Obstetrics and Gynecology, Peking University First HospitalBeijing, China
| | - Xiaoxi Niu
- Department of Obstetrics and Gynecology, Peking University First HospitalBeijing, China
| | - Xu Zhang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First HospitalBeijing, China
| | - Suxia Wang
- Laboratory of Electron Microscopy, Ultrastructural Pathology Center, Peking University First HospitalBeijing, China
| | - Zhaohui Liu
- Department of Obstetrics and Gynecology, Peking University First HospitalBeijing, China
| |
Collapse
|
46
|
Xu Y, Xia J, Liu S, Stein S, Ramon C, Xi H, Wang L, Xiong X, Zhang L, He D, Yang W, Zhao X, Cheng X, Yang X, Wang H. Endocytosis and membrane receptor internalization: implication of F-BAR protein Carom. Front Biosci (Landmark Ed) 2017; 22:1439-1457. [PMID: 28199211 DOI: 10.2741/4552] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Endocytosis is a cellular process mostly responsible for membrane receptor internalization. Cell membrane receptors bind to their ligands and form a complex which can be internalized. We previously proposed that F-BAR protein initiates membrane curvature and mediates endocytosis via its binding partners. However, F-BAR protein partners involved in membrane receptor endocytosis and the regulatory mechanism remain unknown. In this study, we established database mining strategies to explore mechanisms underlying receptor-related endocytosis. We identified 34 endocytic membrane receptors and 10 regulating proteins in clathrin-dependent endocytosis (CDE), a major process of membrane receptor internalization. We found that F-BAR protein FCHSD2 (Carom) may facilitate endocytosis via 9 endocytic partners. Carom is highly expressed, along with highly expressed endocytic membrane receptors and partners, in endothelial cells and macrophages. We established 3 models of Carom-receptor complexes and their intracellular trafficking based on protein interaction and subcellular localization. We conclude that Carom may mediate receptor endocytosis and transport endocytic receptors to the cytoplasm for receptor signaling and lysosome/proteasome degradation, or to the nucleus for RNA processing, gene transcription and DNA repair.
Collapse
Affiliation(s)
- Yanjie Xu
- Center Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nan Chang, Jiang Xi, 330006, China, and Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Jixiang Xia
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Suxuan Liu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140,and Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Sam Stein
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Cueto Ramon
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Hang Xi
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Luqiao Wang
- Center Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nan Chang, Jiang Xi, 330006, China, and Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Xinyu Xiong
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Lixiao Zhang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Dingwen He
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - William Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140
| | - Xianxian Zhao
- Department of Cardiology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Xiaoshu Cheng
- Center Department of Cardiology, Second Affiliated Hospital of Nanchang University, Nan Chang, Jiang Xi, 330006, China
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, and Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA, 19140, and Thrombosis Research, Temple University School of Medicine
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA, 19140, and Cardiovascular Research, Temple University School of Medicine, Philadelphia, PA, 19140, and Thrombosis Research, Temple University School of Medicine,
| |
Collapse
|
47
|
Salzer U, Kostan J, Djinović-Carugo K. Deciphering the BAR code of membrane modulators. Cell Mol Life Sci 2017; 74:2413-2438. [PMID: 28243699 PMCID: PMC5487894 DOI: 10.1007/s00018-017-2478-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 01/06/2023]
Abstract
The BAR domain is the eponymous domain of the “BAR-domain protein superfamily”, a large and diverse set of mostly multi-domain proteins that play eminent roles at the membrane cytoskeleton interface. BAR domain homodimers are the functional units that peripherally associate with lipid membranes and are involved in membrane sculpting activities. Differences in their intrinsic curvatures and lipid-binding properties account for a large variety in membrane modulating properties. Membrane activities of BAR domains are further modified and regulated by intramolecular or inter-subunit domains, by intermolecular protein interactions, and by posttranslational modifications. Rather than providing detailed cell biological information on single members of this superfamily, this review focuses on biochemical, biophysical, and structural aspects and on recent findings that paradigmatically promote our understanding of processes driven and modulated by BAR domains.
Collapse
Affiliation(s)
- Ulrich Salzer
- Max F. Perutz Laboratories, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julius Kostan
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, Department of Structural and Computational Biology, University of Vienna, Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 119, 1000, Ljubljana, Slovenia.
| |
Collapse
|
48
|
Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H, Yang X. Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol 2016; 95:247-252. [PMID: 27925481 DOI: 10.1139/cjpp-2016-0515] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondrial reactive oxygen species (mtROS) are signaling molecules, which drive inflammatory cytokine production and T cell activation. In addition, cardiovascular diseases, cancers, and autoimmune diseases all share a common feature of increased mtROS level. Both mtROS and ATP are produced as a result of electron transport chain activity, but it remains enigmatic whether mtROS could be generated independently from ATP synthesis. A recent study shed light on this important question and found that, during endothelial cell (EC) activation, mtROS could be upregulated in a proton leak-coupled, but ATP synthesis-uncoupled manner. As a result, EC could upregulate mtROS production for physiological EC activation without compromising mitochondrial membrane potential and ATP generation, and consequently without causing mitochondrial damage and EC death. Thus, a novel pathophysiological role of proton leak in driving mtROS production was uncovered for low grade EC activation, patrolling immunosurveillance cell trans-endothelial migration and other signaling events without compromising cellular survival. This new working model explains how mtROS could be increasingly generated independently from ATP synthesis and endothelial damage or death. Mapping the connections among mitochondrial metabolism, physiological EC activation, patrolling cell migration, and pathological inflammation is significant towards the development of novel therapies for inflammatory diseases and cancers.
Collapse
Affiliation(s)
- Xinyuan Li
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Pu Fang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - William Y Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Kylie Chan
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Muriel Lavallee
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Keman Xu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Tracy Gao
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Hong Wang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA.,Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Department of Pharmacology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
49
|
Sherlekar A, Rikhy R. Syndapin promotes pseudocleavage furrow formation by actin organization in the syncytial Drosophila embryo. Mol Biol Cell 2016; 27:2064-79. [PMID: 27146115 PMCID: PMC4927280 DOI: 10.1091/mbc.e15-09-0656] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 04/26/2016] [Indexed: 12/03/2022] Open
Abstract
F-BAR domain–containing proteins link the actin cytoskeleton to the membrane during membrane remodeling. Syndapin associates with the pseudocleavage furrow membrane and is essential for furrow morphology, actin organization, and extension downstream of initiation factor RhoGEF2. Coordinated membrane and cytoskeletal remodeling activities are required for membrane extension in processes such as cytokinesis and syncytial nuclear division cycles in Drosophila. Pseudocleavage furrow membranes in the syncytial Drosophila blastoderm embryo show rapid extension and retraction regulated by actin-remodeling proteins. The F-BAR domain protein Syndapin (Synd) is involved in membrane tubulation, endocytosis, and, uniquely, in F-actin stability. Here we report a role for Synd in actin-regulated pseudocleavage furrow formation. Synd localized to these furrows, and its loss resulted in short, disorganized furrows. Synd presence was important for the recruitment of the septin Peanut and distribution of Diaphanous and F-actin at furrows. Synd and Peanut were both absent in furrow-initiation mutants of RhoGEF2 and Diaphanous and in furrow-progression mutants of Anillin. Synd overexpression in rhogef2 mutants reversed its furrow-extension phenotypes, Peanut and Diaphanous recruitment, and F-actin organization. We conclude that Synd plays an important role in pseudocleavage furrow extension, and this role is also likely to be crucial in cleavage furrow formation during cell division.
Collapse
Affiliation(s)
- Aparna Sherlekar
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Richa Rikhy
- Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
50
|
Li X, Wang S, Zhu R, Li H, Han Q, Zhao RC. Lung tumor exosomes induce a pro-inflammatory phenotype in mesenchymal stem cells via NFκB-TLR signaling pathway. J Hematol Oncol 2016; 9:42. [PMID: 27090786 PMCID: PMC4836087 DOI: 10.1186/s13045-016-0269-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
Background In tumor microenvironment, a continuous cross-talk between cancer cells and other cellular components is required to sustain tumor progression. Accumulating evidence suggests that exosomes, a novel way of cell communication, play an important role in such cross-talk. Exosomes could facilitate the direct intercellular transfer of proteins, lipids, and miRNA/mRNA/DNAs between cells. Since mesenchymal stem cells (MSCs) can be attracted to tumor sites and become an important component of the tumor microenvironment, there is an urgent need to reveal the effect of tumor exosomes on MSCs and to further explore the underlying molecular mechanisms. Methods Exosomes were harvested from lung cancer cell line A549 and added to MSCs. Secretion of inflammation-associated cytokines in exosome-treated MSCs were analyzed by RT-PCR and ELISA. The growth-promoting effect of exosome-treated MSCs on lung tumor cells was evaluated by in vivo mouse xenograft model. Signaling pathway involved in exosomes-treated MSCs was detected by PCR array of human toll-like receptor signaling pathway, RT-PCR, and Western blot. Results Data showed that lung tumor cell A549-derived exosomes could induce a pro-inflammatory phenotype in MSCs named P-MSCs, which have significantly elevated secretion of IL-6, IL-8, and MCP-1. P-MSCs possess a greatly enhanced ability in promoting lung tumor growth in mouse xenograft model. Analysis of the signaling pathways in P-MSCs revealed a fast triggering of NF-κB. Genetic ablation of Toll-like receptor 2 (TLR2) by siRNA and TLR2-neutralizing antibody could block NF-κB activation by exosomes. We further found that Hsp70 present on the surface of lung tumor exosomes contributed to the induction of P-MSCs by A549 exosomes. Conclusions Our studies suggest a novel mechanism by which lung tumor cell-derived exosomes induce pro-inflammatory activity of MSCs which in turn get tumor supportive characteristics. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0269-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoxia Li
- Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shihua Wang
- Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Rongjia Zhu
- Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Hongling Li
- Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Qin Han
- Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Robert Chunhua Zhao
- Center of Excellence in Tissue Engineering, Key Laboratory of Beijing, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China. .,Center of Translational medicine Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|