1
|
Zhang Y, Fan W, Su F, Zhang X, Du Y, Li W, Gao Y, Hu W, Zhao J. Discussion on the mechanism of HER2 resistance in esophagogastric junction and gastric cancer in the era of immunotherapy. Hum Vaccin Immunother 2025; 21:2459458. [PMID: 39875210 PMCID: PMC11776468 DOI: 10.1080/21645515.2025.2459458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/11/2025] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a critical biomarker and therapeutic target in gastric/gastroesophageal junction (G/GEJ) cancers, despite the initial success of HER2-targeted therapies, such as trastuzumab, resistance to these drugs has emerged as a major impediment to effective long-term treatment. This review examines the mechanisms of drug resistance in HER2-positive G/GEJ cancer, the primary mechanisms of resistance explored include alterations in the HER2 receptor itself, such as mutations and changes in expression levels, as well as downstream signaling pathways, and interactions with the tumor microenvironment (TME). Furthermore, the review discusses the Novel therapeutic approaches, including the use of antibody-drug conjugates (ADCs) and combination therapies are assessed for their potential to enhance outcomes. By integrating recent research findings and clinical trials, this review aims to provide oncologists and researchers with insights into developing more effective treatments for patients with drug-resistant HER2-positive G/GEJ cancer.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Graduate School, Changzhi Medical College, Changzhi, Shanxi, China
| | - Wenxuan Fan
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Fei Su
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Graduate School, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaoling Zhang
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yunyi Du
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Weiling Li
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Graduate School, Changzhi Medical College, Changzhi, Shanxi, China
| | - Yangjun Gao
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Jun Zhao
- Department of Oncology, Changzhi People’s Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
2
|
Pan C, Zhou Z, Cao J, Zhang L, Cheng T, Li H, Jiang Z, Huang D, Zeng D, Luo Y, Wu J. MACC1 is a potential prognostic biomarker for cancer immunotherapy in lung adenocarcinoma. Carcinogenesis 2025; 46:bgaf015. [PMID: 40117327 DOI: 10.1093/carcin/bgaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/02/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025] Open
Abstract
Our team previously reported that MACC1 levels are closely related to a variety of tumors and the efficacy of immune checkpoint blockade (ICB) therapy. However, the predictive value of MACC1 levels for lung adenocarcinoma (LUAD) immunotherapy has not been studied. This study aimed to investigate the predictive effect of the oncogene MACC1 on ICB reactivity in patients with LUAD. First, the expression patterns and clinical features of MACC1 in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were comprehensively evaluated using R packages. We subsequently assessed the correlations between MACC1 and immunological characteristics in the LUAD tumor microenvironment (TME) using the CIBERSORT algorithm. The results revealed that MACC1 overexpression was significantly correlated with 3 immune checkpoints, 14 tumor-infiltrating immune cells (TIICs), 9 immunomodulators, 5 anticancer immune process activities, and 3 effector genes of TIICs in LUAD. Additionally, on the basis of the prognostic genes from LASSO analysis, we developed the MACC1-related Risk Score (MRRS), which can accurately predict the prognosis and response to cancer immunotherapy in LUAD patients (HR = 3.50, AUC at 1, 2, and 3 years = 0.737, 0.744, and 0.724, respectively). Finally, in vivo experiments revealed that the combination of MACC1 silencing and PD-L1 inhibitors significantly inhibits tumor progression. These findings increase our understanding of MACC1 as a potential prognostic biomarker and potential therapeutic target for cancer immunotherapy. The MRRS may play a critical role in predicting the response of LUAD patients to ICB therapy.
Collapse
Affiliation(s)
- Changqie Pan
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Zhiyuan Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Jun Cao
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Lemeng Zhang
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Tianli Cheng
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Haitao Li
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Zhou Jiang
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Danhui Huang
- Department of Respiratory and Critical Care Medicine, Chronic Airways Diseases Laboratory, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong 510515, China
| | - Yongzhong Luo
- Thoracic Medicine Department 1, Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, No. 283, Tongzipo Road, Yuelu District, Changsha, Hunan 410013, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Baiyun District, Guangzhou, Guangdong 510515, China
| |
Collapse
|
3
|
Niu Z, He J, Wang S, Xue B, Zhang H, Hou R, Xu Z, Sun J, He F, Pei X. Targeting Glycolysis for Treatment of Breast Cancer Resistance: Current Progress and Future Prospects. Int J Biol Sci 2025; 21:2589-2605. [PMID: 40303296 PMCID: PMC12035887 DOI: 10.7150/ijbs.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Breast cancer stands as one of the most prevalent malignant tumors threatening women's health and is a leading cause of cancer-related mortality. Its treatment faces significant challenges, including drug tolerance and disease recurrence. Glycolysis serves not only as a critical metabolic pathway for energy acquisition in breast cancer cells but also essentially promotes tumor proliferation, invasion, metastasis, and the development of resistance to therapy. Recent studies have revealed a close association between glycolytic reprogramming and drug resistance in breast cancer, with high-level glycolysis emerging as a hallmark of malignancy, deeply involved in the initiation and progression of tumors. This review summarizes recent advances in research on key enzymes and signaling pathways regulating glycolysis within the bodies of breast cancer patients. It explores in depth these molecular mechanisms and their complex interaction networks, offering a fresh perspective on overcoming drug resistance in breast cancer. Moreover, it underscores the importance of developing specific inhibitors targeting key enzymes and regulators of glycolysis and suggests that combining such inhibitors with existing anticancer drugs could substantially enhance therapeutic outcomes for breast cancer patients and reduce the occurrence of drug resistance.
Collapse
Affiliation(s)
- Zixu Niu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Siyuan Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Bingjian Xue
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hao Zhang
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Ruohan Hou
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zimeng Xu
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Sun
- The First Clinical Medical College of Zhengzhou University, Zhengzhou, 450052, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
4
|
Qian L, Wang L, Chen H, Wang S, Hou Y, Xu L, Xia Y, Xu M, Huang X. Hsa_circ_0001756 drives gastric cancer glycolysis by increasing the expression and stability of PGK1 mRNA. Front Immunol 2025; 16:1511247. [PMID: 40051638 PMCID: PMC11882586 DOI: 10.3389/fimmu.2025.1511247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Strategies for preventing high glycolysis in tumour cells are urgently needed. CircRNAs (circRNAs) play important roles in glycolysis. However, the mechanism underlying the effects of hsa_circ_0001756 in gastric cancer (GC) remains unclear. Methods In this study, we detected the expression of hsa_circ_0001756 in GC tissues and cells using quantitative real-time polymerase chain reaction (qRT PCR). Construct a silencing and overexpression vector to validate the role of hsa_circ_0001756 in GC. Pulldown and RIP experiments were conducted to verify the identification of miRNA and protein binding to hsa_circ_0001756. Results The expression level of hsa_circ_0001756 in GC tissues and cells is significantly upregulated. The expression level of hsa_circ_0001756 is closely related to TNM stage and tumour size in patients with GC. The proliferation and migration of hsa_circ_0001756-expressing cells in vitro were assessed by functional experiments. Hsa_circ_0001756 was found to not only promote the expression and stability of PGK1 by binding with polypyrimidine tract-binding protein 1 (PTBP1) but also promote glycolysis through the miR-185-3P/PGK1 pathway. We found that the regulatory relationships of competing endogenous RNA (ceRNA) and RNA-binding proteins (RBPs) with hsa_circ_0001756may affect glycolysis in GC. Conclusion This study provides a theoretical basis for designing drugs that target molecules related to energy metabolism in tumours and provides a new strategy for the clinical treatment of GC.
Collapse
Affiliation(s)
- Long Qian
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Oncology, Wuhu Conch Hospital, Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Yinfen Hou
- Department of Medical Examination Center, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Maoqi Xu
- General Surgery Department, Anhui Wannan Rehabilitation Hospital, The Fifth People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| |
Collapse
|
5
|
Bin Y, Liu M, He R, Tang P, Qu W, Wu D, Tan L, Wang Q, Jiang P, Hu H. LINC01224 promotes the Warburg effect in gastric cancer by activating the miR-486-5p/PI3K axis. In Vitro Cell Dev Biol Anim 2025; 61:228-244. [PMID: 39873959 DOI: 10.1007/s11626-024-01001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 11/17/2024] [Indexed: 01/30/2025]
Abstract
The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated. Bioinformatics predicted the target gene of LINC01224, Western blotting was used to measure the protein expression of genes in the PI3K/AKT/mTOR/HIF-1α axis and Warburg effect in GC cells. The function of LINC01224 in GC cells was determined using measurements of EDU assay, colony formation, apoptosis, cell migration, and cell invasion. Glucose metabolism was evaluated using a glucose uptake assay and measurements of lactate. A tumor xenograft model was used to examine the effect of LINC01224 on GC growth in vivo. We found that upregulation of LINC01224 in GC cells activated the miR-486-5p/PI3K axis and promoted aerobic glycolysis, thereby increasing cell viability, proliferation, migration, invasion and anti-apoptosis. LINC01224 downregulation had the opposite effect. LINC01224 expression promoted the in vitro and in vivo pathogenesis of GC by promoting aerobic glycolysis. LINC01224 is a promising target in the treatment of GC.
Collapse
Affiliation(s)
- Yuling Bin
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
- Department of Critical Care Medicine, Hengyang Central Hospital, Hengyang, China
| | - Minji Liu
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Rong He
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Pingfei Tang
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Weiming Qu
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Dajun Wu
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Lin Tan
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Qian Wang
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China
| | - Peng Jiang
- Department of Gastroenterology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Hongsai Hu
- Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.
| |
Collapse
|
6
|
Liu Y, Zhu Y, Gu L, Li K, Ma A, Liu L, Meng Y, Zhang J, Shen S, Shi Q, Liu D, Zhang X, Zhang S, Chai X, Gao P, Xing J, Wang Y, Chen H, Liu R, Du Q, Liu H, Dai L, Wang J. Chloroquine Suppresses Colorectal Cancer Progression via Targeting CHKA and PFKM to inhibit the PI3K/AKT Pathway and the Warburg Effect. Int J Biol Sci 2025; 21:1619-1631. [PMID: 39990656 PMCID: PMC11844273 DOI: 10.7150/ijbs.101921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/24/2024] [Indexed: 02/25/2025] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide and has become a recognized global health problem. Therefore, the search for new anti-CRC agents or the exploration of new effective drug targets for CRC therapy is urgent. Chloroquine (CQ) is a widely-used antimalarial drug and has shown anti-proliferative effects in CRC. However, the underlying mechanisms are not well understood, particularly as the direct targets of CQ have not been identified. In this study, choline kinase alpha (CHKA) and ATP-dependent 6-phosphofructokinase, muscle type (PFKM) were identified and verified as the binding targets of CQ. CQ specifically binds to CHKA, inhibits its expression and enzymatic activity, and downregulates the downstream phosphorylation of PI3K and AKT, thereby suppressing tumor cell proliferation and inducing apoptosis. CQ also binds to PFKM and inhibits its expression and activity, thereby blocking the Warburg effect. In addition, the downregulation of CHKA can decrease the expression of PFKM and inhibit its activity, thereby blocking the Warburg effect. These observations shed new light on the antitumor mechanisms of CQ and provide new evidence for the close relationship between the PI3K/AKT signaling pathway and the Warburg effect, providing new therapeutic targets for treating CRC.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Kexin Li
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Ang Ma
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Li Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qiaoli Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dandan Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinwei Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shujie Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Chai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiale Xing
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yaxu Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Honglin Chen
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475000, China
| | - Rui Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Haitao Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Lingyun Dai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong 518020, China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng 475000, China
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics, Department of Nuclear Medicine, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong 518020, China
| |
Collapse
|
7
|
Yang G, Tian L, Wang Y. Hyperprogressive disease induced by PD-1 inhibitor monotherapy in lung adenocarcinoma with HER2 exon 20 insertion: report of two cases and review of literature. Discov Oncol 2025; 16:12. [PMID: 39760792 PMCID: PMC11703795 DOI: 10.1007/s12672-025-01749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
Monotherapy with anti-programmed cell death protein 1 (PD-1) monoclonal antibody has been approved for the treatment of advanced non-small cell lung cancer with positive programmed cell death-ligand 1 (PD-L1) expression and oncogene wild type, which revealed survival benefit compared with chemotherapy. Nevertheless, certain patients develop rapid progression on anti-PD-1 inhibitor monotherapy. This novel pattern is called hyperprogressive disease (HPD), and the underlying mechanism and molecular characteristics still leaves not clear. Here, we reported two heavily pretreated advanced lung adenocarcinoma cases with HER2 exon 20 insertion who presented HPD after two cycles of anti-PD-1 inhibitor sintilimab monotherapy, and they both carried co-alterations in the PI3K/AKT/mTOR and cell cycle signaling pathway. We speculated that HER2 exon 20 insertion might be viewed as a potential biomarker to avoid single-agent immunotherapy in certain patients with driver mutations, or timely guide proper treatment strategies.
Collapse
Affiliation(s)
- Guangjian Yang
- Department of Respiratory Medical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People's Republic of China
| | - Linyan Tian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| |
Collapse
|
8
|
Schöpe PC, Torke S, Kobelt D, Kortüm B, Treese C, Dumbani M, Güllü N, Walther W, Stein U. MACC1 revisited - an in-depth review of a master of metastasis. Biomark Res 2024; 12:146. [PMID: 39580452 PMCID: PMC11585957 DOI: 10.1186/s40364-024-00689-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/12/2024] [Indexed: 11/25/2024] Open
Abstract
Cancer metastasis remains the most lethal characteristic of tumors mediating the majority of cancer-related deaths. Identifying key molecules responsible for metastasis, understanding their biological functions and therapeutically targeting these molecules is therefore of tremendous value. Metastasis Associated in Colon Cancer 1 (MACC1), a gene first described in 2009, is such a key driver of metastatic processes, initiating cellular proliferation, migration, invasion, and metastasis in vitro and in vivo. Since its discovery, the value of MACC1 as a prognostic biomarker has been confirmed in over 20 cancer entities. Additionally, several therapeutic strategies targeting MACC1 and its pro-metastatic functions have been developed. In this review, we will provide a comprehensive overview on MACC1, from its clinical relevance, towards its structure and role in signaling cascades as well as molecular networks. We will highlight specific biological consequences of MACC1 expression, such as an increase in stem cell properties, its immune-modulatory effects and induced therapy resistance. Lastly, we will explore various strategies interfering with MACC1 expression and/or its functions. Conclusively, this review underlines the importance of understanding the role of individual molecules in mediating metastasis.
Collapse
Affiliation(s)
- Paul Curtis Schöpe
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Sebastian Torke
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dennis Kobelt
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Benedikt Kortüm
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Christoph Treese
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Malti Dumbani
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nazli Güllü
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wolfgang Walther
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Ulrike Stein
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin and Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- German Cancer Consortium (DKTK), Berlin and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
9
|
Li RQ, Zhu WW, Li C, Zhan KB, Zhang P, Xiao F, Jiang JM, Zou W. Hippocampal warburg effect mediates hydrogen sulfide-ameliorated diabetes-associated cognitive dysfunction: Involving promotion of hippocampal synaptic plasticity. Neurosci Res 2024; 208:15-28. [PMID: 39025266 DOI: 10.1016/j.neures.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Our previous studies have reported that hydrogen sulfide (H2S) has ability to improve diabetes-associated cognitive dysfunction (DACD), but the exact mechanisms remain unknown. Recent research reveals that Warburg effect is associated with synaptic plasticity which plays a key role in cognition promotion. Herein, the present study was aimed to demonstrate whether hippocampal Warburg effect contributes to H2S-ameliorated DACD and further explore its potential mechanism. We found that H2S promoted the hippocampal Warburg effect and inhibited the OxPhos in the hippocampus of STZ-induced diabetic rats. It also improved the hippocampal synaptic plasticity in STZ-induced diabetic rats, as evidenced by the change of microstructures and the expression of different key-enzymes. Furthermore, inhibited hippocampal Warburg effect induced by DCA markedly abolished the improvement of H2S on synaptic plasticity in the hippocampus of STZ-induced diabetic rats. DCA blocked H2S-attenuated the cognitive dysfunction in STZ-induced diabetic rats, according to the Y-maze, Novel Objective Recognition, and Morris Water Maze tests. Collectively, these findings indicated that the hippocampal Warburg effect mediates H2S-ameliorated DACD by improving hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Run-Qi Li
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wei-Wen Zhu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cheng Li
- The Affiliated Nanhua Hospital, Emergency department, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ke-Bin Zhan
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
10
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
11
|
Yoon J, Oh DY. HER2-targeted therapies beyond breast cancer - an update. Nat Rev Clin Oncol 2024; 21:675-700. [PMID: 39039196 DOI: 10.1038/s41571-024-00924-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
The receptor tyrosine-kinase HER2 (also known as ErbB2) is a well-established therapeutic target in patients with breast or gastric cancer selected on the basis of HER2 overexpression on immunohistochemistry and/or ERBB2 amplification on in situ hybridization. With advances in cancer molecular profiling and increased implementation of precision medicine approaches into oncology practice, actionable HER2 alterations in solid tumours have expanded to include ERBB2 mutations in addition to traditional HER2 overexpression and ERBB2 amplification. These various HER2 alterations can be found in solid tumour types beyond breast and gastric cancer, although few HER2-targeted therapeutic options have been established for the other tumour types. Nevertheless, during the 5 years since our previous Review on this topic was published in this journal, obvious and fruitful progress in the development of HER2-targeted therapies has been made, including new disease indications, innovative drugs with diverse mechanisms of action and novel frameworks for approval by regulatory authorities. These advances have culminated in the recent histology-agnostic approval of the anti-HER2 antibody-drug conjugate trastuzumab deruxtecan for patients with HER2-overexpressing solid tumours. In this new Review, we provide an update on the current development landscape of HER2-targeted therapies beyond breast cancer, as well as anticipated future HER2-directed treatment strategies to overcome resistance and thereby improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Jeesun Yoon
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Do-Youn Oh
- Division of Medical Oncology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Li X, Du Y. Lactate Metabolism Subtypes Analysis Reveals CCDC80 as a Novel Prognostic Biomarker in Gastric Cancer. J Cancer 2024; 15:5557-5576. [PMID: 39308689 PMCID: PMC11414610 DOI: 10.7150/jca.97640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
Lactate metabolism plays a vital role in tumor progression. Currently, gastric cancer (GC) has a poor prognosis. Therefore, our research aimed to investigate novel biomarkers related to lactate metabolism in patients. Patient data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were divided into subtypes based on the expression of lactate metabolism-related genes (LMRGs). Based on the subtypes, we identified coiled-coil domain containing 80 (CCDC80) for further investigation. Univariate and multivariate Cox regression models were constructed to determine the prognostic value of CCDC80 in GC. We further explored the mechanism by which CCDC80 affects GC prognosis using gene set enrichment analysis (GSEA). Immune infiltration and drug sensitivity analyses were also performed. Finally, immunohistochemical staining was used to evaluate CCDC80 expression in normal and tumor tissues. We observed that CCDC80 was overexpressed in GC samples and was significantly associated with T and pathological stages. Multivariate Cox analysis identified high CCDC80 expression as an independent prognostic marker. GSEA indicated that the oxidative phosphorylation pathway was highly enriched in the low CCDC80 expression group. Moreover, CCDC80 was associated with immune cell infiltration, especially that of M2 macrophages. Patients with higher CCDC80 expression exhibited lower sensitivity to paclitaxel. In conclusion, our findings demonstrate that CCDC80 is a critical regulator in GC progression and immune response and is associated with lactate metabolism, and it could be used as a novel biomarker for prognostic and chemotherapy treatment purposes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110000, China
| | - Yaqi Du
- Department of Gastroenterology, The First Hospital of China Medical University, Shenyang 110000, China
| |
Collapse
|
13
|
Qureshi Z, Jamil A, Fatima E, Altaf F, Siddique R, Shah S. Pembrolizumab in combination with trastuzumab for treatment of HER2-positive advanced gastric or gastro-esophageal junction cancer. Ann Med Surg (Lond) 2024; 86:4647-4656. [PMID: 39118760 PMCID: PMC11305801 DOI: 10.1097/ms9.0000000000002305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Gastric cancer remains a challenging malignancy with a high global mortality rate. Recent advances in targeted therapy and immunotherapy have shown promise in improving patient outcomes. This paper reviews the impact of incorporating targeted agents such as trastuzumab and immunotherapeutic agents like pembrolizumab into standard chemotherapy regimens for gastric cancer treatment. Methods A comprehensive analysis was conducted on pivotal clinical trials, including KEYNOTE-590, KEYNOTE-811, and ToGA, focusing on their methodologies, patient populations, treatment regimens, and outcome measures. The review also explored emerging research avenues in precision medicine, particularly genomic sequencing and biomarker identification. Aim To assess the efficacy and survival benefits of adding trastuzumab and pembrolizumab to standard chemotherapy in the treatment of gastric cancer and to outline future directions in gastric cancer research. Results Including trastuzumab and pembrolizumab in treatment regimens for human epidermal growth factor receptor 2 (HER2)-positive and PD-L1-expressing gastric cancers significantly improved progression-free and overall survival rates compared to chemotherapy alone. These findings highlight the potential of personalized therapy in enhancing treatment outcomes. Furthermore, ongoing research into the gastric cancer microenvironment and the role of the microbiome suggests novel targets for future therapeutic interventions. Conclusion The integration of targeted and immunotherapeutic agents with traditional chemotherapy represents a pivotal shift in gastric cancer treatment, moving towards more personalized and effective regimens.
Collapse
Affiliation(s)
- Zaheer Qureshi
- The Frank H. Netter M.D. School of Medicine at Quinnipiac University, Bridgeport, CT
| | - Abdur Jamil
- Department of Medicine, Samaritan Medical Centre, Watertown, NY
| | - Eeshal Fatima
- Department of Medicine, Services Institute of Medical Sciences, Lahore, Pakistan
| | - Faryal Altaf
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/BronxCare Health System, New York, NY, USA
| | | | - Shivendra Shah
- Department of Medicine, Nepalgunj Medical College, Chisapani, Nepal
| |
Collapse
|
14
|
Li Z, Zhao H, Hu H, Shang H, Ren Y, Qiu W, Su H, Lyu H, Chen X. Mechanisms of resistance to trastuzumab in HER2-positive gastric cancer. Chin J Cancer Res 2024; 36:306-321. [PMID: 38988489 PMCID: PMC11230884 DOI: 10.21147/j.issn.1000-9604.2024.03.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/30/2024] [Indexed: 07/12/2024] Open
Abstract
Gastric cancer is one of the most prevalent cancers worldwide, and human epidermal growth factor receptor 2 (HER2)-positive cases account for approximately 20% of the total cases. Currently, trastuzumab + chemotherapy is the recommended first-line treatment for patients with HER2-positive advanced gastric cancer, and the combination has exhibited definite efficacy in HER2-targeted therapy. However, the emergence of drug resistance during treatment considerably reduces its effectiveness; thus, it is imperative to investigate the potential mechanisms underlying resistance. In the present review article, we comprehensively introduce multiple mechanisms underlying resistance to trastuzumab in HER2-positive gastric cancer cases, aiming to provide insights for rectifying issues associated with resistance to trastuzumab and devising subsequent treatment strategies.
Collapse
Affiliation(s)
- Zhifei Li
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Huan Zhao
- Henan University of Traditional Chinese Medicine, Zhengzhou 450046, China
| | - Huihui Hu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Haili Shang
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Yongjing Ren
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| | - Wenhui Qiu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hao Su
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Huifang Lyu
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaobing Chen
- Department of Oncology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer, Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou 450008, China
| |
Collapse
|
15
|
Scheck MK, Hofheinz RD, Lorenzen S. HER2-Positive Gastric Cancer and Antibody Treatment: State of the Art and Future Developments. Cancers (Basel) 2024; 16:1336. [PMID: 38611014 PMCID: PMC11010911 DOI: 10.3390/cancers16071336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Despite a decreasing incidence in Western countries, gastric cancer is among the most common cancer subtypes globally and is associated with one of the highest tumor-related mortality rates. Biomarkers play an increasing role in the treatment against gastric cancer. HER2 was one of the first biomarkers that found its way into clinical practice. Since the ToGA trial, trastuzumab has been part of first-line palliative chemotherapy in metastatic or unresectable gastric cancer. HER2-targeting agents, such as the tyrosine kinase inhibitor lapatinib, the antibody drug conjugate (ADC) trastuzumab-emtansine or dual HER2 inhibition (pertuzumab and trastuzumab), have been investigated in the second-line setting but led to negative study results. More recently, the ADC trastuzumab-deruxtecan was authorized after the failure of trastuzumab-based treatment. However, further improvements in HER2-directed therapy are required as resistance mechanisms and HER2 heterogeneity limit the existing treatment options. This review aims to give an overview of the current standard-of-care HER2-directed therapy in gastric cancer, as well as its challenges and future developments.
Collapse
Affiliation(s)
- Magdalena K. Scheck
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| | - Ralf D. Hofheinz
- Mannheim Cancer Center, Universitätsklinikum Mannheim, 68167 Mannheim, Germany;
| | - Sylvie Lorenzen
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar der TU München, 81675 Munich, Germany;
| |
Collapse
|
16
|
Torke S, Walther W, Stein U. Immune Response and Metastasis-Links between the Metastasis Driver MACC1 and Cancer Immune Escape Strategies. Cancers (Basel) 2024; 16:1330. [PMID: 38611008 PMCID: PMC11010928 DOI: 10.3390/cancers16071330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Metastasis remains the most critical factor limiting patient survival and the most challenging part of cancer-targeted therapy. Identifying the causal drivers of metastasis and characterizing their properties in various key aspects of cancer biology is essential for the development of novel metastasis-targeting approaches. Metastasis-associated in colon cancer 1 (MACC1) is a prognostic and predictive biomarker that is now recognized in more than 20 cancer entities. Although MACC1 can already be linked with many hallmarks of cancer, one key process-the facilitation of immune evasion-remains poorly understood. In this review, we explore the direct and indirect links between MACC1 and the mechanisms of immune escape. Therein, we highlight the signaling pathways and secreted factors influenced by MACC1 as well as their effects on the infiltration and anti-tumor function of immune cells.
Collapse
Affiliation(s)
- Sebastian Torke
- Experimental and Clinical Research Center, Charité, Medical Centre Berlin and Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany; (W.W.); (U.S.)
| | | | | |
Collapse
|
17
|
Liao M, Yao D, Wu L, Luo C, Wang Z, Zhang J, Liu B. Targeting the Warburg effect: A revisited perspective from molecular mechanisms to traditional and innovative therapeutic strategies in cancer. Acta Pharm Sin B 2024; 14:953-1008. [PMID: 38487001 PMCID: PMC10935242 DOI: 10.1016/j.apsb.2023.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer reprogramming is an important facilitator of cancer development and survival, with tumor cells exhibiting a preference for aerobic glycolysis beyond oxidative phosphorylation, even under sufficient oxygen supply condition. This metabolic alteration, known as the Warburg effect, serves as a significant indicator of malignant tumor transformation. The Warburg effect primarily impacts cancer occurrence by influencing the aerobic glycolysis pathway in cancer cells. Key enzymes involved in this process include glucose transporters (GLUTs), HKs, PFKs, LDHs, and PKM2. Moreover, the expression of transcriptional regulatory factors and proteins, such as FOXM1, p53, NF-κB, HIF1α, and c-Myc, can also influence cancer progression. Furthermore, lncRNAs, miRNAs, and circular RNAs play a vital role in directly regulating the Warburg effect. Additionally, gene mutations, tumor microenvironment remodeling, and immune system interactions are closely associated with the Warburg effect. Notably, the development of drugs targeting the Warburg effect has exhibited promising potential in tumor treatment. This comprehensive review presents novel directions and approaches for the early diagnosis and treatment of cancer patients by conducting in-depth research and summarizing the bright prospects of targeting the Warburg effect in cancer.
Collapse
Affiliation(s)
- Minru Liao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
| | - Lifeng Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chaodan Luo
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Zhiwen Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
18
|
Gao S, Wang Y, Xu Y, Liu L, Liu S. USP46 enhances tamoxifen resistance in breast cancer cells by stabilizing PTBP1 to facilitate glycolysis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167011. [PMID: 38176460 DOI: 10.1016/j.bbadis.2023.167011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024]
Abstract
Tamoxifen (TAM) is the primary drug for treating estrogen receptor alpha-positive (ER+) breast cancer (BC). However, resistance to TAM can develop in some patients, limiting its therapeutic efficacy. The ubiquitin-specific protease (USP) family has been associated with the development, progression, and drug resistance of various cancers. To explore the role of USPs in TAM resistance in BC, we used qRT-PCR to compare USP expression between TAM-sensitive (MCF-7 and T47D) and TAM-resistant cells (MCF-7R and T47DR). We then modulated USP46 expression and examined its impact on cell proliferation, drug resistance (via CCK-8 and EdU experiments), glycolysis levels (using a glycolysis detection assay), protein interactions (confirmed by co-IP), and protein changes (analyzed through Western blotting). Our findings revealed that USP46 was significantly overexpressed in TAM-resistant BC cells, leading to the inhibition of the ubiquitin degradation of polypyrimidine tract-binding protein 1 (PTBP1). Overexpression of PTBP1 increased the PKM2/PKM1 ratio, promoted glycolysis, and intensified TAM resistance in BC cells. Knockdown of USP46 induced downregulation of PTBP1 protein by promoting its K48-linked ubiquitination, resulting in a decreased PKM2/PKM1 ratio, reduced glycolysis, and heightened TAM sensitivity in BC cells. In conclusion, this study highlights the critical role of the USP46/PTBP1/PKM2 axis in TAM resistance in BC. Targeted therapy against USP46 may represent a promising strategy to improve the prognosis of TAM-resistant patients.
Collapse
Affiliation(s)
- Shun Gao
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yuan Wang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shengchun Liu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
19
|
孙 硕, 黄 鑫, 李 国, 张 春, 卢 泽, 张 伟, 李 泽, 杨 清. [MACC1 knockdown enhances RSL3-induced ferroptosis in human colorectal cancer cells by inhibiting GPX4 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:173-178. [PMID: 38293989 PMCID: PMC10878895 DOI: 10.12122/j.issn.1673-4254.2024.01.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To investigate the effect of MACC1 on RSL3-induced ferroptosis in colorectal cancer cells and explore its molecular mechanism. METHODS MACC1 expression was detected in SW620, HCT116, LOVO and RKO cells using Western blotting. The effects of different concentrations of RSL3 (an inducer of ferroptosis) or Fer-1 (an inhibitor of ferroptosis) alone, or 10 μmol/L RLS3 combined with 10 μmol/L Fer-1, on viability of SW620 cells were examined using MTT assay. The survival of SW620 cells with mRNA interference of MACC1 was analyzed following treatment with RSL3, and RT-qPCR and Western blotting were performed to detect the changes in MACC1 expressions after RSL3 treatment at different concentrations and the changes in GPX4 expression after MACC1 knockdown. Flow cytometry and laser confocal microscopy were used to analyze the changes in ROS-induced lipid peroxidation in SW620 cells after MACC1 knockdown. RESULTS SW620 cells had the highest MACC1 expression among the 4 colorectal cancer cell lines. Treatment with RSL3 significantly inhibited the viability of SW620 cells in a dose-dependent manner, while Fer-1 did not significantly affect the survival of SW620 cells. RSL3 alone reduced SW620 cell survival by 50% (P < 0.01), and the combined treatment with RSL3 and Fer-1 caused no significant changes in cell survival (P > 0.05). Treatment with RSL3 concentration-dependently suppressed MACC1 expressions at both the mRNA and protein levels in SW620 cells (P < 0.01). MACC1 knockdown obviously enhanced the cytotoxic effect of RSL3, inhibited the expression of GPX4, and increased ROS-induced lipid peroxidation in SW620 cells (P < 0.05). CONCLUSION MACC1 knockdown enhances RSL3-induced ferroptosis in cultured colorectal cancer cells by inhibiting the expression of GPX4.
Collapse
Affiliation(s)
- 硕 孙
- 齐齐哈尔大学生命科学与农林学院,黑龙江 齐齐哈尔 161006School of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - 鑫 黄
- 齐齐哈尔大学生命科学与农林学院,黑龙江 齐齐哈尔 161006School of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
- 抗性基因工程与寒地生物多样性保护黑龙江省重点实验室,黑龙江 齐齐哈尔 161006Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar 161006, China
| | - 国东 李
- 哈尔滨医科大学附属第四医院普外科,黑龙江 哈尔滨 150001Department of General Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - 春云 张
- 齐齐哈尔大学生命科学与农林学院,黑龙江 齐齐哈尔 161006School of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - 泽梅 卢
- 齐齐哈尔大学生命科学与农林学院,黑龙江 齐齐哈尔 161006School of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - 伟伟 张
- 齐齐哈尔大学生命科学与农林学院,黑龙江 齐齐哈尔 161006School of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
- 抗性基因工程与寒地生物多样性保护黑龙江省重点实验室,黑龙江 齐齐哈尔 161006Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar 161006, China
| | - 泽彦 李
- 齐齐哈尔大学生命科学与农林学院,黑龙江 齐齐哈尔 161006School of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - 清竹 杨
- 齐齐哈尔大学生命科学与农林学院,黑龙江 齐齐哈尔 161006School of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
- 抗性基因工程与寒地生物多样性保护黑龙江省重点实验室,黑龙江 齐齐哈尔 161006Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar 161006, China
| |
Collapse
|
20
|
Park J, Kang SK, Kwon WS, Jeong I, Kim TS, Yu SY, Cho SW, Chung HC, Rha SY. Novel HER2-targeted therapy to overcome trastuzumab resistance in HER2-amplified gastric cancer. Sci Rep 2023; 13:22648. [PMID: 38114573 PMCID: PMC10730520 DOI: 10.1038/s41598-023-49646-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023] Open
Abstract
Trastuzumab is used to treat HER2-amplified metastatic gastric cancer; however, most patients become trastuzumab-resistant within a year. Knowledge of the mechanisms underlying trastuzumab resistance is required to overcome this limitation. Here, we aimed to elucidate this resistance mechanism using four trastuzumab-resistant (TR) cell lines and investigate the efficacy of HER2-targeted therapies to overcome treatment resistance. Each TR cell line had different phenotypic characteristics. Interestingly, HER2 expression remained as high as the parental cell lines in TR cell lines, suggesting that HER2-targeted agents were still useful. As expected, three tyrosine kinase inhibitors (lapatinib, neratinib, and tucatinib) and one antibody-drug conjugate (trastuzumab deruxtecan: T-DXd) exhibited good antitumor effects against TR cell lines. We further investigated the potential biological mechanism of T-DXd. When treated with trastuzumab or T-DXd, HER2 or its downstream signals were disrupted in parental cell lines, but not in TR cell lines. Moreover, T-DXd induced the expression of pH2A.X and cPARP and caused cell cycle arrest in the S or G2-M phase in TR cell lines. T-DXd showed promising antitumor activity in both parental and TR cell lines, suggesting that it is a potential candidate for overcoming trastuzumab resistance.
Collapse
Affiliation(s)
- Juin Park
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sun Kyoung Kang
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Woo Sun Kwon
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Inhye Jeong
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Tae Soo Kim
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seo Young Yu
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sang Woo Cho
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hyun Cheol Chung
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Yonsei Cancer Center, Yonsei University Health System, Seoul, 03722, Republic of Korea
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Sun Young Rha
- Song-Dang Institute for Cancer Research, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Department of Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Yonsei Cancer Center, Yonsei University Health System, Seoul, 03722, Republic of Korea.
- Division of Medical Oncology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| |
Collapse
|
21
|
Abstract
Lactic acid is one of the most abundant products of cellular metabolism and has historically been considered a cell-damaging metabolic product. However, as research has deepened, the beneficial effects of lactic acid on tumor cells and the tumor microenvironment have received increasing attention from the oncology community. Lactic acid can not only provide tumor cells with energy but also act as a messenger molecule that promotes tumor growth and progression and protects tumor cells from immune cells and killing by radiation and chemotherapy. Thus, the inhibition of tumor cell lactic acid metabolism has emerged as a novel antitumor treatment strategy that can also effectively enhance the efficacy of conventional antitumor therapies. In this review, we classify the currently available therapies targeting lactic acid metabolism and examine their prospects for clinical application.
Collapse
Affiliation(s)
- Zhi Li
- Cancer Center, First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
22
|
Yang ZY, Zhao YW, Xue JR, Guo R, Zhao Z, Liu HD, Ren ZG, Shi M. Thioridazine reverses trastuzumab resistance in gastric cancer by inhibiting S-phase kinase associated protein 2-mediated aerobic glycolysis. World J Gastroenterol 2023; 29:5974-5987. [PMID: 38130998 PMCID: PMC10731152 DOI: 10.3748/wjg.v29.i45.5974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Trastuzumab constitutes the fundamental component of initial therapy for patients with advanced human epidermal growth factor receptor 2 (HER-2)-positive gastric cancer (GC). However, the efficacy of this treatment is hindered by substantial challenges associated with both primary and acquired drug resistance. While S-phase kinase associated protein 2 (Skp2) overexpression has been implicated in the malignant progression of GC, its role in regulating trastuzumab resistance in this context remains uncertain. Despite the numerous studies investigating Skp2 inhibitors among small molecule compounds and natural products, there has been a lack of successful commercialization of drugs specifically targeting Skp2. AIM To discover a Skp2 blocker among currently available medications and develop a therapeutic strategy for HER2-positive GC patients who have experienced progression following trastuzumab-based treatment. METHODS Skp2 exogenous overexpression plasmids and small interfering RNA vectors were utilized to investigate the correlation between Skp2 expression and trastuzumab resistance in GC cells. Q-PCR, western blot, and immunohistochemical analyses were conducted to evaluate the regulatory effect of thioridazine on Skp2 expression. A cell counting kit-8 assay, flow cytometry, a amplex red glucose/glucose oxidase assay kit, and a lactate assay kit were utilized to measure the proliferation, apoptosis, and glycolytic activity of GC cells in vitro. A xenograft model established with human GC in nude mice was used to assess thioridazine's effectiveness in vivo. RESULTS The expression of Skp2 exhibited a negative correlation with the sensitivity of HER2-positive GC cells to trastuzumab. Thioridazine demonstrated the ability to directly bind to Skp2, resulting in a reduction in Skp2 expression at both the transcriptional and translational levels. Moreover, thioridazine effectively inhibited cell proliferation, exhibited antiapoptotic properties, and decreased the glucose uptake rate and lactate production by suppressing Skp2/protein kinase B/mammalian target of rapamycin/glucose transporter type 1 signaling pathways. The combination of thioridazine with either trastuzumab or lapatinib exhibited a more pronounced anticancer effect in vivo, surpassing the efficacy of either monotherapy. CONCLUSION Thioridazine demonstrates promising outcomes in preclinical GC models and offers a novel therapeutic approach for addressing trastuzumab resistance, particularly when used in conjunction with lapatinib. This compound has potential benefits for patients with Skp2-proficient tumors.
Collapse
Affiliation(s)
- Zheng-Yan Yang
- Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Yi-Wei Zhao
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, Henan Province, China
| | - Jing-Rui Xue
- Joint National Laboratory for Antibody Drug Engineering, Henan University, Kaifeng 475004, Henan Province, China
| | - Ran Guo
- Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Zhi Zhao
- Department of Pathology, Henan University-affiliated Zhengzhou Yihe Hospital, Zhengzhou 450000, Henan Province, China
| | - Han-Di Liu
- Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China
| | - Zhi-Guang Ren
- Department of Pathology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, Henan Province, China
- Key Laboratory of Clinical Resources Translation, The First Affiliated Hospital, Henan University, Kaifeng 475004, Henan Province, China
| | - Ming Shi
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221004, Jiangsu Province, China
| |
Collapse
|
23
|
Yu M, Pan Q, Li W, Du T, Huang F, Wu H, He Y, Wu X, Shi H. Isoliquiritigenin inhibits gastric cancer growth through suppressing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α mediated energy metabolic collapse. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 121:155045. [PMID: 37742526 DOI: 10.1016/j.phymed.2023.155045] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/12/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND Isoliquiritigenin (ISL), a natural flavonoid, has anti-tumor activity. But, the understanding of the impact and molecular mechanism of ISL on the growth of gastric cancer (GC) remains limited. PURPOSE The study was to explore the tumor suppressive effect of ISL on GC growth both in vitro and in vivo, meanwhile, clarify its molecular mechanisms. METHODS Cell viability was detected by cell counting kit-8 (CCK-8) assay. Apoptotic cells in vitro were monitored by Hoechst 33,342 solution. Protein expression was assessed by Western blot. Reactive oxygen species (ROS) level was evaluated by utilizing 2',7'- dichlorofluorescin diacetate (DCFH-DA). Lactic acid level was detected with L-lactate assay kit. Glucose uptake was monitored with fluorescently tagged glucose 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Glycolytic proton efflux rate (GlycoPER) was evaluated by glycolytic rate assay kit. Oxygen consumption rate (OCR) was conducted by mito stress test kit. A nude mouse model of gastric cancer cell xenograft was established by subcutaneous injection with MGC803 cells. Pathological changes were evaluated by using H&E staining. Cell apoptosis in vivo was evaluated by terminal deoxy-nucleotide transferase mediated dUTP nick end labeling (TUNEL) assay. RESULTS ISL remarkably suppressed GC growth and increased cell apoptosis. It regulated apoptosis-related and metabolism-related protein expression both in vitro and in vivo. ISL blocked glucose uptake and suppressed production and secretion of lactic acid, which was accompanied with suppressed mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis but increased ROS accumulation. Overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), cellular-myelocytomatosis viral oncogene (c-Myc), hypoxia inducible factor-1α (HIF-1α), glucose transporter 4 (GLUT4) or pyruvate dehydrogenase kinase 1 (PDHK1), could abolish ISL-induced inhibition of cell viability in GC cells. CONCLUSION These findings implicated that ISL inhibits GC growth by decreasing GLUT4 mediated glucose uptake and inducing PDHK1/PGC-1α-mediated energy metabolic collapse through depressing protein expression of c-Myc and HIF-1α in GC, suggesting its potential application for GC treatment.
Collapse
Affiliation(s)
- Mingzhu Yu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiaoling Pan
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenbiao Li
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tingting Du
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yixin He
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaojun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hailian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, the Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, the SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
24
|
Wang YY, Zhou YQ, Xie JX, Zhang X, Wang SC, Li Q, Hu LP, Jiang SH, Yi SQ, Xu J, Cao H, Zhao EH, Li J. MAOA suppresses the growth of gastric cancer by interacting with NDRG1 and regulating the Warburg effect through the PI3K/AKT/mTOR pathway. Cell Oncol (Dordr) 2023; 46:1429-1444. [PMID: 37249744 DOI: 10.1007/s13402-023-00821-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
OBJECTIVE Previous studies have indicated that neurotransmitters play important roles in the occurrence and development of gastric cancer. MAOA is an important catecholamine neurotransmitter-degrading enzyme involved in the degradation of norepinephrine, epinephrine and serotonin. To find a potential therapeutic target for the treatment of gastric cancer, the biological functions of MAOA and the underlying mechanism in gastric cancer need to be explored. METHODS The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets, Kaplan‒Meier (KM) plotter were used to identify the differentially expressed genes, which mainly involved the degradation and synthesis enzymes of neurotransmitters in gastric cancer. We also investigated the expression pattern of MAOA in human and mouse tissues and cell lines by immunohistochemistry and Western blotting analysis. Western blotting, quantitative real-time PCR, enzyme-linked immunosorbent assay (ELISA) and a Seahorse experiment were used to identify the molecular mechanism of cancer cell glycolysis. MAOA expression and patient survival were analysed in the Ren Ji cohort, and univariate and multivariate analyses were performed based on the clinicopathological characteristics of the above samples. RESULTS MAOA expression was significantly downregulated in gastric cancer tissue and associated with poor patient prognosis. Moreover, the expression level of MAOA in gastric cancer tissue had a close negative correlation with the SUXmax value of PET-CT in patients. MAOA suppressed tumour growth and glycolysis and promoted cancer cell apoptosis. We also reported that MAOA can interact with NDRG1 and regulate glycolysis through suppression of the PI3K/Akt/mTOR pathway. MAOA expression may serve as an independent prognostic factor in gastric cancer patients. CONCLUSIONS MAOA attenuated glycolysis and inhibited the progression of gastric cancer through the PI3K/Akt/mTOR pathway. Loss of function or downregulation of MAOA can facilitate gastric cancer progression. Overexpression of MAOA and inhibition of the PI3K/Akt/mTOR pathway may provide a potential method for gastric cancer treatment in clinical therapeutic regimens.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yao-Qi Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jia-Xuan Xie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiang Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shu-Chang Wang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Qing Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Li-Peng Hu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuang-Qin Yi
- Department of Frontier Health Sciences, Graduate School of Human Health Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Jia Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Hui Cao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - En-Hao Zhao
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China.
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
25
|
Zhao X, Li K, Chen M, Liu L. Metabolic codependencies in the tumor microenvironment and gastric cancer: Difficulties and opportunities. Biomed Pharmacother 2023; 162:114601. [PMID: 36989719 DOI: 10.1016/j.biopha.2023.114601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Oncogenesis and the development of tumors affect metabolism throughout the body. Metabolic reprogramming (also known as metabolic remodeling) is a feature of malignant tumors that is driven by oncogenic changes in the cancer cells themselves as well as by cytokines in the tumor microenvironment. These include endothelial cells, matrix fibroblasts, immune cells, and malignant tumor cells. The heterogeneity of mutant clones is affected by the actions of other cells in the tumor and by metabolites and cytokines in the microenvironment. Metabolism can also influence immune cell phenotype and function. Metabolic reprogramming of cancer cells is the result of a convergence of both internal and external signals. The basal metabolic state is maintained by internal signaling, while external signaling fine-tunes the metabolic process based on metabolite availability and cellular needs. This paper reviews the metabolic characteristics of gastric cancer, focusing on the intrinsic and extrinsic mechanisms that drive cancer metabolism in the tumor microenvironment, and interactions between tumor cell metabolic changes and microenvironment metabolic changes. This information will be helpful for the individualized metabolic treatment of gastric cancers.
Collapse
|
26
|
Mukherjee S, Bhatti GK, Chhabra R, Reddy PH, Bhatti JS. Targeting mitochondria as a potential therapeutic strategy against chemoresistance in cancer. Biomed Pharmacother 2023; 160:114398. [PMID: 36773523 DOI: 10.1016/j.biopha.2023.114398] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023] Open
Abstract
The importance of mitochondria is not only limited to energy generation but also in several physical and chemical processes critical for cell survival. Mitochondria play an essential role in cellular apoptosis, calcium ion transport and cellular metabolism. Mutation in the nuclear and mitochondrial genes, altered oncogenes/tumor suppressor genes, and deregulated signalling for cell viability are major reasons for cancer progression and chemoresistance. The development of drug resistance in cancer patients is a major challenge in cancer treatment as the resistant cells are often more aggressive. The drug resistant cells of numerous cancer types exhibit the deregulation of mitochondrial function. The increased biogenesis of mitochondria and its dynamic alteration contribute to developing resistance. Further, a small subpopulation of cancer stem cells in the heterogeneous tumor is primarily responsible for chemoresistance and has an attribute of mitochondrial dysfunction. This review highlights the critical role of mitochondrial dysfunction in chemoresistance in cancer cells through the processes of apoptosis, autophagy/mitophagy, and cancer stemness. Mitochondria-targeted therapeutic strategies might help reduce cancer progression and chemoresistance induced by various cancer drugs.
Collapse
Affiliation(s)
- Soumi Mukherjee
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India.
| | - Ravindresh Chhabra
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, India.
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
27
|
MACC1 as a Potential Target for the Treatment and Prevention of Breast Cancer. BIOLOGY 2023; 12:biology12030455. [PMID: 36979146 PMCID: PMC10045309 DOI: 10.3390/biology12030455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Metastasis associated in colon cancer 1 (MACC1) is an oncogene first identified in colon cancer. MACC1 has been identified in more than 20 different types of solid cancers. It is a key prognostic biomarker in clinical practice and is involved in recurrence, metastasis, and survival in many types of human cancers. MACC1 is significantly associated with the primary tumor, lymph node metastasis, distant metastasis classification, and clinical staging in patients with breast cancer (BC), and MACC1 overexpression is associated with reduced recurrence-free survival (RFS) and worse overall survival (OS) in patients. In addition, MACC1 is involved in BC progression in multiple ways. MACC1 promotes the immune escape of BC cells by affecting the infiltration of immune cells in the tumor microenvironment. Since the FGD5AS1/miR-497/MACC1 axis inhibits the apoptotic pathway in radiation-resistant BC tissues and cell lines, the MACC1 gene may play an important role in BC resistance to radiation. Since MACC1 is involved in numerous biological processes inside and outside BC cells, it is a key player in the tumor microenvironment. Focusing on MACC1, this article briefly discusses its biological effects, emphasizes its molecular mechanisms and pathways of action, and describes its use in the treatment and prevention of breast cancer.
Collapse
|
28
|
Yang S, Wang B, Liao J, Hong Z, Zhong X, Chen S, Wu Z, Zhang X, Zuo Q. Molecular mechanism of XB130 adaptor protein mediates trastuzumab resistance in gastric cancer. Clin Transl Oncol 2023; 25:685-695. [PMID: 36284062 DOI: 10.1007/s12094-022-02974-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/02/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Recent studies have shown that the activation of PI3K/AKT signaling pathway is an essential molecular mechanism participating in trastuzumab resistance in HER2 + GC (gastric cancer). However, how can we effectively inhibit AKT activity associated with drug resistance during trastuzumab treatment? Screening inhibitors against the upstream receptors of PI3K/AKT signaling pathway or interacting proteins of members has become an important way. METHODS In this study, western blot, qRT-PCR, CCK8, Co-IP and other techniques were used to explore possible mechanisms participating in trastuzumab resistance in vitro. Besides, the xenograft mouse model and GC tissue samples from patients were used to further validate the in-vitro results. RESULTS The expression of XB130 adaptor protein was remarkably increased in GC cell lines resistant to trastuzumab, and knockdown of XB130 could reverse the resistance via downregulating p-AKT. In addition, p-SRC (Tyr416) was increased in resistant cells, which could facilitate the binding of XB130 to PI3K p85α. It was also discovered that XB130 could negatively regulate PTEN gene transcription, and thus a positive feedback loop was formed between SRC-XB130-PTEN. CONCLUSIONS In HER2 + GC, XB130 contributes to trastuzumab resistance by stimulating the PI3K/AKT signaling pathway through binding to PI3K p85α under the mediation of SRC kinase and regulating PTEN gene transcription, and in turn forming a positive feedback loop between SRC-XB130-PTEN.
Collapse
Affiliation(s)
- Shengnan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Binbin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Jiaqi Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ziyang Hong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xuxian Zhong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Suling Chen
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Ziqing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Xingyu Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China
| | - Qiang Zuo
- Department of Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong Province, China.
| |
Collapse
|
29
|
Li F, Tang H, Zhao S, Gao X, Yang L, Xu J. Circ-E-Cad encodes a protein that promotes the proliferation and migration of gastric cancer via the TGF-β/Smad/C-E-Cad/PI3K/AKT pathway. Mol Carcinog 2023; 62:360-368. [PMID: 36453704 PMCID: PMC10107598 DOI: 10.1002/mc.23491] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/03/2022]
Abstract
Accumulating studies indicate that circular RNAs (circRNAs) play critical roles in cancer progression. Most of them have been reported to act as microRNA sponges or interact with RNA-binding proteins; however, their full range of functions remains largely unclear. Recently, an increasing number of circRNAs have been found to encode proteins. C-E-Cad, a protein encoded by circular E-cadherin (circ-E-Cad), has been shown to have a great influence in the progression of glioblastoma, but its specific role in gastric cancer (GC) is unclear. Here, we found that both circ-E-Cad and C-E-Cad were upregulated in GC cell lines and GC tissues compared with a human gastric epithelial cell line (GES-1) and normal tissues. Knockdown of circ-E-Cad suppressed GC cell line proliferation and metastasis in vitro and in vivo, whereas overexpression of C-E-Cad had the opposite effects. Immunoblotting revealed that C-E-Cad exerted tumor-promoting functions by regulating the PI3K/AKT pathway. A rescue experiment showed that C-E-Cad but not circ-E-Cad was the executor of protumor biological functions. In addition, we demonstrated that the C-E-Cad expression level could have been increased by the TGF-β/Smad pathway. In summary, our results indicated that the TGF-β/Smad pathway could increase the expression of C-E-Cad to regulate GC cell proliferation, migration, and epithelial-mesenchymal transition by affecting PI3K/AKT signaling.
Collapse
Affiliation(s)
- Fanying Li
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Hongxing Tang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Shaoji Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Xinya Gao
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lixuan Yang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianbo Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| |
Collapse
|
30
|
Ma J, Xu X, Fu C, Xia P, Tian M, Zheng L, Chen K, Liu X, Li Y, Yu L, Zhu Q, Yu Y, Fan R, Jiang H, Li Z, Yang C, Xu C, Long Y, Wang J, Li Z. CDH17 nanobodies facilitate rapid imaging of gastric cancer and efficient delivery of immunotoxin. Biomater Res 2022; 26:64. [PMID: 36435809 PMCID: PMC9701387 DOI: 10.1186/s40824-022-00312-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND It is highly desirable to develop new therapeutic strategies for gastric cancer given the low survival rate despite improvement in the past decades. Cadherin 17 (CDH17) is a membrane protein highly expressed in cancers of digestive system. Nanobody represents a novel antibody format for cancer targeted imaging and drug delivery. Nanobody targeting CHD17 as an imaging probe and a delivery vehicle of toxin remains to be explored for its theragnostic potential in gastric cancer. METHODS Naïve nanobody phage library was screened against CDH17 Domain 1-3 and identified nanobodies were extensively characterized with various assays. Nanobodies labeled with imaging probe were tested in vitro and in vivo for gastric cancer detection. A CDH17 Nanobody fused with toxin PE38 was evaluated for gastric cancer inhibition in vitro and in vivo. RESULTS Two nanobodies (A1 and E8) against human CDH17 with high affinity and high specificity were successfully obtained. These nanobodies could specifically bind to CDH17 protein and CDH17-positive gastric cancer cells. E8 nanobody as a lead was extensively determined for tumor imaging and drug delivery. It could efficiently co-localize with CDH17-positive gastric cancer cells in zebrafish embryos and rapidly visualize the tumor mass in mice within 3 h when conjugated with imaging dyes. E8 nanobody fused with toxin PE38 showed excellent anti-tumor effect and remarkably improved the mice survival in cell-derived (CDX) and patient-derived xenograft (PDX) models. The immunotoxin also enhanced the anti-tumor effect of clinical drug 5-Fluorouracil. CONCLUSIONS The study presents a novel imaging and drug delivery strategy by targeting CDH17. CDH17 nanobody-based immunotoxin is potentially a promising therapeutic modality for clinical translation against gastric cancer.
Collapse
Affiliation(s)
- Jingbo Ma
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.,College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, P. R. China
| | - Xiaolong Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Chunjin Fu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Peng Xia
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.,Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Ming Tian
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.,Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Liuhai Zheng
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Kun Chen
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Xiaolian Liu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China
| | - Yilei Li
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China
| | - Le Yu
- Clinical Pharmacy Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, P. R. China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, P.R. China
| | - Qinchang Zhu
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, P.R. China
| | - Yangyang Yu
- Health Science Center, Shenzhen University, Shenzhen, 518055, Guangdong, P. R. China
| | - Rongrong Fan
- Deapartment of Biosciences and Nutrition, Karolinska Institute, 14157, Stockholm, Sweden
| | - Haibo Jiang
- Department of Chemistry, The University of Hong Kong, Pok Fu Lam, Hong Kong, P. R. China
| | - Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, 037009, Shanxi, P. R. China
| | - Chuanbin Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Chengchao Xu
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China
| | - Ying Long
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
| | - Jigang Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China. .,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, P.R. China. .,Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, P. R. China.
| | - Zhijie Li
- Department of Hyperbaric Medicine, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China. .,Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, P. R. China.
| |
Collapse
|
31
|
Yao X, He Z, Qin C, Zhang P, Sui C, Deng X, Fang Y, Li G, Shi J. Inhibition of PFKFB3 in HER2-positive gastric cancer improves sensitivity to trastuzumab by inducing tumour vessel normalisation. Br J Cancer 2022; 127:811-823. [PMID: 35637411 PMCID: PMC9427959 DOI: 10.1038/s41416-022-01834-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Multiple mechanisms have been proposed that lead to reduced effectiveness of trastuzumab in HER2-positive gastric cancer (GC), yet resistance to trastuzumab remains a challenge in clinics. METHODS We established trastuzumab-resistant cells and patient-derived xenografts models to measure metabolic levels and vascular density and shape. The HER2-positive GC patient samples were used to determine clinical significance. We also measured protein expression and phosphorylation modifications to determine those alterations related to resistance. In vivo studies combining inhibitor of PFKFB3 with trastuzumab corroborated the in vitro findings. RESULTS The 6-phosphofructo-2-kinase (PFKFB3)-mediated trastuzumab resistance pathways in HER2-positive GC by activating the glycolytic pathway. We also found vessels are chaotic and destabilised in the tumour during the trastuzumab resistance process. Inhibition of PFKFB3 significantly diminished tumour proliferation and promoted vessel normalisation in the patient-derived xenograft model. Mechanistically, PFKFB3 promoted the secretion of CXCL8 into the tumour microenvironment, and phosphorylated Ser1151 of ERBB2, enhancing the transcription of CXCL8 by activating the PI3K/AKT/NFκB p65 pathway. CONCLUSIONS Our current findings discover that PFKFB3 inhibitors might be effective tools to overcome adjuvant therapy resistance in HER2-positive GC and reshaping the microenvironment by normalising tumour vessels is a novel strategy to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Xingxing Yao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Zhanke He
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Caolitao Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases & Department of Radiation Oncology, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Penghao Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Chuyang Sui
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Xiangqian Deng
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| | - Jiaolong Shi
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, 510515, Guangzhou, Guangdong, China.
| |
Collapse
|
32
|
MACC1 Promotes the Progression and Is a Novel Biomarker for Predicting Immunotherapy Response in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8326940. [PMID: 35874635 PMCID: PMC9303487 DOI: 10.1155/2022/8326940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Aims As one of the most prevalent malignant diseases in the world, the mechanisms of metastasis in colon cancer are poorly understood. The aim of this study was to investigate the role of the HGF/c-MET axis in the proliferation and metastasis in colon cancer. Methods The effect of MACC1 on cell proliferation and metastasis was analyzed through a series of in vitro experiments. The role of MACC1 in cancer cells was demonstrated by overexpression and silencing of MACC1 in gain or loss function experiments. To investigate the relationship between MACC1 and c-MET/HGF, we detected c-MET protein expression by disrupting with or overexpressing MACC1. The bioinformatics analysis was used to investigate the correlation between MACC1 and c-MET, and the c-MET expression after the interference of HGF with MACC1 was determined. Subsequently, the function of c-MET was verified in colon cancer cells by a series of experiments. The mouse tumor transplantation model experiment is most suitable in vivo. Results The results indicated that the overexpression of MACC1 could accelerate proliferation and facilitate metastasis in colon cancer cell lines. Furthermore, c-MET was determined to be the downstream regulator of MACC1. The addition of HGF could stimulate the expression of MACC1. With further exploration, we proved that c-MET is downstream of MACC1 in colon cancer and that overexpression of c-MET in colon cancer enhances cell proliferation and migration capability. At last, MACC1 expression level negatively correlates with the infiltration levels and several immune checkpoint biomarkers. High MACC1 expression has a lower response rate with ICIs in COAD. Conclusions We found that, under the regulation of the MACC1/HGF/c-MET axis, the proliferation and metastasis of colorectal cancer are increased by MACC1, which can be a novel biomarker for predicting ICIs response in colorectal cancer. Our findings provide a new idea for the targeted treatment of colorectal cancer.
Collapse
|
33
|
Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics 2022; 14:pharmaceutics14061303. [PMID: 35745875 PMCID: PMC9227908 DOI: 10.3390/pharmaceutics14061303] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The constant changes in cancer cell bioenergetics are widely known as metabolic reprogramming. Reprogramming is a process mediated by multiple factors, including oncogenes, growth factors, hypoxia-induced factors, and the loss of suppressor gene function, which support malignant transformation and tumor development in addition to cell heterogeneity. Consequently, this hallmark promotes resistance to conventional anti-tumor therapies by adapting to the drastic changes in the nutrient microenvironment that these therapies entail. Therefore, it represents a revolutionary landscape during cancer progression that could be useful for developing new and improved therapeutic strategies targeting alterations in cancer cell metabolism, such as the deregulated mTOR and PI3K pathways. Understanding the complex interactions of the underlying mechanisms of metabolic reprogramming during cancer initiation and progression is an active study field. Recently, novel approaches are being used to effectively battle and eliminate malignant cells. These include biguanides, mTOR inhibitors, glutaminase inhibition, and ion channels as drug targets. This review aims to provide a general overview of metabolic reprogramming, summarise recent progress in this field, and emphasize its use as an effective therapeutic target against cancer.
Collapse
|
34
|
Wang P, Jin JM, Liang XH, Yu MZ, Yang C, Huang F, Wu H, Zhang BB, Fei XY, Wang ZT, Xu R, Shi HL, Wu XJ. Helichrysetin inhibits gastric cancer growth by targeting c-Myc/PDHK1 axis-mediated energy metabolism reprogramming. Acta Pharmacol Sin 2022; 43:1581-1593. [PMID: 34462561 PMCID: PMC9160019 DOI: 10.1038/s41401-021-00750-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
Helichrysetin (HEL), a chalcone isolated from Alpinia katsumadai Hayata, has an antitumor activity in human lung and cervical cancers. However, the inhibitory effect and underlying mechanism of HEL in gastric cancer have not been elucidated. Here, HEL significantly inhibited the growth of gastric cancer MGC803 cells in vitro and in vivo. HEL decreased expression and transcriptional regulatory activity of c-Myc and mRNA expression of c-Myc target genes. HEL enhanced mitochondrial oxidative phosphorylation (OXPHOS) and reduced glycolysis as evidenced by increased mitochondrial adenosine triphosphate (ATP) production and excessive reactive oxygen species (ROS) accumulation, and decreased the pPDHA1/PDHA1 ratio and Glyco-ATP production. Pyruvate enhanced OXPHOS after HEL treatment. c-Myc overexpression abolished HEL-induced inhibition of cell viability, glycolysis, and protein expression of PDHK1 and LDHA. PDHK1 overexpression also counteracted inhibitory effect of HEL on cell viability. Conversely, c-Myc siRNA decreased cell viability, glycolysis, and PDHK1 expression. NAC rescued the decrease in viability of HEL-treated cells. Additionally, HEL inhibited the overactivated mTOR/p70S6K pathway in vitro and in vivo. HEL-induced cell viability inhibition was counteracted by an mTOR agonist. mTOR inhibitor also decreased cell viability. Similar results were obtained in SGC7901 cells. HEL repressed lactate production and efflux in MGC803 cells. These results revealed that HEL inhibits gastric cancer growth by targeting mTOR/p70S6K/c-Myc/PDHK1-mediated energy metabolism reprogramming in cancer cells. Therefore, HEL may be a potential agent for gastric cancer treatment by modulating cancer energy metabolism reprogramming.
Collapse
Affiliation(s)
- Ping Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jin-Mei Jin
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Hui Liang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ming-Zhu Yu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chun Yang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Fei Huang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hui Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bei-Bei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiao-Yan Fei
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zheng-Tao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ren Xu
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Hai-Lian Shi
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiao-Jun Wu
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education (MOE) Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Research Center of Shanghai Traditional Chinese Medicine Standardization, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
35
|
Shi XY, Zhang XL, Shi QY, Qiu X, Wu XB, Zheng BL, Jiang HX, Qin SY. IFN-γ affects pancreatic cancer properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway. Clin Transl Oncol 2022; 24:1073-1085. [PMID: 35037236 DOI: 10.1007/s12094-021-02748-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/01/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Metastasis-related in colon cancer 1 (MACC1) is highly expressed in a variety of solid tumours, but its role in pancreatic cancer (PC) remains unknown. Interferon gamma (IFN-γ) affecting MACC1 expression was explored as the potential mechanism following its intervention. METHODS Expressions of MACC1 treated with IFN-γ gradient were confirmed by quantitative real-time PCR (qRT-PCR) and western blot (WB). Proliferation, migration, and invasion abilities of PC cells treated with IFN-γ were analysed by CCK8, EDU, colony formation, Transwell (with or without matrix gel) and wound-healing assays. Expression of antisense long non-coding RNA of MACC1, MACC1-AS1, and proteins of AKT/mTOR pathway, (pho-)AKT, and (pho-)mTOR was also assessed by qRT-PCR and WB. SiRNA kit and lentiviral fluid were conducted for transient expression of MACC1 and stable expression of MACC1-AS1, respectively. Rescue assays of cells overexpressing MACC1-AS1 and of cells silencing MACC1 were performed and cellular properties and proteins were assessed by the above-mentioned assays as well. RESULTS IFN-γ inhibited MACC1 expression in a time- and dose-dependent manner; 100 ng/mL IFN-γ generally caused downregulation of most significant (p ≤ 0.05). In vitro experiments revealed that IFN-γ decreased cellular proliferation, migration, and invasion abilities and downregulated the expression of pho-AKT and pho-mTOR (p ≤ 0.05). Conversely, overexpression of MACC1-AS1 upregulated pho-AKT and pho-mTOR proteins, and reversed cellular properties (p ≤ 0.05). Rescue assays alleviated the above changes of pho-AKT/ mTOR and cellular properties. CONCLUSION IFN-γ affected PC properties by MACC1-AS1/MACC1 axis via AKT/mTOR signaling pathway, which provides novel insight for candidate targets for treating PC.
Collapse
Affiliation(s)
- X-Y Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X-L Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - Q-Y Shi
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X Qiu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - X-B Wu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - B-L Zheng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - H-X Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China
| | - S-Y Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Province, China.
| |
Collapse
|
36
|
Blangé D, Stroes CI, Derks S, Bijlsma MF, van Laarhoven HW. Resistance Mechanisms to HER2-Targeted Therapy in Gastroesophageal Adenocarcinoma: A Systematic Review. Cancer Treat Rev 2022; 108:102418. [DOI: 10.1016/j.ctrv.2022.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
37
|
Wang J, Huang Q, Hu X, Zhang S, Jiang Y, Yao G, Hu K, Xu X, Liang B, Wu Q, Ma Z, Wang Y, Wang C, Wu Z, Rong X, Liao W, Shi M. Disrupting Circadian Rhythm via the PER1-HK2 Axis Reverses Trastuzumab Resistance in Gastric Cancer. Cancer Res 2022; 82:1503-1517. [PMID: 35255118 PMCID: PMC9662874 DOI: 10.1158/0008-5472.can-21-1820] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 01/07/2023]
Abstract
Trastuzumab is the only approved targeted drug for first-line treatment of HER2-positive advanced gastric cancer, but the high rate of primary resistance and rapid emergence of secondary resistance limit its clinical benefits. We found that trastuzumab-resistant (TR) gastric cancer cells exhibited high glycolytic activity, which was controlled by hexokinase 2 (HK2)-dependent glycolysis with a circadian pattern [higher at zeitgeber time (ZT) 6, lower at ZT18]. Mechanistically, HK2 circadian oscillation was regulated by a transcriptional complex composed of PPARγ and the core clock gene PER1. In vivo and in vitro experiments demonstrated that silencing PER1 disrupted the circadian rhythm of PER1-HK2 and reversed trastuzumab resistance. Moreover, metformin, which inhibits glycolysis and PER1, combined with trastuzumab at ZT6, significantly improved trastuzumab efficacy in gastric cancer. Collectively, these data introduce the circadian clock into trastuzumab therapy and propose a potentially effective chronotherapy strategy to reverse trastuzumab resistance in gastric cancer. SIGNIFICANCE In trastuzumab-resistant HER2-positive gastric cancer, glycolysis fluctuates with a circadian oscillation regulated by the BMAL1-CLOCK-PER1-HK2 axis, which can be disrupted with a metformin-based chronotherapy to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiong Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xingbin Hu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Shuyi Zhang
- Department of Oncology, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
| | - Yu Jiang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Guangyu Yao
- Department of General Surgery, Breast Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Kongzhen Hu
- Department of Nuclear Medicine, GDMPA Key Laboratory for Quality Control and Evaluation of Radiopharmaceuticals, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xin Xu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Bishan Liang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qijing Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhenfeng Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yawen Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chunlin Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhenzhen Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.,Corresponding Author: Min Shi, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou 510515, China. E-mail:
| |
Collapse
|
38
|
Yang G, Yang Y, Liu R, Li W, Xu H, Hao X, Li J, Xing P, Zhang S, Ai X, Xu F, Wang Y. First-line immunotherapy or angiogenesis inhibitor plus chemotherapy for HER2-altered NSCLC: a retrospective real-world POLISH study. Ther Adv Med Oncol 2022; 14:17588359221082339. [PMID: 35251321 PMCID: PMC8894956 DOI: 10.1177/17588359221082339] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background: There have been no comprehensive large-scale studies that have evaluated the benefits of chemotherapy-based regimens in addressing HER2-altered advanced non-small-cell lung cancer (NSCLC) in a first-line setting. Data on HER2 alteration subtypes and concomitant alterations are also limited. Accordingly, our retrospective, real-world POLISH study assesses the efficacy of first-line chemotherapy alone (C) as well as combinations with immune checkpoint inhibitors (C + I) or angiogenesis inhibitors (C + A) for HER2-altered NSCLC; molecular features are also reported. Methods: HER2-altered NSCLC patients who received a first-line treatment between November 2015 and September 2021 were screened. Patients treated with C, C + I, or C + A were included in our final efficacy analysis. Progression-free survival (PFS) was compared between the subgroups. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to evaluate concomitant alterations. Results: A total of 293 patients were screened, with an identification of HER2 amplification and 37 distinct HER2 mutations, and 210 cases treated with C, C + I, or C + A were ultimately included. C + A achieved longer PFS than C (5.63 vs 4.03 months, hazard ratio: 0.64, 95% confidence interval [CI]: 0.46–0.88, p = 0.006). C + I did not improve median PFS compared to C + A or C (both p > 0.05), despite the programmed cell death ligand-1 (PD-L1) expression or tumor mutational burden. KEGG analysis revealed that concomitant upregulation of PI3 K/AKT pathway signaling was common in HER2-altered NSCLC. Conclusion: Chemotherapy plus angiogenesis inhibitors may yield a greater survival benefit than chemotherapy alone in a first-line setting for HER2-altered NSCLC, whereas an immune-based combination therapy may not be superior to a sole chemotherapy regimen. Activation of PI3 K/AKT signaling may mediate immunosuppression in HER2-altered NSCLC.
Collapse
Affiliation(s)
- Guangjian Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaning Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Runze Liu
- Guangxi Medical University, Nanning, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Department of Comprehensive Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuezhi Hao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuyang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Ai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.17 Panjiayuan Street South, Chaoyang District, Beijing 100021, China
| |
Collapse
|
39
|
Jin Y, Wang J, Zhao M, Lin J, Hong L. Myeloid ecotropic viral integration site-1 inhibition promotes apoptosis, suppresses proliferation of acute myeloid leukemia cells, accentuates the effects of anticancer drugs. Bioengineered 2022; 13:5700-5708. [PMID: 35212611 PMCID: PMC8974192 DOI: 10.1080/21655979.2021.2000725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
To investigate the effects of myeloid ecotropic viral integration site-1 (MEIS1) on the proliferation and apoptosis of acute myeloid leukemia (AML) cells and the anticancer effects of the drug, we screened Kasumi-6, KG-1, and Kasumi-1 cells using quantitative reverse transcription polymerase chain reaction. Kasumi-6 and Kasumi-1 cells were subjected to human antigen R (HuR)-mediated interference (IV). Hexokinase 2 (HK2) expression and phosphorylation of protein kinase B (p-AKT) and mammalian target of rapamycin (p-mTOR) were observed with Western blotting. Cell proliferation was assessed using Cell Counting Kit-8, apoptosis was examined using Hoechst 33,258 staining, and glucose uptake was detected with a colorimetric biochemical assay kit. We found that, among the three cell lines tested, MEIS1 expression was highest in Kasumi-1 cells, which were therefore selected for subsequent experiments. Kasumi-1 cells receiving IV showed significantly decreased proliferation (p < 0.05) and increased apoptosis compared to the control group. Compared with the controls, IV significantly increased the expression of HK2, p-AKT, p-mTOR, multidrug resistance-associated protein 1 and P-glycoprotein (P < 0.05), but decreased glucose uptake. Treatment with adriamycin, daunorubicin and imatinib resulted in a progressive increase in inhibition of cell proliferation, with the IV group showing the highest inhibition rate among the three groups (P < 0.05). Thus, inhibition of MEIS1 activity promoted apoptosis, inhibited the proliferation of Kasumi-1 and Kasumi-6 cells, and increaseed the anticancer effect of the drugs, suggesting that inhibition of MEIS1 may be a potential strategy for the treatment of AML.
Collapse
Affiliation(s)
- Yinglan Jin
- Department of Hematology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinghua Wang
- Department of Hematology, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mingming Zhao
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jingyi Lin
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Luojia Hong
- Department of Hematology and Rheumatism, Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
40
|
Bin YL, Hu HS, Tian F, Wen ZH, Yang MF, Wu BH, Wang LS, Yao J, Li DF. Metabolic Reprogramming in Gastric Cancer: Trojan Horse Effect. Front Oncol 2022; 11:745209. [PMID: 35096565 PMCID: PMC8790521 DOI: 10.3389/fonc.2021.745209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
Worldwide, gastric cancer (GC) represents the fifth most common cancer for incidence and the third leading cause of death in developed countries. Despite the development of combination chemotherapies, the survival rates of GC patients remain unsatisfactory. The reprogramming of energy metabolism is a hallmark of cancer, especially increased dependence on aerobic glycolysis. In the present review, we summarized current evidence on how metabolic reprogramming in GC targets the tumor microenvironment, modulates metabolic networks and overcomes drug resistance. Preclinical and clinical studies on the combination of metabolic reprogramming targeted agents and conventional chemotherapeutics or molecularly targeted treatments [including vascular endothelial growth factor receptor (VEGFR) and HER2] and the value of biomarkers are examined. This deeper understanding of the molecular mechanisms underlying successful pharmacological combinations is crucial in finding the best-personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Yu-Ling Bin
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Hong-Sai Hu
- Department of Gastroenterology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Feng Tian
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Zhen-Hua Wen
- Department of Rheumatology and Immunology, ZhuZhou Central Hospital, Zhuzhou, China
| | - Mei-Feng Yang
- Department of Hematology, Yantian District People's Hospital, Shenzhen, China
| | - Ben-Hua Wu
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jun Yao
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - De-Feng Li
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| |
Collapse
|
41
|
Gonçalves AC, Richiardone E, Jorge J, Polónia B, Xavier CPR, Salaroglio IC, Riganti C, Vasconcelos MH, Corbet C, Sarmento-Ribeiro AB. Impact of cancer metabolism on therapy resistance - Clinical implications. Drug Resist Updat 2021; 59:100797. [PMID: 34955385 DOI: 10.1016/j.drup.2021.100797] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite an increasing arsenal of anticancer therapies, many patients continue to have poor outcomes due to the therapeutic failures and tumor relapses. Indeed, the clinical efficacy of anticancer therapies is markedly limited by intrinsic and/or acquired resistance mechanisms that can occur in any tumor type and with any treatment. Thus, there is an urgent clinical need to implement fundamental changes in the tumor treatment paradigm by the development of new experimental strategies that can help to predict the occurrence of clinical drug resistance and to identify alternative therapeutic options. Apart from mutation-driven resistance mechanisms, tumor microenvironment (TME) conditions generate an intratumoral phenotypic heterogeneity that supports disease progression and dismal outcomes. Tumor cell metabolism is a prototypical example of dynamic, heterogeneous, and adaptive phenotypic trait, resulting from the combination of intrinsic [(epi)genetic changes, tissue of origin and differentiation dependency] and extrinsic (oxygen and nutrient availability, metabolic interactions within the TME) factors, enabling cancer cells to survive, metastasize and develop resistance to anticancer therapies. In this review, we summarize the current knowledge regarding metabolism-based mechanisms conferring adaptive resistance to chemo-, radio-and immunotherapies as well as targeted therapies. Furthermore, we report the role of TME-mediated intratumoral metabolic heterogeneity in therapy resistance and how adaptations in amino acid, glucose, and lipid metabolism support the growth of therapy-resistant cancers and/or cellular subpopulations. We also report the intricate interplay between tumor signaling and metabolic pathways in cancer cells and discuss how manipulating key metabolic enzymes and/or providing dietary changes may help to eradicate relapse-sustaining cancer cells. Finally, in the current era of personalized medicine, we describe the strategies that may be applied to implement metabolic profiling for tumor imaging, biomarker identification, selection of tailored treatments and monitoring therapy response during the clinical management of cancer patients.
Collapse
Affiliation(s)
- Ana Cristina Gonçalves
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Elena Richiardone
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium
| | - Joana Jorge
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Bárbara Polónia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | - Chiara Riganti
- Department of Oncology, School of Medicine, University of Torino, Italy
| | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal
| | - Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Belgium.
| | - Ana Bela Sarmento-Ribeiro
- Laboratory of Oncobiology and Hematology (LOH) and University Clinic of Hematology, Faculty of Medicine (FMUC), University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) - Group of Environment Genetics and Oncobiology (CIMAGO), FMUC, University of Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Hematology Service, Centro Hospitalar e Universitário de Coimbra (CHUC), Coimbra, Portugal.
| |
Collapse
|
42
|
Cai C, Yang L, Zhuang X, He Y, Zhou K. A five-lncRNA model predicting overall survival in gastric cancer compared with normal tissues. Aging (Albany NY) 2021; 13:24349-24359. [PMID: 34751670 PMCID: PMC8610123 DOI: 10.18632/aging.203685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/25/2021] [Indexed: 01/05/2023]
Abstract
Aims: In cancer research, normal tissues adjacent to the tumor are usually defined as controls to compare with tumor samples, in order to screen out cancer-related genes. Although there is no obvious difference in pathology between normal tissues adjacent to the tumor and healthy tissues, there are significant changes at the molecular level. We aim to explore more potential tumor biomarkers using healthy tissues as controls rather than normal tissues adjacent to the tumor. Methods: Here we combine the Genotype-Tissue Expression project and The Cancer Genome Atlas for differential gene analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were applied in order to predict the biological effects of related lncRNAs. Results: We established a 5-lncRNA prognosis model with an AUC value of 0.815. Pathway analysis indicated that 5-lncRNA mainly affected tissue carcinogenesis through PI3K-AKT signaling pathway, Focal adhesion, MAPK signaling pathway. Conclusion: The 5-lncRNA prognostic model we set up is more conducive to assess the overall survival time of gastric cancer patients.
Collapse
Affiliation(s)
- Congbo Cai
- Emergency Department of Yinzhou No. 2 Hospital, Ningbo 315000, Zhejiang, China
| | - Lei Yang
- Emergency Department of Yinzhou No. 2 Hospital, Ningbo 315000, Zhejiang, China
| | - Xieyan Zhuang
- Gynecology Department of Mingzhou Hospital, Ningbo 315000, Zhejiang, China
| | - Yi He
- Gastroenterology Department of Ningbo No. 9 Hospital, Ningbo 315000, Zhejiang, China
| | - Kena Zhou
- Gastroenterology Department of Ningbo No. 9 Hospital, Ningbo 315000, Zhejiang, China
| |
Collapse
|
43
|
Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View. Cancers (Basel) 2021; 13:cancers13205216. [PMID: 34680363 PMCID: PMC8533881 DOI: 10.3390/cancers13205216] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed.
Collapse
|
44
|
Li A, Zhu HM, Chen Y, Yan F, Liu ZY, Li ZL, Dong WR, Zhang L, Wang HH. Cdc42 Facilitates Axonogenesis by Enhancing Microtubule Stabilization in Primary Hippocampal Neurons. Cell Mol Neurobiol 2021; 41:1599-1610. [PMID: 33575839 PMCID: PMC11448644 DOI: 10.1007/s10571-021-01051-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 01/28/2021] [Indexed: 01/07/2023]
Abstract
The establishment of polarity is an essential process in early neuronal development. Cdc42, a GTPase of the Rho family, is a key regulator of cytoskeletal dynamics and neuronal polarity. However, the mechanisms underlying the action of cdc42 in regulating axonogenesis have not been elucidated. Here, we expressed wild-type cdc42, a constitutively active cdc42 mutant (cdc42F28L) and a dominant negative cdc42 mutant (cdc42N17), respectively, in the primary hippocampal neurons to alter the activity of cdc42. We found that cdc42 activities were paralleled with the capacities to promote axonogenesis in the cultured neurons. Cdc42 also enhanced microtubule stability in the cultured neurons. Pharmacologically stabilizing microtubules significantly abrogated the defective axonogenesis induced by cdc42 inhibition. Moreover, cdc42 promoted the dephosphorylation of collapsing response mediator protein-2 (CRMP-2) at Thr514 by increasing GSK-3β phosphorylation at Ser9 in the cultured neurons. These findings suggest that cdc42 may facilitate axonogenesis by promoting microtubule stabilization in rat primary hippocampal neurons.
Collapse
Affiliation(s)
- Ang Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Ming Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yu Chen
- Experimental Education & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Fang Yan
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhong-Ying Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhen-Lin Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Ren Dong
- Experimental Education & Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Hai-Hong Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
45
|
Shi W, Zhang G, Ma Z, Li L, Liu M, Qin L, Yu Z, Zhao L, Liu Y, Zhang X, Qin J, Ye H, Jiang X, Zhou H, Sun H, Jiao Z. Hyperactivation of HER2-SHCBP1-PLK1 axis promotes tumor cell mitosis and impairs trastuzumab sensitivity to gastric cancer. Nat Commun 2021; 12:2812. [PMID: 33990570 PMCID: PMC8121856 DOI: 10.1038/s41467-021-23053-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/13/2021] [Indexed: 02/04/2023] Open
Abstract
Trastuzumab is the backbone of HER2-directed gastric cancer therapy, but poor patient response due to insufficient cell sensitivity and drug resistance remains a clinical challenge. Here, we report that HER2 is involved in cell mitotic promotion for tumorigenesis by hyperactivating a crucial HER2-SHCBP1-PLK1 axis that drives trastuzumab sensitivity and is targeted therapeutically. SHCBP1 is an Shc1-binding protein but is detached from scaffold protein Shc1 following HER2 activation. Released SHCBP1 responds to HER2 cascade by translocating into the nucleus following Ser273 phosphorylation, and then contributing to cell mitosis regulation through binding with PLK1 to promote the phosphorylation of the mitotic interactor MISP. Meanwhile, Shc1 is recruited to HER2 for MAPK or PI3K pathways activation. Also, clinical evidence shows that increased SHCBP1 prognosticates a poor response of patients to trastuzumab therapy. Theaflavine-3, 3'-digallate (TFBG) is identified as an inhibitor of the SHCBP1-PLK1 interaction, which is a potential trastuzumab sensitizing agent and, in combination with trastuzumab, is highly efficacious in suppressing HER2-positive gastric cancer growth. These findings suggest an aberrant mitotic HER2-SHCBP1-PLK1 axis underlies trastuzumab sensitivity and offer a new strategy to combat gastric cancer.
Collapse
Affiliation(s)
- Wengui Shi
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Gengyuan Zhang
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zhijian Ma
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Lianshun Li
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Miaomiao Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Long Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Zeyuan Yu
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Lei Zhao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Yang Liu
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xue Zhang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Junjie Qin
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Huili Ye
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Xiangyan Jiang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Huinian Zhou
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Hui Sun
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
| | - Zuoyi Jiao
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- Biobank of Tumors from Plateau of Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- The Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, People's Republic of China.
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China.
| |
Collapse
|
46
|
Lengyel CG, Hussain S, Trapani D, El Bairi K, Altuna SC, Seeber A, Odhiambo A, Habeeb BS, Seid F. The Emerging Role of Liquid Biopsy in Gastric Cancer. J Clin Med 2021; 10:2108. [PMID: 34068319 PMCID: PMC8153353 DOI: 10.3390/jcm10102108] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Liquid biopsy (LB) is a novel diagnostic method with the potential of revolutionizing the prevention, diagnosis, and treatment of several solid tumors. The present paper aims to summarize the current knowledge and explore future possibilities of LB in the management of metastatic gastric cancer. (2) Methods: This narrative review examined the most recent literature on the use of LB-based techniques in metastatic gastric cancer and the current LB-related clinical trial landscape. (3) Results: In gastric cancer, the detection of circulating cancer cells (CTCs) has been recognized to have a prognostic role in all the disease stages. In the setting of localized disease, cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) qualitative and quantitative detection have the potential to inform on the risk of cancer recurrence and metastatic dissemination. In addition, gastric cancer-released exosomes may play an essential part in metastasis formation. In the metastatic setting, the levels of cfDNA show a positive correlation with tumor burden. There is evidence that circulating tumor microemboli (CTM) in the blood of metastatic patients is an independent prognostic factor for shorter overall survival. Gastric cancer-derived exosomal microRNAs or clonal mutations and copy number variations detectable in ctDNA may contribute resistance to chemotherapy or targeted therapies, respectively. There is conflicting and limited data on CTC-based PD-L1 verification and cfDNA-based Epstein-Barr virus detection to predict or monitor immunotherapy responses. (4) Conclusions: Although preliminary studies analyzing LBs in patients with advanced gastric cancer appear promising, more research is required to obtain better insights into the molecular mechanisms underlying resistance to systemic therapies. Moreover, validation and standardization of LB methods are crucial before introducing them in clinical practice. The feasibility of repeatable, minimally invasive sampling opens up the possibility of selecting or dynamically changing therapies based on prognostic risk or predictive biomarkers, such as resistance markers. Research is warranted to exploit a possible transforming area of cancer care.
Collapse
Affiliation(s)
| | - Sadaqat Hussain
- North West Cancer Center, Altnagelvin Hospital, Londonderry BT47 6SB, UK;
| | - Dario Trapani
- European Institute of Oncology, IRCCS, 20141 Milan, Italy;
| | | | | | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Andrew Odhiambo
- Unit of Medical Oncology, Department of Clinical Medicine, University of Nairobi, Nairobi 30197, Kenya;
| | - Baker Shalal Habeeb
- Department of Medical Oncology, Shaqlawa Teaching Hospital, Shaqlawa, Erbil 44005, Iraq;
| | - Fahmi Seid
- School of Medicine and Health Sciences, Hawassa University, Hawassa 1560, Ethiopia;
| |
Collapse
|
47
|
Laterza MM, Ciaramella V, Facchini BA, Franzese E, Liguori C, De Falco S, Coppola P, Pompella L, Tirino G, Berretta M, Montella L, Facchini G, Ciardiello F, de Vita F. Enhanced Antitumor Effect of Trastuzumab and Duligotuzumab or Ipatasertib Combination in HER-2 Positive Gastric Cancer Cells. Cancers (Basel) 2021; 13:cancers13102339. [PMID: 34066144 PMCID: PMC8150287 DOI: 10.3390/cancers13102339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The ToGA trial has demonstrated, in HER2-expressing patients, that unresectable and advanced gastric cancer, chemotherapy and trastuzumab in combination increase overall survival, even if it is still unclear why after one year the same patients are non-responsive to trastuzumab treatment. Here, we have demonstrated that in HER2-positive gastric cancer cell lines, the addition of duligotuzumab, targeting HER3 receptor, or ipatasertib, targeting AKT protein, enhances the antitumor effect of trastuzumab in vitro through a full inhibition of the membrane signals, on HER2 and HER3, and of downstream signaling, including AKT, and MAPK pathways. Hence, this study suggests a novel and biomarker-driven therapeutic strategy supporting further evaluation of the anti-tumor efficacy of these combinations in HER2 human gastric cancer patients. Abstract The anti-HER2 monoclonal antibody trastuzumab is a key drug for the treatment of HER2-positive gastric cancer (GC); however, its activity is often limited by the onset of resistance and mechanisms of resistance are still poorly understood. Several targeted agents showed synergistic activity by concomitant use with trastuzumab in vitro and are under clinical investigation. The aim of this study was to assess the antitumor activity of duligotuzumab, an anti HER3/EGFR antibody or ipatasertib, an AKT inhibitor, combined with trastuzumab in a panel of HER2-positive human gastric cancer cells (GCC), and the efficacy of such combinations in HER2-resistant cells. We have assessed the efficacy of duligotuzumab or ipatasertib and trastuzumab in combination, analyzing proliferation, migration and apoptosis and downstream intracellular signaling in vitro on human HER2-positive GCC (NCI-N87, OE33, OE19) and in negative HER2 GCC (MKN28). We observed a reduction of proliferation, migration and apoptotic rate in HER2-positive OE33, OE19 and N87 cell lines with the combination of duligotuzumab or ipatasertib plus trastuzumab. In particular, in OE33 and OE19 cell lines, the same combined treatment inhibited the activation of proteins downstream of HER2, HER3, AKT and MAPK pathways. Targeting both HER2 and HER3, or HER2 and AKT, results in an improved antitumor effect on HER2-positive GCC.
Collapse
Affiliation(s)
- Maria Maddalena Laterza
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
- Correspondence:
| | - Vincenza Ciaramella
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Elisena Franzese
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Carmela Liguori
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Stefano De Falco
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Paola Coppola
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Luca Pompella
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Giuseppe Tirino
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98121 Messina, Italy;
| | - Liliana Montella
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Gaetano Facchini
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy; (E.F.); (C.L.); (S.D.F.); (P.C.); (L.M.); (G.F.)
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| | - Ferdinando de Vita
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 81100 Napoli, Italy; (V.C.); (B.A.F.); (L.P.); (G.T.); (F.C.); (F.d.V.)
| |
Collapse
|
48
|
Co-Targeting PIM Kinase and PI3K/mTOR in NSCLC. Cancers (Basel) 2021; 13:cancers13092139. [PMID: 33946744 PMCID: PMC8125027 DOI: 10.3390/cancers13092139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary PIM kinases interact with major oncogenic players, including the PI3K/Akt pathway, and provide an escape mechanism leading to drug resistance. This study examined PIM kinase expression in NSCLC and the potential of PIM1 as a prognostic marker. The effect on cell signaling of novel preclinical PI3K/mTOR/PIM kinase inhibitor IBL-301 was compared to PI3K/mTOR inhibition in vitro and ex vivo. PI3K-mTOR inhibitor sensitive (H1975P) and resistant (H1975GR) cells were compared for altered IL6/STAT3 pathway expression and sensitivity to IBL-301. All three PIM kinases are expressed in NSCLC and PIM1 is a marker of poor prognosis. IBL-301 inhibited c-Myc, the PI3K-Akt and JAK/STAT pathways in vitro and in NSCLC tumor tissue explants. IBL-301 also inhibited secreted pro-inflammatory cytokine MCP-1. PIM kinases were activated in H1975GR cells which were more sensitive to IBL-301 than H1975P cells. A miRNA signature of PI3K-mTOR resistance was validated. Co-targeting PIM kinase and PI3K-mTOR warrants further clinical investigation. Abstract PIM kinases are constitutively active proto-oncogenic serine/threonine kinases that play a role in cell cycle progression, metabolism, inflammation and drug resistance. PIM kinases interact with and stabilize p53, c-Myc and parallel signaling pathway PI3K/Akt. This study evaluated PIM kinase expression in NSCLC and in response to PI3K/mTOR inhibition. It investigated a novel preclinical PI3K/mTOR/PIM inhibitor (IBL-301) in vitro and in patient-derived NSCLC tumor tissues. Western blot analysis confirmed PIM1, PIM2 and PIM3 are expressed in NSCLC cell lines and PIM1 is a marker of poor prognosis in patients with NSCLC. IBL-301 decreased PIM1, c-Myc, pBAD and p4EBP1 (Thr37/46) and peIF4B (S406) protein levels in-vitro and MAP kinase, PI3K-Akt and JAK/STAT pathways in tumor tissue explants. IBL-301 significantly decreased secreted pro-inflammatory cytokine MCP-1. Altered mRNA expression, including activated PIM kinase and c-Myc, was identified in Apitolisib resistant cells (H1975GR) by an IL-6/STAT3 pathway array and validated by Western blot. H1975GR cells were more sensitive to IBL-301 than parent cells. A miRNA array identified a dysregulated miRNA signature of PI3K/mTOR drug resistance consisting of regulators of PIM kinase and c-Myc (miR17-5p, miR19b-3p, miR20a-5p, miR15b-5p, miR203a, miR-206). Our data provides a rationale for co-targeting PIM kinase and PI3K-mTOR to improve therapeutic response in NSCLC.
Collapse
|
49
|
Qiao T, Xiong Y, Feng Y, Guo W, Zhou Y, Zhao J, Jiang T, Shi C, Han Y. Inhibition of LDH-A by Oxamate Enhances the Efficacy of Anti-PD-1 Treatment in an NSCLC Humanized Mouse Model. Front Oncol 2021; 11:632364. [PMID: 33859941 PMCID: PMC8042335 DOI: 10.3389/fonc.2021.632364] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Immunotherapy is a curable treatment for certain cancers, but it is still only effective in a small subset of patients, partly because of the lack of sufficient immune cells in the tumor. It is reported that targeted lactate dehydrogenase (LDH) to reduce lactic acid production can promote the infiltration and activity of immune cells and turn tumors into hot tumors. Therefore, we constructed a humanized mouse model to evaluate the efficacy of using classical LDH inhibitor oxamate and pembrolizumab alone or in combination in non-small cell lung cancer (NSCLC). We found that both oxamate and pembrolizumab monotherapy significantly delayed tumor growth; moreover, combination therapy showed better results. Immunofluorescence analysis showed that oxamate treatment increased the infiltration of activated CD8+ T cells in the tumor, which might have enhanced the therapeutic effects of pembrolizumab. Treatment of the humanized mice with anti-CD8 abrogated the therapeutic effects of oxamate, indicating CD8+ T cells as the main force mediating the effect of oxamate. In conclusion, Our preclinical findings position that oxamate not only inhibits tumor growth at a high safe dose but also enhances the efficacy of pembrolizumab in Hu-PBMC-CDX mice. Our study also provides a preclinical model for exploring the efficacy of other immune-based combination therapies for NSCLC.
Collapse
Affiliation(s)
- Tianyun Qiao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yangbo Feng
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenwen Guo
- School of Basic Medical Sciences, Medical College of Yan'an University, Yanan, China
| | - Yongsheng Zhou
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Changhong Shi
- Laboratory Animal Center, The Fourth Military Medical University, Xi'an, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China.,Department of Thoracic Surgery, Air Force Medical Center, Beijing, China
| |
Collapse
|
50
|
Sun Z, Tan Z, Peng C, Yi W. HK2 is associated with the Warburg effect and proliferation in liver cancer: Targets for effective therapy with glycyrrhizin. Mol Med Rep 2021; 23:343. [PMID: 33760124 PMCID: PMC7974329 DOI: 10.3892/mmr.2021.11982] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/15/2021] [Indexed: 11/06/2022] Open
Abstract
Glycyrrhizin (GA) is the most essential active ingredient in licorice root, and has a wide range of biological and pharmacological activities. The present study aimed to conduct a detailed analysis of the effects of GA on liver cancer (LC) cell proliferation and the Warburg effect. Hexokinase‑2 (HK2) is a glycolytic enzyme that catalyzes the Warburg effect. To this end, the LC HepG2 cell line was transfected with small interfering RNA‑HK2 or pCDNA3.1‑HK2, followed by GA treatment. A Cell Counting Kit‑8 assay and EdU staining were employed to evaluate the proliferation rate of LC cells. The expression levels of HK2 and the phosphorylation level of AKT were measured by reverse transcription‑quantitative PCR and western blotting, respectively. Furthermore, the glucose uptake capacity and lactic acid content were assessed by kits, and the glycolysis level was evaluated by assessing the extracellular acidification rate (ECAR) and the oxygen consumption rate (OCR). A pronounced increase in the OCR, and decreases in the cell proliferation, glucose uptake capacity, lactic acid content, ECAR and HK2 expression were detected in LC cells subjected to GA treatment or HK2‑knockdown. Conversely, overexpression of HK2 reversed these trends, indicating that glycyrrhizin may inhibit LC cell proliferation and the Warburg effect through suppression of HK2. In addition, it was revealed that the PI3K/AKT signaling pathway was associated with LC cell proliferation and the Warburg effect; notably, treatment of LC cells with the AKT agonist SC79 induced elevation of the ECAR, cell proliferation, glucose uptake capacity, lactic acid content, phosphorylated‑AKT and HK2 expression, and suppressed the OCR. In conclusion, GA may inhibit the Warburg effect and cell proliferation in LC by suppressing HK2 through blockade of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Zengpeng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, P.R. China
| | - Zhiguo Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, P.R. China
| | - Chuang Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, P.R. China
| | - Weimin Yi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, P.R. China
| |
Collapse
|