1
|
Liu L, Wang H, Wen W, Wang S, Zuo L, Cheng Y, Rao M, Ma Y, Tang L. Humanin alone and in combination with GnRHa therapy attenuates ovarian dysfunction induced by prepubertal cyclophosphamide chemotherapy in female mice. Reprod Toxicol 2025; 132:108824. [PMID: 39793741 DOI: 10.1016/j.reprotox.2024.108824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/01/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025]
Abstract
Prepubertal chemotherapy induced ovarian damage poses a significant threat to female fertility, particularly following cyclophosphamide (CP) treatment. Humanin (HNG), a small molecule polypeptide encoded by mitochondrial DNA, has a variety of effects, this study aimed to investigate the protective effects of HNG and its combination with conventional Gonadotropin Releasing Hormone Agonist (GnRHa) on ovarian function in a CP-induced damage model. The 21-day-old C57BL/6 J female mice were randomly assigned to six groups: Control, CP model, HNG, HNG+CP, GnRHa+CP, and HNG+GnRHa+CP. Reproductive related parameters were assessed through histopathological examination, follicle counts, serum sex hormone levels, estrous cycle monitoring, and oxidative stress evaluation. Results indicated that CP treatment led to significant reproductive dysfunction especially ovarian dysfunction, evidenced by reduced follicles, hormonal imbalances, prolonged estrous cycles, reduced body weight, and diminished ovarian and uterine weights, alongside pathological alterations. Notably, HNG treatment, both alone and in conjunction with GnRHa, significantly mitigated these adverse effects, however the combination did not provide additional benefits over HNG alone regarding follicles preservation and antioxidant capacity. Transcriptomic analysis revealed significant enrichment in inflammation and immune response pathways following HNG treatment. In conclusion, HNG demonstrates potential as a therapeutic agent to protect against CP-induced ovarian damage, offering insights for future strategies aimed at preserving female fertility during chemotherapy.
Collapse
Affiliation(s)
- Liu Liu
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Huawei Wang
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Wen Wen
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Shunqing Wang
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Liqin Zuo
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Yulin Cheng
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Meng Rao
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Yuru Ma
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Li Tang
- Reproductive Genetics Department, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
2
|
Liang Z, Deng L, Zhou X, Zhang Z, Zhao W. Comprehensive Overview of Ketone Bodies in Cancer Metabolism: Mechanisms and Application. Biomedicines 2025; 13:210. [PMID: 39857793 PMCID: PMC11760447 DOI: 10.3390/biomedicines13010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Reprogramming energy metabolism is pivotal to tumor development. Ketone bodies (KBs), which are generated during lipid metabolism, are fundamental bioactive molecules that can be modulated to satisfy the escalating metabolic needs of cancer cells. At present, a burgeoning body of research is concentrating on the metabolism of KBs within tumors, investigating their roles as signaling mediators, drivers of post-translational modifications, and regulators of inflammation and oxidative stress. The ketogenic diet (KD) may enhance the sensitivity of various cancers to standard therapies, such as chemotherapy and radiotherapy, by exploiting the reprogrammed metabolism of cancer cells and shifting the metabolic state from glucose reliance to KB utilization, rendering it a promising candidate for adjunct cancer therapy. Nonetheless, numerous questions remain regarding the expression of key metabolic genes across different tumors, the regulation of their activities, and the impact of individual KBs on various tumor types. Further investigation is imperative to resolve the conflicting data concerning KB synthesis and functionality within tumors. This review aims to encapsulate the intricate roles of KBs in cancer metabolism, elucidating a comprehensive grasp of their mechanisms and highlighting emerging clinical applications, thereby setting the stage for future investigations into their therapeutic potential.
Collapse
Affiliation(s)
- Ziyuan Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China; (Z.L.); (L.D.); (X.Z.)
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Lixian Deng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China; (Z.L.); (L.D.); (X.Z.)
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Guangxi Medical University, Ministry of Education, Nanning 530021, China; (Z.L.); (L.D.); (X.Z.)
- Life Science Institute, Guangxi Medical University, Nanning 530021, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Weilin Zhao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
3
|
Li W, Zuo K, Zhao Q, Guo C, Liu Z, Liu C, Jing S. An 11-gene glycosyltransferases-related model for the prognosis of patients with bladder urothelial carcinoma: development and validation based on TCGA and GEO datasets. Transl Androl Urol 2024; 13:2771-2786. [PMID: 39816229 PMCID: PMC11732298 DOI: 10.21037/tau-2024-632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 12/21/2024] [Indexed: 01/18/2025] Open
Abstract
Background Bladder urothelial carcinoma (BLCA) is a highly heterogeneous cancer with a wide range of prognoses, ranging from low-grade non-muscle-invasive bladder cancer (NMIBC), which has a good prognosis but a high recurrence rate, to high-grade muscle-invasive bladder cancer (MIBC), which has a poor prognosis. Glycosylation dysregulation plays a significant role in cancer development. Therefore, this study aimed to investigate the role of glycosyltransferases (GT)-related genes in the prognosis of BLCA and to develop a prognostic model based on these genes to predict overall survival (OS) and assess its clinical application. Methods The Cancer Genome Atlas (TCGA)-BLCA dataset, comprising 411 tumor and 19 normal samples. The validation set, GSE13507 from the Gene Expression Omnibus (GEO) database, included 165 primary bladder cancer samples with survival data. Differentially expressed GT-related genes (DEGRGs) in BLCA were identified in the training set. Predictive DEGRGs were used to construct risk score models by univariate Cox regression, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. The predictive value of the models was assessed using Kaplan-Meier survival analysis and receiver operating characteristic (ROC) analysis in the training and validation sets. A nomogram was developed and its performance was evaluated with calibration curves. In addition, the relationship between the risk score and the tumor immune microenvironment was explored, and tumor immune dysfunction score (TIDE) and immune signature scores were used to predict the response to immunotherapy in BLCA patients. Results Thirty-three DEGRGs were identified in the comparison of BLCA patients with control samples. A risk score model was constructed based on 11 of these genes (GYS2, GALNTL6, GLT8D2, PYGB, B3GALNT2, GALNT15, ST6GALNAC3, ST8SIA6, CHPF, ALG9 and B3GALT2). The model performed well in predicting 3-, 5-, and 7-year overall survival (OS), with areas under the curve (AUC) of 0.65, 0.67, and 0.68, respectively. In addition, patients in the high-risk group had significantly lower survival than those in the low-risk group, and there were significant differences in immune status between the two groups. Based on age, tumor stage, T stage, and risk score, a Nomogram was constructed to predict the probability of OS, and the results of the calibration curves showed that the model had high predictive accuracy. Further analysis showed that the rejection score and TIDE were higher in the high-risk group, while the GT-related pathway was significantly upregulated in the high-risk group. Conclusions The 11 GT-related genes identified were associated with OS in BLCA patients, suggesting that the model has potential predictive value. At the same time, further research is needed to explore its role in clinical practice.
Collapse
Affiliation(s)
- Weiping Li
- Department of Urology, the First Hospital of Lanzhou University, Lanzhou, China
| | - Kangwei Zuo
- Department of Urology, the First Hospital of Lanzhou University, Lanzhou, China
| | - Qi Zhao
- Department of Urology, the First Hospital of Lanzhou University, Lanzhou, China
| | - Chenhao Guo
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou, China
| | - Zirong Liu
- William Marsh Rice University, Houston, TX, USA
| | - Cheng Liu
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Suoshi Jing
- Department of Urology, the First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Kim SJ, Jung CW, Anh NH, Yoon YC, Long NP, Hong SS, Cho EJ, Kwon SW. Metabolic phenotyping combined with transcriptomics metadata fortifies the diagnosis of early-stage Hepatocellular carcinoma. J Adv Res 2024:S2090-1232(24)00391-6. [PMID: 39243943 DOI: 10.1016/j.jare.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION The low sensitivity of alpha-fetoprotein (AFP) renders it unsuitable as a stand-alone marker for early hepatocellular carcinoma (eHCC) surveillance. Therefore, additional blood-based biomarkers with enhanced sensitivities are required. OBJECTIVES In light of the metabolic changes that are distinctive to eHCC development, the current study presents a panel of serum metabolites that may serve as noninvasive diagnostic indicators for patients with eHCC. METHODS Serum samples obtained from normal control (NC), cirrhosis, and eHCC patients were analyzed by four different metabolomic platforms. A meta-analysis of very early-stage HCC transcriptomic datasets retrieved from public sources supports the integrated interpretation with metabolic changes. RESULTS A total of 94 metabolites were significantly correlated with a progressive disease status. Integrated analysis of the significant metabolites and differentially expressed genes from meta-analysis emphasized metabolic pathways including bile acid biosynthesis, phenylalanine and tyrosine metabolism, and butanoate metabolism. The 11 metabolites associated with these pathways were compiled into a metabolite panel for use as diagnostic signatures. With an accuracy of 81.8%, compared with 45.4% for a model trained solely on AFP, the model enhanced its ability to differentiate between the three groups by incorporating a metabolite panel and AFP. Upon examining the trained models using receiver operating characteristic curves, the AFP and metabolite panel combined model exhibited greater area under the curve values in comparisons between NC and eHCC (1.000 versus 0.810) and cirrhosis and eHCC (0.926 versus 0.556). The result was consistent in an independent validation cohort. CONCLUSION This study emphasizes the role of circulating metabolite markers in the diagnosis of eHCC.
Collapse
Affiliation(s)
- Sun Jo Kim
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Cheol Woon Jung
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Hoang Anh
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Cheol Yoon
- College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Nguyen Phuoc Long
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Science, College of Medicine, and Program in Biomedical Sciences and Engineering, Inha University, Incheon 22332, Republic of Korea
| | - Eun Ju Cho
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sung Won Kwon
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea; College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
5
|
Wang J, Xu Q, Xuan Z, Mao Y, Tang X, Yang K, Song F, Zhu X. Metabolomics reveals the implication of acetoacetate and ketogenic diet therapy in radioiodine-refractory differentiated thyroid carcinoma. Oncologist 2024; 29:e1120-e1131. [PMID: 38760956 PMCID: PMC11379656 DOI: 10.1093/oncolo/oyae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 05/20/2024] Open
Abstract
OBJECTIVE Patients with radioiodine-refractory (RAIR) differentiated thyroid carcinoma (DTC; RAIR-DTC) have a poor prognosis. The aim of this study was to provide new insights and possibilities for the diagnosis and treatment of RAIR-DTC. METHODS The metabolomics of 24 RAIR-DTC and 18 non-radioiodine-refractory (NonRAIR) DTC patients samples were analyzed by liquid chromatograph-mass spectrometry. Cellular radioiodine uptake was detected with γ counter. Sodium iodide symporter (NIS) expression and thyroid stimulating hormone receptor (TSHR) were measured by Western blot analysis. CCK8 and colony formation assays were used to measure cellular proliferation. Scratch and transwell assays were performed to assess cell migration and invasion. Annexin V/PI staining was used to detect cell apoptosis. Cell growth in vivo was evaluated by a tumor xenograft model. The acetoacetate (AcAc) level was measured by ELISA. Pathological changes, Ki67, NIS, and TSHR expression were investigated by immunohistochemistry. RESULTS The metabolite profiles of RAIR could be distinguished from those of NonRAIR, with AcAc significantly lower in RAIR. The significantly different metabolic pathway was ketone body metabolism. AcAc increased NIS and TSHR expression and improved radioiodine uptake. AcAc inhibited cell proliferation, migration, and invasion, and as well promoted cell apoptosis. Ketogenic diet (KD) elevated AcAc levels and significantly suppressed tumor growth, as well as improved NIS and TSHR expression. CONCLUSION Significant metabolic differences were observed between RAIR and NonRAIR, and ketone body metabolism might play an important role in RAIR-DTC. AcAc improved cellular iodine uptake and had antitumor effects for thyroid carcinoma. KD might be a new therapeutic strategy for RAIR-DTC.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Laboratory of Head and Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, People's Republic of China
| | - Qianqian Xu
- Key Laboratory of Head and Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, People's Republic of China
| | - Ziyang Xuan
- Key Laboratory of Head and Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, People's Republic of China
| | - Yuting Mao
- Key Laboratory of Head and Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, People's Republic of China
| | - Xi Tang
- Key Laboratory of Head and Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Ke Yang
- Key Laboratory of Head and Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Fahuan Song
- Cancer Center, Department of Nuclear Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Xin Zhu
- Key Laboratory of Head and Neck Cancer Translation Research of Zhejiang Province, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Agirre-Lizaso A, Huici-Izagirre M, Urretabizkaia-Garmendia J, Rodrigues PM, Banales JM, Perugorria MJ. Targeting the Heterogeneous Tumour-Associated Macrophages in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4977. [PMID: 37894344 PMCID: PMC10605535 DOI: 10.3390/cancers15204977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer that comprises a complex tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are one of the most abundant immune cells present in the TME, and play a key role both in the development and in the progression of HCC. Thus, TAM-based immunotherapy has been presented as a promising strategy to complement the currently available therapies for HCC treatment. Among the novel approaches focusing on TAMs, reprogramming their functional state has emerged as a promising option for targeting TAMs as an immunotherapy in combination with the currently available treatment options. Nevertheless, a further understanding of the immunobiology of TAMs is still required. This review synthesizes current insights into the heterogeneous nature of TAMs in HCC and describes the mechanisms behind their pro-tumoural polarization focusing the attention on their interaction with HCC cells. Furthermore, this review underscores the potential involvement of TAMs' reprogramming in HCC therapy and highlights the urgency of advancing our understanding of these cells within the dynamic landscape of HCC.
Collapse
Affiliation(s)
- Aloña Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
| | - Maider Huici-Izagirre
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
| | - Josu Urretabizkaia-Garmendia
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 20014 Donostia-San Sebastian, Spain
| |
Collapse
|
7
|
Liao Y, Wu C, Li Y, Wen J, Zhao D. MIF is a critical regulator of mononuclear phagocytic infiltration in hepatocellular carcinoma. iScience 2023; 26:107273. [PMID: 37520719 PMCID: PMC10371853 DOI: 10.1016/j.isci.2023.107273] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/03/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Immunotherapy targeting tumor-associated macrophages (TAMs) is a promising approach to treating cancer. However, the limited drug targets and ambiguous mechanisms impede the development of clinical immunotherapy strategies. To elucidate the underlying processes involved in mononuclear phagocyte (MNP) infiltration and phenotypic changes in hepatocellular carcinoma (HCC), we integrated single-cell RNA-sequencing data from 100,030 cells derived from patients with HCC and healthy individuals and compared the phenotypes and origins of the MNPs in the tumor core, tumor periphery, adjacent normal tissue, and healthy liver samples. Using machine learning and multi-omics analyses, we identified 445 infiltration-associated genes and potential drug targets affecting this process. Through in vitro experiments, we found that the expression of macrophage migration inhibitory factor (MIF) is the upstream regulator of secreted phosphoprotein 1 (SPP1) and promote migration in TAMs. Our findings also indicate that MIF promotes tumor metastasis and invasion and is a promising potential target for treating HCC.
Collapse
Affiliation(s)
- Yunxi Liao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Chenyang Wu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Yang Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Jinhua Wen
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Zheng X, Chen X, Wu W. The Regulatory Axis of PD-L1 Isoform 2/TNF/T Cell Proliferation Is Required for the Canonical Immune-Suppressive Effects of PD-L1 Isoform 1 in Liver Cancer. Int J Mol Sci 2023; 24:ijms24076314. [PMID: 37047287 PMCID: PMC10094247 DOI: 10.3390/ijms24076314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/26/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the well-studied effects of the full-length membrane-locating isoform Iso1 of Programmed Cell Death Protein-Ligand 1 (PD-L1) on immunosuppression, little is known about another membrane-locating isoform, Iso2. While expressional and survival analysis of liver cancer patients indicated that Iso2 plays a tumor-suppressive role, our results also indicated that the tumor-promoting and immune-suppressive effects of Iso1 depended on the positive expression of Iso2. Through mediation analysis, we discovered several downstream genes or pathways of Iso2 and investigated their effects on the Iso1-regulating survival. Among all potential downstream immune factors, Iso2 was inclined to activate the proliferation of T cells by regulating chemokine activity and increasing CD3 levels by promoting TNF expression. Similar results were confirmed in the Mongolian liver cancer cohort, and the Iso2/TNF/T-cell axis was verified in several other cancers in the TCGA cohort. Finally, we demonstrated the promoting effects of Iso2 in terms of producing TNF and increasing T cells both in vitro and in vivo. Our findings illustrate that PD-L1 Iso2 can increase the number of T cells in the tumor microenvironment by elevating TNF levels, which is a necessary part of the tumor-suppressive effects of Iso1 in liver cancer.
Collapse
Affiliation(s)
- Xixi Zheng
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- Taizhou Institute of Health Sciences, Fudan University, Taizhou 225316, China
- Correspondence: (X.C.); (W.W.)
| | - Weicheng Wu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
- Rugao Joint Research Institute of Longevity and Aging, Fudan University, Rugao 226599, China
- Correspondence: (X.C.); (W.W.)
| |
Collapse
|
9
|
Quereda C, Pastor À, Martín-Nieto J. Involvement of abnormal dystroglycan expression and matriglycan levels in cancer pathogenesis. Cancer Cell Int 2022; 22:395. [PMID: 36494657 PMCID: PMC9733019 DOI: 10.1186/s12935-022-02812-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan (DG) is a glycoprotein composed of two subunits that remain non-covalently bound at the plasma membrane: α-DG, which is extracellular and heavily O-mannosyl glycosylated, and β-DG, an integral transmembrane polypeptide. α-DG is involved in the maintenance of tissue integrity and function in the adult, providing an O-glycosylation-dependent link for cells to their extracellular matrix. β-DG in turn contacts the cytoskeleton via dystrophin and participates in a variety of pathways transmitting extracellular signals to the nucleus. Increasing evidence exists of a pivotal role of DG in the modulation of normal cellular proliferation. In this context, deficiencies in DG glycosylation levels, in particular those affecting the so-called matriglycan structure, have been found in an ample variety of human tumors and cancer-derived cell lines. This occurs together with an underexpression of the DAG1 mRNA and/or its α-DG (core) polypeptide product or, more frequently, with a downregulation of β-DG protein levels. These changes are in general accompanied in tumor cells by a low expression of genes involved in the last steps of the α-DG O-mannosyl glycosylation pathway, namely POMT1/2, POMGNT2, CRPPA, B4GAT1 and LARGE1/2. On the other hand, a series of other genes acting earlier in this pathway are overexpressed in tumor cells, namely DOLK, DPM1/2/3, POMGNT1, B3GALNT2, POMK and FKTN, hence exerting instead a pro-oncogenic role. Finally, downregulation of β-DG, altered β-DG processing and/or impaired β-DG nuclear levels are increasingly found in human tumors and cell lines. It follows that DG itself, particular genes/proteins involved in its glycosylation and/or their interactors in the cell could be useful as biomarkers of certain types of human cancer, and/or as molecular targets of new therapies addressing these neoplasms.
Collapse
Affiliation(s)
- Cristina Quereda
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - Àngels Pastor
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain
| | - José Martín-Nieto
- grid.5268.90000 0001 2168 1800Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Campus Universitario San Vicente, P.O. Box 99, 03080 Alicante, Spain ,grid.5268.90000 0001 2168 1800Instituto Multidisciplinar para el Estudio del Medio ‘Ramón Margalef’, Universidad de Alicante, 03080 Alicante, Spain
| |
Collapse
|
10
|
Zhang Z, Zhou X, Guo J, Zhang F, Qian Y, Wang G, Duan M, Wang Y, Zhao H, Yang Z, Liu Z, Jiang X. TA-MSCs, TA-MSCs-EVs, MIF: their crosstalk in immunosuppressive tumor microenvironment. J Transl Med 2022; 20:320. [PMID: 35842634 PMCID: PMC9287873 DOI: 10.1186/s12967-022-03528-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.
Collapse
Affiliation(s)
- Zhenghou Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiangyu Zhou
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jinshuai Guo
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fusheng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yiping Qian
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guang Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Meiqi Duan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutian Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Haiying Zhao
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhi Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zunpeng Liu
- Department of Orthopedics, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| | - Xiaofeng Jiang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
11
|
Gibriel AA, Ismail MF, Sleem H, Zayed N, Yosry A, El-Nahaas SM, Shehata NI. Diagnosis and staging of HCV associated fibrosis, cirrhosis and hepatocellular carcinoma with target identification for miR-650, 552-3p, 676-3p, 512-5p and 147b. Cancer Biomark 2022; 34:413-430. [DOI: 10.3233/cbm-210456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND: Chronic HCV infection progresses to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). The latter represents the third most common cause for cancer mortality. Currently, there is no reliable non-invasive biomarker for diagnosis of HCV mediated disorders. OBJECTIVE: Profiling expression signature for circulatory miRNAs in the plasma of 167 Egyptian patients (40 healthy, 48 HCV fibrotic, 39 HCV cirrhotic and 40 HCV-HCC cases). METHODS: QRTPCR was used to quantify expression signature for circulatory miRNAs. RESULTS: MiR-676 and miR-650 were powerful in discriminating cirrhotic and late fibrosis from HCC. MiR-650 could distinguish mild (f0-f1) and advanced (f2-f3) fibrosis from HCC cases. MiR-650 and miR-147b could distinguish early fibrosis from healthy controls meanwhile miR-676 and miR-147b could effectively distinguish between mild chronic and (f1-f3) cases from healthy individuals. All studied miRNAs, except miR-512, can differentiate between (f0-f3) cases and healthy controls. Multivariate logistic regression revealed three potential miRNA panels for effective differentiation of HCC, cirrhotic and chronic liver cases. MiR-676-3p and miR-512-5p were significantly correlated in (f1-f3) fibrosis meanwhile miR-676 and miR-512 could differentiate between cirrhosis and (f0-f3) cases. Both miR-650 and miR-512-5p were positively correlated in the cirrhotic group and in (f0-f4) group. Putative targets for investigated miRNAs were also determined. CONCLUSIONS: Investigated miRNAs could assist in staging and diagnosis of HCV associated disorders.
Collapse
Affiliation(s)
- Abdullah Ahmed Gibriel
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Manal Fouad Ismail
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hameis Sleem
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| | - Naglaa Zayed
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Yosry
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Saeed M. El-Nahaas
- Endemic Medicine Department and Hepatology Unit, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | |
Collapse
|
12
|
Zheng L, Feng Z, Tao S, Gao J, Lin Y, Wei X, Zheng B, Huang B, Zheng Z, Zhang X, Liu J, Shan Z, Chen Y, Chen J, Zhao F. Destabilization of macrophage migration inhibitory factor by 4-IPP reduces NF-κB/P-TEFb complex-mediated c-Myb transcription to suppress osteosarcoma tumourigenesis. Clin Transl Med 2022; 12:e652. [PMID: 35060345 PMCID: PMC8777168 DOI: 10.1002/ctm2.652] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND As an inflammatory factor and oncogenic driver protein, the pleiotropic cytokine macrophage migration inhibitory factor (MIF) plays a crucial role in the osteosarcoma microenvironment. Although 4-iodo-6-phenylpyrimidine (4-IPP) can inactivate MIF biological functions, its anti-osteosarcoma effect and molecular mechanisms have not been investigated. In this study, we identified the MIF inhibitor 4-IPP as a specific double-effector drug for osteosarcoma with both anti-tumour and anti-osteoclastogenic functions. METHODS The anti-cancer effects of 4-IPP were evaluated by wound healing assay, cell cycle analysis, colony formation assay, CCK-8 assay, apoptosis analysis, and Transwell migration/invasion assays. Through the application of a luciferase reporter, chromatin immunoprecipitation assays, and immunofluorescence and coimmunoprecipitation analyses, the transcriptional regulation of the NF-κB/P-TEFb complex on c-Myb- and STUB1-mediated proteasome-dependent MIF protein degradation was confirmed. The effect of 4-IPP on tumour growth and metastasis was assessed using an HOS-derived tail vein metastasis model and subcutaneous and orthotopic xenograft tumour models. RESULTS In vitro, 4-IPP significantly reduced the proliferation and metastasis of osteosarcoma cells by suppressing the NF-κB pathway. 4-IPP hindered the binding between MIF and CD74 as well as p65. Moreover, 4-IPP inhibited MIF to interrupt the formation of downstream NF-κB/P-TEFb complexes, leading to the down-regulation of c-Myb transcription. Interestingly, the implementation of 4-IPP can mediate small molecule-induced MIF protein proteasomal degradation via the STUB1 E3 ligand. However, 4-IPP still interrupted MIF-mediated communication between osteosarcoma cells and osteoclasts, thus promoting osteoclastogenesis. Remarkably, 4-IPP strongly reduced HOS-derived xenograft osteosarcoma tumourigenesis and metastasis in an in vivo mouse model. CONCLUSIONS Our findings demonstrate that the small molecule 4-IPP targeting the MIF protein exerts an anti-osteosarcoma effect by simultaneously inactivating the biological functions of MIF and promoting its proteasomal degradation. Direct destabilization of the MIF protein with 4-IPP may be a promising therapeutic strategy for treating osteosarcoma.
Collapse
Affiliation(s)
- Lin Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zhenhua Feng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Siyue Tao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Jiawei Gao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Ye Lin
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Xiaoan Wei
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Bingjie Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Bao Huang
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zeyu Zheng
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Xuyang Zhang
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Junhui Liu
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Zhi Shan
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Yilei Chen
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Jian Chen
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| | - Fengdong Zhao
- Department of Orthopaedic SurgerySir Run Run Shaw Hospital, Medical College of Zhejiang University & Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province3 East Qingchun RoadHangzhouZhejiang Province310016China
| |
Collapse
|
13
|
Zhao J, Li H, Zhao S, Wang E, Zhu J, Feng D, Zhu Y, Dou W, Fan Q, Hu J, Jia L, Liu L. Epigenetic silencing of miR-144/451a cluster contributes to HCC progression via paracrine HGF/MIF-mediated TAM remodeling. Mol Cancer 2021; 20:46. [PMID: 33658044 PMCID: PMC7927270 DOI: 10.1186/s12943-021-01343-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is among the malignancies with the highest mortality. The key regulators and their interactive network in HCC pathogenesis remain unclear. Along with genetic mutations, aberrant epigenetic paradigms, including deregulated microRNAs (miRNAs), exert profound impacts on hepatocyte transformation and tumor microenvironment remodeling; however, the underlying mechanisms are largely uncharacterized. METHODS We performed RNA sequencing on HCC specimens and bioinformatic analyses to identify tumor-associated miRNAs. The miRNA functional targets and their effects on tumor-infiltrating immune cells were investigated. The upstream events, particularly the epigenetic mechanisms responsible for miRNA deregulation in HCC, were explored. RESULTS The miR-144/miR-451a cluster was downregulated in HCC and predicted a better HCC patient prognosis. These miRNAs promoted macrophage M1 polarization and antitumor activity by targeting hepatocyte growth factor (HGF) and macrophage migration inhibitory factor (MIF). The miR-144/miR-451a cluster and EZH2, the catalytic subunit of polycomb repressive complex (PRC2), formed a feedback circuit in which miR-144 targeted EZH2 and PRC2 epigenetically repressed the miRNA genes via histone H3K27 methylation of the promoter. The miRNA cluster was coordinately silenced by distal enhancer hypermethylation, disrupting chromatin loop formation and enhancer-promoter interactions. Clinical examinations indicated that methylation of this chromatin region is a potential HCC biomarker. CONCLUSIONS Our study revealed novel mechanisms underlying miR-144/miR-451a cluster deregulation and the crosstalk between malignant cells and tumor-associated macrophages (TAMs) in HCC, providing new insights into HCC pathogenesis and diagnostic strategies.
Collapse
Affiliation(s)
- Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Development Biology, Fourth Military Medical University, Xi'an, 710032, China
| | - Huichen Li
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University, No.169 Changlexi Road, Xi'an, 710032, China
| | - Shoujie Zhao
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Enxin Wang
- Department of Gastroenterology, Tangdu Hospital of the Fourth Military Medical University, No.569 Xinsi Road, Xi'an, 710038, China
| | - Jun Zhu
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University, No.169 Changlexi Road, Xi'an, 710032, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Yejing Zhu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China
| | - Weijia Dou
- Department of Gastroenterology, Tangdu Hospital of the Fourth Military Medical University, No.569 Xinsi Road, Xi'an, 710038, China
| | - Qingling Fan
- Department of Gastroenterology, Tangdu Hospital of the Fourth Military Medical University, No.569 Xinsi Road, Xi'an, 710038, China
| | - Jie Hu
- Department of Gastroenterology, Tangdu Hospital of the Fourth Military Medical University, No.569 Xinsi Road, Xi'an, 710038, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, School of Basic Medicine, Fourth Military Medical University, No.169 Changlexi Road, Xi'an, 710032, China.
| | - Lei Liu
- Department of Gastroenterology, Tangdu Hospital of the Fourth Military Medical University, No.569 Xinsi Road, Xi'an, 710038, China.
- Department of Cell Biology, Fourth Military Medical University, No.169 Changlexi Road, Xi'an, 710032, China.
| |
Collapse
|
14
|
Peng P, Jia D, Cao L, Lu W, Liu X, Liang C, Pan Z, Fang Z. Akebia saponin E, as a novel PIKfyve inhibitor, induces lysosome-associated cytoplasmic vacuolation to inhibit proliferation of hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113446. [PMID: 33031902 DOI: 10.1016/j.jep.2020.113446] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatocellular carcinoma (HCC) is an aggressive malignancy with increasing mortality in China. Screening and identifying effective anticancer compounds from active traditional Chinese herbs for HCC are in demand. Akebia trifoliata (Thunb) Koidz, with pharmacological anti-HCC activities in clinical, has been shown in previous research. In the present research, we elucidated a potential anticancer effect of Akebia saponin E (ASE), which is isolated from the immature seeds of Akebia trifoliata (Thunb.) Koidz, and revealed that ASE could induce severe expanded vacuoles in HCC cells. But the potential mechanism of vacuole-formation and the anti-HCC effects by ASE remain uncover. AIM OF THIS STUDY To elucidate the potential mechanism of vacuole-formation and the proliferation inhibition effects by ASE in HCC cell lines. MATERIALS AND METHODS MTT assay, colony formation assay and flow cytometry were performed to detect cell viability. Immunofluorescence analysis was used to examine the biomarkers of endomembrane. Cells were infected with tandem mRFP-GFP-LC3 lentivirus to assess autophagy flux. RNA-seq was conducted to analyze the genome-wide transcriptional between treatment cell groups. In vitro PIKfyve kinase assay is detected by the ADP-GloTM Kinase Assay Kit. RESULTS ASE could inhibit the proliferation of HCC with severe expanded vacuoles in vitro, and could significantly reduce the size and weight of xenograft tumor in vivo. Further, the vacuoles induced by ASE were aberrant enlarged lysosomes instead of autophagosome or autolysosomes. With cytoplasmic vacuolation, ASE induced a mTOR-independent TFEB activation for lysosomal biogenesis and a decrement of cholesterol levels in HCC cells. Furthermore, ASE could reduce the activity of PIKfyve (phosphoinositide kinase containing a FYVE-type finger), causing aberrant lysosomal biogenesis and cholesterol dyshomeostasis which triggered the expanded vacuole formation. CONCLUSION ASE can prospectively inhibit the kinase activity of PIKfyve to induce lysosome-associated cytoplasmic vacuolation, and may be utilized as an alternative candidate to treat human HCC.
Collapse
Affiliation(s)
- Peike Peng
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Dongwei Jia
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linna Cao
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenli Lu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaomei Liu
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Liang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhiqiang Pan
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhaoqin Fang
- School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
15
|
Chen Y, Jin H, Song Y, Huang T, Cao J, Tang Q, Zou Z. Targeting tumor-associated macrophages: A potential treatment for solid tumors. J Cell Physiol 2020; 236:3445-3465. [PMID: 33200401 DOI: 10.1002/jcp.30139] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) in solid tumors exert protumor activities by releasing cytokines or growth factors into the tumor microenvironment. Increasing studies have also shown that TAMs play a key role in tumor progression, such as tumor angiogenesis, immunosuppression, cell proliferation, migration, invasion, and metastasis. A large body of evidence shows that the abundance of TAMs in solid tumors is correlated with poor disease prognosis and resistance to therapies. Therefore, targeting TAMs in solid tumors is considered to be a promising immunotherapeutic strategy. At present, the therapeutic strategies of targeting macrophages mainly include limiting monocyte recruitment, depletion strategies, promoting macrophage phagocytic activity, and induction of macrophage reprogramming. Additionally, targeting TAMs in combination with conventional therapies has been demonstrated to be a promising therapeutic strategy in solid tumors. In the present review, we summarized various TAMs-targeting therapeutic strategies for treating solid tumors. This review also discusses the challenges for targeting TAMs as tumor treatments, the obstacles in clinical trials, and the perspective for the future development of TAMs-targeting therapies for various cancers.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Ting Huang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Cao
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Qing Tang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Cui W, Luo W, Zhou X, Lu Y, Xu W, Zhong S, Feng G, Liang Y, Liang L, Mo Y, Xiao X, Huang G, Matskova L, Zhang Z, Li P, Zhou X. Dysregulation of Ketone Body Metabolism Is Associated With Poor Prognosis for Clear Cell Renal Cell Carcinoma Patients. Front Oncol 2019; 9:1422. [PMID: 31921677 PMCID: PMC6928137 DOI: 10.3389/fonc.2019.01422] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/29/2019] [Indexed: 12/15/2022] Open
Abstract
Kidney is an important organ for ketone body metabolism. However, the role of abnormal ketone metabolism and its possible function in tumorigenesis of clear cell renal cell carcinoma (ccRCC) have not yet been elucidated. Three differentially expressed key enzymes involved in ketone body metabolism, ACAT1, BDH2, and HMGCL, were screened out between ccRCC and normal kidney tissues using the GEO and TCGA databases.We confirmed that the transcription and protein expression of ACAT1, BDH2, and HMGCL were significantly lower in ccRCC by real-time RT-PCR and IHC assays. Those patients with lower expression of these three genes have a worse outcome. In addition, we demonstrated that ectopic expression of each of these genes inhibited the proliferation of ccRCC cells. The overexpressed ACAT1 and BDH2 genes remarkably impeded the migratory and invasive capacity of ccRCC cells. Furthermore, exogenous β-hydroxybutyrate suppressed the growth of ccRCC cells in vitro in a dose-dependent manner. Our findings suggest that ACAT1, BDH2, and HMGCL are potential tumor suppressor genes, and constitute effective prognostic biomarkers for ccRCC. Ketone body metabolism might thus be a promising target in a process for developing novel therapeutic approaches to treat ccRCC.
Collapse
Affiliation(s)
- Wanmeng Cui
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Wenqi Luo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Department of Pathology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, Nanning, China
| | - Yunliang Lu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Wenqing Xu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Suhua Zhong
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Guofei Feng
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yushan Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Libin Liang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Yingxi Mo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Liudmila Matskova
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Zhe Zhang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China
| | - Ping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Department of Pathology, College & Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment, Ministry of Education, Guangxi Medical University, Nanning, China.,Life Science Institute, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Inactivation of 3-hydroxybutyrate dehydrogenase type 2 promotes proliferation and metastasis of nasopharyngeal carcinoma by iron retention. Br J Cancer 2019; 122:102-110. [PMID: 31819181 PMCID: PMC6964698 DOI: 10.1038/s41416-019-0638-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/05/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background 3-Hydroxybutyrate dehydrogenase type 2 (BDH2) is known to catalyse a rate-limiting step in the biogenesis of the mammalian siderophore and regulate intracellular iron metabolism. Here we aim to explore the expression and possible function of BDH2 in nasopharyngeal carcinoma (NPC). Methods The transcription and protein expression of BDH2 in NPC were determined by both real-time RT-PCR and immunohistochemistry staining assays. Cell proliferation, migration and invasion were evaluated by MTT assay, wound-healing assay and Transwell assay, respectively. The profile of genes regulated by restoring BDH2 expression in NPC cells was analysed by cDNA microarray. The level of iron in NPC cells was detected by iron colorimetric assay. Results The expression of BDH2 was significantly downregulated in NPC. Ectopic expression of BDH2 inhibited NPC cell proliferation and colony formation. Meanwhile, BDH2 suppressed the migration and invasion of NPC cells by reversing the epithelial–mesenchymal transition (EMT). In addition, a higher level of BDH2 decreased the growth and metastasis of NPC cells via reducing intracellular iron level. Conclusions Our findings suggest that BDH2 may be a candidate tumour-suppressor gene in NPC. Decreasing intracellular iron could be an effective therapeutic approach for NPC.
Collapse
|
18
|
Dai W, Wang Y, Yang T, Wang J, Wu W, Gu J. Downregulation of exosomal CLEC3B in hepatocellular carcinoma promotes metastasis and angiogenesis via AMPK and VEGF signals. Cell Commun Signal 2019; 17:113. [PMID: 31477130 PMCID: PMC6721425 DOI: 10.1186/s12964-019-0423-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Background C-Type Lectin Domain Family 3 Member B (CLEC3B), is down-regulated in serum and tumor tissues in different cancers including hepatocellular carcinoma (HCC). However, the functions of CLEC3B in HCC remains elucidated. The aim of this study is to analyze the roles of CLEC3B in HCC. Methods The expression of genes was evaluated by immunohistochemistry, western blot, real-time PCR, enzyme-linked immunosorbent assays, and analysis on TCGA-LIHC database and gene expression omnibus. Transmission electron microscopy and immunofluorescence were applied to detect CLEC3B in exosomes. The function of exosomal CLEC3B in tumor progression were performed in vivo and in vitro. Results We determined that down-regulated CLEC3B in HCC indicated a poor prognosis. Exosomes derived from HCC with down-regulated CLEC3B promoted migration, invasion, epithelial–mesenchymal transition of both tumor cells and endothelial cells (ECs). Moreover, the downregulation CLEC3B in exosomes suppressed VEGF secretion in both HCC cells and ECs, and eventually inhibited angiogenesis. Mechanistically, CLEC3B-mediated VEGF expression in tumor cells and ECs depends on the activation of AMPK signal pathway. Conclusion This study demonstrates that CLEC3B acts as a novel independent prognostic factor, and CLEC3B in exosomes might be a potential therapeutic target for hepatocellular carcinoma. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0423-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenjuan Dai
- Key Laboratory of Glycoconjugate Research Ministry of Health; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yilin Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tianxiao Yang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Key Laboratory for Endocrine Tumors, Rui-Jin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Key Laboratory of Glycoconjugate Research Ministry of Health; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weicheng Wu
- Key Laboratory of Glycoconjugate Research Ministry of Health; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China. .,The Key Laboratory of Public Health and Safety of Education Ministry, School of Public Health; School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.
| | - Jianxin Gu
- Key Laboratory of Glycoconjugate Research Ministry of Health; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|