1
|
Afonso AL, Cavaleiro CT, Castanho MARB, Neves V, Cavaco M. The Potential of Peptide-Based Inhibitors in Disrupting Protein-Protein Interactions for Targeted Cancer Therapy. Int J Mol Sci 2025; 26:3117. [PMID: 40243822 PMCID: PMC11988805 DOI: 10.3390/ijms26073117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Protein-protein interactions (PPIs) form an intricate cellular network known as the interactome, which is essential for various cellular processes, such as gene regulation, signal transduction, and metabolic pathways. The dysregulation of this network has been closely linked to various disease states. In cancer, these aberrant PPIs, termed oncogenic PPIs (OncoPPIs), are involved in tumour formation and proliferation. Therefore, the inhibition of OncoPPIs becomes a strategy for targeted cancer therapy. Small molecule inhibitors have been the dominant strategy for PPI inhibition owing to their small size and ability to cross cell membranes. However, peptide-based inhibitors have emerged as compelling alternatives, offering distinct advantages over small molecule inhibitors. Peptides, with their larger size and flexible backbones, can effectively engage with the broad interfaces of PPIs. Their high specificity, lower toxicity, and ease of modification make them promising candidates for targeted cancer therapy. Over the past decade, significant advancements have been made in developing peptide-based inhibitors. This review discusses the critical aspects of targeting PPIs, emphasizes the significance of OncoPPIs in cancer therapy, and explores the advantages of using peptide-based inhibitors as therapeutic agents. It also highlights recent progress in peptide design aimed at overcoming the limitations of peptide therapeutics, offering a comprehensive overview of the current landscape and potential of peptide-based inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Alexandra L. Afonso
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
| | - Catarina T. Cavaleiro
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
| | - Miguel A. R. B. Castanho
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Vera Neves
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Marco Cavaco
- Gulbenkian Institute for Molecular Medicine, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (A.L.A.); (C.T.C.); or (M.A.R.B.C.)
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| |
Collapse
|
2
|
Bedewy WA, Mulawka JW, Adler MJ. Classifying covalent protein binders by their targeted binding site. Bioorg Med Chem Lett 2025; 117:130067. [PMID: 39667507 DOI: 10.1016/j.bmcl.2024.130067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Covalent protein targeting represents a powerful tool for protein characterization, identification, and activity modulation. The safety of covalent therapeutics was questioned for many years due to the possibility of off-target binding and subsequent potential toxicity. Researchers have recently, however, demonstrated many covalent binders as safe, potent, and long-acting therapeutics. Moreover, they have achieved selective targeting among proteins with high structural similarities, overcome mutation-induced resistance, and obtained higher potency compared to non-covalent binders. In this review, we highlight the different classes of binding sites on a target protein that could be addressed by a covalent binder. Upon folding, proteins generate various concavities available for covalent modifications. Selective targeting to a specific site is driven by differences in the geometry and physicochemical properties of the binding pocket residues as well as the geometry and reactivity of the covalent modifier "warhead". According to the warhead reactivity and the nature of the binding region, covalent binders can alter or lock a targeted protein conformation and inhibit or enhance its activity. We survey these various modification sites using case studies of recently discovered covalent binders, bringing to the fore the versatile application of covalent protein binders with respect to drug discovery approaches.
Collapse
Affiliation(s)
- Walaa A Bedewy
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Egypt.
| | - John W Mulawka
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Marc J Adler
- Department of Chemistry & Biology, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.
| |
Collapse
|
3
|
Shen H, Ding J, Ji J, Hu L, Min W, Hou Y, Wang D, Chen Y, Wang L, Zhu Y, Wang X, Yang P. Discovery of Novel Small-Molecule Inhibitors Disrupting the MTDH-SND1 Protein-Protein Interaction. J Med Chem 2025; 68:1844-1862. [PMID: 39792778 DOI: 10.1021/acs.jmedchem.4c02574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
MTDH-SND1 protein-protein interaction (PPI) plays an important role in the initiation and development of tumors, and it is a target for the treatment of breast cancer. In this study, we identified and synthesized a series of novel small-molecule inhibitors of MTDH-SND1 PPI. The representative compound C19 showed potent activity against MTDH-SND1 PPI with an IC50 of 487 ± 99 nM and tight binding to the SND1-purified protein with a Kd value of 279 ± 17 nM. Compound C19 significantly degraded SND1 and downregulated downstream at the protein level. Further biological evaluations suggested that compound C19 exhibited potent activity against the proliferation of breast cancer MCF-7 cells with an IC50 value of 626 ± 27 nM, significantly inhibited invasion and migration, and induced cell apoptosis. In addition, compound C19 exhibited promising tumor growth inhibition in the xenograft model. Our study provides a potential candidate targeting MTDH-SND1 PPI for the treatment of breast cancer.
Collapse
Affiliation(s)
- Hao Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Jiayu Ding
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaying Ji
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Hou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanyuan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yasheng Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiao Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
4
|
Schwalen F, Ghadi C, Ibazizene L, Khan SU, Sopkova-de Oliveira Santos J, Weiswald LB, Voisin-Chiret AS, Meryet-Figuiere M, Kieffer C. UBE2N: Hope on the Cancer Front, How to Inhibit This Promising Target Prospect? J Med Chem 2025; 68:915-928. [PMID: 39806871 DOI: 10.1021/acs.jmedchem.4c01517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
UBE2N protein belongs to the UE2s family and plays a crucial role in DNA repair, making it an exciting target for the development of innovative anticancer therapies. With the aim of discovering UBE2N inhibitors (UBE2Ni), this perspective seeks to review and provide elements to guide the design of new compounds. We propose a chemoinformatic structural analysis of the protein and its areas of interaction with its different partners. While covalent UBE2Ni are the most advanced molecules in their development, noncovalent inhibitors offer significant advantages that could overcome the limitations of covalent ones, particularly in terms of selectivity. Lastly, to obtain a drug candidate, early assessment of the druggability of compounds is essential in a hit to lead process. For existing UBE2Ni, a critical challenge lies in their pharmacokinetic properties and will obviously have to be considered as early as possible to hope for an application in human therapy.
Collapse
Affiliation(s)
- Florian Schwalen
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France
- Pharmacie, CHU Caen Normandie, 14033 Caen, France
| | - Côme Ghadi
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France
| | - Léonie Ibazizene
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France
| | - Shafi Ullah Khan
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France
| | | | - Louis-Bastien Weiswald
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France
| | | | - Matthieu Meryet-Figuiere
- Inserm U1086 ANTICIPE (Interdisciplinary Research Unit for Cancer Prevention and Treatment), Normandie Univ, Université de Caen Normandie, 14076 Caen, France
- Comprehensive Cancer Center François Baclesse, UNICANCER, 14076 Caen, France
| | - Charline Kieffer
- Université de Caen Normandie, CERMN UR4258, Normandie Univ, F-14000 Caen, France
| |
Collapse
|
5
|
Tamura T, Kawano M, Hamachi I. Targeted Covalent Modification Strategies for Drugging the Undruggable Targets. Chem Rev 2025; 125:1191-1253. [PMID: 39772527 DOI: 10.1021/acs.chemrev.4c00745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The term "undruggable" refers to proteins or other biological targets that have been historically challenging to target with conventional drugs or therapeutic strategies because of their structural, functional, or dynamic properties. Drugging such undruggable targets is essential to develop new therapies for diseases where current treatment options are limited or nonexistent. Thus, investigating methods to achieve such drugging is an important challenge in medicinal chemistry. Among the numerous methodologies for drug discovery, covalent modification of therapeutic targets has emerged as a transformative strategy. The covalent attachment of diverse functional molecules to targets provides a powerful platform for creating highly potent drugs and chemical tools as well the ability to provide valuable information on the structures and dynamics of undruggable targets. In this review, we summarize recent examples of chemical methods for the covalent modification of proteins and other biomolecules for the development of new therapeutics and to overcome drug discovery challenges and highlight how such methods contribute toward the drugging of undruggable targets. In particular, we focus on the use of covalent chemistry methods for the development of covalent drugs, target identification, drug screening, artificial modulation of post-translational modifications, cancer specific chemotherapies, and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Tomonori Tamura
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Masaharu Kawano
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Itaru Hamachi
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|
6
|
Yao TH, Ni Y, Bhadra A, Kang J, Baladandayuthapani V. Robust Bayesian graphical regression models for assessing tumor heterogeneity in proteomic networks. Biometrics 2025; 81:ujae160. [PMID: 39798955 DOI: 10.1093/biomtc/ujae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
Graphical models are powerful tools to investigate complex dependency structures in high-throughput datasets. However, most existing graphical models make one of two canonical assumptions: (i) a homogeneous graph with a common network for all subjects or (ii) an assumption of normality, especially in the context of Gaussian graphical models. Both assumptions are restrictive and can fail to hold in certain applications such as proteomic networks in cancer. To this end, we propose an approach termed robust Bayesian graphical regression (rBGR) to estimate heterogeneous graphs for non-normally distributed data. rBGR is a flexible framework that accommodates non-normality through random marginal transformations and constructs covariate-dependent graphs to accommodate heterogeneity through graphical regression techniques. We formulate a new characterization of edge dependencies in such models called conditional sign independence with covariates, along with an efficient posterior sampling algorithm. In simulation studies, we demonstrate that rBGR outperforms existing graphical regression models for data generated under various levels of non-normality in both edge and covariate selection. We use rBGR to assess proteomic networks in lung and ovarian cancers to systematically investigate the effects of immunogenic heterogeneity within tumors. Our analyses reveal several important protein-protein interactions that are differentially associated with the immune cell abundance; some corroborate existing biological knowledge, whereas others are novel findings.
Collapse
Affiliation(s)
- Tsung-Hung Yao
- Department of Biostatistics, University of Michigan at Ann Arbor, Ann Arbor, MI 48109, United States
| | - Yang Ni
- Department of Statistics, Texas A&M University, College Station, TX 77843, United States
| | - Anindya Bhadra
- Department of Statistics, Purdue University, West Lafayette, IN 47907, United States
| | - Jian Kang
- Department of Biostatistics, University of Michigan at Ann Arbor, Ann Arbor, MI 48109, United States
| | | |
Collapse
|
7
|
Yang L, Shen A, Wang R, Zheng Z. S100A16 stabilizes the ITGA3‑mediated ECM‑receptor interaction pathway to drive the malignant properties of lung adenocarcinoma cells via binding MOV10. Mol Med Rep 2025; 31:11. [PMID: 39450567 PMCID: PMC11541165 DOI: 10.3892/mmr.2024.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/30/2024] [Indexed: 10/26/2024] Open
Abstract
Lung adenocarcinoma (LUAD) is highly associated with lung cancer‑associated mortality. Notably, S100 calcium‑binding protein A16 (S100A16) has been increasingly considered to have prognostic value in LUAD; however, the underlying mechanism remains unknown. In the present study, S100A16 expression levels in LUAD tissues and cells were respectively analyzed by the UALCAN database and western blotting. Cell Counting Kit‑8 and 5‑ethynyl‑2'‑deoxyuridine assays were used to examine cell proliferation, whereas wound healing, Transwell and tube formation assays were used to assess cell migration, invasion and angiogenesis, respectively. Western blotting was also used to examine the expression levels of proteins associated with metastasis, angiogenesis, focal adhesion and the extracellular matrix (ECM)‑receptor interaction pathways. The relationship between S100A16 and Mov10 RNA helicase (MOV10) was predicted by bioinformatics tools, and was verified using a co‑immunoprecipitation assay. Furthermore, the interaction between MOV10 and integrin α3 (ITGA3) was verified by RNA immunoprecipitation assay, and the actinomycin D assay was used to detect ITGA3 mRNA stability. The results demonstrated that S100A16 expression was increased in LUAD tissues and cell lines, and was associated with unfavorable outcomes. Knocking down S100A16 expression hindered the proliferation, migration, invasion and angiogenesis of LUAD cells. Furthermore, S100A16 was shown to bind to MOV10 and positively modulate MOV10 expression in LUAD cells, while MOV10 overexpression partially reversed the suppressive role of S100A16 knockdown on the aggressive phenotypes of LUAD cells. Furthermore, it was demonstrated that S100A16 regulated the stability of ITGA3 mRNA via MOV10 to mediate ECM‑receptor interactions. In conclusion, S100A16 may bind to MOV10 to stabilize ITGA3 mRNA and regulate ECM‑receptor interactions, hence contributing to the malignant progression of LUAD.
Collapse
Affiliation(s)
- Lianren Yang
- Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China
| | - Ajuan Shen
- Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China
| | - Rujun Wang
- Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China
| | - Zhihui Zheng
- Department of Medical Oncology, Taihe County People's Hospital, Fuyang, Anhui 236600, P.R. China
| |
Collapse
|
8
|
Palisse A, Cheung T, Blokhuis A, Cogswell T, Martins BS, Riemens R, Schellekens R, Battocchio G, Jansen C, Cottee MA, Ornell K, Sacchetto C, Leon L, van Hoek-Emmelot M, Bostock M, Brauer BL, Beaumont K, Lucas SCC, Ahmed S, Blackwell JH, Börjesson U, Gohlke A, Gramatikov IMT, Hargreaves D, van Hoeven V, Kantae V, Kupcova L, Milbradt AG, Seneviratne U, Su N, Vales J, Wang H, White MJ, Kinzel O. Structure-Based Discovery of a Series of Covalent, Orally Bioavailable, and Selective BFL1 Inhibitors. J Med Chem 2024; 67:22055-22079. [PMID: 39641779 DOI: 10.1021/acs.jmedchem.4c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BFL1, a member of the antiapoptotic BCL2 family, has been relatively understudied compared to its counterparts despite evidence of its overexpression in various hematological malignancies. Across two articles, we describe the development of BFL1 in vivo tools. The first article describes the hit identification from a covalent fragment library and the subsequent evolution from the hit to compound 6.22 This work reports the structure-based optimization of compound 6 into a series of BFL1 inhibitors selective over the other BCL2 family members, with low nanomolar cellular activity when combined with AZD5991, exemplified by compound 20. Compound 20 demonstrated a cell death phenotype in SUDHL1 and OCILY10 cell lines and in the in vivo study, BFL1 stabilization and cleaved caspase 3 activation were observed in a dose-dependent manner. In addition, the enzymatic turnover studies with the BFL1 protein showed that compound 20 stabilized the protein, extending the half-life to 10.8 h.
Collapse
Affiliation(s)
- Adeline Palisse
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Tony Cheung
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Aileen Blokhuis
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Thomas Cogswell
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Bruna S Martins
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Rick Riemens
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Rick Schellekens
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Giovanni Battocchio
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Chimed Jansen
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Matthew A Cottee
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Kimberly Ornell
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Claudia Sacchetto
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Leonardo Leon
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Maaike van Hoek-Emmelot
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Mark Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Brooke Leann Brauer
- Chemical Biology and Proteomics, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Samiyah Ahmed
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Vera van Hoeven
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Vasudev Kantae
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lea Kupcova
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Uthpala Seneviratne
- Chemical Biology and Proteomics, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - John Vales
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Haiyun Wang
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Michael J White
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Olaf Kinzel
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| |
Collapse
|
9
|
Gao C, Liu YJ, Yu J, Wang R, Shi JJ, Chen RY, Yang GJ, Chen J. Unraveling the Role of Ubiquitin-Conjugating Enzyme UBE2T in Tumorigenesis: A Comprehensive Review. Cells 2024; 14:15. [PMID: 39791716 PMCID: PMC11719737 DOI: 10.3390/cells14010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
Ubiquitin-conjugating enzyme E2 T (UBE2T) is a crucial E2 enzyme in the ubiquitin-proteasome system (UPS), playing a significant role in the ubiquitination of proteins and influencing a wide range of cellular processes, including proliferation, differentiation, apoptosis, invasion, and metabolism. Its overexpression has been implicated in various malignancies, such as lung adenocarcinoma, gastric cancer, pancreatic cancer, liver cancer, and ovarian cancer, where it correlates strongly with disease progression. UBE2T facilitates tumorigenesis and malignant behaviors by mediating essential functions such as DNA repair, apoptosis, cell cycle regulation, and the activation of oncogenic signaling pathways. High levels of UBE2T expression are associated with poor survival outcomes, highlighting its potential as a molecular biomarker for cancer prognosis. Increasing evidence suggests that UBE2T acts as an oncogene and could serve as a promising therapeutic target in cancer treatment. This review aims to provide a detailed overview of UBE2T's structure, functions, and molecular mechanisms involved in cancer progression as well as recent developments in UBE2T-targeted inhibitors. Such insights may pave the way for novel strategies in cancer diagnosis and treatment, enhancing our understanding of UBE2T's role in cancer biology and supporting the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
10
|
Wan B, Huang Y, Gong B, Zeng Y, Lv C. Comprehensive analysis of lysine lactylation and its potential biological significance in clear cell renal cell carcinoma. Eur J Med Res 2024; 29:587. [PMID: 39695839 DOI: 10.1186/s40001-024-02200-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is a common histological subtype of malignant renal neoplasm. Protein lysine lactylation (Kla) plays a crucial role in tumor metabolic reprogramming. However, little is known regarding the distribution and potential biological functions of Kla in ccRCC. This study aimed to systematically investigate the role of Kla in ccRCC. METHODS A total of 12 ccRCC samples were collected from 6 patients. Western blotting was performed to determine the trend of Kla-modified proteins in ccRCC. Liquid chromatography-tandem mass spectrometry was used to quantitatively analyze Kla in ccRCC. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analyses were conducted to clarify the biological functions and interactional relationships of differentially lactylated proteins (DLPs). RESULTS In total, 239 DLPs, including 441 lactylated sites, were identified by comparing ccRCC tissues with adjacent normal tissues. Kla-related enzymes have a higher affinity for alanine than for other amino acid residues in ccRCC. Subcellular localization analysis revealed that most DLPs were localized in the cytoplasm and mitochondria. GO enrichment analysis showed that most of the DLPs were enriched in metabolism-associated biological processes, including the purine ribonucleotide, monocarboxylic acid, ribonucleoside triphosphate, purine nucleoside triphosphate, and ATP metabolic processes. KEGG analysis indicated that most DLPs were also enriched in metabolism-related pathways, including glycolysis, amino acid (valine, leucine, and isoleucine) degradation, pyruvate metabolism, fatty acid degradation, and the citrate cycle. The top 20 hub proteins were screened from the PPI network based on their degree ranks. CONCLUSIONS This study revealed the role of Kla in ccRCC, which will extend our understanding of the potential molecular mechanisms underlying ccRCC formation and progression. These key Kla-modified proteins may be promising therapeutic targets for the treatment of ccRCC. However, further molecular experiments are required to validate these findings.
Collapse
Affiliation(s)
- Bangbei Wan
- Department of Urology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China.
- Reproductive Medical Center, Hainan Women and Children's Medical Center, Haikou, China.
| | - Yuan Huang
- Department of Neurology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Binghao Gong
- Department of Urology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Yaohui Zeng
- Department of Urology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China
| | - Cai Lv
- Department of Urology, Haikou Affiliated Hospital of Central South University Xiangya School of Medicine, Haikou, China.
| |
Collapse
|
11
|
Chen L, Zhang H, Gao K, Meng F, Yang F, Li J, Wang L, Tai J. Investigation of the correlation between AGRN expression and perineural invasion in colon cancer. Front Mol Biosci 2024; 11:1510478. [PMID: 39691475 PMCID: PMC11649504 DOI: 10.3389/fmolb.2024.1510478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024] Open
Abstract
Background and Purpose Colon cancer is one of the most common gastrointestinal malignancies. According to the traditional view, the primary modes of transmission include direct dissemination, hematogenous metastasis, and lymph node metastasis. In recent years, the role of perineural invasion (PNI) in the spread and metastasis of tumors has received immense attention. However, there are still relatively few reports on the potential mechanisms and biomarkers of PNI occurrence and development in colon cancer. Method We identified genes linked to the onset and progression of PNI in colon cancer using bioinformatics tools and extensive databases. Gene function enrichment analysis was used to explore the potential roles of these genes in tumor proliferation, invasion, and PNI. A collection of postoperative pathological specimens from colon cancer patients who underwent surgery, related clinicopathological data, and immunohistochemistry were used to validate AGRN expression in PNI tissues. Results Bioinformatics analysis revealed that AGRN is overexpressed in colon cancer tissues and correlates with poor patient prognosis. The findings from gene association and enrichment studies indicate that AGRN and its associated genes may play a role in PNI development and progression in colon cancer by simultaneously enhancing tumor cell invasion and neural cell growth. Immunohistochemical analysis of clinical samples confirmed that AGRN expression is elevated in colon cancer tissues with PNI. Conclusion We found that AGRN is significantly overexpressed in colon cancer tissues exhibiting PNI and is linked to poor patient survival. AGRN and its related genes may contribute to PNI by promoting tumor cell invasion and neural cell growth. Hence, AGRN may play a crucial role in the initiation and progression of PNI in colon cancer.
Collapse
Affiliation(s)
- Lei Chen
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Haijia Zhang
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Kaiyue Gao
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Fanqi Meng
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Funing Yang
- Pediatric Outpatient Clinic, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Lijie Wang
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal and Anal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
12
|
Kim DG, Kim M, Goo JI, Kong J, Harmalkar DS, Lu Q, Sivaraman A, Nada H, Godesi S, Lee H, Song ME, Song E, Han KH, Kim W, Kim P, Choi WJ, Lee CH, Lee S, Choi Y, Kim S, Lee K. Chemical induction of the interaction between AIMP2-DX2 and Siah1 to enhance ubiquitination. Cell Chem Biol 2024; 31:1958-1968.e8. [PMID: 39260366 DOI: 10.1016/j.chembiol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 12/27/2023] [Accepted: 08/08/2024] [Indexed: 09/13/2024]
Abstract
AIMP2-DX2 (hereafter DX2) is an oncogenic variant of aminoacyl-tRNA synthetase-interacting multifunctional protein 2 (AIMP2) that mediates tumorigenic interactions with various factors involved in cancer. Reducing the levels of DX2 can effectively inhibit tumorigenesis. We previously reported that DX2 can be degraded through Siah1-mediated ubiquitination. In this study, we identified a compound, SDL01, which enhanced the interaction between DX2 and Siah1, thereby facilitating the ubiquitin-dependent degradation of DX2. SDL01 was found to bind to the pocket surrounding the N-terminal flexible region and GST domain of DX2, causing a conformational change that stabilized its interaction with Siah1. Our findings demonstrate that protein-protein interactions (PPIs) can be modulated through chemically induced conformational changes.
Collapse
Affiliation(s)
- Dae Gyu Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea; Department of Yuhan Biotechnology, School of Health & Wellness Services, Yuhan University, Bucheon 14780, Republic of Korea
| | - Minkyoung Kim
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Ja-Il Goo
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jiwon Kong
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Qili Lu
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Aneesh Sivaraman
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Hossam Nada
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | | | - Hwayoung Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Mo Eun Song
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Eunjoo Song
- IVIM Technology, Daejeon 34013, Republic of Korea
| | - Kang-Hyun Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Woojin Kim
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Pilhan Kim
- IVIM Technology, Daejeon 34013, Republic of Korea; Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Won Jun Choi
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea
| | - Sunkyung Lee
- Drug Information Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Yongseok Choi
- Department of Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Institute for Artificial Intelligence and Biomedical Research, College of Pharmacy & College of Medicine, Gangnam Severance Hospital, Yonsei University, Incheon 21983, Republic of Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea.
| |
Collapse
|
13
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 PMCID: PMC12023540 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P. Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, MA 01003, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Zhang X, Wu Y, Lin J, Lu S, Lu X, Cheng A, Chen H, Zhang W, Luan X. Insights into therapeutic peptides in the cancer-immunity cycle: Update and challenges. Acta Pharm Sin B 2024; 14:3818-3833. [PMID: 39309492 PMCID: PMC11413705 DOI: 10.1016/j.apsb.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 09/25/2024] Open
Abstract
Immunotherapies hold immense potential for achieving durable potency and long-term survival opportunities in cancer therapy. As vital biological mediators, peptides with high tissue penetration and superior selectivity offer significant promise for enhancing cancer immunotherapies (CITs). However, physicochemical peptide features such as conformation and stability pose challenges to their on-target efficacy. This review provides a comprehensive overview of recent advancements in therapeutic peptides targeting key steps of the cancer-immunity cycle (CIC), including tumor antigen presentation, immune cell regulation, and immune checkpoint signaling. Particular attention is given to the opportunities and challenges associated with these peptides in boosting CIC within the context of clinical progress. Furthermore, possible future developments in this field are also discussed to provide insights into emerging CITs with robust efficacy and safety profiles.
Collapse
Affiliation(s)
- Xiaokun Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ye Wu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiayi Lin
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shengxin Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinchen Lu
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Aoyu Cheng
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science &, Peking Union Medical College, Beijing 100193, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research and Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
15
|
Li L, Li H, Su T, Ming D. Quantitative Characterization of the Impact of Protein-Protein Interactions on Ligand-Protein Binding: A Multi-Chain Dynamics Perturbation Analysis Method. Int J Mol Sci 2024; 25:9172. [PMID: 39273122 PMCID: PMC11394879 DOI: 10.3390/ijms25179172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Many protein-protein interactions (PPIs) affect the ways in which small molecules bind to their constituent proteins, which can impact drug efficacy and regulatory mechanisms. While recent advances have improved our ability to independently predict both PPIs and ligand-protein interactions (LPIs), a comprehensive understanding of how PPIs affect LPIs is still lacking. Here, we examined 63 pairs of ligand-protein complexes in a benchmark dataset for protein-protein docking studies and quantified six typical effects of PPIs on LPIs. A multi-chain dynamics perturbation analysis method, called mcDPA, was developed to model these effects and used to predict small-molecule binding regions in protein-protein complexes. Our results illustrated that the mcDPA can capture the impact of PPI on LPI to varying degrees, with six similar changes in its predicted ligand-binding region. The calculations showed that 52% of the examined complexes had prediction accuracy at or above 50%, and 55% of the predictions had a recall of not less than 50%. When applied to 33 FDA-approved protein-protein-complex-targeting drugs, these numbers improved to 60% and 57% for the same accuracy and recall rates, respectively. The method developed in this study may help to design drug-target interactions in complex environments, such as in the case of protein-protein interactions.
Collapse
Affiliation(s)
- Lu Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China
| | - Hao Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China
| | - Ting Su
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 South Puzhu Road, Jiangbei New District, Nanjing 211816, China
| |
Collapse
|
16
|
Guo M, Wang R, Nie M, Zhang H, Wang C, Song C, Niu S. H3K27ac-induced RHOXF2 activates Wnt2/β-catenin pathway by binding to HOXC13 to aggravate the malignant progression of triple negative breast cancer. Cell Signal 2024; 120:111196. [PMID: 38697448 DOI: 10.1016/j.cellsig.2024.111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/05/2024]
Abstract
Triple negative breast cancer (TNBC) is insensitive to conventional targeted therapy and endocrine therapy, and is characterized by high invasiveness and high recurrence rate. This study aimed to explore the role and mechanism of RHOXF2 and HOXC13 on the malignant progression of TNBC. RT-qPCR and western blot were used to detect RHOXF2 and HOXC13 expression in TNBC cells. The proliferation, colony formation, invasion, migration, apoptosis and cell cycle of TNBC cells after transfection were analyzed by CCK-8 assay, colony formation assay, transwell assay, wound healing assay and flow cytometry analysis. Co-Immunoprecipitation and GST pull-down assays were used to analyze the combination between RHOXF2 and HOXC13. ChIP-PCR and luciferase reporter gene assay were used to examine the regulation of H3K27ac on RHOXF2. Besides, the expression of Ki67 and cleaved Caspase3 in tumor tissues of nude mice was determined by immunofluorescence. Results revealed that RHOXF2 and HOXC13 expression was increased in TNBC cells. RHOXF2 knockdown suppressed the proliferation, invasion and migration, as well as induced G0/G1 cell cycle arrest and apoptosis of TNBC cells. Besides, RHOXF2 could bind to HOXC13 and RHOXF2 knockdown suppressed HOXC13 expression in TNBC cells. Furthermore, HOXC13 overexpression reversed the impacts of RHOXF2 downregulation on the proliferation, invasion, migration, G0/G1 cell cycle arrest and apoptosis of TNBC cells. In addition, RHOXF2 silencing limited the tumor volume in nude mice, which was reversed by HOXC13 overexpression. Moreover, RHOXF2 knockdown interfered with Wnt2/β-catenin pathway in vitro and in vivo by binding to HOXC13. Importantly, H3K27ac acetylation could activate the expression of RHOXF2 promoter region. In conclusion, RHOXF2 activated by H3K27ac functioned as a tumor promoter in TNBC via mediating Wnt2/β-catenin pathway by binding to HOXC13, which provided promising insight into exploration on TNBC therapy.
Collapse
Affiliation(s)
- Man Guo
- Department of Thyroid and Breast Surgery, Nanyang Central Hospital, Nanyang City, Henan Province 473005, China
| | - Ruoyan Wang
- Department of Thyroid and Breast Surgery, Nanyang Central Hospital, Nanyang City, Henan Province 473005, China
| | - Mandi Nie
- Department of Thyroid and Breast Surgery, Nanyang Central Hospital, Nanyang City, Henan Province 473005, China
| | - Hao Zhang
- Department of Thyroid and Breast Surgery, Nanyang Central Hospital, Nanyang City, Henan Province 473005, China.
| | - Cao Wang
- Department of Thyroid and Breast Surgery, Nanyang Central Hospital, Nanyang City, Henan Province 473005, China
| | - Chunfeng Song
- Department of Thyroid and Breast Surgery, Nanyang Central Hospital, Nanyang City, Henan Province 473005, China
| | - Shurun Niu
- Department of Thyroid and Breast Surgery, Nanyang Central Hospital, Nanyang City, Henan Province 473005, China
| |
Collapse
|
17
|
Cai G, Bao Y, Li Q, Hsu PH, Xia J, Ngo JCK. Design of a covalent protein-protein interaction inhibitor of SRPKs to suppress angiogenesis and invasion of cancer cells. Commun Chem 2024; 7:144. [PMID: 38937565 PMCID: PMC11211491 DOI: 10.1038/s42004-024-01230-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
Serine-arginine (SR) proteins are splicing factors that play essential roles in both constitutive and alternative pre-mRNA splicing. Phosphorylation of their C-terminal RS domains by SR protein kinases (SRPKs) regulates their localization and diverse cellular activities. Dysregulation of phosphorylation has been implicated in many human diseases, including cancers. Here, we report the development of a covalent protein-protein interaction inhibitor, C-DBS, that targets a lysine residue within the SRPK-specific docking groove to block the interaction and phosphorylation of the prototypic SR protein SRSF1. C-DBS exhibits high specificity and conjugation efficiency both in vitro and in cellulo. This self-cell-penetrating inhibitor attenuates the phosphorylation of endogenous SR proteins and subsequently inhibits the angiogenesis, migration, and invasion of cancer cells. These findings provide a new foundation for the development of covalent SRPK inhibitors for combatting diseases such as cancer and viral infections and overcoming the resistance encountered by ATP-competitive inhibitors.
Collapse
Affiliation(s)
- Gongli Cai
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yishu Bao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Qingyun Li
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
- Center for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.
| |
Collapse
|
18
|
Shi ZY, Li CY, Chen RY, Shi JJ, Liu YJ, Lu JF, Yang GJ, Chen J. The emerging role of deubiquitylating enzyme USP21 as a potential therapeutic target in cancer. Bioorg Chem 2024; 147:107400. [PMID: 38688196 DOI: 10.1016/j.bioorg.2024.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
19
|
Liu H, Liu Y, Zhou Y, Chen X, Pan S, Zhou Q, Ji H, Zhu X. TM7SF2-induced lipid reprogramming promotes cell proliferation and migration via CPT1A/Wnt/β-Catenin axis in cervical cancer cells. Cell Death Discov 2024; 10:207. [PMID: 38693136 PMCID: PMC11063194 DOI: 10.1038/s41420-024-01975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024] Open
Abstract
Cervical cancer poses a serious threat to women's health globally. Our previous studies found that upregulation of TM7SF2, which works as an enzyme involved in the process of cholesterol biosynthesis expression, was highly correlated with cervical cancer. However, the mechanistic basis of TM7SF2 promoting cervical cancer progression via lipid metabolism remains poorly understood. Therefore, quantification of fatty acids and lipid droplets were performed in vitro and in vivo. The protein-protein interaction was verified by Co-IP technique. The mechanism and underlying signaling pathway of TM7SF2 via CPT1A associated lipid metabolism in cervical cancer development were explored using Western blotting, IHC, colony formation, transwell assay, and wound healing assay. This study reported that overexpression of TM7SF2 increased fatty acids content and lipid droplets both in vivo and in vitro experiments. While knockout of TM7SF2 obviously attenuated this process. Moreover, TM7SF2 directly bonded with CPT1A, a key enzyme in fatty acid oxidation, and regulated CPT1A protein expression in cervical cancer cells. Notably, the proliferation and metastasis of cervical cancer cells were elevated when their CPT1A expression was upregulated. Then, rescue assay identified that CPT1A overexpressed could enhance the cell viability and migration in TM7SF2-knockout cells. Furthermore, depletion of TM7SF2 significantly inhibited WNT and β-catenin proteins expression, which was enhanced by CPT1A-overexpressed. The proliferation and migration of cervical cancer cells were reversed in CPT1A-overexpressed cells with the treatment of MSAB, an inhibitor of Wnt/β-Catenin pathway. This study put forward an idea that TM7SF2-induced lipid reprogramming promotes proliferation and migration via CPT1A/Wnt/β-Catenin axis in cervical cancer, underlying the progression of cervical cancer.
Collapse
Affiliation(s)
- Hejing Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yi Liu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yujia Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xin Chen
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Shuya Pan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingfeng Zhou
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Huihui Ji
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Xueqiong Zhu
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
20
|
Yang G, Li C, Tao F, Liu Y, Zhu M, Du Y, Fei C, She Q, Chen J. The emerging roles of lysine-specific demethylase 4A in cancer: Implications in tumorigenesis and therapeutic opportunities. Genes Dis 2024; 11:645-663. [PMID: 37692513 PMCID: PMC10491877 DOI: 10.1016/j.gendis.2022.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 09/12/2023] Open
Abstract
Lysine-specific demethylase 4 A (KDM4A, also named JMJD2A, KIA0677, or JHDM3A) is a demethylase that can remove methyl groups from histones H3K9me2/3, H3K36me2/3, and H1.4K26me2/me3. Accumulating evidence suggests that KDM4A is not only involved in body homeostasis (such as cell proliferation, migration and differentiation, and tissue development) but also associated with multiple human diseases, especially cancers. Recently, an increasing number of studies have shown that pharmacological inhibition of KDM4A significantly attenuates tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. Although there are several reviews on the roles of the KDM4 subfamily in cancer development and therapy, all of them only briefly introduce the roles of KDM4A in cancer without systematically summarizing the specific mechanisms of KDM4A in various physiological and pathological processes, especially in tumorigenesis, which greatly limits advances in the understanding of the roles of KDM4A in a variety of cancers, discovering targeted selective KDM4A inhibitors, and exploring the adaptive profiles of KDM4A antagonists. Herein, we present the structure and functions of KDM4A, simply outline the functions of KDM4A in homeostasis and non-cancer diseases, summarize the role of KDM4A and its distinct target genes in the development of a variety of cancers, systematically classify KDM4A inhibitors, summarize the difficulties encountered in the research of KDM4A and the discovery of related drugs, and provide the corresponding solutions, which would contribute to understanding the recent research trends on KDM4A and advancing the progression of KDM4A as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guanjun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Changyun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yanjun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Minghui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yu Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Chenjie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiusheng She
- School of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, Henan 467044, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
21
|
Compain G, Monsarrat C, Blagojevic J, Brillet K, Dumas P, Hammann P, Kuhn L, Martiel I, Engilberge S, Oliéric V, Wolff P, Burnouf DY, Wagner J, Guichard G. Peptide-Based Covalent Inhibitors Bearing Mild Electrophiles to Target a Conserved His Residue of the Bacterial Sliding Clamp. JACS AU 2024; 4:432-440. [PMID: 38425897 PMCID: PMC10900491 DOI: 10.1021/jacsau.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024]
Abstract
Peptide-based covalent inhibitors targeted to nucleophilic protein residues have recently emerged as new modalities to target protein-protein interactions (PPIs) as they may provide some benefits over more classic competitive inhibitors. Covalent inhibitors are generally targeted to cysteine, the most intrinsically reactive amino acid residue, and to lysine, which is more abundant at the surface of proteins but much less frequently to histidine. Herein, we report the structure-guided design of targeted covalent inhibitors (TCIs) able to bind covalently and selectively to the bacterial sliding clamp (SC), by reacting with a well-conserved histidine residue located on the edge of the peptide-binding pocket. SC is an essential component of the bacterial DNA replication machinery, identified as a promising target for the development of new antibacterial compounds. Thermodynamic and kinetic analyses of ligands bearing different mild electrophilic warheads confirmed the higher efficiency of the chloroacetamide compared to Michael acceptors. Two high-resolution X-ray structures of covalent inhibitor-SC adducts were obtained, revealing the canonical orientation of the ligand and details of covalent bond formation with histidine. Proteomic studies were consistent with a selective SC engagement by the chloroacetamide-based TCI. Finally, the TCI of SC was substantially more active than the parent noncovalent inhibitor in an in vitro SC-dependent DNA synthesis assay, validating the potential of the approach to design covalent inhibitors of protein-protein interactions targeted to histidine.
Collapse
Affiliation(s)
- Guillaume Compain
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| | - Clément Monsarrat
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| | - Julie Blagojevic
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Karl Brillet
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Philippe Dumas
- Department
of Integrative Structural Biology, IGBMC, Strasbourg University, ESBS, 1 Rue Laurent Fries, 67404 Illkirch, Cedex, France
| | - Philippe Hammann
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Lauriane Kuhn
- Université
de Strasbourg, CNRS, FR1589, Plateforme Protéomique Strasbourg
Esplanade, 2 Allée K. Roentgen, 67084 Strasbourg, France
| | - Isabelle Martiel
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Sylvain Engilberge
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Vincent Oliéric
- Swiss
Light Source (SLS), Paul Scherrer Institute
(PSI), 5232 Villigen-PSI, Switzerland
| | - Philippe Wolff
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Dominique Y. Burnouf
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Jérôme Wagner
- Université
de Strasbourg, CNRS, Architecture et Réactivité de l’ARN,
UPR 9002, Institut de Biologie Moléculaire et Cellulaire du
CNRS, 2 Allée
K. Roentgen, 67084 Strasbourg, France
| | - Gilles Guichard
- Univ.
Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, 2 Rue Robert Escarpit, F-33607 Pessac, France
| |
Collapse
|
22
|
Lu J, Feng Y, Yu D, Li H, Li W, Chen H, Chen L. A review of nuclear Dbf2-related kinase 1 (NDR1) protein interaction as promising new target for cancer therapy. Int J Biol Macromol 2024; 259:129188. [PMID: 38184050 DOI: 10.1016/j.ijbiomac.2023.129188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Nuclear Dbf2-related kinase 1 (NDR1) is a nuclear Dbf2-related (NDR) protein kinase family member, which regulates cell functions and participates in cell proliferation and differentiation through kinase activity. NDR1 regulates physiological functions by interacting with different proteins. Protein-protein interactions (PPIs) are crucial for regulating biological processes and controlling cell fate, and as a result, it is beneficial to study the actions of PPIs to elucidate the pathological mechanism of diseases. The previous studies also show that the expression of NDR1 is deregulated in numerous human cancer samples and it needs the context-specific targeting strategies for NDR1. Thus, a comprehensive understanding of the direct interaction between NDR1 and varieties of proteins may provide new insights into cancer therapies. In this review, we summarize recent studies of NDR1 in solid tumors, such as prostate cancer and breast cancer, and explore the mechanism of action of PPIs of NDR1 in tumors.
Collapse
Affiliation(s)
- Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yanjun Feng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
23
|
Mi W, Zhang X, Tian X, Sun R, Ma S, Hu Z, Dai X. Development of a potential primary method for protein quantification via electrospray differential mobility analysis. Talanta 2024; 266:124797. [PMID: 37541009 DOI: 10.1016/j.talanta.2023.124797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 08/06/2023]
Abstract
Accurate protein quantification is the basis for establishing the metrological traceability of in vitro diagnostics or drug products. In this study, we established and validated a potential primary method for protein quantification based on electrospray-differential mobility analysis coupled with a condensation particle counter (ES-DMA-CPC). The analytical performance of this method was assessed using the certified reference material NIMCmAb, and the uncertainty of measurement was evaluated. The method was applied to the quantification of three other protein reference materials and one highly purified protein, including myoglobin, bovine serum albumin, IgG monoclonal antibody, and one highly purified fibrinogen, with a molecular weight range between 17 kDa and 340 kDa. In addition, when compared with isotope dilution mass spectrometry (IDMS) and UV‒VIS spectrophotometry approaches, the ES-DMA-CPC method showed good agreement with IDMS method for the quantification of these protein reference materials. Our proposed method provided an accurate quantification of proteins, especially those with large molecular weights. Moreover, our method could be a potential primary method for protein quantification and serve as a complement to IDMS method.
Collapse
Affiliation(s)
- Wei Mi
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinyi Zhang
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China
| | - Xiangrong Tian
- College of Biology and Environmental Science, JiShou University, Renming South Road 120, Jishou, Hunan, 416000, China
| | - Ruixue Sun
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Shangying Ma
- College of Life Sciences, China Jiliang University, Xueyuan Street 258, Hangzhou, 310018, China
| | - Zhishang Hu
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| | - Xinhua Dai
- National Institute of Metrology, No.18 Beisanhuan Donglu, Beijing, 100029, China.
| |
Collapse
|
24
|
Xiang H, Zhou M, Li Y, Zhou L, Wang R. Drug discovery by targeting the protein-protein interactions involved in autophagy. Acta Pharm Sin B 2023; 13:4373-4390. [PMID: 37969735 PMCID: PMC10638514 DOI: 10.1016/j.apsb.2023.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/31/2023] [Accepted: 07/10/2023] [Indexed: 11/17/2023] Open
Abstract
Autophagy is a cellular process in which proteins and organelles are engulfed in autophagosomal vesicles and transported to the lysosome/vacuole for degradation. Protein-protein interactions (PPIs) play a crucial role at many stages of autophagy, which present formidable but attainable targets for autophagy regulation. Moreover, selective regulation of PPIs tends to have a lower risk in causing undesired off-target effects in the context of a complicated biological network. Thus, small-molecule regulators, including peptides and peptidomimetics, targeting the critical PPIs involved in autophagy provide a new opportunity for innovative drug discovery. This article provides general background knowledge of the critical PPIs involved in autophagy and reviews a range of successful attempts on discovering regulators targeting those PPIs. Successful strategies and existing limitations in this field are also discussed.
Collapse
Affiliation(s)
- Honggang Xiang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Lu Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Renxiao Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
25
|
Li CY, Liu YJ, Tao F, Chen RY, Shi JJ, Lu JF, Yang GJ, Chen J. Lysine-specific demethylase 7A (KDM7A): A potential target for disease therapy. Biochem Pharmacol 2023; 216:115799. [PMID: 37696455 DOI: 10.1016/j.bcp.2023.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Histone demethylation is a kind of epigenetic modification mediated by a variety of enzymes and participates in regulating multiple physiological and pathological events. Lysine-specific demethylase 7A is a kind of α-ketoglutarate- and Fe(II)-dependent demethylase belonging to the PHF2/8 subfamily of the JmjC demethylases. KDM7A is mainly localized in the nucleus and contributes to transcriptional activation via removing mono- and di-methyl groups from the lysine residues 9 and 27 of Histone H3. Mounting studies support that KDM7A is not only necessary for normal embryonic, neural, and skeletal development, but also associated with cancer, inflammation, osteoporosis, and other diseases. Herein, the structure of KDM7A is described by comparing the similarities and differences of its amino acid sequences of KDM7A and other Histone demethylases; the functions of KDM7A in homeostasis and dyshomeostasis are summarized via documenting its content and related signaling; the currently known KDM7A-specific inhibitors and their structural relationship are listed based on their structure optimization and pharmacological activities; and the challenges and opportunities in exploring functions and developing targeted agents of KDM7A are also prospected via presenting encountered problems and potential solutions, which will provide an insight in functional exploration and drug discovery for KDM7A-related diseases.
Collapse
Affiliation(s)
- Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fan Tao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
26
|
Xie X, Yu T, Li X, Zhang N, Foster LJ, Peng C, Huang W, He G. Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. Signal Transduct Target Ther 2023; 8:335. [PMID: 37669923 PMCID: PMC10480221 DOI: 10.1038/s41392-023-01589-z] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/22/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Undruggable proteins are a class of proteins that are often characterized by large, complex structures or functions that are difficult to interfere with using conventional drug design strategies. Targeting such undruggable targets has been considered also a great opportunity for treatment of human diseases and has attracted substantial efforts in the field of medicine. Therefore, in this review, we focus on the recent development of drug discovery targeting "undruggable" proteins and their application in clinic. To make this review well organized, we discuss the design strategies targeting the undruggable proteins, including covalent regulation, allosteric inhibition, protein-protein/DNA interaction inhibition, targeted proteins regulation, nucleic acid-based approach, immunotherapy and others.
Collapse
Affiliation(s)
- Xin Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Tingting Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China
| | - Leonard J Foster
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Gu He
- Department of Dermatology and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
27
|
Xie X, Laster KV, Li J, Nie W, Yi YW, Liu K, Seong YS, Dong Z, Kim DJ. OSGIN1 is a novel TUBB3 regulator that promotes tumor progression and gefitinib resistance in non-small cell lung cancer. Cell Mol Life Sci 2023; 80:272. [PMID: 37646890 PMCID: PMC11071769 DOI: 10.1007/s00018-023-04931-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/26/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Oxidative stress induced growth inhibitor 1 (OSGIN1) regulates cell death. The role and underlying molecular mechanism of OSGIN1 in non-small cell lung cancer (NSCLC) are uncharacterized. METHODS OSGIN1 expression in NSCLC samples was detected using immunohistochemistry and Western blotting. Growth of NSCLC cells and gefitinib-resistant cells expressing OSGIN1 or TUBB3 knockdown was determined by MTT, soft agar, and foci formation assays. The effect of OSGIN1 knockdown on in vivo tumor growth was assessed using NSCLC patient-derived xenograft models and gefitinib-resistant patient-derived xenograft models. Potentially interacting protein partners of OSGIN1 were identified using IP-MS/MS, immunoprecipitation, PLA, and Western blotting assays. Microtubule dynamics were explored by tubulin polymerization assay and immunofluorescence. Differential expression of signaling molecules in OSGIN1 knockdown cells was investigated using phospho-proteomics, KEGG analysis, and Western blotting. RESULTS We found that OSGIN1 is highly expressed in NSCLC tissues and is positively correlated with low survival rates and tumor size in lung cancer patients. OSGIN1 knockdown inhibited NSCLC cell growth and patient-derived NSCLC tumor growth in vivo. Knockdown of OSGIN1 strongly increased tubulin polymerization and re-established gefitinib sensitivity in vitro and in vivo. Additionally, knockdown of TUBB3 strongly inhibited NSCLC cell proliferation. Mechanistically, we found that OSGIN1 enhances DYRK1A-mediated TUBB3 phosphorylation, which is critical for inducing tubulin depolymerization. The results of phospho-proteomics and ontology analysis indicated that knockdown of OSGIN1 led to reduced propagation of the MKK3/6-p38 signaling axis. CONCLUSIONS We propose that OSGIN1 modulates microtubule dynamics by enhancing DYRK1A-mediated phosphorylation of TUBB3 at serine 172. Moreover, elevated OSGIN1 expression promotes NSCLC tumor growth and gefitinib resistance through the MKK3/6-p38 signaling pathway. Our findings unveil a new mechanism of OSGIN1 and provide a promising therapeutic target for NSCLC treatment in the clinic.
Collapse
Affiliation(s)
- Xiaomeng Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Kyle Vaughn Laster
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Jian Li
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Wenna Nie
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
| | - Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
- Graduate School of Convergence Medical Science, Dankook University, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China.
- The Affiliated Cancer Hospital, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China.
- International Joint Research Center of Cancer Chemoprevention, Zhengzhou, China.
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450008, Henan, China.
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou, 450008, Henan, China.
- China-US (Henan) Hormel Cancer Institute, No, 127 Dongming Road, Zhengzhou, 450008, Henan, China.
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450008, Henan, China.
- Department of Microbiology, College of Medicine, Dankook University, 119 Dandae-ro, Dongnam-gu, Cheonan, Chungcheongnam-do, 31116, Republic of Korea.
| |
Collapse
|
28
|
Ogorek AN, Zhou X, Martell JD. Switchable DNA Catalysts for Proximity Labeling at Sites of Protein-Protein Interactions. J Am Chem Soc 2023; 145:16913-16923. [PMID: 37463457 DOI: 10.1021/jacs.3c05578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Proximity labeling (PL) has emerged as a powerful approach to elucidate proteomes within a defined radius around a protein of interest (POI). In PL, a catalyst is attached to the POI and tags nearby endogenous proteins, which are then isolated by affinity purification and identified by mass spectrometry. Although existing PL methods have yielded numerous biological insights, proteomes with greater spatial resolution could be obtained if PL catalysts could be activated at more specific subcellular locations, such as sites where both the POI and a chemical stimulus are present or sites of protein-protein interactions (PPIs). Here, we report DNA-based switchable PL catalysts that are attached to a POI and become activated only when a secondary molecular trigger is present. The DNA catalysts consist of a photocatalyst and a spectral quencher tethered to a DNA oligomer. They are catalytically inactive by default but undergo a conformational change in response to a specific molecular trigger, thus activating PL. We designed a system in which the DNA catalyst becomes activated on living mammalian cells specifically at sites of Her2-Her3 heterodimers and c-Met homodimers, PPIs known to increase the invasion and growth of certain cancers. While this study employs a Ru(bpy)3-type complex for tagging proteins with biotin phenol, the switchable DNA catalyst design is compatible with diverse synthetic PL photocatalysts. Furthermore, the switchable DNA PL catalysts can be constructed from conformation-switching DNA aptamers that respond to small molecules, ions, and proteins, opening future opportunities for PL in highly specific subcellular locations.
Collapse
Affiliation(s)
- Ashley N Ogorek
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Xu Zhou
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Jeffrey D Martell
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53726, United States
| |
Collapse
|
29
|
Ma D, Liu S, He Q, Kong L, Liu K, Xiao L, Xin Q, Bi Y, Wu J, Jiang C. A novel approach for the analysis of single-cell RNA sequencing identifies TMEM14B as a novel poor prognostic marker in hepatocellular carcinoma. Sci Rep 2023; 13:10508. [PMID: 37380717 DOI: 10.1038/s41598-023-36650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
A fundamental goal in cancer-associated genome sequencing is to identify the key genes. Protein-protein interactions (PPIs) play a crucially important role in this goal. Here, human reference interactome (HuRI) map was generated and 64,006 PPIs involving 9094 proteins were identified. Here, we developed a physical link and co-expression combinatory network construction (PLACE) method for genes of interest, which provides a rapid way to analyze genome sequencing datasets. Next, Kaplan‒Meier survival analysis, CCK8 assays, scratch wound assays and Transwell assays were applied to confirm the results. In this study, we selected single-cell sequencing data from patients with hepatocellular carcinoma (HCC) in GSE149614. The PLACE method constructs a protein connection network for genes of interest, and a large fraction (80%) of the genes (screened by the PLACE method) were associated with survival. Then, PLACE discovered that transmembrane protein 14B (TMEM14B) was the most significant prognostic key gene, and target genes of TMEM14B were predicted. The TMEM14B-target gene regulatory network was constructed by PLACE. We also detected that TMEM14B-knockdown inhibited proliferation and migration. The results demonstrate that we proposed a new effective method for identifying key genes. The PLACE method can be used widely and make outstanding contributions to the tumor research field.
Collapse
Affiliation(s)
- Ding Ma
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuwen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Qinyu He
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China
| | - Qilei Xin
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Yanyu Bi
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China.
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, National Institute of Healthcare Data Science at Nanjing University, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan City, Shandong Province, China.
| |
Collapse
|
30
|
Harwood SJ, Smith CR, Lawson JD, Ketcham JM. Selected Approaches to Disrupting Protein-Protein Interactions within the MAPK/RAS Pathway. Int J Mol Sci 2023; 24:ijms24087373. [PMID: 37108538 PMCID: PMC10139024 DOI: 10.3390/ijms24087373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Within the MAPK/RAS pathway, there exists a plethora of protein-protein interactions (PPIs). For many years, scientists have focused efforts on drugging KRAS and its effectors in hopes to provide much needed therapies for patients with KRAS-mutant driven cancers. In this review, we focus on recent strategies to inhibit RAS-signaling via disrupting PPIs associated with SOS1, RAF, PDEδ, Grb2, and RAS.
Collapse
Affiliation(s)
| | | | - J David Lawson
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| | - John M Ketcham
- Mirati Therapeutics, 3545 Cray Court, San Diego, CA 92121, USA
| |
Collapse
|
31
|
Dong Y, Lu J, Zhang S, Chen L, Wen J, Wang F, Mao Y, Li L, Zhang J, Liao S, Dong L. Design, synthesis and bioevaluation of 1,2,4-thiadiazolidine-3,5-dione derivatives as potential GSK-3β inhibitors for the treatment of Alzheimer's disease. Bioorg Chem 2023; 134:106446. [PMID: 36868127 DOI: 10.1016/j.bioorg.2023.106446] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Tideglusib is a non-competitive GSK-3β inhibitor which contain 1,2,4-thiadiazolidine-3,5-dione moiety, and now mainly used for progressive supranuclear palsy due to the lack of some primary cognitive endpoints and secondary endpoints in a phase IIb trail for Alzheimer's disease. Additionally, insufficient evidence exists to support that there are obvious covalent bonds between Tideglusib and GSK-3β. Targeted covalent inhibition strategy could improve the binding efficiency, selectivity and duration of kinase inhibitors. Based on the above premise, two series of targeted compounds with acryloyl warheads were designed and synthesized. The kinase inhibitory activity of the selected compound 10a with better neuroprotective effect improved 2.7 fold than that of Tideglusib. After the preliminary screening of GSK-3β inhibition and neuroprotective activity, the mechanism action of the selected compound 10a was investigated in vitro and in vivo. The results confirmed that 10a with excellent selectivity among the whole tested kinases could significantly reduce the expressions of APP and p-Tau via increasing the level of p-GSK-3β. The pharmacodynamic assay in vivo showed that 10a could markedly improve the learning and memory functions in AD mice induced by AlCl3 combined with d-galactose. At the same time, the damage of hippocampal neurons in AD mice was obviously reduced. Accordingly, the introduction of acryloyl warheads could increase the GSK-3β inhibitory activity of 1,2,4-thiadiazolidine-3,5-dione derivatives, and the selected compound 10a deserves further research as an effective GSK-3β inhibitor for the potential treatment of AD.
Collapse
Affiliation(s)
- Yongxi Dong
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China.
| | - Jun Lu
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Shanhui Zhang
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Lina Chen
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Jinlan Wen
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Fang Wang
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Yongqing Mao
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Lei Li
- Guizhou provincial Center for Disease Control and Prevention, Guiyang 550004, China
| | - Jiquan Zhang
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China
| | - Shanggao Liao
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China.
| | - Li Dong
- School of Pharmacy, Guizhou Medical University, Guian New District 550025, China.
| |
Collapse
|
32
|
Shen JX, Du WW, Xia YL, Zhang ZB, Yu ZF, Fu YX, Liu SQ. Identification of and Mechanistic Insights into SARS-CoV-2 Main Protease Non-Covalent Inhibitors: An In-Silico Study. Int J Mol Sci 2023; 24:ijms24044237. [PMID: 36835648 PMCID: PMC9959744 DOI: 10.3390/ijms24044237] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
The indispensable role of the SARS-CoV-2 main protease (Mpro) in the viral replication cycle and its dissimilarity to human proteases make Mpro a promising drug target. In order to identify the non-covalent Mpro inhibitors, we performed a comprehensive study using a combined computational strategy. We first screened the ZINC purchasable compound database using the pharmacophore model generated from the reference crystal structure of Mpro complexed with the inhibitor ML188. The hit compounds were then filtered by molecular docking and predicted parameters of drug-likeness and pharmacokinetics. The final molecular dynamics (MD) simulations identified three effective candidate inhibitors (ECIs) capable of maintaining binding within the substrate-binding cavity of Mpro. We further performed comparative analyses of the reference and effective complexes in terms of dynamics, thermodynamics, binding free energy (BFE), and interaction energies and modes. The results reveal that, when compared to the inter-molecular electrostatic forces/interactions, the inter-molecular van der Waals (vdW) forces/interactions are far more important in maintaining the association and determining the high affinity. Given the un-favorable effects of the inter-molecular electrostatic interactions-association destabilization by the competitive hydrogen bond (HB) interactions and the reduced binding affinity arising from the un-compensable increase in the electrostatic desolvation penalty-we suggest that enhancing the inter-molecular vdW interactions while avoiding introducing the deeply buried HBs may be a promising strategy in future inhibitor optimization.
Collapse
Affiliation(s)
- Jian-Xin Shen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Wen-Wen Du
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yuan-Ling Xia
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Zhi-Bi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Ze-Fen Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Yun-Xin Fu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- Human Genetics Center and Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center, Houston, TX 77030, USA
- Correspondence: (Y.-X.F.); (S.-Q.L.)
| | - Shu-Qun Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China
- Correspondence: (Y.-X.F.); (S.-Q.L.)
| |
Collapse
|
33
|
Chen P, Tang G, Zhu C, Sun J, Wang X, Xiang M, Huang H, Wang W, Li L, Zhang ZM, Gao L, Yao SQ. 2-Ethynylbenzaldehyde-Based, Lysine-Targeting Irreversible Covalent Inhibitors for Protein Kinases and Nonkinases. J Am Chem Soc 2023; 145:3844-3849. [PMID: 36774655 DOI: 10.1021/jacs.2c11595] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Lysine-targeting irreversible covalent inhibitors have attracted growing interests in recent years, especially in the fields of kinase research. Despite encouraging progress, few chemistries are available to develop inhibitors that are exclusively lysine-targeting, selective, and cell-active. We report herein a 2-ethynylbenzaldehyde (EBA)-based, lysine-targeting strategy to generate potent and selective small-molecule inhibitors of ABL kinase by selectively targeting the conserved catalytic lysine in the enzyme. We showed the resulting compounds were cell-active, capable of covalently engaging endogenous ABL kinase in K562 cells with long-residence time and few off-targets. We further validated the generality of this strategy by developing EBA-based irreversible inhibitors against EGFR (a kinase) and Mcl-1 (a nonkinase) that covalently reacted with the catalytic and noncatalytic lysine within each target.
Collapse
Affiliation(s)
- Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Menghua Xiang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| |
Collapse
|
34
|
Ito K, Matsuda Y, Mine A, Miyairi K, Kikuchi Y, Konishi A. Bacterially Secretable Single-Chain Tandem Macrocyclic Peptides for High Affinity and Inhibitory Activity. Chembiochem 2023; 24:e202200599. [PMID: 36409290 DOI: 10.1002/cbic.202200599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/21/2022] [Indexed: 11/23/2022]
Abstract
The inhibition of protein-protein interactions (PPIs) is an effective approach for therapy. Owing to their large binding surface areas to target proteins, macrocyclic peptides are suitable molecules for PPI inhibition. In this study, we developed single-chain tandem macrocyclic peptides (STaMPtides) that inhibits the vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2). They were artificially designed to comprise two different VEGFR2-binding macrocyclic peptides linked in tandem by peptide linkers and secreted by Corynebacterium glutamicum. Most potent VEGFR2-inhibitory STaMPtides with length-optimized linkers exhibited >1000 times stronger inhibitory activity than their parental monomeric peptides, possibly due to the avidity effect of heterodimerization. Our approach of using STaMPtides for PPI inhibition may be used to inhibit other extracellular factors, such as growth factors and cytokines.
Collapse
Affiliation(s)
- Kenichiro Ito
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Yoshihiko Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Ayako Mine
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Kyohei Miyairi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Yoshimi Kikuchi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| | - Atsushi Konishi
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., 1-1, Suzuki-Cho, Kawasaki, 210-8681, Kanagawa, Japan
| |
Collapse
|
35
|
Dodd-O J, Acevedo-Jake AM, Azizogli AR, Mulligan VK, Kumar VA. How to Design Peptides. Methods Mol Biol 2023; 2597:187-216. [PMID: 36374423 PMCID: PMC11671136 DOI: 10.1007/978-1-0716-2835-5_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Novel design of proteins to target receptors for treatment or tissue augmentation has come to the fore owing to advancements in computing power, modeling frameworks, and translational successes. Shorter proteins, or peptides, can offer combinatorial synergies with dendrimer, polymer, or other peptide carriers for enhanced local signaling, which larger proteins may sterically hinder. Here, we present a generalized method for designing a novel peptide. We first show how to create a script protocol that can be used to iteratively optimize and screen novel peptide sequences for binding a target protein. We present a step-by-step introduction to utilizing file repositories, data bases, and the Rosetta software suite. RosettaScripts, an .xml interface that allows for sequential functions to be performed, is used to order the functions for repeatable performance. These strategies may lead to more groups venturing into computational design, which may result in synergies from artificial intelligence/machine learning (AI/ML) to phage display and screening. Importantly, the beginner is expected to be able to design their first peptide ligand and begin their journey in peptide drug discovery. Generally, these peptides potentially could be used to interact with any enzyme or receptor, for example, in the study of chemokines and their interactions with glycosoaminoglycans and their receptors.
Collapse
Affiliation(s)
- Joseph Dodd-O
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Amanda M Acevedo-Jake
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | | | | | - Vivek A Kumar
- York Center for Environmental Engineering and Science, New Jersey Institute of Technology, Newark, NJ, USA.
| |
Collapse
|
36
|
Wang YT, Liao JM, Lin WW, Li CC, Huang BC, Cheng TL, Chen TC. Structural insights into Nirmatrelvir (PF-07321332)-3C-like SARS-CoV-2 protease complexation: a ligand Gaussian accelerated molecular dynamics study. Phys Chem Chem Phys 2022; 24:22898-22904. [PMID: 36124909 DOI: 10.1039/d2cp02882d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coronavirus 3C-like protease (3CLpro) is found in SARS-CoV-2 virus, which causes COVID-19. 3CLpro controls virus replication and is a major target for target-based antiviral discovery. As reported by Pfizer, Nirmatrelvir (PF-07321332) is a competitive protein inhibitor and a clinical candidate for orally delivered medication. However, the binding mechanisms between Nirmatrelvir and 3CLpro complex structures remain unknown. This study incorporated ligand Gaussian accelerated molecular dynamics, the one-dimensional and two-dimensional potential of mean force, normal molecular dynamics, and Kramers' rate theory to determine the binding and dissociation rate constants (koff and kon) associated with the binding of the 3CLpro protein to the Nirmatrelvir inhibitor. The proposed approach addresses the challenges in designing small-molecule antiviral drugs.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Jun-Min Liao
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Wei Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan. .,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Ching Li
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bo-Cheng Huang
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.,Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tun-Chieh Chen
- Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Taiwan
| |
Collapse
|
37
|
Yang GJ, Liu YJ, Ding LJ, Tao F, Zhu MH, Shi ZY, Wen JM, Niu MY, Li X, Xu ZS, Qin WJ, Fei CJ, Chen J. A state-of-the-art review on LSD1 and its inhibitors in breast cancer: Molecular mechanisms and therapeutic significance. Front Pharmacol 2022; 13:989575. [PMID: 36188536 PMCID: PMC9523086 DOI: 10.3389/fphar.2022.989575] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer (BC) is a kind of malignant cancer in women, and it has become the most diagnosed cancer worldwide since 2020. Histone methylation is a common biological epigenetic modification mediating varieties of physiological and pathological processes. Lysine-specific demethylase 1 (LSD1), a first identified histone demethylase, mediates the removal of methyl groups from histones H3K4me1/2 and H3K9me1/2 and plays a crucial role in varieties of cancer progression. It is also specifically amplified in breast cancer and contributes to BC tumorigenesis and drug resistance via both demethylase and non-demethylase manners. This review will provide insight into the overview structure of LSD1, summarize its action mechanisms in BC, describe the therapeutic potential of LSD1 inhibitors in BC, and prospect the current opportunities and challenges of targeting LSD1 for BC therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Yan-Jun Liu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Fan Tao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ming-Hui Zhu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhen-Yuan Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Juan-Ming Wen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Meng-Yao Niu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiang Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhan-Song Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Wan-Jia Qin
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
38
|
Skolnick J, Zhou H. Implications of the Essential Role of Small Molecule Ligand Binding Pockets in Protein-Protein Interactions. J Phys Chem B 2022; 126:6853-6867. [PMID: 36044742 PMCID: PMC9484464 DOI: 10.1021/acs.jpcb.2c04525] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/18/2022] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions (PPIs) and protein-metabolite interactions play a key role in many biochemical processes, yet they are often viewed as being independent. However, the fact that small molecule drugs have been successful in inhibiting PPIs suggests a deeper relationship between protein pockets that bind small molecules and PPIs. We demonstrate that 2/3 of PPI interfaces, including antibody-epitope interfaces, contain at least one significant small molecule ligand binding pocket. In a representative library of 50 distinct protein-protein interactions involving hundreds of mutations, >75% of hot spot residues overlap with small molecule ligand binding pockets. Hence, ligand binding pockets play an essential role in PPIs. In representative cases, evolutionary unrelated monomers that are involved in different multimeric interactions yet share the same pocket are predicted to bind the same metabolites/drugs; these results are confirmed by examples in the PDB. Thus, the binding of a metabolite can shift the equilibrium between monomers and multimers. This implicit coupling of PPI equilibria, termed "metabolic entanglement", was successfully employed to suggest novel functional relationships among protein multimers that do not directly interact. Thus, the current work provides an approach to unify metabolomics and protein interactomics.
Collapse
Affiliation(s)
- Jeffrey Skolnick
- Center for the Study of Systems
Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, Georgia 30332, United States
| | - Hongyi Zhou
- Center for the Study of Systems
Biology, School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Drive, NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
39
|
Rhys GG, Cross JA, Dawson WM, Thompson HF, Shanmugaratnam S, Savery NJ, Dodding MP, Höcker B, Woolfson DN. De novo designed peptides for cellular delivery and subcellular localisation. Nat Chem Biol 2022; 18:999-1004. [PMID: 35836017 DOI: 10.1038/s41589-022-01076-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Increasingly, it is possible to design peptide and protein assemblies de novo from first principles or computationally. This approach provides new routes to functional synthetic polypeptides, including designs to target and bind proteins of interest. Much of this work has been developed in vitro. Therefore, a challenge is to deliver de novo polypeptides efficiently to sites of action within cells. Here we describe the design, characterisation, intracellular delivery, and subcellular localisation of a de novo synthetic peptide system. This system comprises a dual-function basic peptide, programmed both for cell penetration and target binding, and a complementary acidic peptide that can be fused to proteins of interest and introduced into cells using synthetic DNA. The designs are characterised in vitro using biophysical methods and X-ray crystallography. The utility of the system for delivery into mammalian cells and subcellular targeting is demonstrated by marking organelles and actively engaging functional protein complexes.
Collapse
Affiliation(s)
- Guto G Rhys
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Jessica A Cross
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Harry F Thompson
- School of Chemistry, University of Bristol, Bristol, UK.,School of Biochemistry, University of Bristol, Bristol, UK
| | | | - Nigel J Savery
- School of Biochemistry, University of Bristol, Bristol, UK.,BrisSynBio, University of Bristol, Bristol, UK
| | - Mark P Dodding
- School of Biochemistry, University of Bristol, Bristol, UK
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany.
| | - Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, UK. .,School of Biochemistry, University of Bristol, Bristol, UK. .,BrisSynBio, University of Bristol, Bristol, UK.
| |
Collapse
|
40
|
Li X, Sun B, Zhu J, Qian M, Chen Y. Construction of a Mass-Tagged Oligo Probe Set for Revealing Protein Ratiometric Relationship Associated with EGFR-HER2 Heterodimerization in Living Cells. Anal Chem 2022; 94:8838-8846. [PMID: 35709389 DOI: 10.1021/acs.analchem.1c04989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein dimerization, as the most common form of protein-protein interaction, can manifest more significant roles in cellular signaling than individual monomers. For example, excessive formation of EGFR-HER2 dimer has been implicated in cancer development and therapeutic resistance in addition to the overexpression of EGFR and HER2 proteins. Thus, quantitative evaluation of these heterodimers in living cells and revelation of their ratiometric relationship with protein monomers in dimerization may provide insights into clinical cancer management. To achieve this goal, the prerequisite is protein heterodimer quantification. Given the current lack of quantitative methods, we constructed a mass-tagged oligo nanoprobe set for quantification of EGFR-HER2 dimer in living cells. The mass-tagged oligo nanoprobe set contained two targeting probes (nucleic acid aptamers), a connector probe, a hairpin probe, and a photocleavable mass-tagged probe. Two distinct aptamers can recognize target protein monomers and initiate the subsequent hybridization cascade involving binding to the connector probe, formation of an initiator strand, opening of a hairpin probe, and ensuing hybridization with a photocleavable mass-tagged probe. Ultimately, the mass tag was released under ultraviolet light and then subjected to mass spectrometric analysis. In this way, the information regarding the interaction between two protein monomers was successfully converted to the quantitative signal of the mass tag. Using the assay, the expression level of EGFR-HER2 dimer and its relationship with individual protein monomers were determined in four breast cancer cell lines. We are among the first to obtain the absolute level of protein heterodimer, and this quantitative information may be vital in understanding the molecular basis of cancer.
Collapse
Affiliation(s)
- Xiaoxu Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang 222002, China
| | - Jianhua Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Moting Qian
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.,State Key Laboratory of Reproductive Medicine, Nanjing 210029, China.,Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Nanjing 211166, China
| |
Collapse
|
41
|
Liu J, Zhang Y. Intratumor microbiome in cancer progression: current developments, challenges and future trends. Biomark Res 2022; 10:37. [PMID: 35642013 PMCID: PMC9153132 DOI: 10.1186/s40364-022-00381-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/01/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer is a complicated disease attributed to multifactorial changes, which causes difficulties with treatment strategies. Various factors have been regarded as the main contributors, and infectious etiological factors have recently attracted interest. Several microbiomes contribute to carcinogenesis, cancer progression, and modulating cancer treatment by inducing cancerous epithelial cells and chronic inflammation. Most of our knowledge on the role of microbiota in tumor oncogenesis and clinical efficiency is associated with the intestinal microbiome. However, compelling evidence has also confirmed the contribution of the intratumor microbiome in cancer. Indeed, the findings of clinical tumor samples, animal models, and studies in vitro have revealed that many intratumor microbiomes promote tumorigenesis and immune evasion. In addition, the intratumor microbiome participates in regulating the immune response and even affects the outcomes of cancer treatment. This review summarizes the interplay between the intratumor microbiota and cancer, focusing on the contribution and mechanism of intratumor microbiota in cancer initiation, progression, and potential applications to cancer therapy.
Collapse
Affiliation(s)
- Jinyan Liu
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yi Zhang
- Biotherapy Center and Cancer Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China. .,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou, Henan, China.
| |
Collapse
|
42
|
In Silico Prediction of Plasmodium falciparum Cytoadherence Inhibitors That Disrupt Interaction between gC1qR-DBLβ12 Complex. Pharmaceuticals (Basel) 2022; 15:ph15060691. [PMID: 35745611 PMCID: PMC9230678 DOI: 10.3390/ph15060691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Malaria causes about half a million deaths per year, mainly in children below 5 years of age. Cytoadherence of Plasmodium falciparum infected erythrocytes in brain and placenta has been linked to severe malaria and malarial related deaths. Cytoadherence is mediated by binding of human receptor gC1qR to the DBLβ12 domain of a P. falciparum erythrocyte membrane protein family 1 (PfEMP1) protein. In the present work, molecular dynamic simulation was extensively studied for the gC1qR-DBLβ12 complex. The stabilized protein complex was used to study the protein–protein interface interactions and mapping of interactive amino acid residues as hotspot were performed. Prediction of inhibitors were performed by using virtual protein–protein inhibitor database Timbal screening of about 15,000 compounds. In silico mutagenesis studies, binding profile and protein ligand interaction fingerprinting were used to strengthen the screening of the potential inhibitors of gC1qR-DBLβ12 interface. Six compounds were selected and were further subjected to the MAIP analysis and ADMET studies. From these six compounds, the compounds 3, 5, and 6 were found to outperform on all screening criteria from the rest selected compounds. These compounds may provide novel drugs to treat and manage severe falciparum malaria. Additionally. the identified hotspots can be used in future for designing novel interventions for disruption of interface interactions, such as through peptides or vaccines. Futher in vitro and in vivo studies are required for the confirmation of these compounds as potential inhibitors of gC1qR-DBLβ12 interaction.
Collapse
|
43
|
Gludovacz E, Resch M, Schuetzenberger K, Petroczi K, Maresch D, Hofbauer S, Jilma B, Borth N, Boehm T. Glycosylation site Asn168 is important for slow in vivo clearance of recombinant human diamine oxidase heparin-binding motif mutants. Glycobiology 2022; 32:404-413. [PMID: 35088086 DOI: 10.1093/glycob/cwab122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Elevated plasma and tissues histamine concentrations can cause severe symptoms in mast cell activation syndrome, mastocytosis or anaphylaxis. Endogenous and recombinant human diamine oxidase (rhDAO) can rapidly and completely degrade histamine, and administration of rhDAO represents a promising new treatment approach for diseases with excess histamine release from activated mast cells. We recently generated heparin-binding motif mutants of rhDAO with considerably increased in vivo half-lives in rodents compared with the rapidly cleared wildtype protein. Herein, we characterize the role of an evolutionary recently added glycosylation site asparagine 168 in the in vivo clearance and the influence of an unusually solvent accessible free cysteine 123 on the oligomerization of diamine oxidase (DAO). Mutation of the unpaired cysteine 123 strongly reduced oligomerization without influence on enzymatic DAO activity and in vivo clearance. Recombinant hDAO produced in ExpiCHO-S™ cells showed a 15-fold reduction in the percentage of glycans with terminal sialic acid at Asn168 compared with Chinese hamster ovary (CHO)-K1 cells. Capping with sialic acid was also strongly reduced at the other glycosylation sites. The high abundance of terminal mannose and N-acetylglucosamine residues in the four glycans expressed in ExpiCHO-S™ cells compared with CHO-K1 cells resulted in rapid in vivo clearance. Mutation of Asn168 or sialidase treatment also significantly increased clearance. Intact N-glycans at Asn168 seem to protect DAO from rapid clearance in rodents. Full processing of all glycoforms is critical for preserving the improved in vivo half-life characteristics of the rhDAO heparin-binding motif mutants.
Collapse
Affiliation(s)
- Elisabeth Gludovacz
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Marlene Resch
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Kornelia Schuetzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Karin Petroczi
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Daniel Maresch
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.,Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Stefan Hofbauer
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Thomas Boehm
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| |
Collapse
|
44
|
Qvit N, Lin AJ, Elezaby A, Ostberg NP, Campos JC, Ferreira JCB, Mochly-Rosen D. A Selective Inhibitor of Cardiac Troponin I Phosphorylation by Delta Protein Kinase C (δPKC) as a Treatment for Ischemia-Reperfusion Injury. Pharmaceuticals (Basel) 2022; 15:271. [PMID: 35337069 PMCID: PMC8950820 DOI: 10.3390/ph15030271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Abstract
Myocardial infarction is the leading cause of cardiovascular mortality, with myocardial injury occurring during ischemia and subsequent reperfusion (IR). We previously showed that the inhibition of protein kinase C delta (δPKC) with a pan-inhibitor (δV1-1) mitigates myocardial injury and improves mitochondrial function in animal models of IR, and in humans with acute myocardial infarction, when treated at the time of opening of the occluded blood vessel, at reperfusion. Cardiac troponin I (cTnI), a key sarcomeric protein in cardiomyocyte contraction, is phosphorylated by δPKC during reperfusion. Here, we describe a rationally-designed, selective, high-affinity, eight amino acid peptide that inhibits cTnI's interaction with, and phosphorylation by, δPKC (ψTnI), and prevents tissue injury in a Langendorff model of myocardial infarction, ex vivo. Unexpectedly, we also found that this treatment attenuates IR-induced mitochondrial dysfunction. These data suggest that δPKC phosphorylation of cTnI is critical in IR injury, and that a cTnI/δPKC interaction inhibitor should be considered as a therapeutic target to reduce cardiac injury after myocardial infarction.
Collapse
Affiliation(s)
- Nir Qvit
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel
| | - Amanda J. Lin
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
| | - Aly Elezaby
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
| | - Nicolai P. Ostberg
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
| | - Juliane C. Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Julio C. B. Ferreira
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Daria Mochly-Rosen
- Center for Clinical Sciences Research, Department of Chemical & Systems Biology, Stanford University School of Medicine, 269 Campus Dr. Room 3145, Stanford, CA 94305, USA; (N.Q.); (A.J.L.); (A.E.); (N.P.O.); (J.C.B.F.)
| |
Collapse
|
45
|
Sharifi Tabar M, Francis H, Yeo D, Bailey CG, Rasko JEJ. Mapping oncogenic protein interactions for precision medicine. Int J Cancer 2022; 151:7-19. [PMID: 35113472 PMCID: PMC9306658 DOI: 10.1002/ijc.33954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/10/2022]
Abstract
Normal protein‐protein interactions (normPPIs) occur with high fidelity to regulate almost every physiological process. In cancer, this highly organised and precisely regulated network is disrupted, hijacked or reprogrammed resulting in oncogenic protein‐protein interactions (oncoPPIs). OncoPPIs, which can result from genomic alterations, are a hallmark of many types of cancers. Recent technological advances in the field of mass spectrometry (MS)‐based interactomics, structural biology and drug discovery have prompted scientists to identify and characterise oncoPPIs. Disruption of oncoPPI interfaces has become a major focus of drug discovery programs and has resulted in the use of PPI‐specific drugs clinically. However, due to several technical hurdles, studies to build a reference oncoPPI map for various cancer types have not been undertaken. Therefore, there is an urgent need for experimental workflows to overcome the existing challenges in studying oncoPPIs in various cancers and to build comprehensive reference maps. Here, we discuss the important hurdles for characterising oncoPPIs and propose a three‐phase multidisciplinary workflow to identify and characterise oncoPPIs. Systematic identification of cancer‐type‐specific oncogenic interactions will spur new opportunities for PPI‐focused drug discovery projects and precision medicine.
Collapse
Affiliation(s)
- Mehdi Sharifi Tabar
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Habib Francis
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - Dannel Yeo
- Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.,Faculty of Medicine & Health, The University of Sydney, Sydney, NSW, Australia.,Li Ka Shing Cell & Gene Therapy Program, The University of Sydney, Camperdown, NSW, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital, Sydney Local Health District, Camperdown, NSW, Australia
| |
Collapse
|
46
|
Genetically encoding latent bioreactive amino acids and the development of covalent protein drugs. Curr Opin Chem Biol 2021; 66:102106. [PMID: 34968810 DOI: 10.1016/j.cbpa.2021.102106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/07/2021] [Accepted: 11/25/2021] [Indexed: 12/11/2022]
Abstract
As natural proteins generally do not bind targets in a covalent mode, the therapeutic potential of covalent protein drugs remains largely unexplored. Recently, latent bioreactive amino acids have been incorporated into proteins through genetic code expansion, which selectively react with nearby natural residues via proximity-enabled reactivity, generating diverse covalent linkages for proteins in vitro and in cells. These new covalent linkages provide novel avenues for protein research and engineering. In addition, a general platform technology, proximity-enabled reactive therapeutics (PERx), has been established for the development of covalent protein drugs. The first covalent protein drug demonstrates advantageous features in cancer immunotherapy in mice. Selective introduction of covalent bonds into proteins will advance biological studies, synthetic biology, and biotherapeutics with the power of biocompatible covalent chemistries.
Collapse
|
47
|
Yan Y, Yeon SY, Qian C, You S, Yang W. On the Road to Accurate Protein Biomarkers in Prostate Cancer Diagnosis and Prognosis: Current Status and Future Advances. Int J Mol Sci 2021; 22:13537. [PMID: 34948334 PMCID: PMC8703658 DOI: 10.3390/ijms222413537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PC) is a leading cause of morbidity and mortality among men worldwide. Molecular biomarkers work in conjunction with existing clinicopathologic tools to help physicians decide who to biopsy, re-biopsy, treat, or re-treat. The past decade has witnessed the commercialization of multiple PC protein biomarkers with improved performance, remarkable progress in proteomic technologies for global discovery and targeted validation of novel protein biomarkers from clinical specimens, and the emergence of novel, promising PC protein biomarkers. In this review, we summarize these advances and discuss the challenges and potential solutions for identifying and validating clinically useful protein biomarkers in PC diagnosis and prognosis. The identification of multi-protein biomarkers with high sensitivity and specificity, as well as their integration with clinicopathologic parameters, imaging, and other molecular biomarkers, bodes well for optimal personalized management of PC patients.
Collapse
Affiliation(s)
- Yiwu Yan
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
| | - Su Yeon Yeon
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
| | - Chen Qian
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Wei Yang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (Y.Y.); (S.Y.Y.); (C.Q.); (S.Y.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
48
|
Yang GJ, Wu J, Miao L, Zhu MH, Zhou QJ, Lu XJ, Lu JF, Leung CH, Ma DL, Chen J. Pharmacological inhibition of KDM5A for cancer treatment. Eur J Med Chem 2021; 226:113855. [PMID: 34555614 DOI: 10.1016/j.ejmech.2021.113855] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Lysine-specific demethylase 5A (KDM5A, also named RBP2 or JARID1A) is a demethylase that can remove methyl groups from histones H3K4me1/2/3. It is aberrantly expressed in many cancers, where it impedes differentiation and contributes to cancer cell proliferation, cell metastasis and invasiveness, drug resistance, and is associated with poor prognosis. Pharmacological inhibition of KDM5A has been reported to significantly attenuate tumor progression in vitro and in vivo in a range of solid tumors and acute myeloid leukemia. This review will present the structural aspects of KDM5A, its role in carcinogenesis, a comparison of currently available approaches for screening KDM5A inhibitors, a classification of KDM5A inhibitors, and its potential as a drug target in cancer therapy.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China
| | - Liang Miao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Ming-Hui Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Xin-Jiang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, 999078, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, 999077, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
49
|
Truong J, George A, Holien JK. Analysis of physicochemical properties of protein-protein interaction modulators suggests stronger alignment with the "rule of five". RSC Med Chem 2021; 12:1731-1749. [PMID: 34778774 DOI: 10.1039/d1md00213a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the important roles played by protein-protein interactions (PPIs) in disease, they have been long considered as 'undruggable'. However, recent advances have suggested that PPIs are druggable but may not follow conventional rules of 'drug ability'. Here we explore which physicochemical parameters are essential for a PPI modulator to be a clinical drug by analysing the physicochemical properties of small-molecule PPI modulators in the market, in clinical trials, and published. Our analysis reveals that those compounds currently on the market have a larger range of values for most of the physicochemical parameters, whereas those in clinical trials fit much more stringently to standard drug-like parameters. This observation was particularly true for molecular weight, clog P and topological polar surface area, where aside from a few outliers, most of the compounds in clinical trials fit within standard drug-like parameters. This implies that the newer PPI modulators are more drug-like than those currently on the market, suggesting that designing new PPI-specific screening libraries should remain within standard drug-like parameters in order to obtain a clinical candidate. Taken together, our analysis has important implications for designing future drug discovery campaigns aimed at targeting PPIs.
Collapse
Affiliation(s)
- Jia Truong
- STEM College, RMIT University Vic Australia
| | | | | |
Collapse
|
50
|
Arshad N, Abbas N, Perveen F, Mirza B, Almuhaini AM, Alkahtani S. Molecular docking analysis and spectroscopic investigations of zinc(II), nickel(II) N-phthaloyl-β-alanine complexes for DNA binding: Evaluation of antibacterial and antitumor activities. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|