1
|
Wang Z, Cheng S, Wei J, Hu J, Li F, Yang W. Evolving role of deubiquitinating enzymes in oral cancer (Review). Oncol Lett 2025; 30:354. [PMID: 40438866 PMCID: PMC12117358 DOI: 10.3892/ol.2025.15100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Abstract
Oral cancer affects the mucosal epithelium located within the oral cavity. The prevalence of oral cancer is projected to increase by ~40% by 2040, leading to a subsequent rise in mortality rates. Oral carcinogenesis is complex and multifactorial and numerous signaling pathways are involved in disease development. Deubiquitination is commonly involved in the post-translational process of proteins, and serves a key role in tumorigenesis and cancer development. The present review aims to discuss the function of deubiquitinating enzymes (DUBs) in oral cancer, with a particular focus on oral squamous cell carcinoma (OSCC). The present review also aims to investigate the functional mechanisms, tumorigenic regulation and therapeutic targets of DUBs in OSCC, which may potentially provide a novel theoretical basis for the utilization of DUBs as molecular targets in the treatment of OSCC in the future.
Collapse
Affiliation(s)
- Zidi Wang
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Siyuan Cheng
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Jianhui Wei
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Jiandong Hu
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| | - Fenge Li
- Department of Oncology, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
- Core Laboratory, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
- Cancer Diagnosis and Treatment Center, Tianjin Union Medical Cancer (The First Affiliated Hospital of Nankai University), Tianjin 300121, China
| | - Wenhua Yang
- Department of Dentistry, Tianjin Beichen Hospital, Tianjin 300400, P.R. China
| |
Collapse
|
2
|
Madhukar G, Haque MA, Khan S, Kim JJ, Danishuddin. E3 ubiquitin ligases and their therapeutic potential in disease Management. Biochem Pharmacol 2025; 236:116875. [PMID: 40120724 DOI: 10.1016/j.bcp.2025.116875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/05/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Ubiquitination is a vital post-translational modification that regulates protein stability and various cellular processes through the addition of ubiquitin molecules. Central to this process are E3 ubiquitin ligases, which determine the specificity of ubiquitination by coordinating the attachment of ubiquitin to target proteins, influencing their degradation, localization, and activity. E3 ubiquitin ligases are involved in numerous cellular pathways, including DNA repair, cell proliferation, and immune responses. Dysregulation of E3 ubiquitin ligases is often associated with cancer, contributing to tumor progression and resistance to therapies. The development of targeted protein degraders, such as proteolysis-targeting chimeras (PROTACs), represents a significant advancement in drug discovery, leveraging the specificity of E3 ubiquitin ligases to selectively eliminate pathogenic proteins. However, challenges remain in translating this knowledge into effective therapies, including issues related to tissue-specific targeting and off-target effects. The limitations also include a limited understanding of ligase-substrate interactions that includes both the identification of novel E3 ligases and their substrates, as well as understanding the dynamic, context-dependent nature of these interactions, which can vary across tissue types or disease states This review emphasizes the therapeutic potential of E3 ubiquitin ligases, exploring their diverse roles in disease, their contribution to targeted degradation strategies while highlighting the need for further research to overcome current limitations and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Geet Madhukar
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Shawez Khan
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Sun Q, Wang H, Xie J, Wang L, Mu J, Li J, Ren Y, Lai L. Computer-Aided Drug Discovery for Undruggable Targets. Chem Rev 2025. [PMID: 40423592 DOI: 10.1021/acs.chemrev.4c00969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Undruggable targets are those of therapeutical significance but challenging for conventional drug design approaches. Such targets often exhibit unique features, including highly dynamic structures, a lack of well-defined ligand-binding pockets, the presence of highly conserved active sites, and functional modulation by protein-protein interactions. Recent advances in computational simulations and artificial intelligence have revolutionized the drug design landscape, giving rise to innovative strategies for overcoming these obstacles. In this review, we highlight the latest progress in computational approaches for drug design against undruggable targets, present several successful case studies, and discuss remaining challenges and future directions. Special emphasis is placed on four primary target categories: intrinsically disordered proteins, protein allosteric regulation, protein-protein interactions, and protein degradation, along with discussion of emerging target types. We also examine how AI-driven methodologies have transformed the field, from applications in protein-ligand complex structure prediction and virtual screening to de novo ligand generation for undruggable targets. Integration of computational methods with experimental techniques is expected to bring further breakthroughs to overcome the hurdles of undruggable targets. As the field continues to evolve, these advancements hold great promise to expand the druggable space, offering new therapeutic opportunities for previously untreatable diseases.
Collapse
Affiliation(s)
- Qi Sun
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
| | - Hanping Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Juan Xie
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Liying Wang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junxi Mu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junren Li
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yuhao Ren
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luhua Lai
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan 610213, China
- Research Unit of Drug Design Method, Chinese Academy of Medical Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
4
|
Santana LADM, Floresta LG, Gopalsamy RG, Brasileiro BF, Trento CL, Borges LP. AlphaFold: An emerging tool for drug development in oral cancer. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025:102414. [PMID: 40403968 DOI: 10.1016/j.jormas.2025.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Affiliation(s)
| | - Lara Góis Floresta
- Department of Dentistry, Tiradentes University (UNIT), Aracaju, SE, Brazil
| | - Rajiv Gandhi Gopalsamy
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Kochi, Kerala, India
| | - Bernardo Ferreira Brasileiro
- Department of Dentistry, Federal University of Sergipe (UFS), Aracaju, SE, Brazil; Oral and Maxillofacial Surgeon, Private Practice, Southwest Florida Oral and Facial Surgery, Fort Myers, Florida, USA
| | | | - Lysandro Pinto Borges
- Department of Pharmacy, Federal University of Sergipe (UFS), São Cristóvão, SE, Brazil
| |
Collapse
|
5
|
Lu Y, Ji T, Ye Z, Yan J, Wang C, Chen J, Jin Z, Zhu Y, Cai X, Wang Y. Gelsolin's Protective Role in MASH through F-Actin Regulation and P53 Degradation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416489. [PMID: 40390546 DOI: 10.1002/advs.202416489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/07/2025] [Indexed: 05/21/2025]
Abstract
Hepatic steatosis, inflammation, and fibrosis are the hallmarks of metabolic-associated steatohepatitis (MASH), a serious health risk. This study emphasizes how important gelsolin (GSN) is to the pathophysiology of MASH. The results show that GSN is significantly overexpressed in both MASH patients and animal models. Under MASH models, Gsn knockout (KO) (Gsn-/-) mice demonstrate exacerbated hepatic steatosis, inflammation, and fibrosis, underscoring GSN's protective function. Remarkably, adeno-associated virus (AAV)-mediated restoration of Gsn substantially alleviates these pathological features, indicating its therapeutic potential. Mechanistically, the absence of GSN leads to increased F-actin polymerization and heightened activation of Yes-associated protein (YAP), thereby intensifying the inflammatory response. Subsequently, the experimental data identify a co-expression relationship between GSN and MDM2, and GSN is found to facilitate the ubiquitination and subsequent degradation of P53 via MDM2, a crucial process for liver protection. These findings imply that GSN is essential for controlling important molecular pathways in MASH by encouraging P53's MDM2-mediated degradation, which lessens the severity of hepatic steatosis. The research offers important new understandings of the molecular mechanisms of MASH and suggests GSN as a viable therapeutic target to reduce liver damage and preserve hepatic homeostasis.
Collapse
Affiliation(s)
- Yiwei Lu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Chao Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Jiachen Chen
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Ziyang Jin
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yongji Zhu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Hangzhou, 310016, China
- Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
| |
Collapse
|
6
|
Spencer KR, King GG. MDM2 as a therapeutic target in advanced biliary tract cancers. Oncologist 2025; 30:oyaf094. [PMID: 40421959 PMCID: PMC12107537 DOI: 10.1093/oncolo/oyaf094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 04/08/2025] [Indexed: 05/28/2025] Open
Abstract
Biliary tract cancers (BTCs) are a heterogeneous group of tumors arising from cells in the bile ducts and gallbladder. The 5-year overall survival rate for all BTC stages combined is ~20%, and treatment options for patients with unresectable disease are limited, leaving an unmet clinical need. In recent years, significant efforts have been made to refine and implement targeted therapeutic approaches for patients with BTC. The adoption of early and comprehensive molecular profiling is crucial to identifying patients who may be candidates for effective targeted therapies. Characterization of the molecular landscape of BTCs led to the identification of murine double minute 2 homolog gene (MDM2) amplification across all BTC subtypes. The MDM2 protein is a critical negative regulator of p53 stabilization and activity that is an emerging actionable biomarker in BTCs. There are multiple therapeutic approaches that aim to target MDM2 activity, thereby restoring the intrinsic tumor suppressor function of p53 and halting oncogenesis. However, these have been limited by our evolving understanding of the role of MDM2 in BTC pathogenesis. Here, we offer a review of the current understanding of the role of MDM2 in BTC biology and its therapeutic implications.
Collapse
Affiliation(s)
- Kristen R Spencer
- Department of Medicine at NYU Grossman School of Medicine, NYU Langone Perlmutter Cancer Center, New York, NY 10016, United States
| | - Gentry G King
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA 98109, United States
| |
Collapse
|
7
|
Guo Q, Qin H, Chen Z, Zhang W, Zheng L, Qin T. Key roles of ubiquitination in regulating critical regulators of cancer stem cell functionality. Genes Dis 2025; 12:101311. [PMID: 40034124 PMCID: PMC11875185 DOI: 10.1016/j.gendis.2024.101311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 03/07/2024] [Indexed: 03/05/2025] Open
Abstract
The ubiquitin (Ub) system, a ubiquitous presence across eukaryotes, plays a crucial role in the precise orchestration of diverse cellular protein processes. From steering cellular signaling pathways and orchestrating cell cycle progression to guiding receptor trafficking and modulating immune responses, this process plays a crucial role in regulating various biological functions. The dysregulation of Ub-mediated signaling pathways in prevalent cancers ushers in a spectrum of clinical outcomes ranging from tumorigenesis and metastasis to recurrence and drug resistance. Ubiquitination, a linchpin process mediated by Ub, assumes a central mantle in molding cellular signaling dynamics. It navigates transitions in biological cues and ultimately shapes the destiny of proteins. Recent years have witnessed an upsurge in the momentum surrounding the development of protein-based therapeutics aimed at targeting the Ub system under the sway of cancer stem cells. The article provides a comprehensive overview of the ongoing in-depth discussions regarding the regulation of the Ub system and its impact on the development of cancer stem cells. Amidst the tapestry of insights, the article delves into the expansive roles of E3 Ub ligases, deubiquitinases, and transcription factors entwined with cancer stem cells. Furthermore, the spotlight turns to the interplay with pivotal signaling pathways the Notch, Hedgehog, Wnt/β-catenin, and Hippo-YAP signaling pathways all play crucial roles in the regulation of cancer stem cells followed by the specific modulation of Ub-proteasome.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Hai Qin
- Department of Clinical Laboratory, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, Guizhou 550014, China
| | - Zelong Chen
- The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Artificial Intelligence and IoT Smart Medical Engineering Research Center of Henan Province, Zhengzhou, Henan 450008, China
| | - Wenzhou Zhang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Tingting Qin
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| |
Collapse
|
8
|
Vosselman T, Sahin C, Lane DP, Arsenian Henriksson M, Landreh M, Lama D. Conformational modulation of intrinsically disordered transactivation domains for cancer therapy. PNAS NEXUS 2025; 4:pgaf152. [PMID: 40406608 PMCID: PMC12096364 DOI: 10.1093/pnasnexus/pgaf152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 04/24/2025] [Indexed: 05/26/2025]
Abstract
Intrinsically disordered proteins are implicated in many diseases, but their overrepresentation among transcription factors, whose deregulation can cause disproportionate expression of oncogenes, suggests an important role in cancer. Targeting disordered transcription factors for therapy is considered challenging, as they undergo dynamic transitions and exist as an ensemble of interconverting states. This enables them to interact with multiple downstream partners, often through their transactivation domains (TADs) by the mechanisms of conformational selection, folding-upon-binding, or formation of "fuzzy" complexes. The TAD interfaces, despite falling outside of what is considered "classical" binding pockets, can be conformationally modulated to interfere with their target recruitment and hence represent potentially druggable sites. Here, we discuss the structure-activity relationship of TADs from p53, c-MYC, and the androgen receptor, and the progresses made in modulating their interactions with small molecules. These recent advances highlight the potential of targeting these so far "undruggable" proteins for cancer therapy.
Collapse
Affiliation(s)
- Thibault Vosselman
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 65 Stockholm, Sweden
- Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 65 Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 65 Stockholm, Sweden
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, SE-751 24 Uppsala, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-171 65 Stockholm, Sweden
| |
Collapse
|
9
|
Kim D, Nam HJ, Baek SH. Ubiquitination of transcription factors in cancer: unveiling therapeutic potential. Mol Oncol 2025. [PMID: 40227962 DOI: 10.1002/1878-0261.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
Transcription factors, pivotal in gene expression regulation, are essential in cancer progression. Their function is meticulously regulated by post-translational modifications, including ubiquitination. This process, which marks proteins for degradation, can either enhance or inhibit the function of transcription factors, contingent on the context. In cancers, dysregulated ubiquitination of transcription factors contributes to the hallmark of uncontrolled growth and survival of tumors. For example, tumor suppressors such as p53 might be degraded prematurely due to abnormal ubiquitination, causing genomic instability. On the other hand, oncogenic transcription factors may gain stability via ubiquitination, thus facilitating tumorigenesis. Targeting the ubiquitin-proteasome system (UPS) therefore could be a viable therapeutic approach in cancer. Emerging treatments aim to block the ubiquitination of oncogenic transcription factors or to stabilize tumor suppressors. This review underscores the critical impact of transcription factor-altered ubiquitination on cancer progression. Additionally, it outlines innovative therapeutic approaches that involve inhibitors or drugs directed at specific ubiquitin E3 ligases and deubiquitinases (DUBs) that regulate transcription factor activity.
Collapse
Affiliation(s)
- Dongha Kim
- Department of Anatomy, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Jin Nam
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Korea
- Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon, Korea
| | - Sung Hee Baek
- Creative Research Initiatives Center for Epigenetic Code and Diseases, School of Biological Sciences, Seoul National University, Korea
| |
Collapse
|
10
|
Huang Y, Li W, Zhou Y, Bai J, Li N, Su Z, Cheng X. Strategies for p53 Activation and Targeted Inhibitors of the p53-Mdm2/MdmX Interaction. Cells 2025; 14:583. [PMID: 40277907 PMCID: PMC12025665 DOI: 10.3390/cells14080583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/06/2025] [Accepted: 04/10/2025] [Indexed: 04/26/2025] Open
Abstract
p53 is a tumor suppressor gene and is regarded as one of the most crucial genes in protecting humans against cancer. The protein Mdm2 and its homolog MdmX serve as negative regulators of p53. In nearly half of cancer cells, there is an overexpression of Mdm2 and MdmX, which inhibit p53 activity. Furthermore, Mdm2's E3 ubiquitin ligase activity promotes the ubiquitination and degradation of p53. Therefore, blocking the interaction between p53 and Mdm2/MdmX to prevent the degradation of wild-type p53 is an effective strategy for inhibiting tumor growth. This paper primarily discusses the regulatory relationship between p53, MdmX and Mdm2, and provides a review of the current status of p53-Mdm2/MdmX inhibitors. It aims to offer a theoretical foundation and research direction for the future discovery and design of targeted inhibitors against the p53-Mdm2/MdmX interaction.
Collapse
Affiliation(s)
- Ye Huang
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Wang Li
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Yuke Zhou
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Jinping Bai
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Ning Li
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| | - Zhengding Su
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi 830017, China;
| | - Xiyao Cheng
- Institute of Modern Fermentation Engineering and Future Foods, School of Light Industry and Food Engineering, Guangxi University, No. 100, Daxuedong Road, Nanning 530004, China; (Y.H.); (W.L.); (Y.Z.); (J.B.); (N.L.)
| |
Collapse
|
11
|
Liang HY, Luo RZ, Deng R, Chen SL, Liu X, Yang X, Wei LJ, Wei ZQ, Wu LY, Shen HM, Yun JP, Liu LL. Glycogen stores mediated by the p53-GYS1 feedback circuit engenders platinum resistance in ovarian clear cell carcinoma. Cell Death Differ 2025:10.1038/s41418-025-01500-z. [PMID: 40210982 DOI: 10.1038/s41418-025-01500-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/12/2025] Open
Abstract
Ovarian cancer (OC) is a highly fatal and refractory malignancy affecting women, and platinum resistance remains a major clinical dilemma. Compared with other OC subtypes, ovarian clear cell carcinoma (OCCC) frequently exhibits increased platinum refractoriness, accompanied by increased glycogen levels, which promotes clear-cell morphology, and wild-type p53. However, the roles of these factors in platinum resistance of OCCC are unclear. Here, we investigated whether glycogen promotes OCCC resistance to platinum agents and reported that GYS1, a rate-limiting enzyme in glycogen synthesis, is clinically associated with poor prognosis and chemoresistance in OCCC. Mechanistically, p53 promotes GYS1 breakdown via the upregulation of RNF144a, whereas GYS1 induces the reversal of p53 ubiquitination and degradation by competitively binding to USP14, forming a positive feedback circuit. Under platinum stress, the accumulated glycogen is mobilized by the p53/GYS1 feedback circuit, which fuels energetic NADPH production, resulting in resistance to disulfidptosis and increased platinum resistance in OCCC. Collectively, our findings identify glycogen as a contributor to OCCC platinum resistance and elucidate the underlying mechanisms, highlighting a crucial p53/GYS1 positive feedback loop.
Collapse
Affiliation(s)
- Hao-Yu Liang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Rong-Zhen Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Ru Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Shi-Lu Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xuan Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Xia Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Li-Jun Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Zong-Qiang Wei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Li-Yan Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Hui-Min Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, P. R. China.
| | - Jing-Ping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| | - Li-Li Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
12
|
Chutake YK, Mayo MF, Dumont N, Filiatrault J, Breitkopf SB, Cho P, Chen D, Dixit VS, Proctor WR, Kuhn EW, Bollinger Martinez S, McDonald AA, Qi J, Hu KN, Karnik R, Growney JD, Sharma K, Schalm SS, Gollerkeri AM, Mainolfi N, Williams JA, Weiss MM. KT-253, a Novel MDM2 Degrader and p53 Stabilizer, Has Superior Potency and Efficacy than MDM2 Small-Molecule Inhibitors. Mol Cancer Ther 2025; 24:497-510. [PMID: 39648478 PMCID: PMC11962396 DOI: 10.1158/1535-7163.mct-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Murine double minute 2 (MDM2) is an E3 ligase that inhibits the tumor suppressor protein p53. Clinical trials employing small-molecule MDM2/p53 interaction inhibitors have demonstrated limited activity, underscoring an unmet need for a better approach to target MDM2. KT-253 is a highly potent and selective heterobifunctional degrader that overcomes the MDM2 feedback loop seen with small-molecule MDM2/p53 interaction inhibitors and induces apoptosis in a range of hematologic and solid tumor lines. A single intravenous dose of KT-253 triggered rapid apoptosis and sustained tumor regression in p53 wild-type acute myeloid leukemia and acute lymphoblastic leukemia xenograft models. Additionally, a single intravenous dose of KT-253 in combination with standard-of-care venetoclax overcame venetoclax resistance in an acute myeloid leukemia xenograft model. The data herein define the therapeutic potential of KT-253 and support its clinical development in a range of hematologic and solid p53 wild-type malignancies, as a monotherapy and in combination with standard-of-care agents.
Collapse
Affiliation(s)
- Yogesh K. Chutake
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Michele F. Mayo
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Nancy Dumont
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Jessica Filiatrault
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | | | - Patricia Cho
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Dapeng Chen
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Vaishali S. Dixit
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - William R. Proctor
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Eric W. Kuhn
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | | | - Alice A. McDonald
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Jianfeng Qi
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Kan-Nian Hu
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Rahul Karnik
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Joseph D. Growney
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Kirti Sharma
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Stefanie S. Schalm
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | | | - Nello Mainolfi
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Juliet A. Williams
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| | - Matthew M. Weiss
- Kymera Therapeutics, Inc., 500 North Beacon Street, Watertown, Massachusetts
| |
Collapse
|
13
|
Shaw S, Jiang W, Rush J, Dumont N, Kim J, Singh R, Skepner A, Khodier C, Raffier C, Murphy Z, Yan N, Schluter C, Yu X, Szuchnicki M, Sathappa M, Kahn J, Sperling AS, Wagner F, McKinney DC, Gould AE, Garvie CW, Miller PG. Identification of small molecule inhibitors of PPM1D using an integrated drug discovery platform. iScience 2025; 28:112069. [PMID: 40124519 PMCID: PMC11930361 DOI: 10.1016/j.isci.2025.112069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/23/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
PPM1D is a serine/threonine phosphatase recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses p53. Though PPM1D inhibition impairs tumor growth in cancer models and is the subject of multiple drug discovery efforts, no PPM1D inhibitors with clinical potential have been identified. We screened 600,000 compounds in a displacement assay and generated a hit series with nanomolar activity. We optimized our leads using internally developed assays to interrogate PPM1D, p53, and the DDR and defined important structure-activity relationships. Using an in vivo bioluminescent readout of p53 activation, we compared different DDR and p53 modulators and showed that despite having a distinct chemical structure, our lead compound had comparable in vivo activity to established PPM1D inhibitors. Our approach yielded multiple allosteric inhibitors of PPM1D, deepened our understanding of PPM1D as a drug target, and is highly amenable to studying other modulators of the DDR and p53.
Collapse
Affiliation(s)
- Subrata Shaw
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Wei Jiang
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jason Rush
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Nancy Dumont
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - John Kim
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Ritu Singh
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Adam Skepner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Carol Khodier
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Cerise Raffier
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Zachary Murphy
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Ni Yan
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Krantz Family Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Cameron Schluter
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Krantz Family Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xiao Yu
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Mateusz Szuchnicki
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Murugappan Sathappa
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Josephine Kahn
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Adam S. Sperling
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Florence Wagner
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - David C. McKinney
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Alexandra E. Gould
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Colin W. Garvie
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Peter G. Miller
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
- Krantz Family Center for Cancer Research and Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
14
|
Zhang J, Wang X, Wang J, Wen X, Chen S, Wang T, Wang B, Hu W. ACSS3 promotes the tumorigenesis of non-small cell lung cancer via suppressing p53-mediated ferroptosis. Exp Cell Res 2025; 446:114438. [PMID: 39961466 DOI: 10.1016/j.yexcr.2025.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/22/2024] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
Non-small cell lung cancer (NSCLC) is a subtype of the most frequently diagnosed cancer, causing a considerable number of deaths globally. Mitochondrial dysfunction was found to promote malignant progression. However, the underlying mechanism remains unclear. Acyl-CoA synthetase short chain family member 3 (ACSS3) is mainly located in mitochondria, which abnormal regulation is usually accompanied by the occurrence and development of tumors. In this study, we found that the expression level of ACSS3 was correlated with poor prognosis in patients with NSCLC. Moreover, we demonstrated that ACSS3 knockdown led to mitochondrial contraction, increased reactive oxygen species levels, decreased mitochondrial membrane potential, and subsequently inhibited tumor growth of NSCLC cells in vitro and in vivo, whereas its overexpression promoted these processes. Mechanistically, ACSS3 knockdown promoted ferroptosis through transcriptional control of SLC7A11 and GPX4. Further investigations indicated that ACSS3 loss inhibited the SLC7A11/GPX4 axis by enhancing p53 stability. Taken together, our data confirmed that ACSS3 promotes NSCLC tumorigenesis through inhibiting the p53-mediated ferroptosis. Hence, ACSS3 emerges as a promising therapeutic target for NSCLC treatment.
Collapse
Affiliation(s)
- Jing Zhang
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Medical College Road No.1, Chongqing, 400016, PR China
| | - Xiuhong Wang
- Department of Pathology, China-Japan Friendship Hospital, Yinghua East Road No. 2, BeiJing, 100029, PR China
| | - Jingyi Wang
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Medical College Road No.1, Chongqing, 400016, PR China
| | - Xiao Wen
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Medical College Road No.1, Chongqing, 400016, PR China
| | - Siyuan Chen
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Medical College Road No.1, Chongqing, 400016, PR China
| | - Tao Wang
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Medical College Road No.1, Chongqing, 400016, PR China
| | - Bei Wang
- Department of Pathology, China-Japan Friendship Hospital, Yinghua East Road No. 2, BeiJing, 100029, PR China.
| | - Wenquan Hu
- Center for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Medical College Road No.1, Chongqing, 400016, PR China.
| |
Collapse
|
15
|
Miller KN, Li B, Pierce-Hoffman HR, Patel S, Lei X, Rajesh A, Teneche MG, Havas AP, Gandhi A, Macip CC, Lyu J, Victorelli SG, Woo SH, Lagnado AB, LaPorta MA, Liu T, Dasgupta N, Li S, Davis A, Korotkov A, Hultenius E, Gao Z, Altman Y, Porritt RA, Garcia G, Mogler C, Seluanov A, Gorbunova V, Kaech SM, Tian X, Dou Z, Chen C, Passos JF, Adams PD. p53 enhances DNA repair and suppresses cytoplasmic chromatin fragments and inflammation in senescent cells. Nat Commun 2025; 16:2229. [PMID: 40044657 PMCID: PMC11882782 DOI: 10.1038/s41467-025-57229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/13/2025] [Indexed: 03/09/2025] Open
Abstract
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Here we report a mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit involving p53 and cytoplasmic chromatin fragments (CCF) that are enriched for DNA damage signaling marker γH2A.X. We show that p53 suppresses CCF accumulation and its downstream inflammatory phenotype. p53 activation suppresses CCF formation linked to enhanced DNA repair and genome integrity. Activation of p53 in aged mice by pharmacological inhibition of MDM2 reverses transcriptomic signatures of aging and age-associated accumulation of monocytes and macrophages in liver. Mitochondrial ablation in senescent cells suppresses CCF formation and activates p53 in an ATM-dependent manner, suggesting that mitochondria-dependent formation of γH2A.X + CCF dampens nuclear DNA damage signaling and p53 activity. These data provide evidence for a mitochondria-regulated p53 signaling circuit in senescent cells that controls DNA repair, genome integrity, and senescence- and age-associated inflammation, with relevance to therapeutic targeting of age-associated disease.
Collapse
Affiliation(s)
- Karl N Miller
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA.
| | - Brightany Li
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | | | - Shreeya Patel
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Xue Lei
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Adarsh Rajesh
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Marcos G Teneche
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Aaron P Havas
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Armin Gandhi
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Carolina Cano Macip
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Jun Lyu
- Laboratory of Biochemistry and Molecular Biology; National Cancer Institute; National Institutes of Health, Bethesda, MD, USA
| | - Stella G Victorelli
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Seung-Hwa Woo
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Anthony B Lagnado
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Michael A LaPorta
- NOMIS Center for Immunobiology and Microbial Pathogenesis; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tianhui Liu
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Nirmalya Dasgupta
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
- Center for Cancer Therapy; La Jolla Institute of Immunology, La Jolla, CA, USA
| | - Sha Li
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Andrew Davis
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Anatoly Korotkov
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Erik Hultenius
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Zichen Gao
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Yoav Altman
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Rebecca A Porritt
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Guillermina Garcia
- Shared Resources; NCI-designated Cancer Center; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Carolin Mogler
- Institute of Pathology; School of Medicine and Health; Technical University Munich (TUM), Munich, Germany
| | - Andrei Seluanov
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine; University of Rochester, Rochester, NY, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis; Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xiao Tian
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Department of Medicine; Massachusetts General Research Institute, Boston, MA, USA
- Harvard Stem Cell Institute; Harvard University, Cambridge, MA, USA
| | - Chongyi Chen
- Laboratory of Biochemistry and Molecular Biology; National Cancer Institute; National Institutes of Health, Bethesda, MD, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering; Mayo Clinic, Rochester, MN, USA
- Robert and Arlene Kogod Center on Aging; Mayo Clinic, Rochester, MN, USA
| | - Peter D Adams
- Cancer Genome and Epigenetics Program; Sanford Burnham Prebys MDI, La Jolla, CA, USA.
| |
Collapse
|
16
|
Li Y, Liu Z, Wang P, Gu X, Ling F, Zhong J, Yin D, Liu R, Yao X, Huang C. Bioengineered Extracellular Vesicles Delivering siMDM2 Sensitize Oxaliplatin Therapy Efficacy in Colorectal Cancer. Adv Healthc Mater 2025; 14:e2403531. [PMID: 39440640 DOI: 10.1002/adhm.202403531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Oxaliplatin (OXA) is the first-line drug for the treatment of colorectal cancer (CRC), and susceptibility to drug resistance affects patient prognosis. However, the exact underlying mechanisms remain unclear. Platinum-acquired resistance in CRC is a continuous transition process; though, current research has mainly focused on the end state of drug resistance, and the early events of drug resistance have been ignored. In this study, single-cell transcriptome sequencing is combined with a dynamic network biomarker (DNB), and found that the functional inhibition of the mitochondrial electron transport chain complex I occur early in the development of attained resistance to OXA in CRC cells, as evidenced by a decrease in the levels of subunit proteins, primarily NDUFB8. Specifically, the mouse double minute 2 homologue (MDM2) mediates the ubiquitination and degradation of NDUFB8, reducing intracellular reactive oxygen species (ROS) generation under chemotherapeutic stress, consequently contributing to drug resistance. Based on this, the study constructs engineered extracellular vesicles carrying siMDM2 by electroporation and validates the application of EV-siMDM2 to improve the efficacy of OXA-based chemotherapy by inhibiting the MDM2/NDUFB8/ROS signaling axis in patient-derived xenograft (PDX) and hepatic and pulmonary metastasis mouse models, thus providing new ideas and an experimental basis for the platinum-resistant treatment of CRC.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
| | - Zhiyuan Liu
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
| | - Ping Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
| | - Xuerong Gu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Fei Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiayuan Zhong
- School of Mathematics and Big Data, Foshan Univerisity, Foshan, 528000, China
| | - Dong Yin
- Department of Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, China
- Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Rui Liu
- School of Mathematics, South China University of Technology, Guangzhou, 510006, China
| | - Xueqing Yao
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510000, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
- School of Medicine, South China University of Technology, Guangzhou, 510640, China
| | - Chengzhi Huang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510000, China
- Department of General Surgery, Guangdong Provincial People's Hospital Ganzhou Hospital (Ganzhou Municipal Hospital), Ganzhou, 341000, China
- School of Medicine, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
17
|
Huang Y, Gao Y, Lin Z, Miao H. Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression. Genes Dis 2025; 12:101240. [PMID: 39759114 PMCID: PMC11697063 DOI: 10.1016/j.gendis.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2025] Open
Abstract
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment. This review focuses on the role and function of ubiquitination and deubiquitination modification in the tumor microenvironment while discussing the prospect of developing inhibitors targeting ubiquity-related enzymes, thereby providing ideas for future research in cancer therapy.
Collapse
Affiliation(s)
- Yulan Huang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuan Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
18
|
Wang W, Du Y, Datta S, Fowler JF, Sang HT, Albadari N, Li W, Foster J, Zhang R. Targeting the MYCN-MDM2 pathways for cancer therapy: Are they druggable? Genes Dis 2025; 12:101156. [PMID: 39802403 PMCID: PMC11719324 DOI: 10.1016/j.gendis.2023.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 01/16/2025] Open
Abstract
Targeting oncogenes and their interactive partners is an effective approach to developing novel targeted therapies for cancer and other chronic diseases. We and others have long suggested the MDM2 oncogene being an excellent target for cancer therapy, based on its p53-dependent and -independent oncogenic activities in a variety of cancers. The MYC family proteins are transcription factors that also regulate diverse biological functions. Dysregulation of MYC, such as amplification of MYCN, is associated with tumorigenesis, especially for neuroblastoma. Although the general survival rate of neuroblastoma patients has significantly improved over the past few decades, high-risk neuroblastoma still presents a poor prognosis. Therefore, innovative and more potent therapeutic strategies are needed to eradicate these aggressive neoplasms. This review focuses on the oncogenic properties of MYCN and its molecular regulation and summarizes the major therapeutic strategies being developed based on preclinical findings. We also highlight the potential benefits of targeting both the MYCN and MDM2 oncogenes, providing preclinical evidence of the efficacy and safety of this approach. In conclusion, the development of effective small molecules that inhibit both MYCN and MDM2 represents a promising new strategy for the treatment of neuroblastoma and other cancers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| | - Yi Du
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Josef F. Fowler
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Hannah T. Sang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Najah Albadari
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Wei Li
- College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Foster
- Texas Children's Hospital, Department of Pediatrics, Section of Hematology-Oncology Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA
- Drug Discovery Institute, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
19
|
Rendo V, Lee EQ, Bossi C, Khuu N, Rudek MA, Pal S, Azazmeh N, Rashid R, Lin JR, Cusick M, Reynolds ARN, Fassinou ACR, Ayoub G, Malinowski S, Lapinskas E, Pisano W, Jeang J, Stopka SA, Regan MS, Spetz J, Desai A, Lieberman F, Palanichamy K, Fisher JD, Pelton K, Huang RY, Sarosiek KA, Nabors LB, Holdhoff M, Danda N, Strowd R, Desideri S, Walbert T, Ye X, Chakravarti A, Sorger PK, Santagata S, Agar NYR, Grossman SA, Alexander BM, Wen PY, Ligon KL, Beroukhim R. A window-of-opportunity trial reveals mechanisms of response and resistance to navtemadlin in patients with recurrent glioblastoma. Sci Transl Med 2025; 17:eadn6274. [PMID: 39970230 PMCID: PMC11994224 DOI: 10.1126/scitranslmed.adn6274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/16/2024] [Accepted: 01/29/2025] [Indexed: 02/21/2025]
Abstract
Inhibitors of murine double minute homolog 2 (MDM2) represent a promising therapeutic approach for the treatment of TP53 wild-type glioblastomas (GBMs), reactivating p53 signaling to induce cancer cell death. We conducted a surgical window-of-opportunity trial (NCT03107780) of the MDM2 inhibitor navtemadlin (KRT-232) in 21 patients with TP53 wild-type recurrent GBM to determine achievable drug concentrations within tumor tissues and biological mechanisms of response and resistance. Participants received navtemadlin at 120 mg (n = 10) or 240 mg (n = 11) for 2 days before surgical resection and after surgery until progression or unacceptable toxicity. Both 120 and 240 mg daily dosing achieved a pharmacodynamic impact, but median progression-free survival was 3.1 months. DNA sequencing of three recurrent tumors revealed an absence of TP53-inactivating mutations, indicating alternative mechanisms of resistance. To understand the mechanisms of response and resistance associated with navtemadlin, we conducted functional and spatial analyses of human tissue and patient-derived GBM neurosphere models. Navtemadlin induced partial tumor cell death as monotherapy, and combination with temozolomide enhanced apoptosis in GBM neurospheres while sparing normal bone marrow cells in vitro. We also observed up-regulation of oligodendrocyte differentiation genes with navtemadlin treatment and enrichment of oligodendrocyte transcription factor 2 (OLIG2)-positive cells at relapse, suggesting an unexplored mechanism of navtemadlin tolerance in GBM. Overall, these results indicated that clinically achievable doses of navtemadlin exert pharmacodynamic effects on GBM and suggest that combined treatment with temozolomide may be a route to more durable survival benefits.
Collapse
Affiliation(s)
- Veronica Rendo
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Eudocia Q Lee
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Connor Bossi
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nicholas Khuu
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Michelle A Rudek
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sangita Pal
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Narmen Azazmeh
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rumana Rashid
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206-3701, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Margaret Cusick
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Abigail R N Reynolds
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Auriole C R Fassinou
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Georges Ayoub
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Seth Malinowski
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emily Lapinskas
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - William Pisano
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - John Jeang
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael S Regan
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Johan Spetz
- Department of Medical Radiation Sciences, Sahlgrenska Cancer Center, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Arati Desai
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frank Lieberman
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Joy D Fisher
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kristine Pelton
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Raymond Y Huang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher A Sarosiek
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Louis B Nabors
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Matthias Holdhoff
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Neeraja Danda
- Division of Hematology, Departments of Medicine and Oncology, Montefiore Medical Center, New York, NY 10467, USA
| | - Roy Strowd
- Department of Neurology, Wake Forest University, Winston-Salem, NC 27157, USA
| | - Serena Desideri
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tobias Walbert
- Department of Neurology and Neurosurgery Henry Ford Health, Department of Neurology, Wayne State University and Michigan State University, Detroit, MI 48201, USA
| | - Xiaobu Ye
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Arnab Chakravarti
- Department of Radiation Oncology, Ohio State University College of Medicine, Columbus, OH 43210-1228, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Y R Agar
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stuart A Grossman
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Brian M Alexander
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Patrick Y Wen
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Rameen Beroukhim
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
20
|
Wang W, Aguilar M, Datta S, Alley A, Tadesse M, Wang X, Gao X, Zhang R. Dual inhibitor of MDM2 and NFAT1 for experimental therapy of breast cancer: in vitro and in vivo anticancer activities and newly discovered effects on cancer metabolic pathways. Front Pharmacol 2025; 16:1531667. [PMID: 40046748 PMCID: PMC11879958 DOI: 10.3389/fphar.2025.1531667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/27/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction The oncogene MDM2 has garnered attention not only for its role in cancer as a negative regulator of the tumor suppressor p53 but also for its p53-independent oncogenic activities. MDM2 also involves metabolic reprogramming, such as serine metabolism, respiration, mitochondrial functions, the folate cycle, and redox balance. Traditional MDM2 inhibitors blocking the protein-protein binding between MDM2 and p53 have shown limited clinical success in various stages of clinical trials, most likely due to low efficacy, drug toxicity, and drug resistance, highlighting the need for a novel, p53-independent strategy to inhibit MDM2. The present study investigated the antitumor effects of MA242, a novel MDM2 and NFAT1 inhibitor, in breast cancer models. Methods The anticancer activity and underlying mechanisms of MA242 were evaluated in vitro using breast cancer cell lines with different p53 backgrounds and in vivo using orthotopic and patient-derived xenograft models. Results We demonstrated that MA242 significantly inhibited cell viability and induced apoptosis in breast cancer cells, regardless of p53 status. Metabolic analysis revealed that MA242 notably disrupted nicotinamide metabolism, modified nucleotide metabolism, and elevated cellular oxidative stress by disturbing the redox balance. Furthermore, in animal models, MA242 reduced MDM2 expression and effectively inhibited tumor growth dependent on MDM2 expression without causing host toxicity. Discussion These findings highlight the potential of MA242 as a modulator of cancer metabolism and support its further development as a therapeutic option for aggressive breast cancers.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
- Drug Discovery Institute, University of Houston, Houston, TX, United States
| | - Marlene Aguilar
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Sayantap Datta
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Abigail Alley
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Meheret Tadesse
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Xinshi Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Xia Gao
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
- Drug Discovery Institute, University of Houston, Houston, TX, United States
| |
Collapse
|
21
|
Chen W, Zhou L, Jiang J, Chen J, Geng D, Chen Y, Han X, Xie Q, Guo G, Chen X, Tang S, Zhong X. Induction of the p21/CDK6 pathway and alteration of the immune microenvironment by the stem cell marker CBX3 in melanoma. Stem Cell Res Ther 2025; 16:63. [PMID: 39934923 PMCID: PMC11816572 DOI: 10.1186/s13287-025-04179-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND As one of the stem cell markers, chromobox protein homolog 3 (CBX3) participates in multiple signaling pathways that affect the progression of various tumors. However, the role of CBX3 in melanoma remains unclear, and the mechanisms by which CBX3 may regulate immunotherapy outcome remain largely unknown. METHODS We used the Cancer Genome Atlas, Genotype-Tissue Expression portal, and Gene Expression Omnibus database to estimate CBX3 expression and its prognostic effect in melanoma. The role of CBX3 in proliferation and migration of melanoma cells were examined using the CCK8, cloning, wound healing, and transwell assays. The effect of CBX3 on melanoma tumorigenesis was assessed using an in vivo animal model. The role of CBX3 in cell cycle was examined using flow cytometry, and expression levels of cell cycle-related genes and proteins in cells with altered CBX3 levels were analyzed using qPCR and western blotting. The function of CBX3 in the immune microenvironment of melanoma was studied using single-cell RNA sequencing and public databases. RESULTS We found that CBX3 was highly expressed in melanoma with poor prognosis. CBX3 promoted the proliferation and migration of melanoma cells in vivo and in vitro. Functional analysis revealed that CBX3 regulates cell cycle, as it accelerated the G1 to S transition, decreased p21 expression, and increased CDK6 expression. Finally, single-cell sequencing and immune-related assays showed that CBX3 is immunogenic and can change the immune microenvironment of melanoma. CONCLUSIONS We conclude that the stem cell marker, CBX3 activates the p21/CDK6 pathway and alters the immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Wanxian Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Linsa Zhou
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Jingjing Jiang
- Joint Shantou International Eye Center of Shantou University and the Chinese University of Hong Kong, Shantou, China
| | - Jiasheng Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Deyi Geng
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Yaokun Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaosha Han
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Qihu Xie
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Genghong Guo
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xuefen Chen
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Shijie Tang
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China
| | - Xiaoping Zhong
- Department of Plastic and Burns Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515000, People's Republic of China.
- Plastic Surgery Research Institute, Ear Deformities Treatment Center and Cleft Lip and Palate Treatment Center of Shantou University Medical College, Shantou, China.
| |
Collapse
|
22
|
Zhao R, Cui Y, Li D, Guo X, Cheng C, He R, Hu C, Wei X. Anlotinib enhances the pro-apoptotic effect of APG-115 on acute myeloid leukemia cell lines by inhibiting the P13K/AKT signaling pathway. Leuk Res 2025; 149:107637. [PMID: 39732045 DOI: 10.1016/j.leukres.2024.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND APG-115 is a novel small-molecule selective inhibitor that destabilizes the p53-MDM2 complex and activates p53-mediated apoptosis in tumor cells. Anlotinib inhibits tumor angiogenesis and promotes apoptosis. In this study, we investigated the apoptotic effect and potential mechanism of APG-115 and anlotinib combination on AML cell lines with different p53 backgrounds. MATERIAL AND METHODS The IC50 values of APG-115 and anlotinib were detected by CCK-8 assay. The apoptosis rate of AML cells was evaluated by Annexin-V and PI double staining. Transcriptome sequencing was performed on the MOLM16 cell line treated with APG-115 and anlotinib, and differential analysis and enrichment analysis were performed. Real-time quantitative PCR and Western blot were used to detect the changes in cell cycle and pathway-related genes and proteins in AML cell lines after drug treatment. In vivo experiments, the anti-leukemia effects of APG-115 and anlotinib on AML xenograft mouse models were evaluated. RESULTS APG-115 and anlotinib could independently promote AML cell apoptosis, and the combination of the two drugs could produce a synergistic effect. Transcriptome sequencing showed that compared with the APG-115 monotherapy group, the differentially expressed genes were mainly enriched in the MDM2-p53 and PI3K/AKT pathways. In vivo experiments showed that compared with AML xenograft mice treated with either drug alone, AML progression was slowed in AML xenograft mice treated with APG-115 and anlotinib. CONCLUSION In vivo and in vitro experimental have shown that APG-115 combined with anlotinib can promote AML cells apoptosis and inhibit the progression of disease is independent of the p53 status.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Yu Cui
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| | - Dongbei Li
- Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xiaoli Guo
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Cheng Cheng
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Rongheng He
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Chenxi Hu
- Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xudong Wei
- Department of Hematopathy, Henan Institute of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China; The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China.
| |
Collapse
|
23
|
Ren H, Gao Q, Wang M, Zhang L, Wang S, Zhang X, Li H, Ye X, Zhou L, Zhou C, Li X, Zeng K, Ji J. The novel piperine derivative MHJ-LN inhibits breast cancer by inducing apoptosis via p53 activation. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03805-9. [PMID: 39888362 DOI: 10.1007/s00210-025-03805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Triple-negative breast cancer (TNBC) is characterized by high aggressiveness and recurrence rates due to the lack of effective treatment options. Piperine, a natural alkaloid extracted from black pepper, has demonstrated significant anticancer potential in recent years. Therefore, developing piperine derivatives to enhance its anticancer effects holds critical clinical significance. In this study, a novel piperine derivative, MHJ-LN, was designed and synthesized. Its anticancer effects against TNBC were systematically evaluated through in vitro and in vivo experiments. The MTT assay, EdU incorporation assay, and colony formation assay were employed to assess the impact of MHJ-LN on TNBC cell proliferation. Tumor cell adhesion, scratch wound healing, and Transwell invasion assays were performed to analyze the antitumor activity of MHJ-LN. Additionally, apoptosis was detected using YO-PRO-1/PI staining, and immunofluorescence combined with Western blotting was used to assess the expression of p53 pathway-related proteins. MHJ-LN exhibited significant antitumor activity in the TNBC xenograft model. Its mechanism of antitumor action was found to depend on the activation of the MDM2-p53 pathway, effectively blocking G1/S cell cycle progression and inducing apoptosis and cell cycle arrest. This research suggests that the piperine derivative MHJ-LN shows significant potential as an effective therapy targeting breast cancer.
Collapse
Affiliation(s)
- Hongyu Ren
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Qi Gao
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Mengmeng Wang
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Luyao Zhang
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Sen Wang
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xingyu Zhang
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Hanxue Li
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xiaoqing Ye
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Lili Zhou
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Chongyun Zhou
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Xiuming Li
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Kaile Zeng
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Jing Ji
- Key Laboratory of Marine Pharmaceutical Compound Screening, College of Pharmacy, Jiangsu Ocean University, Lianyungang, China.
- College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou, China.
| |
Collapse
|
24
|
Kaushik AC, Talware SK, Siddiqi MI. Integrative machine learning approach for identification of new molecular scaffold and prediction of inhibition responses in cancer cells using multi-omics data. Brief Funct Genomics 2025; 24:elaf006. [PMID: 40251828 PMCID: PMC12008120 DOI: 10.1093/bfgp/elaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/07/2025] [Accepted: 03/20/2025] [Indexed: 04/21/2025] Open
Abstract
MDM2 (Mouse Double Minute 2), a fundamental governor of the p53 tumor suppressor pathway, has garnered significant attention as a favorable target for cancer therapy. Recent years have witnessed the development and synthesis of potent MDM2 inhibitors. Despite the fact that numerous MDM2 inhibitors and degraders have been assessed in clinical studies for various human cancers, no FDA-approved drug targeting MDM2 is presently available in the market. Researchers have investigated the effects of various drugs, which are involved in cancer therapies with known mechanisms, on well-characterized cancer cell lines. The prediction of drug inhibition responses becomes crucial to enhance the effectiveness and personalization of cancer treatments. Such findings can provide new perceptions aimed at designing new drugs for targeted cancer therapies. In our current insilico work, a robust response was observed for Idasanutlin in cancer cell lines, indicating the drug's significant impact on gene expression. We also identified transcriptional response signatures, which were informative about the drug's mechanism of action and potential clinical application. Further, we applied a similarity search approach for the identification of potential lead compounds from the ChEMBL database and validated them by molecular docking and dynamics studies. The study highlights the potential of incorporating machine learning with omics and single-cell RNA-seq data for predicting drug responses in cancer cells. Our findings could provide valuable insights for improving cancer treatment in the future, particularly in developing effective therapies.
Collapse
Affiliation(s)
- Aman Chandra Kaushik
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
- Department of Technology Dissemination and Computational Biology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, P. O. CIMAP, Kukrail Road, Lucknow 226015, India
- IndiaAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shubham Krushna Talware
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - Mohammad Imran Siddiqi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
25
|
Rekhtman N, Tischfield SE, Febres-Aldana CA, Lee JJK, Chang JC, Herzberg BO, Selenica P, Woo HJ, Vanderbilt CM, Yang SR, Xu F, Bowman AS, da Silva EM, Noronha AM, Mandelker DL, Mehine M, Mukherjee S, Blanco-Heredia J, Orgera JJ, Nanjangud GJ, Baine MK, Aly RG, Sauter JL, Travis WD, Savari O, Moreira AL, Falcon CJ, Bodd FM, Wilson CE, Sienty JV, Manoj P, Sridhar H, Wang L, Choudhury NJ, Offin M, Yu HA, Quintanal-Villalonga A, Berger MF, Ladanyi M, Donoghue MT, Reis-Filho JS, Rudin CM. Chromothripsis-Mediated Small Cell Lung Carcinoma. Cancer Discov 2025; 15:83-104. [PMID: 39185963 PMCID: PMC11726019 DOI: 10.1158/2159-8290.cd-24-0286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/13/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024]
Abstract
Small cell lung carcinoma (SCLC) is a highly aggressive malignancy that is typically associated with tobacco exposure and inactivation of RB1 and TP53 genes. Here, we performed detailed clinicopathologic, genomic, and transcriptomic profiling of an atypical subset of SCLC that lacked RB1 and TP53 co-inactivation and arose in never/light smokers. We found that most cases were associated with chromothripsis-massive, localized chromosome shattering-recurrently involving chromosome 11 or 12 and resulting in extrachromosomal amplification of CCND1 or co-amplification of CCND2/CDK4/MDM2, respectively. Uniquely, these clinically aggressive tumors exhibited genomic and pathologic links to pulmonary carcinoids, suggesting a previously uncharacterized mode of SCLC pathogenesis via transformation from lower-grade neuroendocrine tumors or their progenitors. Conversely, SCLC in never-smokers harboring inactivated RB1 and TP53 exhibited hallmarks of adenocarcinoma-to-SCLC derivation, supporting two distinct pathways of plasticity-mediated pathogenesis of SCLC in never-smokers. Significance: Here, we provide the first detailed description of a unique SCLC subset lacking RB1/TP53 alterations and identify extensive chromothripsis and pathogenetic links to pulmonary carcinoids as its hallmark features. This work defines atypical SCLC as a novel entity among lung cancers, highlighting its exceptional histogenesis, clinicopathologic characteristics, and therapeutic vulnerabilities. See related commentary by Nadeem and Drapkin, p. 8.
Collapse
Affiliation(s)
- Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sam E. Tischfield
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christopher A. Febres-Aldana
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jake June-Koo Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason C. Chang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Benjamin O. Herzberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center and the Herbert Irving Comprehensive Cancer Center, New York, New York
| | - Pier Selenica
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyung Jun Woo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad M. Vanderbilt
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Soo-Ryum Yang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Fei Xu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anita S. Bowman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Edaise M. da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anne Marie Noronha
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Diana L. Mandelker
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miika Mehine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Semanti Mukherjee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan Blanco-Heredia
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - John J. Orgera
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gouri J. Nanjangud
- Department of Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marina K. Baine
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rania G. Aly
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jennifer L. Sauter
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - William D. Travis
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omid Savari
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, University Hospitals Cleveland Medical Center- Case Western Reserve University, Cleveland, Ohio
| | - Andre L. Moreira
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Christina J. Falcon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francis M. Bodd
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Christina E. Wilson
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jacklynn V. Sienty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Division of Biostatistics Research Scientists, New York University, New York, New York
| | - Parvathy Manoj
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Harsha Sridhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lu Wang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Noura J. Choudhury
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Helena A. Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | | | - Michael F. Berger
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark T.A. Donoghue
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jorge S. Reis-Filho
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
26
|
Chakraborty R, Dutta A, Mukhopadhyay R. TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds. Clin Transl Oncol 2025:10.1007/s12094-024-03841-6. [PMID: 39797946 DOI: 10.1007/s12094-024-03841-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression. Missense mutations, null mutations, transversions, transitions, and point mutations occurring in the TP53 gene can cause an increase in metastatic activity. This review discusses mutations occurring in exon regions of TP53, polymorphisms in MDM2 and their interaction with large ribosomal subunit protein (RPL) leading to cancer development. We also highlight the potential of small molecules e.g. p53 activators like XI-011, Tenovin-1, and Nutlin-3a for the treatment of breast and ovarian cancers. The therapeutic efficacy of natural compounds in amelioration of these two types of cancers is also discussed.
Collapse
Affiliation(s)
- Rituraj Chakraborty
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Anupam Dutta
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India
| | - Rupak Mukhopadhyay
- Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.
| |
Collapse
|
27
|
Zhang X, Zhang M, Sun H, Wang X, Wang X, Sheng W, Xu M. The role of transcription factors in the crosstalk between cancer-associated fibroblasts and tumor cells. J Adv Res 2025; 67:121-132. [PMID: 38309692 PMCID: PMC11725164 DOI: 10.1016/j.jare.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND Transcription factors (TFs) fulfill a critical role in the formation and maintenance of different cell types during the developmental process as well as disease. It is believed that cancer-associated fibroblasts (CAFs) are activation status of tissue-resident fibroblasts or derived from form other cell types via transdifferentiation or dedifferentiation. Despite a subgroup of CAFs exhibit anti-cancer effects, most of them are reported to exert effects on tumor progression, further indicating their heterogeneous origin. AIM OF REVIEW This review aimed to summarize and review the roles of TFs in the reciprocal crosstalk between CAFs and tumor cells, discuss the emerging mechanisms, and their roles in cell-fate decision, cellular reprogramming and advancing our understanding of the gene regulatory networks over the period of cancer initiation and progression. KEY SCIENTIFIC CONCEPTS OF REVIEW This manuscript delves into the key contributory factors of TFs that are involved in activating CAFs and maintaining their unique states. Additionally, it explores how TFs play a pivotal and multifaceted role in the reciprocal crosstalk between CAFs and tumor cells. This includes their involvement in processes such as epithelial-mesenchymal transition (EMT), proliferation, invasion, and metastasis, as well as metabolic reprogramming. TFs also have a role in constructing an immunosuppressive microenvironment, inducing resistance to radiation and chemotherapy, facilitating angiogenesis, and even 'educating' CAFs to support the malignancies of tumor cells. Furthermore, this manuscript delves into the current status of TF-targeted therapy and considers the future directions of TFs in conjunction with anti-CAFs therapies to address the challenges in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Hui Sun
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Weiqi Sheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| | - Midie Xu
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Drew Y, Zenke FT, Curtin NJ. DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat Rev Drug Discov 2025; 24:19-39. [PMID: 39533099 DOI: 10.1038/s41573-024-01060-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues. However, the discovery of the unique sensitivity of tumours defective in the homologous recombination DNA repair pathway to PARP inhibition led to the approval of six PARP inhibitors worldwide and to a focus on making use of DDR defects through the development of other DDR-targeting drugs. Here, we analyse the lessons learnt from PARP inhibitor development and how these may be applied to new targets to maximize success. We explore why, despite so much research, no other DDR inhibitor class has been approved, and only a handful have advanced to later-stage clinical trials. We discuss why more reliable predictive biomarkers are needed, explore study design from past and current trials, and suggest alternative models for monotherapy and combination studies. Targeting multiple DDR pathways simultaneously and potential combinations with anti-angiogenic agents or immune checkpoint inhibitors are also discussed.
Collapse
Affiliation(s)
- Yvette Drew
- BC Cancer Vancouver Centre and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank T Zenke
- Research Unit Oncology, EMD Serono, Billerica, MA, USA
| | - Nicola J Curtin
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
29
|
Cierpicki T, Grembecka J. Targeting Protein-Protein Interactions in Hematologic Malignancies. ANNUAL REVIEW OF PATHOLOGY 2025; 20:275-301. [PMID: 39854187 DOI: 10.1146/annurev-pathmechdis-031521-033231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Over the last two decades, there have been extensive efforts to develop small-molecule inhibitors of protein-protein interactions (PPIs) as novel therapeutics for cancer, including hematologic malignancies. Despite the numerous challenges associated with developing PPI inhibitors, a significant number of them have advanced to clinical studies in hematologic patients in recent years. The US Food and Drug Administration approval of the very first PPI inhibitor, venetoclax, demonstrated the real clinical value of blocking protein-protein interfaces. In this review, we discuss the most successful examples of PPI inhibitors that have reached clinical studies in patients with hematologic malignancies. We also describe the challenges of blocking PPIs with small molecules, clinical resistance to such compounds, and the lessons learned from the development of successful PPI inhibitors. Overall, this review highlights the remarkable success and substantial promise of blocking PPIs in hematologic malignancies.
Collapse
Affiliation(s)
- Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; ,
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; ,
| |
Collapse
|
30
|
Grigoreva TA, Romanova AA, Tribulovich VG, Pestov NB, Oganov RA, Kovaleva DK, Korneenko TV, Barlev NA. p53: The Multifaceted Roles of Covalent Modifications in Cancer. Pharmaceuticals (Basel) 2024; 17:1682. [PMID: 39770524 PMCID: PMC11677429 DOI: 10.3390/ph17121682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The p53 protein has attracted huge research interest over several decades due to its role as one of the most important tumor suppressors in mammals, which orchestrates a synchronous response from normal cells in the body to various forms of stress. The diverse cellular activities of the p53 protein are regulated mainly via its post-translational modifications (PTMs). PTMs affect p53 on several levels: at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes, at the level of the assembly of tetrameric complexes on DNA to transactivate its target genes; at the level of proteolysis in the absence of stress; and on the contrary, at the level of augmented protein stability in response to stress signals. Disruptions in these regulatory mechanisms can lead to deviations from normal cellular function, boosting tumor initiation and progression. Conversely, targeted interventions in these pathways could prove beneficial for the development of antitumor therapies. Advancing our understanding of p53 modifiers and the proteins involved in its regulation equips researchers with an expanded toolkit for studying cellular processes and for developing biologically active molecules that influence p53-mediated responses.
Collapse
Affiliation(s)
- Tatiana A. Grigoreva
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Angelina A. Romanova
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Vyacheslav G. Tribulovich
- St. Petersburg State Institute of Technology, St-Petersburg 190013, Russia; (T.A.G.); (A.A.R.); (V.G.T.)
| | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Vavilov Institute of General Genetics, Moscow 119991, Russia
| | - Ruslan A. Oganov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
- Department of Biochemistry, Lomonosov Moscow State University, Moscow 19991, Russia
| | - Diana K. Kovaleva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
- Department of Biochemistry, Lomonosov Moscow State University, Moscow 19991, Russia
| | - Tatyana V. Korneenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (R.A.O.); (D.K.K.); (T.V.K.)
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Laboratory of Gene Expression Regulation, Institute of Cytology RAS, Saint-Petersburg 194064, Russia
- Department of Biomedicine, School of Medicine, Nazarbayev University, Astana 02000, Kazakhstan
| |
Collapse
|
31
|
Gollner A, Rudolph D, Weyer-Czernilofsky U, Baumgartinger R, Jung P, Weinstabl H, Ramharter J, Grempler R, Quant J, Rinnenthal J, Pérez Pitarch A, Golubovic B, Gerlach D, Bader G, Wetzel K, Otto S, Mandl C, Boehmelt G, McConnell DB, Kraut N, Sini P. Discovery and Characterization of Brigimadlin, a Novel and Highly Potent MDM2-p53 Antagonist Suitable for Intermittent Dose Schedules. Mol Cancer Ther 2024; 23:1689-1702. [PMID: 39259562 PMCID: PMC11612618 DOI: 10.1158/1535-7163.mct-23-0783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/28/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
p53 is known as the guardian of the genome and is one of the most important tumor suppressors. It is inactivated in most tumors, either via tumor protein p53 (TP53) gene mutation or copy number amplification of key negative regulators, e.g., mouse double minute 2 (MDM2). Compounds that bind to the MDM2 protein and disrupt its interaction with p53 restore p53 tumor suppressor activity, thereby promoting cell cycle arrest and apoptosis. Previous clinical experience with MDM2-p53 protein-protein interaction antagonists (MDM2-p53 antagonists) has demonstrated that thrombocytopenia and neutropenia represent on-target dose-limiting toxicities that might restrict their therapeutic utility. Dosing less frequently, while maintaining efficacious exposure, represents an approach to mitigate toxicity and improve the therapeutic window of MDM2-p53 antagonists. However, to achieve this, a molecule possessing excellent potency and ideal pharmacokinetic properties is required. Here, we present the discovery and characterization of brigimadlin (BI 907828), a novel, investigational spiro-oxindole MDM2-p53 antagonist. Brigimadlin exhibited high bioavailability and exposure, as well as dose-linear pharmacokinetics in preclinical models. Brigimadlin treatment restored p53 activity and led to apoptosis induction in preclinical models of TP53 wild-type, MDM2-amplified cancer. Oral administration of brigimadlin in an intermittent dosing schedule induced potent tumor growth inhibition in several TP53 wild-type, MDM2-amplified xenograft models. Exploratory clinical pharmacokinetic studies (NCT03449381) showed high systemic exposure and a long plasma elimination half-life in patients with cancer who received oral brigimadlin. These findings support the continued clinical evaluation of brigimadlin in patients with MDM2-amplified cancers, such as dedifferentiated liposarcoma.
Collapse
Affiliation(s)
| | | | | | | | - Peter Jung
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | | | | | - Rolf Grempler
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut
| | - Jens Quant
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | | | | | - Bojana Golubovic
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Gerd Bader
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Kristiane Wetzel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Sebastian Otto
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| | - Patrizia Sini
- Boehringer Ingelheim RCV GmbH & Co. KG, Vienna, Austria
| |
Collapse
|
32
|
Elgohary MK, Elkotamy MS, Al-Warhi T, Eldehna WM, Abdel-Aziz HA. Development of new LSM-83177 analogues as anti-tumor agents against colorectal cancer targeting p53-MDM2 interaction. Bioorg Chem 2024; 153:107766. [PMID: 39244969 DOI: 10.1016/j.bioorg.2024.107766] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
LSM-83177, a phenoxy acetic acid derivative, is a small molecule reported for its promising anti-tumor properties. Via inhibiting the interaction between MDM2 and p53, LSM-83177 can elevate the active p53 levels within cells, thereby promoting apoptosis and inhibiting tumor growth. Also, LSM-83177 has been shown to inhibit GST activity in colorectal cancer HT29 cells. In the current work, novel LSM-83177 hydrazone analogs 5a-f, 7a-b, 10a-e, and 13a-b have been designed according to the structure features of LSM-83177 and their binding mode in the active site of MDM2. The anti-cancer activity of the newly synthesized analogs is evaluated against the HT29 cell line. The most potent compounds, 7a and 10a, showed IC50 = 12.48 and 10.44 µg/ml, respectively, when compared with Cisplatin (IC50 = 11.32 µg/ml) as a reference drug. Compounds 7a and 10a were introduced for further inspection for p53-MDM2 protein-protein interaction, where they displayed IC50 values of 3.65 and 11.08 µg/ml, respectively. Furthermore, hydrazones 7a and 10a increased the p-53 expression levels by 3.22- and 4.25-fold, respectively; in addition, they effectively reduced the GST expression levels in HT29 cancer cells with 0.56- and 0.30-fold increments in comparison to the untreated control.
Collapse
Affiliation(s)
- Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt.
| | - Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Cairo, 11829, Egypt
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh P.O. Box 33516, Egypt.
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo, 12622, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| |
Collapse
|
33
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Wang Z, Yue S, Chen X, Li J, Zhu P, Chen H, Qiu F, Xie D, Liang Y, Li D, Lu A, Liang C. Design of Murine Double Minute 2 Proteolysis Targeting Chimera Degraders with a Built-In Tumor-Targeting Ability. J Med Chem 2024; 67:18865-18882. [PMID: 39437434 DOI: 10.1021/acs.jmedchem.4c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Proteolysis targeting chimeras (PROTACs) are heterobifunctional molecules to induce the proteasomal degradation of target proteins. Currently, there are no tumor-targeting PROTACs for modulating oncogenic murine double minute 2 (MDM2). AS1411 is a tumor-targeting aptamer that specifically recognizes nucleolin (NCL) overexpressed on the surface of tumor cells. We recently repurposed AS1411 as an MDM2 recruiter since it could form an NCL-bridged ternary complex with MDM2. In this study, we design a PROTAC molecule AS1411-VH032 via conjugating AS1411 with a recruiter of von Hippel-Lindau (VHL) ligase VH032. AS1411-VH032 facilitates tumor-selective degradation of MDM2, leading to tumor shrinkage with no detectable toxicity. Besides being a molecular target, MDM2 also serves as an E3 ligase harnessed by PROTACs. Thus, we developed an AS1411-based homo-PROTAC homoAS1411, which induces tumor-specific suicide degradation of MDM2 and prevents tumor progression without causing side effects. Both AS1411-VH032 and homoAS1411 are promising MDM2 degraders with built-in tumor-targeting ability, which balances the antitumor efficacy with a favorable safety profile.
Collapse
Affiliation(s)
- Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peixi Zhu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yiying Liang
- Shenzhen LingGene Biotech Co., Ltd., Shenzhen 518055, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Binzhou Medical University, Yantai 264003, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| |
Collapse
|
35
|
Su Q, Sun H, Mei L, Yan Y, Ji H, Chang L, Wang L. Ribosomal proteins in hepatocellular carcinoma: mysterious but promising. Cell Biosci 2024; 14:133. [PMID: 39487553 PMCID: PMC11529329 DOI: 10.1186/s13578-024-01316-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
Ribosomal proteins (RPs) are essential components of ribosomes, playing a role not only in ribosome biosynthesis, but also in various extra-ribosomal functions, some of which are implicated in the development of different types of tumors. As universally acknowledged, hepatocellular carcinoma (HCC) has been garnering global attention due to its complex pathogenesis and challenging treatments. In this review, we analyze the biological characteristics of RPs and emphasize their essential roles in HCC. In addition to regulating related signaling pathways such as the p53 pathway, RPs also act in proliferation and metastasis by influencing cell cycle, apoptosis, angiogenesis, and epithelial-to-mesenchymal transition in HCC. RPs are expected to unfold new possibilities for precise diagnosis and individualized treatment of HCC.
Collapse
Affiliation(s)
- Qian Su
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/ National Center of Gerontology, Beijing, P.R. China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing Hospital, Beijing, P.R. China.
- National Center for Clinical Laboratories, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
36
|
Zeng Q, Zeng S, Dai X, Ding Y, Huang C, Ruan R, Xiong J, Tang X, Deng J. MDM2 inhibitors in cancer immunotherapy: Current status and perspective. Genes Dis 2024; 11:101279. [PMID: 39263534 PMCID: PMC11388719 DOI: 10.1016/j.gendis.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/21/2024] [Indexed: 09/13/2024] Open
Abstract
Murine double minute 2 (MDM2) plays an essential role in the cell cycle, apoptosis, DNA repair, and oncogene activation through p53-dependent and p53-independent signaling pathways. Several preclinical studies have shown that MDM2 is involved in tumor immune evasion. Therefore, MDM2-based regulation of tumor cell-intrinsic immunoregulation and the immune microenvironment has attracted increasing research attention. In recent years, immune checkpoint inhibitors targeting PD-1/PD-L1 have been widely used in the clinic. However, the effectiveness of a single agent is only approximately 20%-40%, which may be related to primary and secondary drug resistance caused by the dysregulation of oncoproteins. Here, we reviewed the role of MDM2 in regulating the immune microenvironment, tumor immune evasion, and hyperprogression during immunotherapy. In addition, we summarized preclinical and clinical findings on the use of MDM2 inhibitors in combination with immunotherapy in tumors with MDM2 overexpression or amplification. The results reveal that the inhibition of MDM2 could be a promising strategy for enhancing immunotherapy.
Collapse
Affiliation(s)
- Qinru Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Shaocheng Zeng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaofeng Dai
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Yun Ding
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Chunye Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Ruiwen Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
| | - Xiaomei Tang
- Department of Oncology, Jiangxi Chest Hospital, Nanchang, Jiangxi 330006, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi 330006, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
37
|
Kratz JD, Klein AB, Gray CB, Märten A, Vilu HL, Knight JF, Kumichel A, Ueno M. The Epidemiology of Biliary Tract Cancer and Associated Prevalence of MDM2 Amplification: A Targeted Literature Review. Target Oncol 2024; 19:833-844. [PMID: 39302603 PMCID: PMC11557622 DOI: 10.1007/s11523-024-01086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 09/22/2024]
Abstract
Biliary tract cancer (BTC) is a rare and aggressive malignancy that is anatomically classified as gallbladder cancer (GBC), extra- and intra-hepatic cholangiocarcinoma (eCCA and iCCA) and ampullary cancer (AC). BTC is often diagnosed at an advanced stage when treatment options are limited and patients have a poor prognosis, so the identification of new drug targets is of critical importance. BTC is molecularly diverse and harbours different therapeutically actionable biomarkers, including mouse double minute 2 homolog (MDM2), which is currently being investigated as a drug target. The aim of this targeted review was to evaluate and synthesise evidence on the epidemiology of BTC and its subtypes in different geographic regions and on the frequency of MDM2 amplifications in BTC tumours. Epidemiological studies (N = 33) consistently demonstrated high incidence rates in South and Central Asia for BTC overall (up to 9.00/100,000) and for all subtypes, with much lower rates in Europe and the US. Among the different types of BTC, the highest global incidence was observed for CCA, mainly driven by iCCA (1.4/100,000), followed by GBC (1.2/100,000) and AC (0.18-0.93 per 100,000). Studies of MDM2 in BTC (N = 19) demonstrated variable frequency of MDM2 amplification according to subtype, with consistently high MDM2 amplification rates in GBC (up to 17.5%), and lower rates in CCA (up to 4.4%). The results from this literature review highlight the geographic heterogeneity of BTC and the need for standardised clinicopathologic assessment and reporting to allow cross-study comparisons.
Collapse
Affiliation(s)
- Jeremy David Kratz
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
- Wi Institute Medical Research, 1111 Highland Ave Room 2784, Madison, WI, 53705-2275, USA.
| | | | | | - Angela Märten
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | | | | | | | - Makoto Ueno
- Department of Gastroenterology, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|
38
|
Wang J, Wen Y, Zhang Y, Wang Z, Jiang Y, Dai C, Wu L, Leng D, He S, Bo X. An interpretable artificial intelligence framework for designing synthetic lethality-based anti-cancer combination therapies. J Adv Res 2024; 65:329-343. [PMID: 38043609 PMCID: PMC11519055 DOI: 10.1016/j.jare.2023.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023] Open
Abstract
INTRODUCTION Synthetic lethality (SL) provides an opportunity to leverage different genetic interactions when designing synergistic combination therapies. To further explore SL-based combination therapies for cancer treatment, it is important to identify and mechanistically characterize more SL interactions. Artificial intelligence (AI) methods have recently been proposed for SL prediction, but the results of these models are often not interpretable such that deriving the underlying mechanism can be challenging. OBJECTIVES This study aims to develop an interpretable AI framework for SL prediction and subsequently utilize it to design SL-based synergistic combination therapies. METHODS We propose a knowledge and data dual-driven AI framework for SL prediction (KDDSL). Specifically, we use gene knowledge related to the SL mechanism to guide the construction of the model and develop a method to identify the most relevant gene knowledge for the predicted results. RESULTS Experimental and literature-based validation confirmed a good balance between predictive and interpretable ability when using KDDSL. Moreover, we demonstrated that KDDSL could help to discover promising drug combinations and clarify associated biological processes, such as the combination of MDM2 and CDK9 inhibitors, which exhibited significant anti-cancer effects in vitro and in vivo. CONCLUSION These data underscore the potential of KDDSL to guide SL-based combination therapy design. There is a need for biomedicine-focused AI strategies to combine rational biological knowledge with developed models.
Collapse
Affiliation(s)
- Jing Wang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yuqi Wen
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yixin Zhang
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Zhongming Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Yuyang Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Chong Dai
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lianlian Wu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Dongjin Leng
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Song He
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaochen Bo
- Department of Bioinformatics, Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|
39
|
Wang H, Li Q, Tang Q, Shi G, Wu G, Mao X, Wu C, Zhang L, Liu J, Li J, Li B. Role and therapeutic potential of E3s in the tumor microenvironment of hepatocellular carcinoma. Front Immunol 2024; 15:1483721. [PMID: 39544935 PMCID: PMC11560419 DOI: 10.3389/fimmu.2024.1483721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a high-incidence, poor-prognosis malignancy worldwide, requiring new strategies for treatment. Ubiquitination, especially ubiquitination through E3 ubiquitin ligases, plays an indispensable role in the development and progression of HCC. E3 ubiquitin ligases are crucial enzymes in ubiquitination, controlling the degradation of specific substrate proteins and influencing various cellular functions, such as tumor cell proliferation, apoptosis, migration, and immune evasion. In this review, we systematically summarize the mechanisms of E3 ubiquitin ligases in HCC, with a focus on the significance of RING, HECT, and RBR types in HCC progression. The review also looks at the potential for targeting E3 ligases to modulate the tumor microenvironment (TME) and increase immunotherapy efficacy. Future studies will optimize HCC treatment by formulating specific inhibitors or approaches that will be based on gene therapy targeting E3 ligases in order to overcome resistance issues with present treatments and create optimism in the journey of treatment for HCC patients.
Collapse
Affiliation(s)
- Hailin Wang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qinqin Tang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Gang Shi
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Guo Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xingbo Mao
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Changkang Wu
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lixin Zhang
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jie Liu
- Department of General Surgery, Dazhou Central Hospital, Dazhou, China
| | - Jingdong Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bo Li
- Department of General Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
40
|
Huwaimel B, Younes KM, Abouzied AS, Elkashlan AM, Alheibshy FN, Alobaida A, Turki A, Alquwaiay SA, Alqahatani N, Alsuwayagh SA. Phytochemical composition, in vitro cytotoxicity, and in silico docking properties of Tamarix tetragyna L. Sci Rep 2024; 14:25462. [PMID: 39462121 PMCID: PMC11513052 DOI: 10.1038/s41598-024-73961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Tamarix tetragyna is a plant grows in Mediterranean area and some Arab countries. It possesses numerous medicinal values. Purpose of our study is to explore biological activity of tamarix tetragyna extracts of both leaves and stem with investigating their phytochemical composition. The investigated extracts' phyto-constituent composition was determined using gas chromatographic-mass spectrometric method. In addition, in vitro cytoxicity activity versus cancer cell lines such MCF-7, HepG-2, HCT-116, and A-549 was examined by MTT assay method, together with exploring its apoptosis effect by flow cytometry and western blot analysis techniques. Moreover, some phytochemical compounds were identified, and in-silico evaluated against anticancer molecular targets. Plant extracts showed good cytotoxic activity against both A-549 and HCT-116 cancer cell lines. With an IC50 value of 23.90 µg/ml that led to apoptosis and G2/M-phase arrest in A-549 cells, cytotoxicity data demonstrate leaves' extract effectiveness against these cells. Upon GC-MS analysis, it revealed presence of some bioactive components such as Stigmast-5-en-3-ol and 2-methoxy-4-vinyl phenol, which are known for their cytotoxic activity. Our findings suggest that methanolic extracts of Tamarix tetragyna parts may have potential therapeutic uses as anticancer against A-549 cells, which opens up further avenues for investigation into its industrial applications.
Collapse
Affiliation(s)
- Bader Huwaimel
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, Hail, 55473, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
| | - Akram M Elkashlan
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Cairo, Egypt.
| | - Fawaz N Alheibshy
- Department of pharmaceutics, College of Pharmacy, University of Ha'il, Hail, Saudi Arabia
- Department of Pharmaceutics, Faculty of Pharmacy, Aden University, 6075, Aden, Yemen
| | - Ahmed Alobaida
- Department of pharmaceutics, College of Pharmacy, University of Ha'il, Hail, Saudi Arabia
| | - Abdullah Turki
- College of Pharmacy, University of Ha'il, Hail, 81442, Saudi Arabia
| | | | - Naif Alqahatani
- College of Pharmacy, University of Ha'il, Hail, 81442, Saudi Arabia
| | | |
Collapse
|
41
|
Romani A, Lodi G, Casciano F, Gonelli A, Secchiero P, Zauli G, Bortolini O, Valacchi G, Ragno D, Bondi A, Benedusi M, Esposito E, Voltan R. Enhanced Anti-Melanoma Activity of Nutlin-3a Delivered via Ethosomes: Targeting p53-Mediated Apoptosis in HT144 Cells. Cells 2024; 13:1678. [PMID: 39451196 PMCID: PMC11506859 DOI: 10.3390/cells13201678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
This study evaluated ethosomes as a novel nanodelivery system for nutlin-3a, a known MDM2 inhibitor and activator of the p53 pathway, to improve nutlin-3a's poor solubility, limiting its bio-distribution and therapeutic efficacy. The potential of nutlin-3a-loaded ethosomes was investigated on two in vitro models of melanoma: the HT144 cell line p53wild-type and the SK-MEL-28 cell line p53mutated. Nutlin-3a-loaded ethosomes were characterized for their physicochemical properties and used to treat melanoma cells at different concentrations, considering nutlin-3a solution and empty ethosomes as controls. The biological effects on cells were evaluated 24 and 48 h after treatment by analyzing the cell morphology and viability, cell cycle, and apoptosis rate using flow cytometry and the p53 pathway's activation via Western blotting. The results indicate that ethosomes are delivery systems able to maintain nutlin-3a's functionality and specific biological action, as evidenced by the molecular activation of the p53 pathway and the biological events leading to cell cycle block and apoptosis in p53wild-type cells. Nutlin-3a-loaded ethosomes induced morphological changes in the HT144 cell line, with evident apoptotic cells and a reduction in the number of viable cells of over 80%. Furthermore, nutlin-3a-loaded ethosomes successfully modulated two p53-regulated proteins involved in survival/apoptosis, with up to a 2.5-fold increase in membrane TRAIL-R2 and up to an 8.2-fold decrease in Notch-1 (Notch intracellular domain, NICD) protein expression. The expression of these molecules is known to be altered or dysfunctional in a large percentage of melanoma tumors. Notably, ethosomes, regardless of their nutlin-3a loading, exhibited the ability to reduce HT144 melanoma cellular migration, as assessed in real time using xCELLigence, likely due to the modification of lipid rafts, suggesting their potential antimetastatic properties. Overall, nutlin-3a delivery using ethosomes appears to be a significantly effective means for upregulating the p53 pathway and downregulating active Notch-1, while also taking advantage of their unexpected ability to reduce cellular migration. The findings of this study could pave the way for the development of specific nutlin-3a-loaded ethosome-based medicinal products for cutaneous use.
Collapse
Affiliation(s)
- Arianna Romani
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (A.R.); (P.S.)
| | - Giada Lodi
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (F.C.)
| | - Fabio Casciano
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (F.C.)
| | - Arianna Gonelli
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (O.B.); (G.V.)
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (A.R.); (P.S.)
| | - Giorgio Zauli
- Research Department, King Khaled Eye Specialistic Hospital, Riyadh 12329-8139, Saudi Arabia;
| | - Olga Bortolini
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (O.B.); (G.V.)
| | - Giuseppe Valacchi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy; (A.G.); (O.B.); (G.V.)
- Plants for Human Health Institute, Animal Sciences Department, NC Research Campus, NC State University, Kannapolis, NC 28081, USA
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Daniele Ragno
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (D.R.); (A.B.)
| | - Agnese Bondi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (D.R.); (A.B.)
| | - Mascia Benedusi
- Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy;
| | - Elisabetta Esposito
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy; (D.R.); (A.B.)
| | - Rebecca Voltan
- Department of Environmental and Prevention Sciences and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (G.L.); (F.C.)
| |
Collapse
|
42
|
Ben Abid S, Ketata E, Yacoubi I, Djemal L, Abdelmoula-Souissi S, Koubaa A, Mokdad-Gargouri R, Gargouri A. Phage libraries screening on P53: Yield improvement by zinc and a new parasites-integrating analysis. PLoS One 2024; 19:e0297338. [PMID: 39361673 PMCID: PMC11449285 DOI: 10.1371/journal.pone.0297338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 10/05/2024] Open
Abstract
P53 is a transcription factor that controls a variety of genes, primarily involved in cell cycle and other processes related to cell survival and death. We have isolated peptides targeting P53 (protein and domains) using the "phage display" technique. Interestingly, adding ZnCl2 at 5-10 mM in panning solutions helped to recover more plaque-forming units at least at round one of the screening. Subtractive docking analyses were designed by using a pool of common redundant peptides known as parasites. This rationale helped us differentiate between possibly specific and non-specific bindings. We found notable differences in docking characteristics between different sets of peptides either related to different targets or related to zinc-conditions. The set of zinc-related peptides shows advantageous docking profiles: sharper binding for some positions and distinct exclusive bound residues, including the relevant R248 and R273. Zinc would have modulating/helping role in the targeting of protein P53 by phage displayed peptides in addition to an enhancement action on bacterial infection.
Collapse
Affiliation(s)
- Sihem Ben Abid
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Emna Ketata
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Ines Yacoubi
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Lamia Djemal
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Salma Abdelmoula-Souissi
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Aida Koubaa
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Raja Mokdad-Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Ali Gargouri
- Laboratoire de Biotechnologie Moléculaire des Eucaryotes, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
43
|
Chen RX, Liu SC, Kan XC, Wang YR, Wang JF, Wang TL, Li C, Jiang WJ, Chen YAL, Zhou T, Fan SL, Chang J, Xu X, Shi KH, Zhang YD, Wu MY, Yu Y, Li CX, Li XC. CircUGP2 Suppresses Intrahepatic Cholangiocarcinoma Progression via p53 Signaling Through Interacting With PURB to Regulate ADGRB1 Transcription and Sponging miR-3191-5p. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402329. [PMID: 39120980 PMCID: PMC11481218 DOI: 10.1002/advs.202402329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/17/2024] [Indexed: 08/11/2024]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer and its prognosis remains poor. Although growing numbers of studies have verified the involvement of circular RNAs (circRNAs) in various cancer types, their specific functions in ICC remain elusive. Herein, a circRNA, circUGP2 is identified by circRNA sequencing, which is downregulated in ICC tissues and correlated with patients' prognosis. Moreover, circUGP2 overexpression suppresses tumor progression in vitro and in vivo. Mechanistically, circUGP2 functions as a transcriptional co-activator of PURB over the expression of ADGRB1. It can also upregulate ADGRB1 expression by sponging miR-3191-5p. As a result, ADGRB1 prevents MDM2-mediated p53 polyubiquitination and thereby activates p53 signaling to inhibit ICC progression. Based on these findings, circUGP2 plasmid is encapsulated into a lipid nanoparticle (LNP) system, which has successfully targeted tumor site and shows superior anti-tumor effects. In summary, the present study has identified the role of circUGP2 as a tumor suppressor in ICC through regulating ADGRB1/p53 axis, and the application of LNP provides a promising translational strategy for ICC treatment.
Collapse
Affiliation(s)
- Rui Xiang Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Shuo Chen Liu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xue Chun Kan
- School of MedicineSoutheast UniversityNanjingJiangsu210009China
| | - Yi Rui Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Ji Fei Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Tian Lin Wang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Chang Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Wang Jie Jiang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Yan An Lan Chen
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Tao Zhou
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Shi Long Fan
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Jiang Chang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xiao Xu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Kuang Heng Shi
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Yao Dong Zhang
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Ming Yu Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| | - Yue Yu
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Chang Xian Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
| | - Xiang Cheng Li
- Hepatobiliary CenterThe First Affiliated Hospital of Nanjing Medical UniversityKey Laboratory of Liver TransplantationChinese Academy of Medical SciencesNHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University)NanjingJiangsu210029China
- The Affiliated Wuxi People's Hospital of Nanjing Medical UniversityWuxi People's HospitalWuxi Medical CenterNanjing Medical UniversityWuxiJiangsu214023China
| |
Collapse
|
44
|
Kaur G, Sohanur Rahman M, Shaikh S, Panda K, Chinnapaiyan S, Santiago Estevez M, Xia L, Unwalla H, Rahman I. Emerging roles of senolytics/senomorphics in HIV-related co-morbidities. Biochem Pharmacol 2024; 228:116179. [PMID: 38556028 PMCID: PMC11410549 DOI: 10.1016/j.bcp.2024.116179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Human immunodeficiency virus (HIV) is known to cause cellular senescence and inflammation among infected individuals. While the traditional antiretroviral therapies (ART) have allowed the once fatal infection to be managed effectively, the quality of life of HIV patients on prolonged ART use is still inferior. Most of these individuals suffer from life-threatening comorbidities like chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension (PAH), and diabetes, to name a few. Interestingly, cellular senescence is known to play a critical role in the pathophysiology of these comorbidities as well. It is therefore important to understand the role of cellular senescence in the disease progression and co-morbidity development in HIV-infected individuals. In this respect, use of senolytic/senomorphic drugs as combination therapy with ART would be beneficial for HIV patients. This review provides a critical analysis of the current literature to determine the potential and efficacy of using senolytics/senotherapeutics in managing HIV infection, latency, and associated co-morbidities in humans. The various classes of senolytics have been studied in detail to focus on their potential to combat against HIV infections and associated pathologies with advancing age.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Md Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Sadiya Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Maria Santiago Estevez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Li Xia
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
45
|
Miller KN, Li B, Pierce-Hoffman HR, Patel S, Lei X, Rajesh A, Teneche MG, Havas AP, Gandhi A, Macip CC, Lyu J, Victorelli SG, Woo SH, Lagnado AB, LaPorta MA, Liu T, Dasgupta N, Li S, Davis A, Korotkov A, Hultenius E, Gao Z, Altman Y, Porritt RA, Garcia G, Mogler C, Seluanov A, Gorbunova V, Kaech SM, Tian X, Dou Z, Chen C, Passos JF, Adams PD. Linked regulation of genome integrity and senescence-associated inflammation by p53. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.20.567963. [PMID: 38045344 PMCID: PMC10690201 DOI: 10.1101/2023.11.20.567963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Genomic instability and inflammation are distinct hallmarks of aging, but the connection between them is poorly understood. Understanding their interrelationship will help unravel new mechanisms and therapeutic targets of aging and age-associated diseases. Here we report a novel mechanism directly linking genomic instability and inflammation in senescent cells through a mitochondria-regulated molecular circuit driven by p53 and cytoplasmic chromatin fragments (CCF). We show, through activation or inactivation of p53 by genetic and pharmacologic approaches, that p53 suppresses CCF accumulation and the downstream inflammatory senescence-associated secretory phenotype (SASP), without affecting cell cycle arrest. p53 activation suppressed CCF formation by promoting DNA repair, and this is reflected in maintenance of genomic integrity, particularly in subtelomeric regions, as shown by single cell genome resequencing. Activation of p53 in aged mice by pharmacological inhibition of MDM2 reversed signatures of aging, including age- and senescence-associated transcriptomic signatures of inflammation and age-associated accumulation of monocytes and macrophages in liver. Remarkably, mitochondria in senescent cells suppressed p53 activity by promoting CCF formation and thereby restricting ATM-dependent nuclear DNA damage signaling. These data provide evidence for a mitochondria-regulated p53 signaling circuit in senescent cells that controls DNA repair, genome integrity, and senescence- and age-associated inflammation. This pathway is immunomodulatory in mice and a potential target for healthy aging interventions by small molecules already shown to activate p53.
Collapse
|
46
|
Manteaux G, Amsel A, Riquier-Morcant B, Prieto Romero J, Gayte L, Fourneaux B, Larroque M, Gruel N, Quignot C, Perot G, Jacq S, Cisse MY, Pomiès P, Sengenes C, Chibon F, Heuillet M, Bellvert F, Watson S, Carrere S, Firmin N, Riscal R, Linares LK. A metabolic crosstalk between liposarcoma and muscle sustains tumor growth. Nat Commun 2024; 15:7940. [PMID: 39266552 PMCID: PMC11393074 DOI: 10.1038/s41467-024-51827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/20/2024] [Indexed: 09/14/2024] Open
Abstract
Dedifferentiated and Well-differentiated liposarcoma are characterized by a systematic amplification of the Murine Double Minute 2 (MDM2) oncogene. We demonstrate that p53-independent metabolic functions of chromatin-bound MDM2 are exacerbated in liposarcoma and mediate an addiction to serine metabolism to sustain tumor growth. However, the origin of exogenous serine remains unclear. Here, we show that elevated serine levels in mice harboring liposarcoma-patient derived xenograft, released by distant muscle is essential for liposarcoma cell survival. Repressing interleukine-6 expression, or treating liposarcoma cells with Food and Drugs Administration (FDA) approved anti-interleukine-6 monoclonal antibody, decreases de novo serine synthesis in muscle, impairs proliferation, and increases cell death in vitro and in vivo. This work reveals a metabolic crosstalk between muscle and liposarcoma tumor and identifies anti-interleukine-6 as a plausible treatment for liposarcoma patients.
Collapse
Affiliation(s)
- Gabrielle Manteaux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Alix Amsel
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Blanche Riquier-Morcant
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Jaime Prieto Romero
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Laurie Gayte
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Benjamin Fourneaux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Marion Larroque
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nadège Gruel
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Chloé Quignot
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
| | - Gaelle Perot
- INSERM UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Université Paul Sabatier Toulouse-III, Toulouse, France
| | - Solenn Jacq
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Madi Y Cisse
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Pascal Pomiès
- PhyMedExp, University of Montpellier-INSERM-CNRS, Montpellier, France
| | - Coralie Sengenes
- RESTORE Research Center, Université de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVT, Toulouse, France
| | - Frédéric Chibon
- INSERM UMR 1037, Centre de Recherche en Cancérologie de Toulouse, Université Paul Sabatier Toulouse-III, Toulouse, France
| | - Maud Heuillet
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Floriant Bellvert
- Toulouse Biotechnologie Institute (TBI), Université de Toulouse, CNRS, INRA, INSA, Toulouse, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Sarah Watson
- INSERM U830, Diversity and Plasticity of Childhood Tumors Lab, PSL Research University, Institut Curie Research Center, Paris, France
- Department of Medical Oncology, Institut Curie Hospital, Paris, France
| | - Sebastien Carrere
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Nelly Firmin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Romain Riscal
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
| | - Laetitia K Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
47
|
Elkrief A, Odintsov I, Smith RS, Vojnic M, Hayashi T, Khodos I, Markov V, Liu Z, Lui AJW, Bloom JL, Offin MD, Rudin CM, de Stanchina E, Riely GJ, Somwar R, Ladanyi M. Combination of MDM2 and Targeted Kinase Inhibitors Results in Prolonged Tumor Control in Lung Adenocarcinomas With Oncogenic Tyrosine Kinase Drivers and MDM2 Amplification. JCO Precis Oncol 2024; 8:e2400241. [PMID: 39259915 PMCID: PMC11404768 DOI: 10.1200/po.24.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/06/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024] Open
Abstract
PURPOSE MDM2, a negative regulator of the TP53 tumor suppressor, is oncogenic when amplified. MDM2 amplification (MDM2amp) is mutually exclusive with TP53 mutation and is seen in 6% of patients with lung adenocarcinoma (LUAD), with significant enrichment in subsets with receptor tyrosine kinase (RTK) driver alterations. Recent studies have shown synergistic activity of MDM2 and MEK inhibition in patient-derived LUAD models with MDM2amp and RTK driver alterations. However, the combination of MDM2 and RTK inhibitors in LUAD has not been studied. METHODS We evaluated the combination of MDM2 and RTK inhibition in patient-derived models of LUAD. RESULTS In a RET-fusion LUAD patient-derived model with MDM2amp, MDM2 inhibition with either milademetan or AMG232 combined with selpercatinib resulted in long-term in vivo tumor control markedly superior to either agent alone. Similarly, in an EGFR-mutated model with MDM2amp, combining either milademetan or AMG232 with osimertinib resulted in long-term in vivo tumor control, which was strikingly superior to either agent alone. CONCLUSION These preclinical in vivo data provide a rationale for further clinical development of this combinatorial targeted therapy approach.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Igor Odintsov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Pathology, Brigham and Women's Hospital, Boston, MA
| | - Roger S Smith
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Morana Vojnic
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Takuo Hayashi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Inna Khodos
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Vladimir Markov
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Zebing Liu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Allan J W Lui
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jamie L Bloom
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Michael D Offin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Charles M Rudin
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Elisa de Stanchina
- Anti-tumor Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gregory J Riely
- Thoracic Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell, New York, NY
| | - Romel Somwar
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marc Ladanyi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
48
|
Khan MF, Alanazi RF, Baabbad AA, Almoutiri ND, Wadaan MA. Angiogenic protein profiling, phytochemical screening and in silico anti-cancer targets validation of stem, leaves, fruit, and seeds of Calotropis procera in human liver and breast cancer cell lines. ENVIRONMENTAL RESEARCH 2024; 256:119180. [PMID: 38795948 DOI: 10.1016/j.envres.2024.119180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/07/2024] [Accepted: 05/18/2024] [Indexed: 05/28/2024]
Abstract
The main focus of anticancer drug discovery is on developing medications that are gentle on normal cells and should have the ability to target multiple anti-cancer pathways. Liver cancer is becoming a worldwide epidemic due to the highest occurring and reoccurring rate in some countries. Calotropis procera is a xerophytic herbal plant growing wildly in Saudi Arabia. Due to its anti-angiogenic and anticancer capabilities, "C. procera" is a viable option for developing innovative anticancer medicines. However, no study has been done previously, to discover angiogenic and anti-cancer targets which are regulated by C. procera in liver cancer. In this study, leaves, stems, flowers, and seeds of C. procera were used to prepare crude extracts and were fractionated into four solvents of diverse polarities. These bioactivity-guided solvent fractions helped to identify useful compounds with minimal side effects. The phytoconstituents present in the leaves and stem were identified by GC-MS. In silico studies were done to predict the anti-cancer targets by major bioactive constituents present in leaves and stem extracts. A human angiogenesis antibody array was performed to profile novel angiogenic targets. The results from this study showed that C. procera extracts are an ideal anti-cancer remedy with minimum toxicity to normal cells as revealed by zebrafish in vivo toxicity screening assays. The novel antiangiogenic and anticancer targets identified in this study could be explored to design medication against liver cancer.
Collapse
Affiliation(s)
- Muhammad Farooq Khan
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Rawan Frhan Alanazi
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Almohannad A Baabbad
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Nawaf D Almoutiri
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Mohammad Ahmad Wadaan
- Bioproducts Research chair, Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
49
|
Hong Z, Liu F, Zhang Z. Ubiquitin modification in the regulation of tumor immunotherapy resistance mechanisms and potential therapeutic targets. Exp Hematol Oncol 2024; 13:91. [PMID: 39223632 PMCID: PMC11367865 DOI: 10.1186/s40164-024-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Although immune checkpoint-based cancer immunotherapy has shown significant efficacy in various cancers, resistance still limits its therapeutic effects. Ubiquitination modification is a mechanism that adds different types of ubiquitin chains to proteins, mediating protein degradation or altering their function, thereby affecting cellular signal transduction. Increasing evidence suggests that ubiquitination modification plays a crucial role in regulating the mechanisms of resistance to cancer immunotherapy. Drugs targeting ubiquitination modification pathways have been shown to inhibit tumor progression or enhance the efficacy of cancer immunotherapy. This review elaborates on the mechanisms by which tumor cells, immune cells, and the tumor microenvironment mediate resistance to cancer immunotherapy and the details of how ubiquitination modification regulates these mechanisms, providing a foundation for enhancing the efficacy of cancer immunotherapy by intervening in ubiquitination modification.
Collapse
Affiliation(s)
- Zihang Hong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Zhanguo Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
50
|
Rendo V, Lee EQ, Bossi C, Khuu N, Rudek MA, Pal S, Reynolds ARN, Fassinou ACR, Ayoub G, Lapinskas E, Pisano W, Jeang J, Stopka SA, Regan MS, Spetz J, Desai A, Lieberman F, Fisher JD, Pelton K, Huang RY, Nabors LB, Holdhoff M, Danda N, Strowd R, Desideri S, Walbert T, Ye X, Agar NYR, Grossman SA, Alexander BM, Wen PY, Ligon KL, Beroukhim R. Surgical window of opportunity trial reveals mechanisms of response and resistance to navtemadlin (KRT-232) in patients with recurrent glioblastoma. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.12.24311893. [PMID: 39211865 PMCID: PMC11361227 DOI: 10.1101/2024.08.12.24311893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We investigated the effectiveness of navtemadlin (KRT-232) in treating recurrent glioblastoma. A surgical window-of-opportunity trial ( NCT03107780 ) was conducted on 21 patients to determine achievable drug concentrations within tumor tissue and examine mechanisms of response and resistance. Both 120 mg and 240 mg daily dosing achieved a pharmacodynamic impact. Sequencing of three recurrent tumors revealed an absence of TP53 -inactivating mutations, indicating alternative mechanisms of resistance. In patient-derived GBM models, the lower range of clinically achieved navtemadlin concentrations induced partial tumor cell death as monotherapy. However, combining navtemadlin with temozolomide increased apoptotic rates while sparing normal bone marrow cells in vitro, which in return underwent reversible growth arrest. These results indicate that clinically achievable doses of navtemadlin generate significant pharmacodynamic effects and suggest that combined treatment with standard-of-care DNA damaging chemotherapy is a route to durable survival benefits. Statement of significance Tissue sampling during this clinical trial allowed us to assess mechanisms of response and resistance associated with navtemadlin treatment in recurrent GBM. We report that clinically achievable doses of navtemadlin induce pharmacodynamic effects in tumor tissue, and suggest combinations with standard-of-care chemotherapy for durable clinical benefit.
Collapse
|