1
|
Zeng L, Li YQ, He SW, Xu H, Zhang R, Chen K, Qin LJ, Zhu XH, Li YL, Li L, Liu N, Wang HY. The deubiquitinase USP44 enhances cisplatin chemosensitivity through stabilizing STUB1 to promote LRPPRC degradation in neuroblastoma. Neuro Oncol 2025; 27:492-507. [PMID: 39215663 PMCID: PMC11812030 DOI: 10.1093/neuonc/noae175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Dysregulated deubiquitinating enzymes (DUBs) execute as intrinsic oncogenes or tumor suppressors and are involved in chemoresistance in cancers. However, the functions and exact molecular mechanisms remain largely unclear in neuroblastoma. METHODS Here, an R2 screening strategy based on the standard deviation values was used to identify the most important DUB, USP44, in neuroblastoma with stage 4. We validated the role of USP44 regulation upon cisplatin treatment in vitro and in vivo experiments, revealing the molecular mechanisms associated with USP44 regulation and cisplatin sensitivity in neuroblastoma. RESULTS We found that low USP44 expression was associated with an inferior prognosis in neuroblastoma patients. Overexpression of USP44 enhanced neuroblastoma cell sensitivity to cisplatin in vitro and in vivo. Mechanistically, USP44 recruited and stabilized the E3 ubiquitin ligase STUB1 by removing its K48-linked polyubiquitin chains at Lys30, and STUB1 further reinforced the K48-linked polyubiquitination of LRPPRC at Lys453 and promoted its protein degradation, thus enhancing the accumulation of mitochondrial reactive oxygen species (mROS), in turn facilitating neuroblastoma cell apoptosis and cisplatin sensitivity. Additionally, overexpression of LRPPRC reversed the promoting effect of USP44 on cell apoptosis in cisplatin-treated neuroblastoma cells. CONCLUSIONS Our findings demonstrate that the USP44-STUB1-LRPPRC axis plays a pivotal role in neuroblastoma chemoresistance and provides potential targets for neuroblastoma therapy and prognostication.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Ying-Qing Li
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shi-Wei He
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hui Xu
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Ruizhong Zhang
- Guangdong Provincial Key Laboratory of Research in Structure Birth Defect Disease, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, P. R. China
| | - Kai Chen
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Liang-Jun Qin
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Xun-Hua Zhu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Yi-Lin Li
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, P. R. China
| | - Le Li
- Department of Thoracic Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| | - Na Liu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Hai-Yun Wang
- Guangzhou Institute of Paediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
- Department of Pathology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, National Children’s Medical Center for South Central Region, Guangzhou, P. R. China
| |
Collapse
|
2
|
Pauzaite T, Nathan JA. A closer look at the role of deubiquitinating enzymes in the Hypoxia Inducible Factor pathway. Biochem Soc Trans 2024; 52:2253-2265. [PMID: 39584532 PMCID: PMC11668284 DOI: 10.1042/bst20230861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Hypoxia Inducible transcription Factors (HIFs) are central to the metazoan oxygen-sensing response. Under low oxygen conditions (hypoxia), HIFs are stabilised and govern an adaptive transcriptional programme to cope with prolonged oxygen starvation. However, when oxygen is present, HIFs are continuously degraded by the proteasome in a process involving prolyl hydroxylation and subsequent ubiquitination by the Von Hippel Lindau (VHL) E3 ligase. The essential nature of VHL in the HIF response is well established but the role of other enzymes involved in ubiquitination is less clear. Deubiquitinating enzymes (DUBs) counteract ubiquitination and provide an important regulatory aspect to many signalling pathways involving ubiquitination. In this review, we look at the complex network of ubiquitination and deubiquitination in controlling HIF signalling in normal and low oxygen tensions. We discuss the relative importance of DUBs in opposing VHL, and explore roles of DUBs more broadly in hypoxia, in both VHL and HIF independent contexts. We also consider the catalytic and non-catalytic roles of DUBs, and elaborate on the potential benefits and challenges of inhibiting these enzymes for therapeutic use.
Collapse
Affiliation(s)
- Tekle Pauzaite
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| | - James A. Nathan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah, Biomedical Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0AW, U.K
| |
Collapse
|
3
|
Y KN, Arjunan A, Maigandan D, Dharmarajan A, Perumalsamy LR. Advances and challenges in therapeutic resistant biomarkers of neuroblastoma: A comprehensive review. Biochim Biophys Acta Rev Cancer 2024; 1879:189222. [PMID: 39577750 DOI: 10.1016/j.bbcan.2024.189222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024]
Abstract
Therapeutic resistance is one of the significant challenges in Neuroblastoma. Owing to its molecular diversity, the therapeutic resistance mechanisms of Neuroblastoma are highly complicated. The traditional chemo and radio therapeutics fail to provide adequate solutions to the treatment resistance, demanding in-depth research to improvise the existing prognostic and therapeutic regimens. To address this knowledge gap, several investigations are being employed, such as unravelling the molecular signalling mechanisms involved in drug resistance at genomics and proteomics levels, development of biomarkers for assessing the therapeutic success, development of novel drug targets for cancer stem cells, targeted immunotherapy and combination therapies. This review collates the ongoing research efforts to address the challenges faced in Neuroblastoma treatment resistance and uncovers the importance of transitioning biomarker discoveries into clinical practice.
Collapse
Affiliation(s)
- Krithicaa Narayanaa Y
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Amrutha Arjunan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Devi Maigandan
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| | - Arun Dharmarajan
- Sri Ramachandra Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India; Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102 Perth, Western Australia, Australia; Curtin Medical School, Curtin University, Perth, Western Australia, Australia; School of Human Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.
| | - Lakshmi R Perumalsamy
- Department of Biomedical Sciences, Sri Ramachandra Faculty of Biomedical Sciences & Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai 600116, India.
| |
Collapse
|
4
|
Shi S, Ge Y, Yan Q, Wan S, Li M, Li M. Activating UCHL1 through the CRISPR activation system promotes cartilage differentiation mediated by HIF-1α/SOX9. J Cell Mol Med 2024; 28:e70051. [PMID: 39223923 PMCID: PMC11369205 DOI: 10.1111/jcmm.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Developing strategies to enhance cartilage differentiation in mesenchymal stem cells and preserve the extracellular matrix is crucial for successful cartilage tissue reconstruction. Hypoxia-inducible factor-1α (HIF-1α) plays a pivotal role in maintaining the extracellular matrix and chondrocyte phenotype, thus serving as a key regulator in chondral tissue engineering strategies. Recent studies have shown that Ubiquitin C-terminal hydrolase L1 (UCHL1) is involved in the deubiquitylation of HIF-1α. However, the regulatory role of UCHL1 in chondrogenic differentiation has not been investigated. In the present study, we initially validated the promotive effect of UCHL1 expression on chondrogenesis in adipose-derived stem cells (ADSCs). Subsequently, a hybrid baculovirus system was designed and employed to utilize three CRISPR activation (CRISPRa) systems, employing dead Cas9 (dCas9) from three distinct bacterial sources to target UCHL1. Then UCHL1 and HIF-1α inhibitor and siRNA targeting SRY-box transcription factor 9 (SOX9) were used to block UCHL1, HIF-1α and SOX9, respectively. Cartilage differentiation and chondrogenesis were measured by qRT-PCR, immunofluorescence and histological staining. We observed that the CRISPRa system derived from Staphylococcus aureus exhibited superior efficiency in activating UCHL1 compared to the commonly used the CRISPRa system derived from Streptococcus pyogenes. Furthermore, the duration of activation was extended by utilizing the Cre/loxP-based hybrid baculovirus. Moreover, our findings show that UCHL1 enhances SOX9 expression by regulating the stability and localization of HIF-1α, which promotes cartilage production in ADSCs. These findings suggest that activating UCHL1 using the CRISPRa system holds significant potential for applications in cartilage regeneration.
Collapse
Affiliation(s)
- Shanwei Shi
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Yang Ge
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Qiqian Yan
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Shuangquan Wan
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Mingfei Li
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| | - Maoquan Li
- School of Stomatology, Stomatological HospitalSouthern Medical UniversityGuangzhouChina
- Guangdong Academy of StomatologyGuangzhouGuangdongChina
| |
Collapse
|
5
|
Zhou J, Li Q, Deng X, Peng L, Sun J, Zhang Y, Du Y. Comprehensive analysis identifies ubiquitin ligase FBXO42 as a tumor-promoting factor in neuroblastoma. Sci Rep 2024; 14:18697. [PMID: 39134694 PMCID: PMC11319589 DOI: 10.1038/s41598-024-69760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024] Open
Abstract
Neuroblastoma, the deadliest solid tumor in children, exhibits alarming mortality rates, particularly among high-risk cases. To enhance survival rates, a more precise risk stratification for patients is imperative. Utilizing proteomic data from 34 cases with or without N-Myc amplification, we identified 28 differentially expressed ubiquitination-related proteins (URGs). From these, a prognostic signature comprising 6 URGs was constructed. A nomogram incorporating clinical-pathological parameters yielded impressive AUC values of 0.88, 0.93, and 0.95 at 1, 3, and 5 years, respectively. Functional experiments targeting the E3 ubiquitin ligase FBXO42, a component of the prognostic signature, revealed its TP53-dependent promotion of neuroblastoma cell proliferation. In conclusion, our ubiquitination-related prognostic model robustly predicts patient outcomes, guiding clinical decisions. Additionally, the newfound pro-proliferative role of FBXO42 offers a novel foundation for understanding the molecular mechanisms of neuroblastoma.
Collapse
Affiliation(s)
- Jianwu Zhou
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Qijun Li
- Laboratory Animal Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xiaobin Deng
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Liang Peng
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Jian Sun
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yao Zhang
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yifei Du
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University; and the National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
6
|
Cheng J, Liu H, Shen Y, Ding J, He H, Mao S, Chen L, Zhang C, Zhou J. Deubiquitinase UCHL1 stabilizes KDM4B to augment VEGF signaling and confer bevacizumab resistance in clear cell renal cell carcinoma. Transl Oncol 2024; 45:101987. [PMID: 38743986 PMCID: PMC11109002 DOI: 10.1016/j.tranon.2024.101987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Bevacizumab resistance poses barriers to targeted therapy in clear cell renal cell carcinoma (ccRCC). Whether there exist epigenetic targets that modulate bevacizumab sensitivity in ccRCC remains indefinite. The focus of this study is to explore the role of UCHL1 in ccRCC. METHODS Both in vitro and in vivo experiments were utilized to investigate the roles of UCHL1 in ccRCC. In vivo ubiquitination assays were performed to validate the posttranslational modification of KDM4B by UCHL1. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were utilized to explore KDM4B/VEGFA epigenetic regulations. RESULTS UCHL1 was increased in ccRCC and associated with unfavorable survival outcomes in patients. UCHL1 was required for ccRCC growth and migration. Mechanistically, the wild-type UCHL1, but not C90A mutant, mediated the deubiquitination of KDM4B and thereby stabilized its proteins. KDM4B was up-regulated in ccRCC and potentiated cell growth. UCHL1 depended on KDM4B to augment ccRCC malignancies. Targeting UCHL1 suppressed tumor growth, colony formation, and migration abilities, which could be rescued by KDM4B. Furthermore, KDM4B was directly bound to the promoter region of VEGFA, abolishing repressive H3K9me3 modifications. KDM4B coordinated with HIF2α to activate VEGFA transcriptional levels. UCHL1-KDM4B axis governs VEGFA levels to sustain the angiogenesis phenotypes. Finally, a specific small-molecule inhibitor (6RK73) targeting UCHL1 remarkably inhibited ccRCC progression and further sensitized ccRCC to bevacizumab treatment. CONCLUSION Overall, this study defined an epigenetic mechanism of UCHL1/KDM4B in activating VEGF signaling. The UCHL1-KDM4B axis represents a novel target for treating ccRCC and improving the efficacy of anti-angiogenesis therapy.
Collapse
Affiliation(s)
- Jie Cheng
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Xuhui Central Hospital, Shanghai 200031, China
| | - Hanqing Liu
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yan Shen
- Research Centre for Experimental Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai 200025, China
| | - Jiawei Ding
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hongchao He
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shilong Mao
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China
| | - Li Chen
- Department of Pharmacy, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Shanghai 200031, China.
| | - Chuanjie Zhang
- Department of Urology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Jian Zhou
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; Shanghai Xuhui Central Hospital, Shanghai 200031, China.
| |
Collapse
|
7
|
Hu X, Zhou Y, Hill C, Chen K, Cheng C, Liu X, Duan P, Gu Y, Wu Y, Ewing RM, Li Z, Wu Z, Wang Y. Identification of MYCN non-amplified neuroblastoma subgroups points towards molecular signatures for precision prognosis and therapy stratification. Br J Cancer 2024; 130:1841-1854. [PMID: 38553589 PMCID: PMC7616008 DOI: 10.1038/s41416-024-02666-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Despite the extensive study of MYCN-amplified neuroblastomas, there is a significant unmet clinical need in MYCN non-amplified cases. In particular, the extent of heterogeneity within the MYCN non-amplified population is unknown. METHODS A total of 1566 samples from 16 datasets were identified in Gene Expression Omnibus (GEO) and ArrayExpress. Characterisation of the subtypes was analysed by ConsensusClusterPlus. Independent predictors for subgrouping were constructed from the single sample predictor based on the multiclassPairs package. Findings were verified using immunohistochemistry and CIBERSORTx analysis. RESULTS We demonstrate that MYCN non-amplified neuroblastomas are heterogeneous and can be classified into 3 subgroups based on their transcriptional signatures. Within these groups, subgroup_2 has the worst prognosis and this group shows a 'MYCN' signature that is potentially induced by the overexpression of Aurora Kinase A (AURKA); whilst subgroup_3 is characterised by an 'inflamed' gene signature. The clinical implications of this subtype classification are significant, as each subtype demonstrates a unique prognosis and vulnerability to investigational therapies. A total of 420 genes were identified as independent subgroup predictors with average balanced accuracy of 0.93 and 0.84 for train and test datasets, respectively. CONCLUSION We propose that transcriptional subtyping may enhance precision prognosis and therapy stratification for patients with MYCN non-amplified neuroblastomas.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Department of Paediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Kai Chen
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Cheng Cheng
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Xiaowei Liu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Peiwen Duan
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Yaoyao Gu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
| | - Yeming Wu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China
- Department of Paediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Rob M Ewing
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Zhongrong Li
- Department of Paediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhixiang Wu
- Department of Paediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200092, China.
- Division of Paediatric Oncology, Shanghai Institute of Paediatric Research, Shanghai, 200092, China.
- Department of Paediatric Surgery, Children's Hospital of Soochow University, Suzhou, 215003, China.
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
8
|
Zhou J, Du H, Cai W. Narrative review: precision medicine applications in neuroblastoma-current status and future prospects. Transl Pediatr 2024; 13:164-177. [PMID: 38323175 PMCID: PMC10839273 DOI: 10.21037/tp-23-557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Background and Objective Neuroblastoma (NB) is a common malignant tumor in children, and its treatment remains challenging. Precision medicine, as an individualized treatment strategy, aims to improve efficacy and reduce toxicity by combining unique patient- and tumor-related factors, bringing new hope for NB treatment. In this article, we review the evidence related to precision medicine in NB, with a focus on potential clinically actionable targets and a series of targeted drugs associated with NB. Methods We conducted an extensive search in PubMed, EMBASE, and Web of Science using key terms and database-specific strategies, filtered for time and language, to ensure a comprehensive collection of literature related to precision medicine in NB. The main search terms consisted of "neuroblastoma", "precision medicine", "pediatrics", and "targeting". The articles included in this study encompass those published from 1985 to the present, without restrictions on the type of articles. Key Content and Findings ALK inhibitors and MYCN inhibitors have been developed to interfere with tumor cell growth and dissemination, thereby improving treatment outcomes. Additionally, systematic testing to identify relevant driver mutations is crucial and can be used for diagnosis and prognostic assessment through the detection of many associated molecular markers. Furthermore, liquid biopsy, a non-invasive tumor detection method, can complement tissue biopsy and play a role in NB by analyzing circulating tumor DNA and circulating tumor cells to provide genetic information and molecular characteristics of the tumor. Recently, trials conducted by many pediatric oncology groups have shown the urgent need for new approaches to cure relapsed and refractory patients. Conclusions The purpose of this review is to summarize the latest advances in clinical treatment of NB, to better understand and focus on the development of promising treatment approaches, and to expedite the transition to the precision medicine clinical relevance in NB patients.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongmei Du
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Weisong Cai
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
9
|
Le Clorennec C, Subramonian D, Huo Y, Zage PE. UBE4B interacts with the ITCH E3 ubiquitin ligase to induce Ku70 and c-FLIPL polyubiquitination and enhanced neuroblastoma apoptosis. Cell Death Dis 2023; 14:739. [PMID: 37957138 PMCID: PMC10643674 DOI: 10.1038/s41419-023-06252-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 10/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Expression of the UBE4B ubiquitin ligase is strongly associated with neuroblastoma patient outcomes, but the functional roles of UBE4B in neuroblastoma pathogenesis are not known. We evaluated interactions of UBE4B with the E3 ubiquitin ligase ITCH/AIP4 and the effects of UBE4B expression on Ku70 and c-FLIPL ubiquitination and proteasomal degradation by co-immunoprecipitation and Western blots. We also evaluated the role of UBE4B in apoptosis induced by histone deacetylase (HDAC) inhibition using Western blots. UBE4B binding to ITCH was mediated by WW domains in the ITCH protein. ITCH activation led to ITCH-UBE4B complex formation and recruitment of Ku70 and c-FLIPL via ITCH WW domains, followed by Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination and proteasomal degradation. HDAC inhibition induced Ku70 acetylation, leading to release of c-FLIPL and Bax from Ku70, increased Ku70 and c-FLIPL Lys48/Lys63 branched polyubiquitination via the ITCH-UBE4B complex, and induction of apoptosis. UBE4B depletion led to reduced polyubiquitination and increased levels of Ku70 and c-FLIPL and to reduced apoptosis induced by HDAC inhibition via stabilization of c-FLIPL and Ku70 and inhibition of caspase 8 activation. Our results have identified novel interactions and novel targets for UBE4B ubiquitin ligase activity and a direct role for the ITCH-UBE4B complex in responses of neuroblastoma cells to HDAC inhibition, suggesting that the ITCH-UBE4B complex plays a critical role in responses of neuroblastoma to therapy and identifying a potential mechanism underlying the association of UBE4B expression with neuroblastoma patient outcomes.
Collapse
Affiliation(s)
- Christophe Le Clorennec
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Divya Subramonian
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Yuchen Huo
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | - Peter E Zage
- Department of Pediatrics, Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA.
- Peckham Center for Cancer and Blood Disorders, Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
10
|
Zhang Y, Ma Y, Liu Q, Du Y, Peng L, Zhou J, Zhao Z, Li C, Wang S. Single-cell transcriptome sequencing reveals tumor heterogeneity in family neuroblastoma. Front Immunol 2023; 14:1197773. [PMID: 37790931 PMCID: PMC10543897 DOI: 10.3389/fimmu.2023.1197773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Neuroblastoma(NB) is the most common extracranial solid tumor in childhood, and it is now believed that some patients with NB have an underlying genetic susceptibility, which may be one of the reasons for the multiplicity of NB patients within a family line. Even within the same family, the samples show great variation and can present as ganglioneuroblastoma or even benign ganglioneuroma. The genomics of NB is still unclear and more in-depth studies are needed to reveal its key components. We first performed single-cell RNA sequencing(sc-RNAseq) analysis on clinical specimens of two family neuroblastoma(FNB) and four sporadic NB cases. A complete transcriptional profile of FNB was constructed from 18,394 cells from FNB, and we found that SDHD may be genetically associated with FNB and identified a prognostic related CAF subtype in FNB: Fib-4. Single-cell flux estimation analysis (scFEA) results showed that malignant cells were associated with arginine spermine, oxaloacetate and hypoxanthine, and that malignant cells metabolize lactate at lower levels than T cells. Our study provides new resources and ideas for the development of the genomics of family NB, and the mechanisms of cell-to-cell interactions and communication and the metabolic landscape will provide new therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shan Wang
- Department of Pediatric Surgical Oncology Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
11
|
Zhu Z, Li X, Liu D, Li Z. A novel signature of aging-related genes associated with lymphatic metastasis for survival prediction in patients with bladder cancer. Front Oncol 2023; 13:1140891. [PMID: 37441420 PMCID: PMC10335803 DOI: 10.3389/fonc.2023.1140891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Background The predominant and most prevalent form of metastatic bladder cancer (BCa) is lymphatic metastasis, which is associated with a highly dismal prognosis for patients. Aging-related genes (ARGs) are believed to contribute significantly to tumor development. However, the effect of ARGs on lymphatic metastasis of BCa is unclear. This research sought to establish a prognosis model based on ARGs associated with lymphatic metastasis in BCa. Methods We downloaded BCa data from the TCGA and GEO databases and ARGs from the Aging Atlas database. The least absolute shrinkage and selection operator (LASSO) approach was applied to obtain the characteristic ARGs of risk signature in the TCGA cohort. Verification was done using the GSE13507 dataset. The R package 'ConsensusClusterPlus' was employed to identify the molecular subtypes based on the characteristic ARGs. Protein-Protein interaction network, MCODE analysis, enrichment analysis (KEGG, GO, GSEA), and immune infiltration analysis were performed to investigate underlying mechanisms. EdU, migration and invasion assays, wound healing assays, immunofluorescence staining, and quantitative polymerase chain reaction were conducted to evaluate the impact of ELN on the proliferative, migratory, and invasive capacities of BCa cells. Results We identified 20 differently expressed ARGs. A four ARGs risk signature (EFEMP1, UCHL1, TP63, ELN) was constructed in the TCGA cohort. The high-risk group (category) recorded a reduced overall survival (OS) rate relative to the low-risk category (hazard ratio, 2.15; P <0.001). The risk score could predict lymphatic metastasis in TCGA cohort (AUC=0.67). The GSE13507 dataset was employed to verify the validity of this risk score. Based on the four ARGs, two distinct aging profiles (Cluster 1 and Cluster 2) were discovered utilizing the ConsensusClusterPlus, and Cluster 2 possessed a favorable OS in contrast with Cluster 1 (hazard ratio, 0.69; P =0.02). Classical tumor signaling pathways, ECM-associated signaling pathways, and immune-related signaling pathways participate in BCa progression. ELN recombinant protein affected the expression of collagen and increased migration and invasiveness in BCa cells. Conclusion We constructed a four-ARG risk signature and identified two aging molecular subtypes. This signature could serve as an effective survival predictor for patients with BCa.
Collapse
Affiliation(s)
- Zhiguo Zhu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
- Medical Research Center, Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Jining, China
- The Seventh Affiliated Hospital (Shenzhen), Sun Yet-sen University, Shenzhen, China
| | - Xiaoli Li
- The Seventh Affiliated Hospital (Shenzhen), Sun Yet-sen University, Shenzhen, China
| | - Deqian Liu
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| | - Zhonghai Li
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, China
| |
Collapse
|
12
|
Karapurkar JK, Kim MS, Colaco JC, Suresh B, Sarodaya N, Kim DH, Park CH, Hong SH, Kim KS, Ramakrishna S. CRISPR/Cas9-based genome-wide screening of the deubiquitinase subfamily identifies USP3 as a protein stabilizer of REST blocking neuronal differentiation and promotes neuroblastoma tumorigenesis. J Exp Clin Cancer Res 2023; 42:121. [PMID: 37170124 PMCID: PMC10176696 DOI: 10.1186/s13046-023-02694-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/01/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND The repressor element-1 silencing transcription factor (REST), a master transcriptional repressor, is essential for maintenance, self-renewal, and differentiation in neuroblastoma. An elevated expression of REST is associated with impaired neuronal differentiation, which results in aggressive neuroblastoma formation. E3 ligases are known to regulate REST protein abundance through the 26 S proteasomal degradation pathway in neuroblastoma. However, deubiquitinating enzymes (DUBs), which counteract the function of E3 ligase-mediated REST protein degradation and their impact on neuroblastoma tumorigenesis have remained unexplored. METHODS We employed a CRISPR/Cas9 system to perform a genome-wide knockout of ubiquitin-specific proteases (USPs) and used western blot analysis to screen for DUBs that regulate REST protein abundance. The interaction between USP3 and REST was confirmed by immunoprecipitation and Duolink in situ proximity assays. The deubiquitinating effect of USP3 on REST protein degradation, half-life, and neuronal differentiation was validated by immunoprecipitation, in vitro deubiquitination, protein-turnover, and immunostaining assays. The correlation between USP3 and REST expression was assessed using patient neuroblastoma datasets. The USP3 gene knockout in neuroblastoma cells was performed using CRISPR/Cas9, and the clinical relevance of USP3 regulating REST-mediated neuroblastoma tumorigenesis was confirmed by in vitro and in vivo oncogenic experiments. RESULTS We identified a deubiquitinase USP3 that interacts with, stabilizes, and increases the half-life of REST protein by counteracting its ubiquitination in neuroblastoma. An in silico analysis showed a correlation between USP3 and REST in multiple neuroblastoma cell lines and identified USP3 as a prognostic marker for overall survival in neuroblastoma patients. Silencing of USP3 led to a decreased self-renewal capacity and promoted retinoic acid-induced differentiation in neuroblastoma. A loss of USP3 led to attenuation of REST-mediated neuroblastoma tumorigenesis in a mouse xenograft model. CONCLUSION The findings of this study indicate that USP3 is a critical factor that blocks neuronal differentiation, which can lead to neuroblastoma. We envision that targeting USP3 in neuroblastoma tumors might provide an effective therapeutic differentiation strategy for improved survival rates of neuroblastoma patients.
Collapse
Affiliation(s)
| | - Min-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Neha Sarodaya
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Dong-Ho Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Chang-Hwan Park
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
- College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
13
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
14
|
Zhang D, Lu W, Cui S, Mei H, Wu X, Zhuo Z. Establishment of an ovarian cancer omentum metastasis-related prognostic model by integrated analysis of scRNA-seq and bulk RNA-seq. J Ovarian Res 2022; 15:123. [PMID: 36424614 PMCID: PMC9686070 DOI: 10.1186/s13048-022-01059-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Ovarian cancer has the highest mortality rate among gynecological malignant tumors, and it preferentially metastasizes to omental tissue, leading to intestinal obstruction and death. scRNA-seq is a powerful technique to reveal tumor heterogeneity. Analyzing omentum metastasis of ovarian cancer at the single-cell level may be more conducive to exploring and understanding omentum metastasis and prognosis of ovarian cancer at the cellular function and genetic levels. METHODS The omentum metastasis site scRNA-seq data of GSE147082 were acquired from the GEO (Gene Expression Omnibus) database, and single cells were clustered by the Seruat package and annotated by the SingleR package. Cell differentiation trajectories were reconstructed through the monocle package. The ovarian cancer microarray data of GSE132342 were downloaded from GEO and were clustered by using the ConsensusClusterPlus package into omentum metastasis-associated clusters according to the marker genes gained from single-cell differentiation trajectory analysis. The tumor microenvironment (TME) and immune infiltration differences between clusters were analyzed by the estimate and CIBERSORT packages. The expression matrix of genes used to cluster GSE132342 patients was extracted from bulk RNA-seq data of TCGA-OV (The Cancer Genome Atlas ovarian cancer), and least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression were performed to establish an omentum metastasis-associated gene (OMAG) signature. The signature was then tested by GSE132342 data. Finally, the clinicopathological characteristics of TCGA-OV were screened by univariate and multivariate Cox regression analysis to draw the nomogram. RESULTS A total of 9885 cells from 6 patients were clustered into 18 cell clusters and annotated into 14 cell types. Reconstruction of differentiation trajectories divided the cells into 5 branches, and a total of 781 cell trajectory-related characteristic genes were obtained. A total of 3769 patients in GSE132342 were subtyped into 3 clusters by 74 cell trajectory-related characteristic genes. Kaplan-Meier (K-M) survival analysis showed that the prognosis of cluster 2 was the worst, P < 0.001. The TME analysis showed that the ESTIMATE score and stromal score in cluster 2 were significantly higher than those in the other two clusters, P < 0.001. The immune infiltration analysis showed differences in the fraction of 8 immune cells among the 3 clusters, P < 0.05. The expression data of 74 genes used for GEO clustering were extracted from 379 patients in TCGA-OV, and combined with survival information, 10 candidates for OMAGs were filtered by LASSO. By using multivariate Cox regression, the 6-OMAGs signature was established as RiskScore = 0.307*TIMP3 + 3.516*FBN1-0.109*IGKC + 0.209*RPL21 + 0.870*UCHL1 + 0.365*RARRES1. Taking TCGA-OV as the training set and GSE132342 as the test set, receiver operating characteristic (ROC) curves were drawn to verify the prognostic value of 6-OMAGs. Screened by univariate and multivariate Cox regression analysis, 3 (age, cancer status, primary therapy outcome) of 5 clinicopathological characteristics were used to construct the nomogram combined with risk score. CONCLUSION We constructed an ovarian cancer prognostic model related to omentum metastasis composed of 6-OMAGs and 3 clinicopathological features and analyzed the potential mechanism of these 6-OMAGs in ovarian cancer omental metastasis.
Collapse
Affiliation(s)
- Dongni Zhang
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenping Lu
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Shasha Cui
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Heting Mei
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xiaoqing Wu
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Zhili Zhuo
- grid.410318.f0000 0004 0632 3409Oncology Department, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
15
|
Du X, Ding L, Huang S, Li F, Yan Y, Tang R, Ding X, Zhu Z, Wang W. Cathepsin L promotes chemresistance to neuroblastoma by modulating serglycin. Front Pharmacol 2022; 13:920022. [PMID: 36133820 PMCID: PMC9484481 DOI: 10.3389/fphar.2022.920022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
Cathepsin L (CTSL), a lysosomal acid cysteine protease, is found to play a critical role in chemosencitivity and tumor progression. However, the potential roles and molecular mechanisms of CTSL in chemoresistance in neuroblastoma (NB) are still unclear. In this study, the correlation between clinical characteristics, survival and CTSL expression were assessed in Versteeg dataset. The chemoresistant to cisplatin or doxorubicin was detected using CCK-8 assay. Western blot was employed to detect the expression of CTSL, multi-drug resistance proteins, autophagy-related proteins and apoptosis-related proteins in NB cells while knocking down CTSL. Lysosome staining was analyzed to access the expression levels of lysosomes in NB cells. The expression of apoptosis markers was analyzed with immunofluorescence. Various datasets were analyzed to find the potential protein related to CTSL. In addition, a subcutaneous tumor xenografts model in M-NSG mice was used to assess tumor response to CTSL inhibition in vivo. Based on the validation dataset (Versteeg), we confirmed that CTSL served as a prognostic marker for poor clinical outcome in NB patients. We further found that the expression level of CTSL was higher in SK-N-BE (2) cells than in IMR-32 cells. Knocking down CTSL reversed the chemoresistance in SK-N-BE (2) cells. Furthermore, combination of CTSL inhibition and chemotherapy potently blocked tumor growth in vivo. Mechanistically, CTSL promoted chemoresistance in NB cells by up-regulating multi-drug resistance protein ABCB1 and ABCG2, inhibiting the autophagy level and cell apoptpsis. Furthermore, we observed six datasets and found that Serglycin (SRGN) expression was positively associated with CTSL expresssion. CTSL could mediate chemoresistance by up-regulating SRGN expression in NB cells and SRGN expression was positively correlated with poor prognosis of NB patients. Taken together, our findings indicate that the CTSL promotes chemoresistance to cisplatin and doxorubicin by up-regulating the expression of multi-drug resistance proteins and inhibiting the autophagy level and cell apoptosis in NB cells. Thus, CTSL may be a therapeutic target for overcoming chemoresistant to cisplatin and doxorubicin in NB patients.
Collapse
Affiliation(s)
- Xiaohuan Du
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Leyun Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shungen Huang
- Department of Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Fang Li
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Yinghui Yan
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Ruze Tang
- Department of Oncology, Children’s Hospital of Soochow University, Suzhou, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| | - Zengyan Zhu
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| | - Wenjuan Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Wenjuan Wang, ; Xinyuan Ding, ; Zengyan Zhu,
| |
Collapse
|
16
|
Yu H, Tang D, Wu H, Li C, Lu Y, He F, Zhang X, Yang Y, Shi W, Hu W, Zeng Z, Dai W, Ou M, Dai Y. Integrated single-cell analyses decode the developmental landscape of the human fetal spine. iScience 2022; 25:104679. [PMID: 35832888 PMCID: PMC9272381 DOI: 10.1016/j.isci.2022.104679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The spine has essential roles in supporting body weight, and passaging the neural elements between the body and the brain. In this study, we used integrated single-cell RNA sequencing and single-cell transposase-accessible chromatin sequencing analyses to reveal the cellular heterogeneity, lineage, and transcriptional regulatory network of the developing human spine. We found that EPYC + HAPLN1+ fibroblasts with stem cell characteristics could differentiate into chondrocytes by highly expressing the chondrogenic markers SOX9 and MATN4. Neurons could originate from neuroendocrine cells, and MEIS2 may be an essential transcription factor that promotes spinal neural progenitor cells to selectively differentiate into neurons during early gestation. Furthermore, the interaction of NRP2_SEMA3C and CD74_APP between macrophages and neurons may be essential for spinal cord development. Our integrated map provides a blueprint for understanding human spine development in the early and midgestational stages at single-cell resolution and offers a tool for investigating related diseases. scRNA-seq and scATAC-seq analyses reveal the developmental landscape of the fetal spine Chondrocytes may originate from EPYC + HAPLN1+ fibroblasts with stem cell characteristics Neurons may originate from neuroendocrine cells with regulation by MEIS2
Collapse
Affiliation(s)
- Haiyan Yu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Department of Pharmacy, Shenzhen Pingshan District People's Hospital, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong 518118, P.R. China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Hongwei Wu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Chunhong Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yongping Lu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China.,Institute of Nephrology and Blood Purification, the First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, China
| | - Fang He
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, Jiangsu, China
| | - Xiaogang Zhang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, Jiangsu, China
| | - Yane Yang
- Shenzhen Far East Women & Children Hospital, Shenzhen 518000, Guangdong, China
| | - Wei Shi
- Department of Obstetrics and Gynecology, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wenlong Hu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhipeng Zeng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, TX 78721, USA
| | - Minglin Ou
- Central Laboratory, The Second Affiliated Hospital of Guilin Medical University, No. 212, Renmin Road, Lingui District, Guilin 541000, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
17
|
PCLAF promotes neuroblastoma G1/S cell cycle progression via the E2F1/PTTG1 axis. Cell Death Dis 2022; 13:178. [PMID: 35210406 PMCID: PMC8873510 DOI: 10.1038/s41419-022-04635-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/20/2022]
Abstract
PCLAF (PCNA clamp-associated factor), also known as PAF15/ KIAA0101, is overexpressed in most human cancers and is a predominant regulator of tumor progression. However, its biological function in neuroblastoma remains unclear. PCLAF is extremely overexpressed in neuroblastoma and is associated with poor prognosis. Through the analysis of various data sets, we found that the high expression of PCLAF is positively correlated with increased stage and high risk of neuroblastoma. Most importantly, knocking down PCLAF could restrict the proliferation of neuroblastoma cells in vitro and in vitro. By analyzing RNA-seq data, we found that the enrichment of cell cycle-related pathway genes was most significant among the differentially expressed downregulated genes after reducing the expression of PCLAF. In addition, PCLAF accelerated the G1/S transition of the neuroblastoma cell cycle by activating the E2F1/PTTG1 signaling pathway. In this study, we reveal the mechanism by which PCLAF facilitates cell cycle progression and recommend that the PCLAF/E2F1/PTTG1 axis is a therapeutic target in neuroblastoma.
Collapse
|
18
|
Mondal M, Conole D, Nautiyal J, Tate EW. UCHL1 as a novel target in breast cancer: emerging insights from cell and chemical biology. Br J Cancer 2022; 126:24-33. [PMID: 34497382 PMCID: PMC8727673 DOI: 10.1038/s41416-021-01516-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/25/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer has the highest incidence and death rate among cancers in women worldwide. In particular, metastatic estrogen receptor negative (ER-) breast cancer and triple-negative breast cancer (TNBC) subtypes have very limited treatment options, with low survival rates. Ubiquitin carboxyl terminal hydrolase L1 (UCHL1), a ubiquitin C-terminal hydrolase belonging to the deubiquitinase (DUB) family of enzymes, is highly expressed in these cancer types, and several key reports have revealed emerging and important roles for UCHL1 in breast cancer. However, selective and potent small-molecule UCHL1 inhibitors have been disclosed only very recently, alongside chemical biology approaches to detect regulated UHCL1 activity in cancer cells. These tools will enable novel insights into oncogenic mechanisms driven by UCHL1, and identification of substrate proteins deubiquitinated by UCHL1, with the ultimate goal of realising the potential of UCHL1 as a drug target in breast cancer.
Collapse
Affiliation(s)
- Milon Mondal
- Department of Chemistry, Imperial College London, London, UK
| | - Daniel Conole
- Department of Chemistry, Imperial College London, London, UK
| | - Jaya Nautiyal
- Department of Surgery and Cancer, Institute of Reproductive and Developmental Biology, Imperial College London, London, UK
| | - Edward W Tate
- Department of Chemistry, Imperial College London, London, UK.
| |
Collapse
|
19
|
Thai SF, Jones CP, Robinette BL, Ren H, Vallant B, Fisher A, Kitchin KT. Effects of Copper Nanoparticles on mRNA and Small RNA Expression in Human Hepatocellular Carcinoma (HepG2) Cells. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:5083-5098. [PMID: 33875094 PMCID: PMC10803003 DOI: 10.1166/jnn.2021.19328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the advancement of nanotechnology, nanoparticles are widely used in many different industrial processes and consumer products. Copper nanoparticles (Cu NPs) are among the most toxic nanomaterials. We investigated Cu NPs toxicity in Human Hepatocellular carcinoma (HepG2) cells by examining signaling pathways, and microRNA/mRNA interactions. We compared the effects of exposures to Cu NPs at various concentrations and CuCl₂ was used as a control. The number of differentially expressed mRNA did not follow a linear dose-response relationship for either Cu NPs or CuCl₂ treatments. The most significantly altered genes and pathways by Cu NPs exposure were NRF2 (nuclear factor erythroid 2 related factor 2)-mediated oxidative stress response, protein ubiquitination, Tumor protein p53 (p53), phase I and II metabolizing enzymes, antioxidant proteins and phase III detoxifying gene pathways.Messenger RNA-microRNA interaction from MicroRNA Target Filter Analyses revealed more signaling pathways altered in Cu NPs treated samples than transcriptomics alone, including cell proliferation, DNA methylation, endoplasmic reticulum (ER) stress, apoptosis, autophagy, reactive oxygen species, inflammation, tumorigenesis, extracellular matrix/angiogenesis and protein synthesis. In contrast, in the control (CuCl₂) treated samples showed mostly changes in inflammation mainly through regulation of the Nuclear Factor Kappa-light-chain-enhancer of Activated B-cells (NFκB). Further, some RNA based parameters that showed promise as biomarkers of Cu NPs exposure including both well and lesser known genes: heme oxygenase 1 (HMOX1), heat shock protein, c-Fos proto-oncogene, DNA methyltransferases, and glutamate-cysteine ligase modifier subunit (GCLM, part of the glutathione synthesis pathway). The differences in signaling pathways altered by the Cu NPs and CuCl₂ treatments suggest that the effects of the Cu NPs were not the results of nanomaterial dissolution to soluble copper ions.
Collapse
Affiliation(s)
- Sheau-Fung Thai
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Carlton P Jones
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Brian L Robinette
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Hongzu Ren
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Beena Vallant
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | - Anna Fisher
- Center for Public Health and Environmental Assessment, US Environmental Production Agency, 109 TW Alexander Dr., Durham NC 27709, USA
| | | |
Collapse
|
20
|
Shawraba F, Hammoud H, Mrad Y, Saker Z, Fares Y, Harati H, Bahmad HF, Nabha S. Biomarkers in Neuroblastoma: An Insight into Their Potential Diagnostic and Prognostic Utilities. Curr Treat Options Oncol 2021; 22:102. [PMID: 34580780 DOI: 10.1007/s11864-021-00898-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 12/23/2022]
Abstract
OPINION STATEMENT Neuroblastoma (NB) is a heterogeneous solid tumor of the pediatric population that originates from neural crest cells and affects the developing sympathetic nervous system. It is the most common neuroblastic tumor accounting for approximately 10% of all childhood cancers and 10-15% of pediatric tumor mortalities. The outcomes range from spontaneous tumor regression in low-risk groups to metastasis and death even after multimodal therapy in high-risk groups. Hence, the detection of NB at an early stage improves outcomes and provides a better prognosis for patients. Early detection and prognosis of NB depend on specific molecules termed biomarkers which can be tissue-specific or circulating. Certain biomarkers are employed in the classification of NB into different groups to improve the treatment and prognosis, and others can be used as therapeutic targets. Therefore, novel biomarker discovery is essential for the early detection of NB, predicting the course of the disease, and developing new targeted treatment strategies. In this review, we aim to summarize the literature pertinent to some important biomarkers of NB and discuss the prognostic role of these biomarkers as well as their potential role in targeted therapy.
Collapse
Affiliation(s)
- Fatima Shawraba
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hussein Hammoud
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Yara Mrad
- Université Clermont Auvergne, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA.
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Hadath, Beirut, Lebanon.
| |
Collapse
|
21
|
Loss of Ubiquitin Carboxy-Terminal Hydrolase L1 Impairs Long-Term Differentiation Competence and Metabolic Regulation in Murine Spermatogonial Stem Cells. Cells 2021; 10:cells10092265. [PMID: 34571914 PMCID: PMC8465610 DOI: 10.3390/cells10092265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 01/01/2023] Open
Abstract
Spermatogonia are stem and progenitor cells responsible for maintaining mammalian spermatogenesis. Preserving the balance between self-renewal of spermatogonial stem cells (SSCs) and differentiation is critical for spermatogenesis and fertility. Ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1) is highly expressed in spermatogonia of many species; however, its functional role has not been identified. Here, we aimed to understand the role of UCH-L1 in murine spermatogonia using a Uch-l1−/− mouse model. We confirmed that UCH-L1 is expressed in undifferentiated and early-differentiating spermatogonia in the post-natal mammalian testis. The Uch-l1−/− mice showed reduced testis weight and progressive degeneration of seminiferous tubules. Single-cell transcriptome analysis detected a dysregulated metabolic profile in spermatogonia of Uch-l1−/− compared to wild-type mice. Furthermore, cultured Uch-l1−/− SSCs had decreased capacity in regenerating full spermatogenesis after transplantation in vivo and accelerated oxidative phosphorylation (OXPHOS) during maintenance in vitro. Together, these results indicate that the absence of UCH-L1 impacts the maintenance of SSC homeostasis and metabolism and impacts the differentiation competence. Metabolic perturbations associated with loss of UCH-L1 appear to underlie a reduced capacity for supporting spermatogenesis and fertility with age. This work is one step further in understanding the complex regulatory circuits underlying SSC function.
Collapse
|
22
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|
23
|
Lu G, Li J, Ding L, Wang C, Tang L, Liu X, Xu J, Zhou Q, Sun J, Wang W, Ding X. The Deubiquitinating Enzyme UCHL1 Induces Resistance to Doxorubicin in HER2+ Breast Cancer by Promoting Free Fatty Acid Synthesis. Front Oncol 2021; 11:629640. [PMID: 33718207 PMCID: PMC7943833 DOI: 10.3389/fonc.2021.629640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 01/04/2021] [Indexed: 01/16/2023] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCHL1), which is a deubiquitinating enzyme, is known to play a role in chemoresistance in cancers. However, its potential roles and mechanisms in the chemoresistance of breast cancer (BC) remain unclear. In this study, we examined its expression in patients with BC and employed Kaplan-Meier analysis and the log-rank test for survival analyses. It was found that up-regulated UCHL1 expression was positively associated with both chemoresistance and poor prognosis, especially in patients with HER2+ BC. Moreover, UCHL1 expression was elevated in HER2+ BC cells (SK-BR-3 and BT474). Similarly, doxorubicin (DOX)-resistant BC cells (MCF-7/DOX) had higher UCHL1 levels than MCF-7 cells. CCK-8 assay showed that BC cells with higher UCHL1 levels were more resistant to DOX. Furthermore, by inhibiting UCHL1 in BC cells with elevated UCHL1 expression, we demonstrated that UCHL1 promoted DOX-resistance in BC. Mechanistically, UCHL1 probably promoted DOX-resistance of BC by up-regulating free fatty acid (FFA) synthesis, as exhibited by reduced FFA synthase expression and resurrected DOX-sensitivity upon UCHL1 inhibition. Overall, UCHL1 up-regulation is associated with DOX-resistance and poor prognosis in patients with HER2+ BC. UCHL1 induces DOX-resistance by up-regulating FFA synthesis in HER2+ BC cells. Thus, UCHL1 might be a potential clinical target for overcoming DOX resistance in patients with HER2+ BC.
Collapse
Affiliation(s)
- Guangxian Lu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jianhua Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Leyun Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Chenping Wang
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, Nantong, China
| | - Lian Tang
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xin Liu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jinhui Xu
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qin Zhou
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiantong Sun
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Wenjuan Wang
- Department of Pharmacy, Children’s Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xinyuan Ding
- Department of Pharmacy, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
24
|
Okechukwu C. Deciphering and manipulating the epigenome for the treatment of Parkinson’s and Alzheimer’s disease. MGM JOURNAL OF MEDICAL SCIENCES 2021. [DOI: 10.4103/mgmj.mgmj_90_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Liu Z, Sun T, Zhang Z, Bi J, Kong C. An 18-gene signature based on glucose metabolism and DNA methylation improves prognostic prediction for urinary bladder cancer. Genomics 2021; 113:896-907. [PMID: 33096258 DOI: 10.1016/j.ygeno.2020.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Glucose metabolism and DNA methylation play important roles in cancers. We aimed to identify glucose metabolism-related genes that were DNA methylation associated to establish a prognostic signature of bladder cancer (BLCA). METHODS With BLCA sample transcriptome data from The Cancer Genome Atlas (TCGA) and methylation data from TCGA 450 K microarray, glucose metabolism-related genes associated to prognosis and DNA methylation were identified and a prognostic signature was established. GSEA and WGCNA analysis were performed and two genes, UCHL1 and PYCR1, were selected for functional validations. RESULTS 18 target genes were identified and the signature based on them was considered an effective and independent prognostic factor. Several pathways were enriched in the high-risk group by GSEA and three modules of genes were identified by WGCNA. UCHL1 and PYCR1 proliferated proliferation, migration and invasion ability of bladder cancer cells. CONCLUSIONS The 18-gene signature is an independent prognostic factor for bladder cancer patients.
Collapse
Affiliation(s)
- Zhuonan Liu
- Department of Urology, Fist Hospital of China Medical University, School of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province 110004, PR China
| | - Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Zhe Zhang
- Department of Urology, Fist Hospital of China Medical University, School of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province 110004, PR China
| | - Jianbin Bi
- Department of Urology, Fist Hospital of China Medical University, School of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province 110004, PR China.
| | - Chuize Kong
- Department of Urology, Fist Hospital of China Medical University, School of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang City, Liaoning Province 110004, PR China.
| |
Collapse
|
26
|
Mussell A, Shen H, Chen Y, Mastri M, Eng KH, Bshara W, Frangou C, Zhang J. USP1 Regulates TAZ Protein Stability Through Ubiquitin Modifications in Breast Cancer. Cancers (Basel) 2020; 12:cancers12113090. [PMID: 33114077 PMCID: PMC7690829 DOI: 10.3390/cancers12113090] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Triple-Negative breast cancer (TNBC) is the most aggressive form of breast cancer in women. Targeted therapies for the treatment of this disease are severely lacking. Through mechanistic studies of the key component of Hippo signaling pathway, Transcriptional co-activator with PDZ-binding motif (TAZ), we aimed to uncover novel regulators that may be used as targeted therapies for this disease. Using an siRNA target deubiquitinating enzymes screen, we identified ubiquitin-specific peptidase 1 (USP1) as a novel TAZ deubiquitinating enzyme. We found that USP1 interacts with TAZ and loss of USP1 reduces cell proliferation in a partially TAZ-dependent manner. Furthermore, we demonstrated that USP1 and TAZ expression are positively correlated in TNBC patients. This research found a newly defined regulatory mechanism of TAZ that could be used as a therapeutic approach for breast cancer. Abstract The Hippo signaling pathway is an evolutionarily conserved pathway that was initially discovered in Drosophila melanogaster and was later found to have mammalian orthologues. The key effector proteins in this pathway, YAP/TAZ, are often dysregulated in cancer, leading to a high degree of cell proliferation, migration, metastasis and cancer stem cell populations. Due to these malignant phenotypes it is important to understand the regulation of YAP/TAZ at the protein level. Using an siRNA library screen of deubiquitinating enzymes (DUBs), we identified ubiquitin specific peptidase 1 (USP1) as a novel TAZ (WWTR1) regulator. We demonstrated that USP1 interacts with TAZ and increases TAZ protein stability. Conversely, loss of function of USP1 reduces TAZ protein levels through increased poly-ubiquitination, causing a decrease in cell proliferation and migration of breast cancer cells. Moreover, we showed a strong positive correlation between USP1 and TAZ in breast cancer patients. Our findings facilitate the attainment of better understanding of the crosstalk between these pathways and may lead to potential therapeutic interventions for breast cancer patients.
Collapse
Affiliation(s)
- Ashley Mussell
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, USA; (A.M.); (H.S.); (Y.C.); (M.M.); (K.H.E.)
| | - He Shen
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, USA; (A.M.); (H.S.); (Y.C.); (M.M.); (K.H.E.)
| | - Yanmin Chen
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, USA; (A.M.); (H.S.); (Y.C.); (M.M.); (K.H.E.)
| | - Michalis Mastri
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, USA; (A.M.); (H.S.); (Y.C.); (M.M.); (K.H.E.)
| | - Kevin H. Eng
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, USA; (A.M.); (H.S.); (Y.C.); (M.M.); (K.H.E.)
| | - Wiam Bshara
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14263, USA;
| | - Costa Frangou
- Harvard T.H. Chan School of Public Health, Molecular and Integrative Physiology Department, 665 Huntington Ave., Boston, MA 02115, USA;
| | - Jianmin Zhang
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY 14203, USA; (A.M.); (H.S.); (Y.C.); (M.M.); (K.H.E.)
- Correspondence:
| |
Collapse
|
27
|
Mao Y, Nie Q, Yang Y, Mao G. Identification of co‑expression modules and hub genes of retinoblastoma via co‑expression analysis and protein‑protein interaction networks. Mol Med Rep 2020; 22:1155-1168. [PMID: 32468072 PMCID: PMC7339782 DOI: 10.3892/mmr.2020.11189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
Retinoblastoma is a common intraocular malignant tumor in children. However, the molecular and genetic mechanisms of retinoblastoma remain unclear. The gene expression dataset GSE110811 was retrieved from Gene Expression Omnibus. After preprocessing, coexpression modules were constructed by weighted gene coexpression network analysis (WGCNA), and modules associated with clinical traits were identified. In addition, functional enrichment analysis was performed for genes in the indicated modules, and protein-protein interaction (PPI) networks and subnetworks were constructed based on these genes. Eight coexpression modules were constructed through WGCNA. Of these, the yellow module had the highest association with severity and age (r=0.82 and P=3e-07; r=0.72 and P=3e-05). The turquoise module had the highest association with months (r=−0.63 and P=5e-04). The genes in the two modules participate in multiple pathways of retinoblastoma, and by combining the PPI network and subnetworks; 10 hub genes were identified in the two modules. The present study identified coexpression modules and hub genes associated with clinical traits of retinoblastoma, providing novel insight into retinoblastoma progression.
Collapse
Affiliation(s)
- Yukun Mao
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Qingbin Nie
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| | - Yang Yang
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| | - Gengsheng Mao
- Department of Neurovascular Surgery, The Third Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing 100039, P.R. China
| |
Collapse
|
28
|
Ding X, Gu Y, Jin M, Guo X, Xue S, Tan C, Huang J, Yang W, Xue M, Zhou Q, Wang W, Zhang Y. The deubiquitinating enzyme UCHL1 promotes resistance to pemetrexed in non-small cell lung cancer by upregulating thymidylate synthase. Theranostics 2020; 10:6048-6060. [PMID: 32483437 PMCID: PMC7255002 DOI: 10.7150/thno.42096] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/29/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: Resistance to pemetrexed (PEM)-based chemotherapy is a major cause of progression in non-small cell lung cancer (NSCLC) patients. The deubiquitinating enzyme UCHL1 was recently found to play important roles in chemoresistance and tumor progression. However, the potential roles and mechanisms of UCHL1 in PEM resistance remain unclear. Methods: Bioinformatics analyses and immunohistochemistry were used to evaluate UCHL1 expression in NSCLC specimens. Kaplan-Meier analysis with the log-rank test was used for survival analyses. We established PEM-resistant NSCLC cell lines by exposing them to step-wise increases in PEM concentrations, and in vitro and in vivo assays were used to explore the roles and mechanisms of UCHL1 in PEM resistance using the NSCLC cells. Results: In chemoresistant tumors from NSCLC patients, UCHL1 was highly expressed and elevated UCHL1 expression was strongly associated with poor outcomes. Furthermore, UCHL1 expression was significantly upregulated in PEM-resistant NSCLC cells, while genetic silencing or inhibiting UCHL1 suppressed resistance to PEM and other drugs in NSCLC cells. Mechanistically, UCHL1 promoted PEM resistance in NSCLC by upregulating the expression of thymidylate synthase (TS), based on reduced TS expression after UCHL1 inhibition and re-emergence of PEM resistance upon TS restoration. Furthermore, UCHL1 upregulated TS expression, which mitigated PEM-induced DNA damage and cell cycle arrest in NSCLC cells, and also conferred resistance to PEM and other drugs. Conclusions: It appears that UCHL1 promotes PEM resistance by upregulating TS in NSCLC cells, which mitigated DNA damage and cell cycle arrest. Thus, UCHL1 may be a therapeutic target for overcoming PEM resistance in NSCLC patients.
Collapse
|
29
|
Xue S, Wu W, Wang Z, Lu G, Sun J, Jin X, Xie L, Wang X, Tan C, Wang Z, Wang W, Ding X. USP5 Promotes Metastasis in Non-Small Cell Lung Cancer by Inducing Epithelial-Mesenchymal Transition via Wnt/β-Catenin Pathway. Front Pharmacol 2020; 11:668. [PMID: 32477134 PMCID: PMC7236764 DOI: 10.3389/fphar.2020.00668] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin-specific protease 5 (USP5) is a deubiquitinating enzyme that functions as an oncoprotein in a variety of human cancers. However, the expression and role of USP5 in the metastasis of non-small cell lung cancer (NSCLC) have not been addressed. In this study, we examined the expression and prognostic significance of USP5 in NSCLC. The results revealed that USP5 was overexpressed and correlated with metastasis and overall survival in NSCLC tissues. A further in vitro study revealed that the levels of USP5 protein in NSCLC cells were associated with epithelial–mesenchymal transition (EMT) markers. Furthermore, USP5 overexpression significantly enhanced, whereas USP5 silencing significantly decreased the expression of EMT proteins and migration and invasion of NSCLC cells. In addition, the results from western blotting demonstrated that USP5 regulated EMT via the Wnt/β-catenin signaling pathway. Further immunohistochemical analysis revealed that USP5 was significantly associated with the expression of β-catenin and EMT markers in NSCLC tissues. Overall, USP5 upregulation is associated with tumor metastasis and poor prognosis in patients with NSCLC. USP5 promotes EMT and the invasion and migration of NSCLC cells. Therefore, USP5 may serve as a novel prognostic biomarker and provide a potential target for the treatment of metastasis in NSCLC.
Collapse
Affiliation(s)
- Sudong Xue
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Wei Wu
- Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ziyan Wang
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Guangxian Lu
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jiantong Sun
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xing Jin
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Linjun Xie
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Xiaoyu Wang
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Caihong Tan
- Department of Pharmacy, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zheng Wang
- Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Wang
- Department of Pharmacy, The Children's Hospital of Soochow University, Suzhou, China
| | - Xinyuan Ding
- Department of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
30
|
MYT1 attenuates neuroblastoma cell differentiation by interacting with the LSD1/CoREST complex. Oncogene 2020; 39:4212-4226. [PMID: 32251364 DOI: 10.1038/s41388-020-1268-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 03/07/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023]
Abstract
Impaired neuronal differentiation is a feature of neuroblastoma tumorigenesis, and the differentiation grade of neuroblastoma tumors is associated with patient prognosis. Detailed understanding of the molecular mechanisms underlying neuroblastoma differentiation will facilitate the development of effective treatment strategies. Recent studies have shown that myelin transcription factor 1 (MYT1) promotes vertebrate neurogenesis by regulating gene expression. We performed quantitative analysis of neuroblastoma samples, which revealed that MYT1 was differentially expressed among neuroblastoma patients with different pathological diagnoses. Analysis of clinical data showed that MYT1 overexpression was associated with a significantly shorter 3-year overall survival rate and poor differentiation in neuroblastoma specimens. MYT1 knockdown inhibited proliferation and promoted the expression of multiple differentiation-associated proteins. Integrated omics data indicated that many genes involved in neuro-differentiation were regulated by MYT1. Interestingly, many of these genes are targets of the REST complex; therefore, we further identified the physical interaction of MYT1 with LSD1/CoREST. Depletion of LSD1 or inhibition of LSD1 by ORY-1001 decreased MYT1 expression, providing an alternative approach to target MYT1. Taken together, our results indicate that MYT1 significantly attenuates cell differentiation by interacting with the LSD1/CoREST complex. MYT1 is, therefore, a promising therapeutic target for enhancing the neurite-inducing effect of retinoic acid and for inhibiting the growth of neuroblastoma.
Collapse
|
31
|
Matuszczak E, Tylicka M, Komarowska MD, Debek W, Hermanowicz A. Ubiquitin carboxy-terminal hydrolase L1 - physiology and pathology. Cell Biochem Funct 2020; 38:533-540. [PMID: 32207552 DOI: 10.1002/cbf.3527] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022]
Abstract
Ubiquitin C-terminal hydrolase 1 (UCHL1) is an enzyme unique for its multiple activity - both ligase and hydrolase. UCHL1 was first identified as an abundant protein found in the brain and testes, however its expression is not limited to the neuronal compartment. UCHL1 is also highly expressed in carcinomas of various tissue origins, including those from brain, lung, breast, kidney, colon, prostate, pancreas and mesenchymal tissues. Loss-of-function studies and an inhibitor for UCHL1 confirmed the importance of UCHL1 for cancer therapy. So far biological significance of UCHL1 was described in the following processes: spermatogenesis, oncogenesis, angiogenesis, cell proliferation and differentiation in skeletal muscle, inflammation, tissue injury, neuronal injury and neurodegeneration.
Collapse
Affiliation(s)
- Ewa Matuszczak
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Marzena Tylicka
- Biophysics Department, Medical University of Bialystok, Bialystok, Poland
| | | | - Wojciech Debek
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| | - Adam Hermanowicz
- Pediatric Surgery Department, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
32
|
Ma YS, Wang XF, Zhang YJ, Luo P, Long HD, Li L, Yang HQ, Xie RT, Jia CY, Lu GX, Chang ZY, Zhang JJ, Xue SB, Lv ZW, Yu F, Xia Q, Fu D. Inhibition of USP14 Deubiquitinating Activity as a Potential Therapy for Tumors with p53 Deficiency. MOLECULAR THERAPY-ONCOLYTICS 2020; 16:147-157. [PMID: 32055678 PMCID: PMC7005481 DOI: 10.1016/j.omto.2019.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/23/2019] [Indexed: 01/17/2023]
Abstract
Functional elimination of p53 is a common feature of a large percentage of human malignancies. Here, we report the development of a pharmacological strategy aimed at restoring p53 function and its use for targeted therapy in p53-deficient mice. Specific inhibition of deubiquitinases ubiquitin-specific peptidase 14 (USP14) resulted in durable tumor regressions of autochthonous lymphomas and sarcomas in p53-deficient mice without affecting normal tissues, and therapeutic response was correlated with an increase in the ubiquitination of constitutive photomorphogenesis 9 (COP9) signalosome subunit 5 (COPS5), a key negative regulatory effector for p53. Inhibition of USP14 resulted in durable tumor regression through COPS5 deubiquitilation and a p53-dependent and -independent regulation mechanism by USP14. This series highlights the utility of proteasome deubiquitinating activity inhibition as a novel treatment paradigm for p53-deficient cancers. In addition, it provides preliminary evidence that inhibition of USP14 resulted in durable tumor regression through COPS5 deubiquitilation and p53-dependent and -independent regulation mechanism by USP14. These findings suggest that the deubiquitinating activity of the 19S regulatory particle is a new anticancer drug target for patients with p53 deficiency.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiao-Feng Wang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yun-Jie Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Pei Luo
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Deng Long
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Liu Li
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Qiong Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Ru-Ting Xie
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zheng-Yan Chang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jia-Jia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shao-Bo Xue
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qing Xia
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
33
|
Inhibition of UCHL1 by LDN-57444 attenuates Ang II-Induced atrial fibrillation in mice. Hypertens Res 2019; 43:168-177. [PMID: 31700166 PMCID: PMC8075865 DOI: 10.1038/s41440-019-0354-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/22/2022]
Abstract
Atrial fibrillation (AF) is the most common human arrhythmia in clinical practice and may be promoted by atrial inflammation and fibrosis. Ubiquitination is an important posttranslational modification process that is reversed by deubiquitinating enzymes (DUBs). DUBs play critical roles in modulating the degradation, activity, trafficking, and recycling of substrates. However, less research has focused on the role of DUBs in AF. Here, we investigated the effect of ubiquitin C-terminal hydrolase 1 (UCHL1), an important DUB, on the development of AF induced by angiotensin II (Ang II). Male wild-type mice were treated with the UCHL1 inhibitor LDN57444 (LDN) at a dose of 40 μg/kg and infused with Ang II (2000 ng/kg/min) for 3 weeks. Our results showed that Ang II-infused wild-type (WT) mice had higher systolic blood pressure and an increased incidence and duration of AF. Conversely, this effect was attenuated in LDN-treated mice. Moreover, the administration of LDN significantly reduced Ang II-induced left atrial dilation, fibrosis, inflammatory cell infiltration, and reactive oxygen species (ROS) production. Mechanistically, LDN treatment inhibited the activation of multiple signaling pathways (the AKT, ERK1/2, HIF-1α, and TGF-β/smad2/3 pathways) and the expression of CX43 protein in atrial tissues compared with that in vehicle-treated control mice. Overall, our study identified UCHL1 as a novel regulator that contributes to Ang II-induced AF and suggests that the administration of LDN may represent a potential therapeutic approach for treating hypertensive AF.
Collapse
|
34
|
Xu Y, Chen K, Cai Y, Cheng C, Zhang Z, Xu G. Overexpression of Rad51 predicts poor prognosis and silencing of Rad51 increases chemo-sensitivity to doxorubicin in neuroblastoma. Am J Transl Res 2019; 11:5788-5799. [PMID: 31632548 PMCID: PMC6789219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Outcome for children with high-risk neuroblastoma (NB) remains suboptimal. Recurrence and metastasis caused by chemo-resistance is an underlying mechanism contributing to the poor prognosis. Aberrant expression of Rad51 is implicated in both radio- and chemo-sensitivity in many human malignancies. However, its clinical significance and relationship with chemo-sensitivity in NB remain undefined. In this study, Rad51 expression was first evaluated in 70 surgically resected NB specimens by immunochemistry using tissue microarray and the correlation with clinic-pathologic features including survival was assessed. We then conducted microarray-based search with the Tumor Neuroblastoma public datasets to validate the immunochemistry results. Furthermore, the role of Rad51 in drug sensitivity was studied by using short hairpin RNA in the human NB SK-N-BE(2) and SH-SY5Y cells with treatment of doxorubicin. Our findings demonstrated for the first time that Rad51 is a prognostic marker in NB and down-regulation of Rad51 can lead to chemo-sensitizing effect in human NB cells.
Collapse
Affiliation(s)
- Yonghu Xu
- Department of Pediatric Urology, Xinhua Hospital, National Key Clinical Specialty, Shanghai Top-Priority Clinical Center, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| | - Kai Chen
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric ResearchShanghai 200092, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric ResearchShanghai 200092, China
| | - Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
- Division of Pediatric Oncology, Shanghai Institute of Pediatric ResearchShanghai 200092, China
| | - Zihan Zhang
- Department of Pediatric Urology, Xinhua Hospital, National Key Clinical Specialty, Shanghai Top-Priority Clinical Center, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| | - Guofeng Xu
- Department of Pediatric Urology, Xinhua Hospital, National Key Clinical Specialty, Shanghai Top-Priority Clinical Center, School of Medicine, Shanghai Jiaotong UniversityShanghai 200092, China
| |
Collapse
|