1
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
2
|
Patnaik S, Mruthyunjaya P, Murmu KC, Mahapatra S, Patro ARK, Misra R, Pati S, Prasad P, Ahmed S. RNAseq-based transcriptomics of treatment-naïve multi-inflammatory syndrome in children (MIS-C) demonstrates predominant activation of matrisome, innate and humoral immune pathways. Rheumatol Int 2024; 44:1445-1454. [PMID: 37823896 DOI: 10.1007/s00296-023-05478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
MIS-C is a rare, highly inflammatory state resembling incomplete Kawasaki disease, temporarily associated with COVID-19. The pathogenesis is not completely known. RNAseq was carried out on whole blood of six treatment-naïve MIS-C patients. This was compared against RNAseq transcriptomics data of five healthy controls (HC), four Kawasaki Disease (KD) and seven systemic Juvenile Idiopathic Arthritis (sJIA). Using PCA, MIS-C clustered separately from HC, KD and sJIA. Amongst the top 50 significant genes in the three comparisons with HC, KD, and sJIA, common genes were: TMCC2, ITGA2B, DMTN, GFI1B, PF4, QSER1, GRAP2, TUBB1. DSEA revealed that maximum number of hits for overexpressed pathways was for NABA matrisome activation when MIS-C was compared against HC. Cytokine stimulated cellular activation pathways, specifically IL-10 were downregulated. MIS-C had more activated pathways of neutrophil degranulation and acquired immune activation but less of coagulation system or heat-shock system involvement as compared to KD. As compared to sJIA, humoral immune response and complements were activated. Matrisome activation was higher, with increased cell-cell interaction and ECM signalling. This analysis revealed novel insights into the pathogenesis of MIS-C, including the potential role of matrisomes, humoral immune system and down-regulated interleukin-10 pathways.
Collapse
Affiliation(s)
- Sibabratta Patnaik
- Department of Paediatrics, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India
| | - Prakashini Mruthyunjaya
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, 751024, India
| | | | - Soumendu Mahapatra
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India
| | - A Raj Kumar Patro
- Department of Biochemistry and Molecular Diagnostics, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, India
| | - Ramnath Misra
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, 751024, India
| | | | - Punit Prasad
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India.
| | - Sakir Ahmed
- Department of Clinical Immunology and Rheumatology, Kalinga Institute of Medical Sciences, KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
3
|
Voglewede MM, Ozsen EN, Ivak N, Bernabucci M, Tang R, Sun M, Pang ZP, Zhang H. Loss of the polarity protein Par3 promotes dendritic spine neoteny and enhances learning and memory. iScience 2024; 27:110308. [PMID: 39045101 PMCID: PMC11263792 DOI: 10.1016/j.isci.2024.110308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The Par3 polarity protein is critical for subcellular compartmentalization in different developmental processes. Variants of PARD3, encoding PAR3, are associated with intelligence and neurodevelopmental disorders. However, the role of Par3 in glutamatergic synapse formation and cognitive functions in vivo remains unknown. Here, we show that forebrain-specific Par3 conditional knockout leads to increased long, thin dendritic spines in vivo. In addition, we observed a decrease in the amplitude of miniature excitatory postsynaptic currents. Surprisingly, loss of Par3 enhances hippocampal-dependent spatial learning and memory and repetitive behavior. Phosphoproteomic analysis revealed proteins regulating cytoskeletal dynamics are significantly dysregulated downstream of Par3. Mechanistically, we found Par3 deletion causes increased Rac1 activation and dysregulated microtubule dynamics through CAMSAP2. Together, our data reveal an unexpected role for Par3 as a molecular gatekeeper in regulating the pool of immature dendritic spines, a rate-limiting step of learning and memory, through modulating Rac1 activation and microtubule dynamics in vivo.
Collapse
Affiliation(s)
- Mikayla M. Voglewede
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Elif Naz Ozsen
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Noah Ivak
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ruizhe Tang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Miao Sun
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhiping P. Pang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Miao LL, Wang JW, Liu HH, Gao S, Fan YC, Wang K. Hypomethylation of glycine dehydrogenase promoter in peripheral blood mononuclear cells is a new diagnostic marker of hepatitis B virus-associated hepatocellular carcinoma. Hepatobiliary Pancreat Dis Int 2024; 23:35-42. [PMID: 36878837 DOI: 10.1016/j.hbpd.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/01/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Glycine dehydrogenase (GLDC) plays an important role in the initiation and proliferation of several human cancers. In this study, we aimed to detect the methylation status of GLDC promoter and its diagnostic value for hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC). METHODS We enrolled 197 patients, 111 with HBV-HCC, 51 with chronic hepatitis B (CHB), and 35 healthy controls (HCs). The methylation status of GLDC promoter in peripheral mononuclear cells (PBMCs) was identified by methylation specific polymerase chain reaction (MSP). The mRNA expression was examined using real-time quantitative polymerase chain reaction (qPCR). RESULTS The methylation frequency of the GLDC promoter was significantly lower in HBV-HCC patients (27.0%) compared to that in CHB patients (68.6%) and HCs (74.3%) (P < 0.001). The methylated group had lower alanine aminotransferase level (P = 0.035) and lower rates of tumor node metastasis (TNM) III/IV (P = 0.043) and T3/T4 (P = 0.026). TNM stage was identified to be an independent factor for GLDC promoter methylation. GLDC mRNA levels in CHB patients and HCs were significantly lower than those in HBV-HCC patients (P = 0.022 and P < 0.001, respectively). GLDC mRNA levels were significantly higher in HBV-HCC patients with unmethylated GLDC promoters than those with methylated GLDC promoters (P = 0.003). The diagnostic accuracy of alpha-fetoprotein (AFP) combined with GLDC promoter methylation for HBV-HCC was improved compared with that of AFP alone (AUC: 0.782 vs. 0.630, P < 0.001). In addition, GLDC promoter methylation was an independent predictor for overall survival of HBV-HCC patients (P = 0.038). CONCLUSIONS The methylation frequency of GLDC promoter was lower in PBMCs from HBV-HCC patients than that from patients with CHB and HCs. The combination of AFP and GLDC promoter hypomethylation significantly improved the diagnostic accuracy of HBV-HCC.
Collapse
Affiliation(s)
- Li-Li Miao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Hui-Hui Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan 250012, China; Institute of Hepatology, Shandong University, Jinan 250012, China.
| |
Collapse
|
5
|
Ye J, Zhang J, Ding W. DNA methylation modulates epigenetic regulation in colorectal cancer diagnosis, prognosis and precision medicine. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:34-53. [PMID: 38464391 PMCID: PMC10918240 DOI: 10.37349/etat.2024.00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 03/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifaceted disease influenced by the interplay of genetic and environmental factors. The clinical heterogeneity of CRC cannot be attributed exclusively to genetic diversity and environmental exposures, and epigenetic markers, especially DNA methylation, play a critical role as key molecular markers of cancer. This review compiles a comprehensive body of evidence underscoring the significant involvement of DNA methylation modifications in the pathogenesis of CRC. Moreover, this review explores the potential utility of DNA methylation in cancer diagnosis, prognostics, assessment of disease activity, and prediction of drug responses. Recognizing the impact of DNA methylation will enhance the ability to identify distinct CRC subtypes, paving the way for personalized treatment strategies and advancing precision medicine in the management of CRC.
Collapse
Affiliation(s)
- Jingxin Ye
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
- Department of Gastroenterology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian 223800, Jiangsu Province, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
6
|
Fitzpatrick A, Iravani M, Mills A, Vicente D, Alaguthurai T, Roxanis I, Turner NC, Haider S, Tutt ANJ, Isacke CM. Genomic profiling and pre-clinical modelling of breast cancer leptomeningeal metastasis reveals acquisition of a lobular-like phenotype. Nat Commun 2023; 14:7408. [PMID: 37973922 PMCID: PMC10654396 DOI: 10.1038/s41467-023-43242-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
Breast cancer leptomeningeal metastasis (BCLM), where tumour cells grow along the lining of the brain and spinal cord, is a devastating development for patients. Investigating this metastatic site is hampered by difficulty in accessing tumour material. Here, we utilise cerebrospinal fluid (CSF) cell-free DNA (cfDNA) and CSF disseminated tumour cells (DTCs) to explore the clonal evolution of BCLM and heterogeneity between leptomeningeal and extracranial metastatic sites. Somatic alterations with potential therapeutic actionability were detected in 81% (17/21) of BCLM cases, with 19% detectable in CSF cfDNA only. BCLM was enriched in genomic aberrations in adherens junction and cytoskeletal genes, revealing a lobular-like breast cancer phenotype. CSF DTCs were cultured in 3D to establish BCLM patient-derived organoids, and used for the successful generation of BCLM in vivo models. These data reveal that BCLM possess a unique genomic aberration profile and highlight potential cellular dependencies in this hard-to-treat form of metastatic disease.
Collapse
Affiliation(s)
- Amanda Fitzpatrick
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Marjan Iravani
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Adam Mills
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - David Vicente
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | | | - Ioannis Roxanis
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Nicholas C Turner
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Andrew N J Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
- Breast Cancer Now Research Unit, Guy's Hospital, King's College London, London, UK
- Oncology and Haematology Directorate, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Clare M Isacke
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
7
|
Blatti C, de la Fuente J, Gao H, Marín-Goñi I, Chen Z, Zhao SD, Tan W, Weinshilboum R, Kalari KR, Wang L, Hernaez M. Bayesian Machine Learning Enables Identification of Transcriptional Network Disruptions Associated with Drug-Resistant Prostate Cancer. Cancer Res 2023; 83:1361-1380. [PMID: 36779846 PMCID: PMC10102853 DOI: 10.1158/0008-5472.can-22-1910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/29/2022] [Accepted: 02/08/2023] [Indexed: 02/14/2023]
Abstract
Survival rates of patients with metastatic castration-resistant prostate cancer (mCRPC) are low due to lack of response or acquired resistance to available therapies, such as abiraterone (Abi). A better understanding of the underlying molecular mechanisms is needed to identify effective targets to overcome resistance. Given the complexity of the transcriptional dynamics in cells, differential gene expression analysis of bulk transcriptomics data cannot provide sufficient detailed insights into resistance mechanisms. Incorporating network structures could overcome this limitation to provide a global and functional perspective of Abi resistance in mCRPC. Here, we developed TraRe, a computational method using sparse Bayesian models to examine phenotypically driven transcriptional mechanistic differences at three distinct levels: transcriptional networks, specific regulons, and individual transcription factors (TF). TraRe was applied to transcriptomic data from 46 patients with mCRPC with Abi-response clinical data and uncovered abrogated immune response transcriptional modules that showed strong differential regulation in Abi-responsive compared with Abi-resistant patients. These modules were replicated in an independent mCRPC study. Furthermore, key rewiring predictions and their associated TFs were experimentally validated in two prostate cancer cell lines with different Abi-resistance features. Among them, ELK3, MXD1, and MYB played a differential role in cell survival in Abi-sensitive and Abi-resistant cells. Moreover, ELK3 regulated cell migration capacity, which could have a direct impact on mCRPC. Collectively, these findings shed light on the underlying transcriptional mechanisms driving Abi response, demonstrating that TraRe is a promising tool for generating novel hypotheses based on identified transcriptional network disruptions. SIGNIFICANCE The computational method TraRe built on Bayesian machine learning models for investigating transcriptional network structures shows that disruption of ELK3, MXD1, and MYB signaling cascades impacts abiraterone resistance in prostate cancer.
Collapse
Affiliation(s)
- Charles Blatti
- NCSA, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | | | - Huanyao Gao
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Irene Marín-Goñi
- Computational Biology Program, CIMA University of Navarra, Navarra, Spain
| | - Zikun Chen
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Sihai D. Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| | - Winston Tan
- Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Krishna R. Kalari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Mikel Hernaez
- Computational Biology Program, CIMA University of Navarra, Navarra, Spain
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, Illinois
| |
Collapse
|
8
|
Wu X, Xu J, Yang X, Wang D, Xu X. Integrating Transcriptomics and Metabolomics to Explore the Novel Pathway of Fusobacterium nucleatum Invading Colon Cancer Cells. Pathogens 2023; 12:pathogens12020201. [PMID: 36839472 PMCID: PMC9967813 DOI: 10.3390/pathogens12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is a malignancy with a very high incidence and mortality rate worldwide. Fusobacterium nucleatum bacteria and their metabolites play a role in inducing and promoting CRC; however, no studies on the exchange of information between Fusobacterium nucleatum extracellular vesicles (Fnevs) and CRC cells have been reported. Our research shows that Fusobacterium nucleatum ATCC25586 secretes extracellular vesicles carrying active substances from parental bacteria which are endocytosed by colon cancer cells. Moreover, Fnevs promote the proliferation, migration, and invasion of CRC cells and inhibit apoptosis; they also improve the ability of CRC cells to resist oxidative stress and SOD enzyme activity. The genes differentially expressed after transcriptome sequencing are mostly involved in the positive regulation of tumor cell proliferation. After detecting differential metabolites using liquid chromatography-tandem mass spectrometry, Fnevs were found to promote cell proliferation by regulating amino acid biosynthesis in CRC cells and metabolic pathways such as central carbon metabolism, protein digestion, and uptake in cancer. In summary, this study not only found new evidence of the synergistic effect of pathogenic bacteria and colon cancer tumor cells, but also provides a new direction for the early diagnosis and targeted treatment of colon cancer.
Collapse
Affiliation(s)
- Xinyu Wu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhao Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoying Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Danping Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-0451-55191827
| |
Collapse
|
9
|
Bader JM, Deigendesch N, Misch M, Mann M, Koch A, Meissner F. Proteomics separates adult-type diffuse high-grade gliomas in metabolic subgroups independent of 1p/19q codeletion and across IDH mutational status. Cell Rep Med 2023; 4:100877. [PMID: 36584682 PMCID: PMC9873829 DOI: 10.1016/j.xcrm.2022.100877] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 07/15/2022] [Accepted: 12/07/2022] [Indexed: 12/30/2022]
Abstract
High-grade adult-type diffuse gliomas are malignant neuroepithelial tumors with poor survival rates in combined chemoradiotherapy. The current WHO classification is based on IDH1/2 mutational and 1p/19q codeletion status. Glioma proteome alterations remain undercharacterized despite their promise for a better molecular patient stratification and therapeutic target identification. Here, we use mass spectrometry to characterize 42 formalin-fixed, paraffin-embedded (FFPE) samples from IDH-wild-type (IDHwt) gliomas, IDH-mutant (IDHmut) gliomas with and without 1p/19q codeletion, and non-neoplastic controls. Based on more than 5,500 quantified proteins and 5,000 phosphosites, gliomas separate by IDH1/2 mutational status but not by 1p/19q status. Instead, IDHmut gliomas split into two proteomic subtypes with widespread perturbations, including aerobic/anaerobic energy metabolism. Validations with three independent glioma proteome datasets confirm these subgroups and link the IDHmut subtypes to the established proneural and classic/mesenchymal subtypes in IDHwt glioma. This demonstrates common phenotypic subtypes across the IDH status with potential therapeutic implications for patients with IDHmut gliomas.
Collapse
Affiliation(s)
- Jakob Maximilian Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nikolaus Deigendesch
- Pathology, Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland
| | - Martin Misch
- Department of Neurosurgery, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arend Koch
- Department of Neuropathology, Charité, Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, and Humboldt-Universität zu Berlin, Berlin Institute of Health, 13353 Berlin, Germany.
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Systems Immunology and Proteomics, Institute of Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
10
|
Bioinformatics Analysis of Prognosis-Related Genes and Expression of CXCL8 in Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3149887. [PMID: 35845924 PMCID: PMC9279071 DOI: 10.1155/2022/3149887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 12/24/2022]
Abstract
Background Colorectal cancer (CRC), one of the main causes of death, remains a leading cause of mortality in gastrointestinal cancer and tends to affect the younger generation. However, the pathological process of colorectal cancer is unclear. Exploring potential pathogenesis and therapeutic targets of CRC is significant as its high prevalence and high mortality. Nowadays, the rapid development of bioinformatics provides us an opportunity to explore potential molecular markers of CRC. Materials and Methods First, three CRC gene chips with paracancerous controls were downloaded from the Gene Expression Omnibus (GEO) database. Second, after combining and batch correcting the three chips using the R language and Perl language, the differentially expressed genes (DEGs) were selected to investigate how they affect the CRC occurrence and development by GO and KEGG enrichment analysis. Third, based on the STRING website and the Cytoscape software, the protein-protein interaction (PPI) network was constructed and the core genes were screened out. Finally, through polymerase chain reaction (PCR) and immunohistochemistry (IHC), the expression and function of the core gene CXCL8 in CRC were explored. Results GSE10950, GSE44076, and GSE75970, including 126 intestinal cancer samples and 126 paracancer samples, were screened as the datasets. 192 DEGs were screened, including 43 upregulated genes and 149 downregulated genes. Through the DEGs screened out, GO enrichment analysis, KEGG enrichment analysis, and the construction of PPI interaction network were carried out. Finally, according to the nodes and edges in the PPI network, the DEGs were sorted and the core genes were selected. Through basic experiments, the first ranked CXCL8 was further studied, and the results suggest that the expression of CXCL8 is related to the proliferation, migration, invasion, and even distant metastasis of CRC. Conclusion The present study showed that DEGs of CRC are associated with multiple tumor-related biological processes and signaling pathways. The core gene CXCL8 has the potential to be a new therapeutic target for CRC.
Collapse
|
11
|
Wang M, Chen B, Zhang W, Zhang F, Qiu Y, Lin Y, Yang S. Dematin inhibits glioblastoma malignancy through RhoA-mediated CDKs downregulation and cytoskeleton remodeling. Exp Cell Res 2022; 417:113196. [PMID: 35561787 DOI: 10.1016/j.yexcr.2022.113196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/06/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is well known as a highly aggressive brain tumor subtype. Here, we show that overexpression (OE) of dematin actin-binding protein (DMTN) inhibits GBM proliferation and invasion by affecting cell cycle regulation and actin remodeling, respectively. RT-qPCR, western blotting, and immunohistochemical (IHC) staining demonstrated a significant reduction in DMTN expression in gliomas, especially in high-grade gliomas (HGG) compared with normal brains, which correlates with worse survival in HGG patients. Functional studies revealed inhibitory effects of DMTN on tumor proliferation and migratory capacities. The attenuation in tumor proliferative ability upon DMTN OE was accompanied by RhoA suppression and CDK1, CDK2, CDK4, and cyclin D1 downregulation, while RhoA rescue restored the proliferative phenotype. Meanwhile, overexpression of DMTN produced profoundly disorganized stress fibers, which led to impaired tumor invasion. Furthermore, DMTN overexpression produced substantial suppression of tumor growth upon subcutaneous and intracranial implantation in mice, and this was accompanied by significantly reduced vinculin expression and Ki67 positivity. Taken together, these findings demonstrate the role of DMTN in regulating GBM cell proliferation, actin cytoskeleton, and cell morphology and identify DMTN as a vital tumor suppressor in GBM progression.
Collapse
Affiliation(s)
- Mengying Wang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Binghong Chen
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350001, PR China
| | - Wenrui Zhang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Fengchen Zhang
- Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Yongming Qiu
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China
| | - Yingying Lin
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China; Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| | - Shaofeng Yang
- Brain Injury Center, Department of Neurosurgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, PR China.
| |
Collapse
|
12
|
A-to-I RNA editing of BLCAP promotes cell proliferation by losing the inhibitory of Rb1 in colorectal cancer. Exp Cell Res 2022; 417:113209. [DOI: 10.1016/j.yexcr.2022.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/03/2022] [Accepted: 05/14/2022] [Indexed: 11/23/2022]
|
13
|
A Quality Control Mechanism of Splice Site Selection Abrogated under Stress and in Cancer. Cancers (Basel) 2022; 14:cancers14071750. [PMID: 35406522 PMCID: PMC8996931 DOI: 10.3390/cancers14071750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Splicing and alternative splicing play a major role in regulating gene expression, and mis-regulation of splicing can lead to several diseases, including cancer. The aim of this review is to summarize the current knowledge of a quality control mechanism of splice site selection termed Suppression of Splicing (SOS), proposed to protect cells from splicing at the numerous intronic unused 5′ splice sites, and emphasize its relevance to cancer. This relevance stems from the finding that SOS is abrogated under stress and in cancer resulting in the expression of thousands of aberrant nonsense mRNAs that may be toxic to cells. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies. Abstract Latent 5’ splice sites, highly abundant in human introns, are not normally used. This led to the proposal of a quality control mechanism, Suppression of Splicing (SOS), which protects cells from splicing at the numerous intronic latent sites, and whose activation can generate nonsense mRNAs. SOS was shown to be independent of Nonsense-Mediated mRNA Decay (NMD). Efforts to decipher the SOS mechanism revealed a pivotal role for initiator-tRNA, independent of protein translation. Recently, nucleolin (a multifunctional protein) was found to directly and specifically bind the initiator-tRNA in the nucleus and was shown to be a protein component of SOS, enabling an updated model of the SOS mechanism. Importantly, SOS is abrogated under stress and in cancer (e.g., in breast cancer cells and gliomas), generating thousands of nonsense mRNAs due to activation of latent splicing. The resulting affected human genes cover a variety of functional groups, including genes involved in cell proliferation and differentiation. Furthermore, in oligodendroglioma, the extent of activation of latent splicing increases with the severity of the cancer. Interesting examples are genes expressing aberrant nonsense mRNAs in both breast cancer and glioma, due to latent splicing activation. These findings highlight the unexplored potential of such aberrant isoforms as novel targets for cancer diagnosis and therapies.
Collapse
|
14
|
Qianqian Z, Wei X, Chuang L, Zhenliang C, Qiaoli W, Mingzhi L, Longyan W, Rui B, Jianhui T, Junjie L, Shiqiao W. MicroRNAs are potential regulators of the timed artificial insemination effect in gilt endometrium. Anim Reprod Sci 2021; 233:106837. [PMID: 34517227 DOI: 10.1016/j.anireprosci.2021.106837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/20/2022]
Abstract
To determine effects of timed artificial insemination (TAI) hormonal treatments on reproductive performance of gilts/sows and explore molecular mechanisms, gilts (TAI: 90; Control:149; Total: 239) and sows (TAI: 370; Control: 492) were utilized. Results indicated the estrus/farrowing rate and number of piglets born alive and weaned in the TAI group were greater than in the control group for both gilts and sows. To explore the molecular mechanism for TAI hormonal effects, the small RNA of the gilt endometrium at 16 and 25 of gestation were sampled and sequenced to determine potential functions of microRNA (MiRNA); 358 known and 142 novel MiRNAs were detected. With comparison of TAI and control groups, there were 54 differentially abundant MiRNAs, and functional analysis results indicated "binding," "protein/ion binding," and "immune response" were mostly enriched. In addition, representative MiRNAs were selected based on criteria including being regulated on both day 16 and 25 of gestation (ssc-miR-10a-5p, ssc-miR-345-5p, ssc-miR-370) along with reproduction-related target genes (ssc-miR-424-5p, ssc-miR-142-5p). Furthermore, target genes of selected MiRNAs were screened, and functional enrichment of those genes also indicated that the "binding" and "immune response" were mainly enriched. Results from the present study confirmed TAI-hormonal treatments improved estrous/farrowing rate and number of piglets born alive/weaned of gilts/sows and that hormonal treatment regimens leading to behavioral estrus at timed artificial insemination in gilts results in microRNA patterns in the endometrium that are more supportive of pregnancy. Results contribute valuable information for future studies of effects of TAI hormonal treatments on pig reproductive performance.
Collapse
Affiliation(s)
- Zhao Qianqian
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Xia Wei
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071000, China
| | - Liu Chuang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Cui Zhenliang
- Ningbo Sansheng Biotechnology Co., Ltd,Ningbo 315100, China
| | - Wei Qiaoli
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Liu Mingzhi
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Wang Longyan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Bai Rui
- College of Life Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Tian Jianhui
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Li Junjie
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China; Hebei Technology Innovation Center of Cattle and Sheep Embryo, Baoding 071000, China.
| | - Weng Shiqiao
- Ningbo Sansheng Biotechnology Co., Ltd,Ningbo 315100, China.
| |
Collapse
|
15
|
Yang K, Luo M, Li H, Abdulrehman G, Kang L. Effects of jasplakinolide on cytotoxicity, cytoskeleton and apoptosis in two different colon cancer cell lines treated with m-THPC-PDT. Photodiagnosis Photodyn Ther 2021; 35:102425. [PMID: 34214686 DOI: 10.1016/j.pdpdt.2021.102425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/25/2021] [Accepted: 06/25/2021] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is a common malignant tumor, and metastasis is one of the most important challenges in the treatment of CRC. Photodynamic therapy (PDT) is a novel and non-invasive treatment that influence cytoskeleton and to reduce cancer metastases. In addition, cytoskeleton is related to cancer metastases. Two isogenic colorectal cancer cell lines SW480 and SW620 were used in the present study, we found that m-THPC mediated PDT changed the cytotoxicity, apoptosis and cytoskeleton in both cell lines. Interestingly, the expression of intermediate filaments protein cytokeratin18 were different in the two cell lines. In order to further confirm the relationship between cytoskeleton and cell migration, we combined with microfilament stabilizer jasplakinolide (JASP) to observe the effects of microfilaments on cell migration, cytotoxicity and apoptosis. Taken together, these findings suggest that m-THPC-PDT could induce cytoplasmic cytoskeleton destruction in both types of cells, especially on microfilaments and microtubules. Moreover, in SW480 cells, microtubules may participate in the apoptosis process induced by m-THPC-PDT, while microfilaments may participate in the process of m-THPC-PDT inhibiting cell migration. But in SW620 cells, only microfilaments may be involved in m-THPC-PDT induced apoptosis and inhibition of cell migration.
Collapse
Affiliation(s)
- Kaizhen Yang
- Teaching & Research Department, The First People's Hospital of Urumqi, 1 Jiankang Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Mengyu Luo
- School of Public Health, Xinjiang Medical University, 567 SHangde North Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Hongxia Li
- School of Public Health, Xinjiang Medical University, 567 SHangde North Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Gulinur Abdulrehman
- Cancer Hospital of The Third Affiliated Hospital of Xinjiang Medical University, 789 Suzhou East Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| | - Ling Kang
- School of Public Health, Xinjiang Medical University, 567 SHangde North Road, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
16
|
Jiang X, Qin Y, Kun L, Zhou Y. The Significant Role of the Microfilament System in Tumors. Front Oncol 2021; 11:620390. [PMID: 33816252 PMCID: PMC8010179 DOI: 10.3389/fonc.2021.620390] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Actin is the structural protein of microfilaments, and it usually exists in two forms: monomer and polymer. Among them, monomer actin is a spherical molecule composed of a polypeptide chain, also known as spherical actin. The function of actin polymers is to produce actin filaments, so it is also called fibroactin. The actin cytoskeleton is considered to be an important subcellular filament system. It interacts with numerous relevant proteins and regulatory cells, regulating basic functions, from cell division and muscle contraction to cell movement and ensuring tissue integrity. The dynamic reorganization of the actin cytoskeleton has immense influence on the progression and metastasis of cancer as well. This paper explores the significance of the microfilament network, the dynamic changes of its structure and function in the presence of a tumor, the formation process around the actin system, and the relevant proteins that may be target molecules for anticancer drugs so as to provide support and reference for interlinked cancer treatment research in the future.
Collapse
Affiliation(s)
- Xin Jiang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Yiming Qin
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| | - Liu Kun
- Department of Neurosurgery, Brain Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yanhong Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, China
| |
Collapse
|
17
|
Quilter CR, Harvey KM, Bauer J, Skinner BM, Gomez M, Shrivastava M, Doel AM, Drammeh S, Dunger DB, Moore SE, Ong KK, Prentice AM, Bernstein RM, Sargent CA, Affara NA. Identification of methylation changes associated with positive and negative growth deviance in Gambian infants using a targeted methyl sequencing approach of genomic DNA. FASEB Bioadv 2021; 3:205-230. [PMID: 33842847 PMCID: PMC8019263 DOI: 10.1096/fba.2020-00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/25/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Low birthweight and reduced height gain during infancy (stunting) may arise at least in part from adverse early life environments that trigger epigenetic reprogramming that may favor survival. We examined differential DNA methylation patterns using targeted methyl sequencing of regions regulating gene activity in groups of rural Gambian infants: (a) low and high birthweight (DNA from cord blood (n = 16 and n = 20, respectively), from placental trophoblast tissue (n = 21 and n = 20, respectively), and DNA from peripheral blood collected from infants at 12 months of age (n = 23 and n = 17, respectively)), and, (b) the top 10% showing rapid postnatal length gain (high, n = 20) and the bottom 10% showing slow postnatal length gain (low, n = 20) based on z score change between birth and 12 months of age (LAZ) (DNA from peripheral blood collected from infants at 12 months of age). Using BiSeq analysis to identify significant methylation marks, for birthweight, four differentially methylated regions (DMRs) were identified in trophoblast DNA, compared to 68 DMRs in cord blood DNA, and 54 DMRs in 12‐month peripheral blood DNA. Twenty‐five DMRs were observed to be associated with high and low length for age (LAZ) at 12 months. With the exception of five loci (associated with two different genes), there was no overlap between these groups of methylation marks. Of the 194 CpG methylation marks contained within DMRs, 106 were located to defined gene regulatory elements (promoters, CTCF‐binding sites, transcription factor‐binding sites, and enhancers), 58 to gene bodies (introns or exons), and 30 to intergenic DNA. Distinct methylation patterns associated with birthweight between comparison groups were observed in DNA collected at birth (at the end of intrauterine growth window) compared to those established by 12 months (near the infancy/childhood growth transition). The longitudinal differences in methylation patterns may arise from methylation adjustments, changes in cellular composition of blood or both that continue during the critical postnatal growth period, and in response to early nutritional and infectious environmental exposures with impacts on growth and longer‐term health outcomes.
Collapse
Affiliation(s)
- Claire R Quilter
- Department of Pathology University of Cambridge Cambridge UK.,Present address: East Midlands & East of England NHS Genomic Laboratory Hub, Genomics Laboratories Cambridge University Hospitals NHS Foundation Trust Cambridge UK
| | - Kerry M Harvey
- Department of Pathology University of Cambridge Cambridge UK
| | - Julien Bauer
- Department of Pathology University of Cambridge Cambridge UK
| | - Benjamin M Skinner
- Department of Pathology University of Cambridge Cambridge UK.,School of Life Sciences University of Essex Colchester UK
| | - Maria Gomez
- Department of Pathology University of Cambridge Cambridge UK.,Present address: Kennedy Institute of Rheumatology University of Oxford Oxford UK
| | - Manu Shrivastava
- Department of Pathology University of Cambridge Cambridge UK.,Present address: Oxford University Hospitals Oxford UK
| | - Andrew M Doel
- Department of Women and Children's Health King's College London London UK.,MRC Unit The Gambia at London School of Hygiene and Tropical Medicine Banjul The Gambia
| | - Saikou Drammeh
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine Banjul The Gambia
| | - David B Dunger
- MRC Epidemiology Unit University of Cambridge School of Clinical Medicine Cambridge UK
| | - Sophie E Moore
- Department of Women and Children's Health King's College London London UK.,MRC Unit The Gambia at London School of Hygiene and Tropical Medicine Banjul The Gambia
| | - Ken K Ong
- MRC Epidemiology Unit University of Cambridge School of Clinical Medicine Cambridge UK.,Department of Paediatrics University of Cambridge School of Clinical Medicine Cambridge UK.,Institute of Metabolic Science Cambridge Biomedical Campus Cambridge Cambridge UK
| | - Andrew M Prentice
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine Banjul The Gambia
| | - Robin M Bernstein
- Growth and Development Lab Department of Anthropology University of Colorado Boulder CO USA.,Institute of Behavioural Science University of Colorado Boulder CO USA
| | | | - Nabeel A Affara
- Department of Pathology University of Cambridge Cambridge UK
| |
Collapse
|
18
|
Pradhan R, Ngo PA, Martínez-Sánchez LDC, Neurath MF, López-Posadas R. Rho GTPases as Key Molecular Players within Intestinal Mucosa and GI Diseases. Cells 2021; 10:cells10010066. [PMID: 33406731 PMCID: PMC7823293 DOI: 10.3390/cells10010066] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
Rho proteins operate as key regulators of the cytoskeleton, cell morphology and trafficking. Acting as molecular switches, the function of Rho GTPases is determined by guanosine triphosphate (GTP)/guanosine diphosphate (GDP) exchange and their lipidation via prenylation, allowing their binding to cellular membranes and the interaction with downstream effector proteins in close proximity to the membrane. A plethora of in vitro studies demonstrate the indispensable function of Rho proteins for cytoskeleton dynamics within different cell types. However, only in the last decades we have got access to genetically modified mouse models to decipher the intricate regulation between members of the Rho family within specific cell types in the complex in vivo situation. Translationally, alterations of the expression and/or function of Rho GTPases have been associated with several pathological conditions, such as inflammation and cancer. In the context of the GI tract, the continuous crosstalk between the host and the intestinal microbiota requires a tight regulation of the complex interaction between cellular components within the intestinal tissue. Recent studies demonstrate that Rho GTPases play important roles for the maintenance of tissue homeostasis in the gut. We will summarize the current knowledge on Rho protein function within individual cell types in the intestinal mucosa in vivo, with special focus on intestinal epithelial cells and T cells.
Collapse
|
19
|
Pan H, Wang X, Huang W, Dai Y, Yang M, Liang H, Wu X, Zhang L, Huang W, Yuan L, Wu Y, Wang Y, Liao L, Huang J, Guan J. Interferon-Induced Protein 44 Correlated With Immune Infiltration Serves as a Potential Prognostic Indicator in Head and Neck Squamous Cell Carcinoma. Front Oncol 2020; 10:557157. [PMID: 33123469 PMCID: PMC7573551 DOI: 10.3389/fonc.2020.557157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023] Open
Abstract
Interferon-induced protein 44 (IFI44) containing a guanosine-5′-triphosphate (GTP) binding domain was reported to play a significant role in the immune response to autoimmune disease. However, its roles involved in cancers remain unclear. Here, we detected the expression of IFI44 in The Cancer Genome Atlas (TCGA) Pan-cancer and generally explored the effect of IFI44 on immune infiltration in the tumor microenvironment (TME). The results displayed that IFI44 was mainly located in the cytoplasm and overexpressed in head and neck squamous cell carcinoma (HNSC) samples compared with normal tissues. Survival analysis exhibited that IFI44 was remarkably associated with the clinical outcomes, particularly in lymph node-positive and locally advanced HNSC patients. Biological analysis showed that IFI44 was correlated with such immune biological processes as antigen-presenting and nuclear factor (NF)-kappa B signaling pathways. Immune signature analysis demonstrated that the expression of IFI44 was positively correlated with the infiltration of CD4+ cells and macrophages as well as neutrophils in HNSC. Taken together, these data suggested that IFI44 was abnormally expressed in cancer tissues and indicated the potential impact of IFI44 on the tumor immune infiltration in HNSC.
Collapse
Affiliation(s)
- Hua Pan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoqing Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiqiang Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongmei Dai
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Oncology, Fujian Provincial Hospital, Fuzhou, China
| | - Mi Yang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Huazhen Liang
- Department of Oncology, Maoming People's Hospital, Maoming, China
| | - Xixi Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Longshan Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenqi Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lu Yuan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yin Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liwei Liao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jihong Huang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Guan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Fan X, Li Y, Yi X, Chen G, Jin S, Dai Y, Cui B, Dai B, Lin H, Zhou D. Epigenome-wide DNA methylation profiling of portal vein tumor thrombosis (PVTT) tissues in hepatocellular carcinoma patients. Neoplasia 2020; 22:630-643. [PMID: 33059309 PMCID: PMC7566847 DOI: 10.1016/j.neo.2020.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
Aberrant methylation is a hallmark of hepatocellular carcinoma and plays an important role in tumor initiation and progression. However, the epigenome-wide methylation patterns of portal vein tumor thrombosis (PVTTs) have not been fully explored. Here, we performed epigenome-wide DNA methylation of adjacent normal tissues (ANTs), paired tumor tissues and paired PVTTs using an Infinium HumanMethylation450 array (n = 11) and conducted the Sequenom EpiTYPER assays to confirm the aberrantly methylated genes. MTS and apoptosis assay were used to assess the synergistic effect of two drugs on the HCC cell lines. We found the mean global methylation levels of HCC tissues and PVTTs were significantly lower than ANTs (P < 0.01). A total of 864 differentially methylated CpG sites annotated in 532 genes were identified between HCC tissues and paired PVTTs (|mean methylation difference|>10%, P < 0.005). The pathway analysis based on hypermethylated genes in PVTT tissues was interestingly enriched in regulation of actin cytoskeleton pathway (P = 4.48E−5). We found 23 genes whose methylation levels were gradually alternated in HCC tissues and PVTTs. Aberrant methylation status of TNFRSF10A, ZC3H3 and SLC9A3R2 were confirmed in a validation cohort (n = 48). The functional experiments demonstrated the combination of decitabine (DAC) and tumor necrosis factor-related apoptosis-inducing ligand (rh-TRAIL) could synergistically suppress the proliferation and induce apoptosis in SK-Hep-1 and Huh7 cell lines. Together, our findings indicated that DNA methylation plays an important role in the PVTT formation through regulating the metastasis-related pathways. The combination of DAC and rh-TRAIL might be a promising treatment strategy for HCC.
Collapse
Affiliation(s)
- Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yirun Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Yi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Guoqiao Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengxi Jin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yili Dai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bin Cui
- College of Life Science and Technology, Nanyang Normal University, Nanyang, China
| | - Binghua Dai
- Department of Special Treatment Ⅰ and Liver Transplantation, Shanghai Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Daizhan Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Biomedical Research Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Key Laboratory of Psychotic Disorders, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
21
|
Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. Cell Death Dis 2020; 11:571. [PMID: 32709922 PMCID: PMC7381633 DOI: 10.1038/s41419-020-02793-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
Abstract
Oxysterol-binding protein like protein 3 (OSBPL3) has been shown involving in the development of several human cancers. However, the relationship between OSBPL3 and colorectal cancer (CRC), particularly the role of OSBPL3 in the proliferation, invasion and metastasis of CRC remains unclear. In this study, we investigated the role of OSBPL3 in CRC and found that its expression was significantly higher in CRC tissues than that in normal tissues. In addition, high expression of OSBPL3 was closely related to poor differentiation, advanced TNM stage and poor prognosis of CRC. Further experiments showed that over-expression of OSBPL3 promoted the proliferation, invasion and metastasis of CRC in vitro and in vivo models. Moreover, we revealed that OSBPL3 promoted CRC progression through activation of RAS signaling pathway. Furthermore, we demonstrated that hypoxia induced factor 1 (HIF-1A) can regulate the expression of OSBPL3 via binding to the hypoxia response element (HRE) in the promoter of OSBPL3. In summary, Upregulation of OSBPL3 by HIF1A promotes colorectal cancer progression through activation of RAS signaling pathway. This novel mechanism provides a comprehensive understanding of both OSBPL3 and the RAS signaling pathway in the progression of CRC and indicates that the HIF1A–OSBPL3–RAS axis is a potential target for early therapeutic intervention in CRC progression.
Collapse
|
22
|
Liu HH, Fang Y, Wang JW, Yuan XD, Fan YC, Gao S, Han LY, Wang K. Hypomethylation of the cyclin D1 promoter in hepatitis B virus-associated hepatocellular carcinoma. Medicine (Baltimore) 2020; 99:e20326. [PMID: 32443384 PMCID: PMC7253776 DOI: 10.1097/md.0000000000020326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 02/20/2020] [Accepted: 04/17/2020] [Indexed: 02/08/2023] Open
Abstract
The hypomethylation of the Cyclin D1 (CCND1) promoter induced by excess oxidative stress likely promotes the development of hepatitis B virus-associated hepatocellular carcinoma (HBV-HCC). We aimed to evaluate methylation status of the CCND1 promoter as a new plasma marker for the detection of HBV-HCC.We consecutively recruited 191 participants, including 105 patients with HBV-HCC, 54 patients with chronic hepatitis B (CHB), and 32 healthy controls (HCs). Using methylation-specific polymerase chain reaction, we identified the methylation status of the CCND1 promoter in plasma samples. We analyzed the expression levels of the CCND1 mRNA in peripheral blood mononuclear cells by using quantitative real-time PCR. We assessed the plasma levels of superoxide dismutase, 8-hydroxydeoxyguanosine and malondialdehyde by using enzyme-linked immunosorbent assays.Patients with HBV-HCC (23.81%) presented a reduced methylation frequency compared with patients with CHB (64.81%) or HCs (78.13%) (P < .001). When receiver operating characteristic curves were plotted for patients with HBV-HCC versus CHB, the methylation status of the CCND1 promoter yielded diagnostic parameter values for the area under the curve of 0.705, sensitivity of 76.19%, and specificity of 64.81%, thus outperforming serum alpha-fetoprotein (AFP), which had an area under the curve of 0.531, sensitivity of 36.19%, and specificity of 90.74%. Methylation of the CCND1 promoter represents a prospective diagnostic marker for patients with AFP-negative HBV-HCC and AFP-positive CHB. The expression levels of CCND1 mRNA was increased in patients with HBV-HCC compared with patients with CHB (Z = -4.946, P < .001) and HCs (Z = -6.819, P < .001). Both the extent of oxidative injury and antioxidant capacity indicated by the superoxide dismutase, 8-hydroxydeoxyguanosine and malondialdehyde levels were increased in patients with HBV-HCC. Clinical follow up of patients with HBV-HCC revealed a worse overall survival (P = .012, log-rank test) and a decreased progression-free survival (HR = 0.109, 95%CI: 0.031-0.384) for the unmethylated CCND1 group than methylated CCND1 group.Our study confirms that oxidative stress appears to correlate with plasma levels of CCND1 promoter methylation, and the methylation status of the CCND1 promoter represents a prospective biomarker with better diagnostic performance than serum AFP levels.
Collapse
Affiliation(s)
- Hui-Hui Liu
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
| | - Yu Fang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
| | - Jing-Wen Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
| | - Xiao-Dong Yuan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
| | - Yu-Chen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
- Shenzhen Research Institute of Shandong University, Shenzhen
- Institute of Hepatology, Shandong University, Jinan, China
| | - Shuai Gao
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
- Institute of Hepatology, Shandong University, Jinan, China
| | - Li-Yan Han
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
- Institute of Hepatology, Shandong University, Jinan, China
| | - Kai Wang
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan
- Shenzhen Research Institute of Shandong University, Shenzhen
- Institute of Hepatology, Shandong University, Jinan, China
| |
Collapse
|
23
|
Lai WF, Wong WT. Roles of the actin cytoskeleton in aging and age-associated diseases. Ageing Res Rev 2020; 58:101021. [PMID: 31968269 DOI: 10.1016/j.arr.2020.101021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
Abstract
The integrity of the cytoskeleton is essential to diverse cellular processes such as phagocytosis and intracellular trafficking. Disruption of the organization and dynamics of the actin cytoskeleton leads to age-associated symptoms and diseases, ranging from cancer to neurodegeneration. In addition, changes in the integrity of the actin cytoskeleton disrupt the functioning of not only somatic and stem cells but also gametes, resulting in aberrant embryonic development. Strategies to preserve the integrity and dynamics of the cytoskeleton are, therefore, potentially therapeutic to age-related disorders. The objective of this article is to revisit the current understanding of the roles played by the actin cytoskeleton in aging, and to review the opportunities and challenges for the transition of basic research into intervention development. It is hoped that, with the snapshot of evidence regarding changes in actin dynamics with advanced age, insights into future research directions can be attained.
Collapse
Affiliation(s)
- Wing-Fu Lai
- School of Pharmaceutical Sciences, Shenzhen University, PR China; School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, PR China; Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China.
| | - Wing-Tak Wong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong Special Administrative Region, PR China
| |
Collapse
|
24
|
Xiao Z, Wei Z, Deng D, Zheng Z, Zhao Y, Jiang S, Zhang D, Zhang LJ, Fan M, Chen S, Wang S, Ding Y, Ye Y, Jiao H. Downregulation of Siah1 promotes colorectal cancer cell proliferation and migration by regulating AKT and YAP ubiquitylation and proteasome degradation. Cancer Cell Int 2020; 20:50. [PMID: 32082080 PMCID: PMC7020597 DOI: 10.1186/s12935-020-1124-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/25/2020] [Indexed: 12/11/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignant tumors in the world. Siah E3 ubiquitin protein ligase 1 (Siah1) has been identified as a tumor suppressor gene and plays an important role in the development of malignant tumors. However, the potential role and molecular mechanism of Siah1 in the development and progression of CRC is still unclear. Methods To explore the role and molecular mechanism of Siah1 in the development and progression of CRC, we examined the expression of Siah1 in CRC tissue samples and analyzed its association with progression and prognosis in CRC. In addition, overexpression and knockdown of Siah1 was used to investigate its activity in CRC cells. We also use bioinformatics to analyze and verify the significant roles of Siah1 in critical signaling pathways of CRC. Results We found that the expression of Siah1 was significantly downregulated in CRC tissues, and low expression of Siah1 was associated with aggressive TNM staging and poor survival of CRC patients. Moreover, we revealed that overexpression of Siah1 in CRC cells markedly inhibited CRC cell proliferation and invasion in vitro and in vivo, while knockdown of Siah1 enhanced CRC cell proliferation and invasion. Furthermore, we found that Siah1 prohibited cell proliferation and invasion in CRC partially through promoting AKT (the serine-threonine protein kinase) and YAP (yes associated protein) ubiquitylation and proteasome degradation to regulate the activity of MAPK(mitogen-activated protein kinase 1), PI3K-AKT (phosphatidylinositol 3-kinase-the serine-threonine protein kinase) and Hippo signaling pathways. Conclusions These findings suggested that Siah1 is a novel potential prognostic biomarker and plays a tumor suppressor role in the development and progression of CRC.
Collapse
Affiliation(s)
- Zhiyuan Xiao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.,3Department of Pathology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong China
| | - Zhigang Wei
- 4Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Danling Deng
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China.,Department of Pathology, Shaoyang Central Hospital, Affiliated Shaoyang Hospital of University of South China, Shaoyang, Hunan China
| | - Zhe Zheng
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yali Zhao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Shenglu Jiang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Dan Zhang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Ling-Jie Zhang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Mingmei Fan
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Siqi Chen
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - ShuYang Wang
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yanqing Ding
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yaping Ye
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Hongli Jiao
- 1Department of Pathology, Nanfang Hospital and School of Basic Medical Science, Southern Medical University, Guangzhou, 510515 China.,2Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| |
Collapse
|
25
|
Shi W, Tang T, Li X, Deng S, Li R, Wang Y, Wang Y, Xia T, Zhang Y, Zen K, Jin L, Pan Y. Methylation-mediated silencing of miR-133a-3p promotes breast cancer cell migration and stemness via miR-133a-3p/MAML1/DNMT3A positive feedback loop. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:429. [PMID: 31660998 PMCID: PMC6819615 DOI: 10.1186/s13046-019-1400-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/24/2022]
Abstract
Background miR-133a-3p has been recently discovered to be down-regulated in various human malignancies, including breast cancer, and reduced miR-133a-3p levels have been significantly associated with breast cancer cell growth and invasion. However, the regulatory mechanisms leading to abnormal expression of miR-133a-3p in breast cancer remain obscure. Methods qRT-PCR was applied to detect the expression of miR-133a-3p in breast cancer tissues and cell lines. Bisulfite sequencing was used to detect the degree of methylation of the miR-133a-3p promoter. The effects of miR-133a-3p on breast cancer in vitro were examined by cell proliferation assay, transwell assay, flow cytometry, and western blotting. Bioinformatic analysis, dual-luciferase assay and RIP assay were employed to identify the interaction between miR-133a-3p and MAML1. A xenograft model was used to show the metastasis of breast cancer cells. Results We confirmed that miR-133a-3p was silenced by DNA hypermethylation in breast cancer cell lines and tissues, which predicted poor prognosis in breast cancer patients, and reducing miR-133a-3p expression led to a significant increase in the migration, invasion, proliferation, and stemness of breast cancer cells in vitro. Mastermind-like transcriptional coactivator 1 (MAML1) was confirmed to be a target of miR-133a-3p involved in regulating breast cancer metastasis both in vitro and in vivo. Moreover, a series of investigations indicated that MAML1 initiated a positive feedback loop, which could up-regulate DNA methyltransferase 3A (DNMT3A) to promote hypermethylation of the miR-133a-3p promoter. Conclusion Taken together, our findings revealed a novel miR-133a-3p/MAML1/DNMT3A positive feedback loop in breast cancer cells, which may become a potential therapeutic target for breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-019-1400-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wanyue Shi
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Tingting Tang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Xinping Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Siwei Deng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Ruiyi Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yingshan Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Yifei Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Tiansong Xia
- Department of Breast Surgery, Breast Disease Center of Jiangsu Province, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, People's Republic of China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China
| | - Ke Zen
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Road, Nanjing, Jiangsu, China
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China.
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang Avenue, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
26
|
Hu YH, Ma S, Zhang XN, Zhang ZY, Zhu HF, Ji YH, Li J, Qian XL, Wang YX. Hypermethylation Of ADHFE1 Promotes The Proliferation Of Colorectal Cancer Cell Via Modulating Cell Cycle Progression. Onco Targets Ther 2019; 12:8105-8115. [PMID: 31632063 PMCID: PMC6782030 DOI: 10.2147/ott.s223423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most common malignancies worldwide. Studies have demonstrated that epigenetic modifications play essential roles in the development of CRC. ADHFE1 is a differentially expressed gene that has been reported to be hypermethylated in CRC. However, the role and mechanism of ADHFE1 in the proliferation of CRC remain unclear. Materials and methods ADHFE1 expression was analyzed in CRC tissues by IHC and qRT-PCR, and the relationship between ADHFE1 expression and the clinicopathological parameters was analyzed. Cell proliferation were assessed by the in vitro and in vivo experimental models. GSEA assay was performed to explore the mechanism of ADHFE1 in the proliferation of CRC. Flow cytometry and Western blot were used to detect the activation of the cell cycle signaling. Bisulfite genomic sequence (BSP) assay was used to test the methylation degree of ADHFE1 gene promoter in CRC tissues. Results Here, we verified that ADHFE1 was down-regulated and hypermethylated in CRC tissues. The down-regulation of ADHFE1 was correlated with poor differentiation and advanced TNM stage of CRC patients. And ADHFE1 expression restored when the CRC cell line SW620 was treated with the demethylating agent 5-Aza-CdR. Overexpression of ADHFE1 inhibited the proliferation of CRC, while ADHFE1 knockdown promoted the proliferation of CRC cells in vitro and in vivo. Moreover, ADHFE1 overexpression could induce a significant G1-S cell cycle arrest in CRC cells and vice versa. Conclusion Hypermethylation of ADHFE1 might promote cell proliferation by modulating cell cycle progression in CRC, potentially providing a new therapeutic target for CRC patients.
Collapse
Affiliation(s)
- Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| | - Shuai Ma
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| | - Xiang-Nan Zhang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| | - Zhe-Ying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| | - Hui-Fang Zhu
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China.,Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| | - Ying-Hua Ji
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| | - Jian Li
- Department of Surgery, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| | - Xin-Lai Qian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China.,Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| | - Yong-Xia Wang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China.,Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453000, People's Republic of China
| |
Collapse
|
27
|
Hu YH, Lu YX, Zhang ZY, Zhang JM, Zhang WJ, Zheng L, Lin WH, Zhang W, Li XN. SSH3 facilitates colorectal cancer cell invasion and metastasis by affecting signaling cascades involving LIMK1/Rac1. Am J Cancer Res 2019; 9:1061-1073. [PMID: 31218112 PMCID: PMC6556607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023] Open
Abstract
Slingshot phosphatase 3 (SSH3) is a member of the SSH phosphatase family that regulates actin filament dynamics. However, its role in cancer metastasis is relatively unclear compared to that of SSH1. Here, we showed that SSH3 was upregulated in colorectal cancer (CRC). Of note, SSH3 was upregulated in the tumor thrombus and lymph node metastasis compared with that in paired primary CRC tissues. High SSH3 expression was associated with the aggressive phenotype of CRC and may be an independent prognostic factor for the poor survival of patients with CRC. SSH3 significantly enhanced the invasion and metastasis of CRC cells in vitro and in vivo. Moreover, SSH3 regulated the remodeling of actin, which is involved in the cytoskeleton signaling pathway, through its interaction with LIMK1/Rac1 and subsequently promoted CRC cell invasion and metastasis. Our data elucidate an important role for SSH3 in the progression of CRC, and SSH3 may be considered a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Yu-Han Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, Guangdong, China
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang, Henan, China
| | - Yan-Xia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Zhe-Ying Zhang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical UniversityXinxiang, Henan, China
| | - Jian-Ming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Wen-Juan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Wei-Hao Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Wei Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Xue-Nong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|