1
|
Xu J, Liu S, Jin Y, Wang L, Gao J. MicroRNAs and lysosomal membrane proteins: Critical interactions in tumor progression and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189303. [PMID: 40132693 DOI: 10.1016/j.bbcan.2025.189303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Cancer development is influenced by genetic and epigenetic variations, with the interactions between microRNAs (miRNAs) and lysosomal membrane proteins (LMPs) representing key regulatory mechanisms with potential as therapeutic targets. This review focuses on the complex regulatory mechanisms of miRNAs and LMPs in tumor progression, specifically highlighting their roles in tumor suppression, tumor promotion, tumor therapy, and drug resistance and their future application in treatment strategies. Overall, the interactions of LMPs with miRNAs have critical roles in tumor regulation, and studies of these interactions will further highlight their molecular contributions to cancer development.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Shiqiang Liu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China
| | - Yujie Jin
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China; Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, Anhui, China.
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
2
|
Feng R, Li X, Li B, Luan T, He J, Liu G, Yue J. Integrating transcriptomics and scPagwas analysis predicts naïve CD4 T cell-related gene DRAM2 as a potential biomarker and therapeutic target for colorectal cancer. BMC Cancer 2025; 25:317. [PMID: 39984869 PMCID: PMC11843817 DOI: 10.1186/s12885-025-13731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
OBJECTIVE The interaction between T cells, particularly naïve CD4 T cells (CD4Tn), and colorectal cancer (CRC) is highly complex. CD4Tn play a crucial role in modulating immune responses within the tumor microenvironment, yet the precise mechanisms by which they influence tumor progression remain elusive. This study aims to explore the relationship between CRC and CD4Tn, identify biomarkers and therapeutic targets, and focus on the role of CD4Tn in shaping the immune environment of CRC. METHODS Single-cell transcriptomics, alongside the scPagwas algorithm, were employed to identify pivotal T cell subsets involved in CRC progression. Bulk transcriptomic data were further analyzed using deconvolution algorithms to elucidate the roles of these key T cell subsets. The abundance of naïve CD4 T cells (CD4Tn) was specifically assessed to gauge patient responses to immunotherapy, alterations in the immune microenvironment, and correlations with genetic mutations. Key genes linked to CD4Tn were identified using weighted gene co-expression network analysis and Pearson correlation scores. The SMR algorithm was subsequently used for validation, with experimental verification following. RESULTS Through single-cell transcriptomics and the scPagwas algorithm, CD4Tn was confirmed as a critical cell type in CRC progression. High infiltration of CD4Tn cells in CRC patients was correlated with poorer prognosis and suboptimal responses to immunotherapy. SMR analysis suggested a potential causal link between DRAM2 gene expression and CRC progression. Experimental knockdown of DRAM2 in colorectal cancer cells significantly inhibited tumor growth. CONCLUSION The DRAM2 gene, associated with CD4Tn cells, appears to play a pivotal role in the advancement of CRC and may represent a promising therapeutic target for treatment.
Collapse
Affiliation(s)
- Rui Feng
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaofang Li
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Benhua Li
- The Second People's Hospital of Liangshan Yi Autonomous Prefecture, Xichang, China
| | - Tiankuo Luan
- Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Jiaming He
- Department of Human Anatomy, Basic Medical School, Chongqing Medical University, Chongqing, China
| | - Guojing Liu
- Department of Neurosurgery, The University-Town Hospital of Chongqing Medical University, NO.55 of university-town middle Road, Shapingba District, Chongqing, 400000, China.
| | - Jian Yue
- Department of Breast Surgery, Gaozhou People's Hospital, No.89 Xiguan Road, Gaozhou, Guangdong, 525200, China.
| |
Collapse
|
3
|
Sun K, Chen J, Fan Y, Cai J, Jiang X, Liu W, Zhu X. Lack of retinal degeneration in a Dram2 knockout mouse model. Vision Res 2025; 226:108509. [PMID: 39520804 DOI: 10.1016/j.visres.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Damage-regulated autophagy modulator 2 (DRAM2) is a homologue of the DRAM family protein, which can induce autophagy process. In the retina, DRAM2 is located to the inner segment of photoreceptors, the apical surface of retinal pigment epithelial (RPE) cells, and the lysosome. Pathogenic variants of DRAM2 lead to autosomal recessive Cone-rod dystrophy 21 (CORD21). Cone-rod dystrophy is characterised by primary cone involvement, or sometimes simultaneous cone and rod loss, thus leading to decreased visual acuity, colour vision deficits, photophobia, and decreased sensitivity of the central visual field. However, the mechanisms underlying DRAM2 related retinal diseases remained unclear. To further explore the role of Dram2 in the retina, we generated Dram2 knockout mice (KO) by CRISPR/Cas-9 technology and demonstrated that expression of DRAM2 was abolished in KO retinas. Dram2 ablation failed to manifest any retinal degenerative phenotypes. Dram2 KO did not exhibit visible defect in photo response and the overt structure of the retinas. Immunostaing analysis using antibodies against cone opsins revealed no detectable loss of cone cells. Moreover, no visible change was observed in the expression and localisation of rhodopsin and other membrane disc proteins in Dram2 KO retinas and no gliosis and apoptosis were detected in KO mice. In summary, these data revealed lack of overt retinal degeneration in Dram2 KO model and emphasized the importance of further investigation of the mechanisms underlying Cone-rod dystrophy 21.
Collapse
Affiliation(s)
- Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Qinghai Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Junyao Chen
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yudi Fan
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jinrui Cai
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Qinghai Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China; Department of Ophthalmology, Shangqiu First People's Hospital, Shangqiu, Henan, China; Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China.
| |
Collapse
|
4
|
Zhang Y, Wang C, Xu Y, Su H. Tetraspanin 3 promotes NSCLC cell proliferation via regulation of β1 integrin intracellular recycling. Cell Mol Biol Lett 2024; 29:124. [PMID: 39333841 PMCID: PMC11428915 DOI: 10.1186/s11658-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The involvement of tetraspanins in cancer development has been widely implicated. In this study, the function and molecular mechanisms of tetraspanin 3 (TSPAN3) in non-small cell lung cancer (NSCLC) cells were explored. METHODS Tissue samples from patients diagnosed with NSCLC were analyzed by immunohistochemistry, western blotting, and real-time polymerase chain reaction (PCR) to indicate the involvement of TSPAN3 in cancer progression. In the meantime, we also performed exhaustive mechanistic studies using A549 and H460 cells in vitro through a variety of methods including western blotting, real-time PCR, immunofluorescent staining, coimmunoprecipitation, cell proliferation assay, and nocodazole (NZ) washout assay. Proper statistical analysis was implemented wherever necessary in this study. RESULTS TSPAN3 was found to be highly expressed in lung cancer cells and tissues. Moreover, high levels of TSPAN3 positively correlated with poor differentiation, lymph node involvement, advanced pathological tumor-node-metastasis stage, and poor prognosis in patients with NSCLC. TSPAN3 showed potential to promote the proliferation of NSCLC cells in vitro and in vivo. Specifically, TSPAN3 was found to interact with β1 integrin via the LEL domain, thereby facilitating the sorting of β1 integrin into Rab11a endosomes and promoting β1 integrin recycling and upregulation. CONCLUSIONS Our findings reveal TSPAN3 may represent a potentially valuable therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yao Zhang
- Department of Pathology, the First Hospital and Basic Medical Sciences College of China Medical University, Shenyang, 110001, China
| | - Chenglong Wang
- Department of Pain, the First Hospital of China Medical University, Shenyang, 110001, China
| | - Yitong Xu
- Department of Pathology, the First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| | - Hongbo Su
- Department of Pathology, the First Hospital of China Medical University, No. 155 Nanjing North Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
5
|
Danish F, Qureshi MA, Mirza T, Amin W, Sufiyan S, Naeem S, Arshad F, Mughal N. Investigating the Association between the Autophagy Markers LC3B, SQSTM1/p62, and DRAM and Autophagy-Related Genes in Glioma. Int J Mol Sci 2024; 25:572. [PMID: 38203743 PMCID: PMC10779014 DOI: 10.3390/ijms25010572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
High-grade gliomas are extremely fatal tumors, marked by severe hypoxia and therapeutic resistance. Autophagy is a cellular degradative process that can be activated by hypoxia, ultimately resulting in tumor advancement and chemo-resistance. Our study aimed to examine the link between autophagy markers' expression in low-grade gliomas (LGGs) and high-grade gliomas (HGGs). In 39 glioma cases, we assessed the protein expression of autophagy markers LC3B, SQSTM1/p62, and DRAM by immunohistochemistry (IHC) and the mRNA expression of the autophagy genes PTEN, PI3K, AKT, mTOR, ULK1, ULK2, UVRAG, Beclin 1, and VPS34 using RT-qPCR. LC3B, SQSTM1/p62, and DRAM expression were positive in 64.1%, 51.3%, and 28.2% of glioma cases, respectively. The expression of LC3B and SQSTM1/p62 was notably higher in HGGs compared to LGGs. VPS34 exhibited a significant differential expression, displaying increased fold change in HGGs compared to LGGs. Additionally, it exhibited robust positive associations with Beclin1 (rs = 0.768), UVRAG (rs = 0.802), and ULK2 (rs = 0.786) in HGGs. This underscores a potential association between autophagy and the progression of gliomas. We provide preliminary data for the functional analysis of autophagy using a cell culture model and to identify potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Farheen Danish
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi 75300, Pakistan; (F.D.); (F.A.)
| | - Muhammad Asif Qureshi
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi 75300, Pakistan; (F.D.); (F.A.)
| | - Talat Mirza
- Departments of Research & Molecular Medicine, Ziauddin University, Karachi 75600, Pakistan;
| | - Wajiha Amin
- Departments of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan; (W.A.); (S.S.); (S.N.)
| | - Sufiyan Sufiyan
- Departments of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan; (W.A.); (S.S.); (S.N.)
| | - Sana Naeem
- Departments of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan; (W.A.); (S.S.); (S.N.)
| | - Fatima Arshad
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi 75300, Pakistan; (F.D.); (F.A.)
| | - Nouman Mughal
- Departments of Biological and Biomedical Sciences, Aga Khan University, Karachi 74800, Pakistan; (W.A.); (S.S.); (S.N.)
| |
Collapse
|
6
|
Jones MK, Orozco LD, Qin H, Truong T, Caplazi P, Elstrott J, Modrusan Z, Chaney SY, Jeanne M. Integration of human stem cell-derived in vitro systems and mouse preclinical models identifies complex pathophysiologic mechanisms in retinal dystrophy. Front Cell Dev Biol 2023; 11:1252547. [PMID: 37691820 PMCID: PMC10483287 DOI: 10.3389/fcell.2023.1252547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Rare DRAM2 coding variants cause retinal dystrophy with early macular involvement via unknown mechanisms. We found that DRAM2 is ubiquitously expressed in the human eye and expression changes were observed in eyes with more common maculopathy such as Age-related Macular Degeneration (AMD). To gain insights into pathogenicity of DRAM2-related retinopathy, we used a combination of in vitro and in vivo models. We found that DRAM2 loss in human pluripotent stem cell (hPSC)-derived retinal organoids caused the presence of additional mesenchymal cells. Interestingly, Dram2 loss in mice also caused increased proliferation of cells from the choroid in vitro and exacerbated choroidal neovascular lesions in vivo. Furthermore, we observed that DRAM2 loss in human retinal pigment epithelial (RPE) cells resulted in increased susceptibility to stress-induced cell death in vitro and that Dram2 loss in mice caused age-related photoreceptor degeneration. This highlights the complexity of DRAM2 function, as its loss in choroidal cells provided a proliferative advantage, whereas its loss in post-mitotic cells, such as photoreceptor and RPE cells, increased degeneration susceptibility. Different models such as human pluripotent stem cell-derived systems and mice can be leveraged to study and model human retinal dystrophies; however, cell type and species-specific expression must be taken into account when selecting relevant systems.
Collapse
Affiliation(s)
- Melissa K. Jones
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
- Product Development Clinical Science Ophthalmology, Genentech Inc., South San Francisco, CA, United States
| | - Luz D. Orozco
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, United States
| | - Han Qin
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
| | - Tom Truong
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Patrick Caplazi
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, United States
| | - Justin Elstrott
- Department of Translational Imaging, Genentech Inc., South San Francisco, CA, United States
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next-Generation Sequencing, Genentech Inc., South San Francisco, CA, United States
| | - Shawnta Y. Chaney
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Marion Jeanne
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
7
|
Mao G, Yang D, Liu B, Zhang Y, Ma S, Dai S, Wang G, Tang W, Lu H, Cai S, Zhu J, Yang H. Deciphering a cell death-associated signature for predicting prognosis and response to immunotherapy in lung squamous cell carcinoma. Respir Res 2023; 24:176. [PMID: 37415224 DOI: 10.1186/s12931-023-02402-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/18/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Lung squamous cell carcinoma (LUSC) is a subtype of non-small cell carcinoma, accounting for about 30% of all lung cancers. Yet, the evaluation of prognostic outcome and therapy response of patients with LUSC remains to be resolved. This study aimed to explore the prognostic value of cell death pathways and develop a cell death-associated signature for predicting prognosis and guiding treatment in LUSC. METHODS Transcriptome profiles and corresponding clinical information of LUSC patients were gathered from The Cancer Genome Atlas (TCGA-LUSC, n = 493) and Gene Expression Omnibus database (GSE74777, n = 107). The cell death-related genes including autophagy (n = 348), apoptosis (n = 163), and necrosis (n = 166) were retrieved from the Kyoto Encyclopedia of Genes and Genomes and Gene Ontology databases. In the training cohort (TCGA-LUSC), LASSO Cox regression was used to construct four prognostic signatures of respective autophagy, apoptosis, and necrosis pathway and genes of three pathways. After comparing the four signatures, the cell death index (CDI), the signature of combined genes, was further validated in the GSE74777 dataset. We also investigated the clinical significance of the CDI signature in predicting the immunotherapeutic response of LUSC patients. RESULTS The CDI signature was significantly associated with the overall survival of LUSC patients in the training cohort (HR, 2.13; 95% CI, 1.62‒2.82; P < 0.001) and in the validation cohort (HR, 1.94; 95% CI, 1.01‒3.72; P = 0.04). The differentially expressed genes between the high- and low-risk groups contained cell death-associated cytokines and were enriched in immune-associated pathways. We also found a higher infiltration of naive CD4+ T cells, monocytes, activated dendritic cells, neutrophils, and lower infiltration of plasma cells and resting memory CD4+ T cells in the high-risk group. Tumor stemness indices, mRNAsi and mDNAsi, were both negatively correlated with the risk score of the CDI. Moreover, LUSC patients in the low-risk group are more likely to respond to immunotherapy than those in the high-risk group (P = 0.002). CONCLUSIONS This study revealed a reliable cell death-associated signature (CDI) that closely correlated with prognosis and the tumor microenvironment in LUSC, which may assist in predicting the prognosis and response to immunotherapy for patients with LUSC.
Collapse
Affiliation(s)
- Guangxian Mao
- Department of Thoracic Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Dongyong Yang
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Guangzhou, 362000, China
| | - Bin Liu
- First Division, Department of Respiratory and Critical Care Medicine, Affiliated to Xiangya School of Medicine, Zhuzhou Hospital, Central South University, Zhuzhou Central Hospital, Zhuzhou, 412007, China
| | - Yu Zhang
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Sijia Ma
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Shang Dai
- Burning Rock Biotech, Guangzhou, 510300, China
| | | | - Wenxiang Tang
- Department of General Practice, the Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Huafei Lu
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Shangli Cai
- Burning Rock Biotech, Guangzhou, 510300, China
| | - Jialiang Zhu
- Department of Cardiothoracic Surgery, the Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, China.
| | - Huaping Yang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
8
|
Zheng YK, Zhou ZS, Wang GZ, Tu JY, Cheng HB, Ma SZ, Ke C, Wang Y, Jian QP, Shu YH, Wu XW. MiR-122-5p regulates the mevalonate pathway by targeting p53 in non-small cell lung cancer. Cell Death Dis 2023; 14:234. [PMID: 37005437 PMCID: PMC10067850 DOI: 10.1038/s41419-023-05761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
The 5-year survival rate of non-small cell lung cancer (NSCLC) patients is very low. MicroRNAs (miRNAs) are involved in the occurrence of NSCLC. miR-122-5p interacts with wild-type p53 (wtp53), and wtp53 affects tumor growth by inhibiting the mevalonate (MVA) pathway. Therefore, this study aimed to evaluate the role of these factors in NSCLC. The role of miR-122-5p and p53 was established in samples from NSCLC patients, and human NSCLC cells A549 using the miR-122-5p inhibitor, miR-122-5p mimic, and si-p53. Our results showed that inhibiting miR-122-5p expression led to the activation of p53. This inhibited the progression of the MVA pathway in the NSCLC cells A549, hindered cell proliferation and migration, and promoted apoptosis. miR-122-5p was negatively correlated with p53 expression in p53 wild-type NSCLC patients. The expression of key genes in the MVA pathway in tumors of p53 wild-type NSCLC patients was not always higher than the corresponding normal tissues. The malignancy of NSCLC was positively correlated with the high expression of the key genes in the MVA pathway. Therefore, miR-122-5p regulated NSCLC by targeting p53, providing potential molecular targets for developing targeted drugs.
Collapse
Affiliation(s)
- Yu-Kun Zheng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhong-Shi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Guang-Zhong Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Ji-Yuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Huan-Bo Cheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shang-Zhi Ma
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi-Pan Jian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yu-Hang Shu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Wei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Yang KE, Nam SB, Jang M, Park J, Lee GE, Cho YY, Jang BC, Lee CJ, Choi JS. Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy. J Ginseng Res 2023; 47:337-346. [PMID: 36926607 PMCID: PMC10014224 DOI: 10.1016/j.jgr.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/19/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-Ⅰ to LC3-Ⅱ and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.
Collapse
Affiliation(s)
- Kyeong Eun Yang
- Bio-Chemical Analysis Group, Center for Research Equipment, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Soo-Bin Nam
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| | - Minsu Jang
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Junsoo Park
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Ga-Eun Lee
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Gyeonggi, Republic of Korea
| | - Yong-Yeon Cho
- BRL & BK21-4th Team, College of Pharmacy, The Catholic University of Korea, Gyeonggi, Republic of Korea
| | - Byeong-Churl Jang
- Department of Molecular Medicine, College of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Cheol-Jung Lee
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea
| | - Jong-Soon Choi
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
VEZF1, destabilized by STUB1, affects cellular growth and metastasis of hepatocellular carcinoma by transcriptionally regulating PAQR4. Cancer Gene Ther 2023; 30:256-266. [PMID: 36241701 DOI: 10.1038/s41417-022-00540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is an aggressive solid malignancy, and recurrence and metastasis are major incentives contributing to its poor outcome. Vascular endothelial zinc finger 1 (VEZF1) has been recognized as an oncoprotein in certain types of cancer, but the expression pattern and regulatory mechanism in HCC remains unclear. This study focused on the functional effect and regulatory basis of VEZF1 in HCC. Microarray analysis identified the differentially expressed VEZF1 in HCC, and we validated its raised expression in HCC clinical samples. Artificial modulation of VEZF1 (knockdown and overexpression) was conducted to explore its role in HCC progression both in vitro and in vivo. It was shown that silencing of VEZF1 suppressed, whereas its overexpression promoted HCC cellular proliferation and metastasis abilities. Mechanistically, VEZF1 transcriptionally activated progestin and adipoQ receptor 4 (PAQR4) to accelerate HCC progression. Furthermore, VEZF1 is confirmed as a substrate of stress-inducible phosphoprotein 1 homology and U-box containing protein 1 (STUB1), and its stability is impacted by STUB1-mediated ubiquitination degradation. Conjointly, our work suggested that VEZF1, destabilized by STUB1, participates in HCC progression by regulating PAQR4. The STUB1/VEZF1/PAQR4 mechanism might provide novel insights on guiding early diagnosis and therapy in HCC patients.
Collapse
|
11
|
Zou Z, Zhang B, Li Z, Lei L, Sun G, Jiang X, Guan J, Zhang Y, Xu S, Li Q. KBTBD7 promotes non-small cell lung carcinoma progression by enhancing ubiquitin-dependent degradation of PTEN. Cancer Med 2022; 11:4544-4554. [PMID: 35499228 PMCID: PMC9741964 DOI: 10.1002/cam4.4794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/12/2022] [Accepted: 04/01/2022] [Indexed: 02/03/2023] Open
Abstract
The Kelch repeat and BTB domain containing 7 (KBTBD7) was first cloned in 2010. Its function as a transcriptional activator and a substrate adaptor during the ubiquitination process was soon found. KBTBD7 was shown to be involved in excessive inflammation after myocardial infarction, brain development, and neurofibromin stability. However, studies on the role of KBTBD7 in solid tumors, especially lung cancer, are still lacking. Therefore, in this study, we investigate the role of KBTBD7 in non-small cell lung cancer (NSCLC). Immunohistochemical staining of 102 paired NSCLC and peritumoral normal specimens indicated that KBTBD7 was highly expressed in NSCLC tissues and positively correlated with the histological type, P-TNM stage, lymph node metastasis, and tumor size. KBTBD7 was also well-expressed in NSCLC cell lines, and downregulation of KBTBD7 resulted in inhibition of NSCLC cell proliferation and invasion. Further investigation showed that KBTBD7 enhanced ubiquitin-dependent degradation of PTEN, thus activating EGFR/PI3K/AKT signaling and promoting NSCLC cell proliferation and invasion by regulating CCNE1, CDK4, P27, ZEB-1, Claudin-1, ROCK1, MMP-9, and E-cadherin protein levels. Our results indicate that KBTBD7 may be a potential therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Zifang Zou
- Department of Thoracic SurgeryThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Bo Zhang
- Department of PathologyFirst Affiliated Hospital of Dalian Medical UniversityDalianPeople's Republic of China
| | - Zhihan Li
- Department of PathologyThe Second Hospital of Dalian Medical UniversityDalianPeople's Republic of China
| | - Lei Lei
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Guanghao Sun
- Department of Thoracic SurgeryThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Xizi Jiang
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Jingqian Guan
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Yao Zhang
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Shun Xu
- Department of Thoracic SurgeryThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| | - Qingchang Li
- Department of PathologyThe First Hospital of China Medical UniversityShenyangPeople's Republic of China
| |
Collapse
|
12
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
13
|
Machuka EM, Juma J, Muigai AWT, Amimo JO, Pelle R, Abworo EO. Transcriptome profile of spleen tissues from locally-adapted Kenyan pigs (Sus scrofa) experimentally infected with three varying doses of a highly virulent African swine fever virus genotype IX isolate: Ken12/busia.1 (ken-1033). BMC Genomics 2022; 23:522. [PMID: 35854219 PMCID: PMC9294756 DOI: 10.1186/s12864-022-08754-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background African swine fever (ASF) is a lethal hemorrhagic disease affecting domestic pigs resulting in up to 100% mortality rates caused by the ASF virus (ASFV). The locally-adapted pigs in South-western Kenya have been reported to be resilient to disease and harsh climatic conditions and tolerate ASF; however, the mechanisms by which this tolerance is sustained remain largely unknown. We evaluated the gene expression patterns in spleen tissues of these locally-adapted pigs in response to varying infective doses of ASFV to elucidate the virus-host interaction dynamics. Methods Locally adapted pigs (n = 14) were experimentally infected with a high dose (1x106HAD50), medium dose (1x104HAD50), and low dose (1x102HAD50) of the highly virulent genotype IX ASFV Ken12/busia.1 (Ken-1033) isolate diluted in PBS and followed through the course of infection for 29 days. The in vivo pig host and ASFV pathogen gene expression in spleen tissues from 10 pigs (including three from each infective group and one uninfected control) were analyzed in a dual-RNASeq fashion. We compared gene expression between three varying doses in the host and pathogen by contrasting experiment groups against the naïve control. Results A total of 4954 differentially expressed genes (DEGs) were detected after ASFV Ken12/1 infection, including 3055, 1771, and 128 DEGs in the high, medium, and low doses, respectively. Gene ontology and KEGG pathway analysis showed that the DEGs were enriched for genes involved in the innate immune response, inflammatory response, autophagy, and apoptosis in lethal dose groups. The surviving low dose group suppressed genes in pathways of physiopathological importance. We found a strong association between severe ASF pathogenesis in the high and medium dose groups with upregulation of proinflammatory cytokines and immunomodulation of cytokine expression possibly induced by overproduction of prostaglandin E synthase (4-fold; p < 0.05) or through downregulation of expression of M1-activating receptors, signal transductors, and transcription factors. The host-pathogen interaction resulted in induction of expression of immune-suppressive cytokines (IL-27), inactivation of autophagy and apoptosis through up-regulation of NUPR1 [5.7-fold (high dose) and 5.1-fold (medium dose) [p < 0.05] and IL7R expression. We detected repression of genes involved in MHC class II antigen processing and presentation, such as cathepsins, SLA-DQB1, SLA-DOB, SLA-DMB, SLA-DRA, and SLA-DQA in the medium and high dose groups. Additionally, the host-pathogen interaction activated the CD8+ cytotoxicity and neutrophil machinery by increasing the expression of neutrophils/CD8+ T effector cell-recruiting chemokines (CCL2, CXCL2, CXCL10, CCL23, CCL4, CXCL8, and CXCL13) in the lethal high and medium dose groups. The recovered pigs infected with ASFV at a low dose significantly repressed the expression of CXCL10, averting induction of T lymphocyte apoptosis and FUNDC1 that suppressed neutrophilia. Conclusions We provide the first in vivo gene expression profile data from locally-adapted pigs from south-western Kenya following experimental infection with a highly virulent ASFV genotype IX isolate at varying doses that mimic acute and mild disease. Our study showed that the locally-adapted pigs induced the expression of genes associated with tolerance to infection and repression of genes involved in inflammation at varying levels depending upon the ASFV dose administered. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08754-8.
Collapse
Affiliation(s)
- Eunice Magoma Machuka
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya. .,Pan African University Institute for Basic Sciences Technology and Innovation (PAUSTI), P.O Box 62000-00200, Nairobi, Kenya.
| | - John Juma
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| | | | - Joshua Oluoch Amimo
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Roger Pelle
- Biosciences eastern and central Africa, International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya.
| | - Edward Okoth Abworo
- Animal and Human Health Program, International Livestock Research Institute (ILRI), P.O. Box 30709-00100, Nairobi, Kenya
| |
Collapse
|
14
|
The Clinical Spectrum and Disease Course of DRAM2 Retinopathy. Int J Mol Sci 2022; 23:ijms23137398. [PMID: 35806404 PMCID: PMC9266529 DOI: 10.3390/ijms23137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 11/26/2022] Open
Abstract
Pathogenic variants in DNA-damage regulated autophagy modulator 2 gene (DRAM2) cause a rare autosomal recessive retinal dystrophy and its disease course is not well understood. We present two Slovenian patients harboring a novel DRAM2 variant and a detailed review of all 23 other patients described to date. Whole exome and whole genome sequencing were performed in the two patients, and both underwent ophthalmological examination with a 2-year follow-up. PubMed was searched for papers with clinical descriptions of DRAM2 retinopathy. Patient 1 was homozygous for a novel variant, p.Met1?, and presented with the acute onset of photopsia and retina-wide retinopathy at the age of 35 years. The patient was first thought to have an autoimmune retinopathy and was treated with mycophenolate mofetil, which provided some symptomatic relief. Patient 2 was compound heterozygous for p.Met1? and p.Leu246Pro and presented with late-onset maculopathy at the age of 59 years. On review, patients with DRAM2 retinopathy usually present in the third decade with central visual loss, outer retinal layer loss on optical coherence tomography and a hyperautofluorescent ring on fundus autofluorescence. Either cone–rod or rod–cone dystrophy phenotype is observed on electroretinography, reflecting the importance of DRAM2 in both photoreceptor types. Non-null variants can result in milder disease.
Collapse
|
15
|
Affiliation(s)
| | - Jörn Dengjel
- Department of Biology University of Fribourg Switzerland
| |
Collapse
|
16
|
Xu L, Huang X, Lou Y, Xie W, Zhao H. Regulation of apoptosis, autophagy and ferroptosis by non‑coding RNAs in metastatic non‑small cell lung cancer (Review). Exp Ther Med 2022; 23:352. [PMID: 35493430 PMCID: PMC9019694 DOI: 10.3892/etm.2022.11279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/10/2022] [Indexed: 11/06/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), a common type of cancer worldwide, is normally associated with a poor prognosis. It is difficult to treat successfully as it often metastasizes into brain or bone. Methods to facilitate the induction of effective programmed cell death (PCD) in NSCLC cells to reverse drug resistance, or to inhibit the invasion and migration of NSCLC cells, are currently under investigation. The present study summarized the regulatory functions of PCD, including apoptosis, autophagy and ferroptosis, in the context of NSCLC metastasis. It further summarized how regulatory agents, including long non-coding RNAs, circular RNAs and microRNAs, regulate PCD during the metastasis of NSCLC and characterized new potential diagnostic biomarkers of NSCLC metastasis.
Collapse
Affiliation(s)
- Lei Xu
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Xin Huang
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Yan Lou
- Department of Orthopedic Oncology, Spine Tumor Center, Changzheng Hospital, Naval Military Medical University, Shanghai 200003, P.R. China
| | - Wei Xie
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| | - Hangyu Zhao
- Department of Orthopedics, Chengdu Seventh People's Hospital, Chengdu, Sichuan 610213, P.R. China
| |
Collapse
|
17
|
Ghafarkhani M, Avci CB, Rahbarghazi R, Karimi A, Sadeghizadeh M, Zarebkohan A, Bani F. Mild hyperthermia induced by gold nanorods acts as a dual-edge blade in the fate of SH-SY5Y cells via autophagy. Sci Rep 2021; 11:23984. [PMID: 34907215 PMCID: PMC8671444 DOI: 10.1038/s41598-021-02697-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 11/22/2021] [Indexed: 02/07/2023] Open
Abstract
Unraveling unwanted side effects of nanotechnology-based therapies like photothermal therapy (PTT) is vital in translational nanomedicine. Herein, we monitored the relationship between autophagic response at the transcriptional level by using a PCR array and tumor formation ability by colony formation assay in the human neuroblastoma cell line, SH-SY5Y, 48 h after being exposed to two different mild hyperthermia (43 and 48 °C) induced by PTT. In this regard, the promotion of apoptosis and autophagy were evaluated using immunofluorescence imaging and flow cytometry analyses. Protein levels of Ki-67, P62, and LC3 were measured using ELISA. Our results showed that of 86 genes associated with autophagy, the expression of 54 genes was changed in response to PTT. Also, we showed that chaperone-mediated autophagy (CMA) and macroautophagy are stimulated in PTT. Importantly, the results of this study also showed significant changes in genes related to the crosstalk between autophagy, dormancy, and metastatic activity of treated cells. Our findings illustrated that PTT enhances the aggressiveness of cancer cells at 43 °C, in contrast to 48 °C by the regulation of autophagy-dependent manner.
Collapse
Affiliation(s)
- Maryam Ghafarkhani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran
| | - Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, Bornova, 35100, Izmir, Turkey
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Karimi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Sadeghizadeh
- Department of Nanobiotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Farhad Bani
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, 516661-4733, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Wang J, Wu F, Li Y, Pang L, Wang X, Kong G, Zhang T, Yu D. KCNQ1OT1 accelerates gastric cancer progression via miR-4319/DRAM2 axis. Int J Immunopathol Pharmacol 2021; 34:2058738420954598. [PMID: 33100093 PMCID: PMC7786410 DOI: 10.1177/2058738420954598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION This work was to explore the connection of KCNQ1 opposite strand/antisense transcript 1 (KCNQ1OT1) and microRNA-4319 (miR-4319), and to investigate the associated underlying mechanisms in gastric cancer (GC) progression. METHODS Quantitative real-time PCR was performed to measure KCNQ1OT1, miR-4319 and DNA-damage regulated autophagy modulator 2 (DRAM2) expression levels in GC cells. Moreover, expression level of KCNQ1OT1 and DRAM2 in GC tissues was analyzed at ENCORI website (http://starbase.sysu.edu.cn/index.php). Cell proliferation, colony formation assay and flow cytometry assays were performed to analyze effects of KCNQ1OT1, miR-4319 and DRAM2 on cell growth and death. Dual-luciferase activity reporter assay and RNA immunoprecipitation assay was conducted to verify the interactions of KCNQ1OT1 or DRAM2 and miR-4319. RESULTS AND CONCLUSION We found KCNQ1OT1 level was increased in tumor tissues and cells. Force the expression of KCNQ1OT1 promotes, while knockdown KCNQ1OT1 inhibits GC cell growth. Further studies indicated miR-4319 functioned as a bridge between KCNQ1OT1 and DRAM2. Finally, we showed KCNQ1OT1/miR-4319/DRAM2 axis regulates GC cell growth in vitro and in vivo. lncRNA KCNQ1OT1 promotes GC progression by sponging miR-4319 to upregulate DRAM2, indicating KCNQ1OT1 might be a promising target for GC treatment.
Collapse
Affiliation(s)
- Jijun Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Fan Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yaoyao Li
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lei Pang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaohong Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Guimei Kong
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Tong Zhang
- Xinghua People's Hospital, Yangzhou University, Xinghua, China
| | - Duonan Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China.,Xinghua People's Hospital, Yangzhou University, Xinghua, China
| |
Collapse
|
19
|
Li H, Lu C, Yao W, Xu L, Zhou J, Zheng B. Dexmedetomidine inhibits inflammatory response and autophagy through the circLrp1b/miR-27a-3p/Dram2 pathway in a rat model of traumatic brain injury. Aging (Albany NY) 2020; 12:21687-21705. [PMID: 33147167 PMCID: PMC7695368 DOI: 10.18632/aging.103975] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022]
Abstract
Circular RNAs (circRNAs) have a regulatory function on inflammation and autophagy, of which rno-circRNA_010705 (circLrp1b) appears to be significantly up-regulated following traumatic brain injury (TBI). Dexmedetomidine (DEX) shows improvement effects in TBI by inhibiting NLRP3/caspase-1. However, whether circLrp1b plays critical roles in DEX-mediated TBI attenuation and the underlying mechanisms remain unclear. After TBI was established in rats by controlled cortical impact (CCI) to cause brain trauma, they received an intracerebroventricular injection of lentiviral vector, followed by intraperitoneal injection of DEX. Administration of DEX ameliorated autophagy in rats following TBI, accompanied by up-regulated circLrp1b and Dram2 and down-regulated miR-27a-3p. DEX promoted the effects of circLrp1b in attenuating TBI-induced neurologic impairment, autophagy, and inflammation, which was significantly reversed by inhibition of miR-27a-3p or Dram2 overexpression. Mechanistically, northern blot and luciferase reporter assays indicated that circLrp1b up-regulated Dram2 expression by functioning as a sponge for miR-27a-3p to promote autophagy involved in TBI, which was reversed by DEX treatment. Collectively, this study demonstrated that DEX inhibits inflammatory response and autophagy involved in TBI in vivo through inactivation of the circLrp1b/miR-27a-3p/Dram2 signaling pathway.
Collapse
Affiliation(s)
- Hengchang Li
- Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Chengxiang Lu
- Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Wenfei Yao
- Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Lixin Xu
- Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jun Zhou
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Zheng
- Department of Anesthesiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Zou Z, Fan X, Liu Y, Sun Y, Zhang X, Sun G, Li X, Xu S. Endogenous thrombopoietin promotes non-small-cell lung carcinoma cell proliferation and migration by regulating EGFR signalling. J Cell Mol Med 2020; 24:6644-6657. [PMID: 32337844 PMCID: PMC7299695 DOI: 10.1111/jcmm.15314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
Thrombopoietin (TPO) is a haematopoietic cytokine mainly produced by the liver and kidneys, which stimulates the production and maturation of megakaryocytes. In the past decade, numerous studies have investigated the effects of TPO outside the haematopoietic system; however, the role of TPO in the progression of solid cancer, particularly lung cancer, has not been well studied. Exogenous TPO does not affect non-small-cell lung cancer (NSCLC) cells as these cells show no or extremely low TPO receptor expression; therefore, in this study, we focused on endogenous TPO produced by NSCLC cells. Immunohistochemical analysis of 150 paired NSCLC and adjacent normal tissues indicated that TPO was highly expressed in NSCLC tissues and correlated with clinicopathological parameters including differentiation, P-TNM stage, lymph node metastasis and tumour size. Suppressing endogenous TPO by small interfering RNA inhibited the proliferation and migration of NSCLC cells. Moreover, TPO interacted with the EGFR protein and delayed ligand-induced EGFR degradation, thus enhancing EGFR signalling. Notably, overexpressing TPO in EGF-stimulated NSCLC cells facilitated cell proliferation and migration, whereas no obvious changes were observed without EGF stimulation. Our results suggest that endogenous TPO promotes tumorigenicity of NSCLC via regulating EGFR signalling and thus could be a therapeutic target for treating NSCLC.
Collapse
Affiliation(s)
- Zifang Zou
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoxi Fan
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yanbin Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Guanghao Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Xuehao Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shun Xu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Zhang T, Yan Z, Zheng X, Wang S, Fan J, Liu Z. Effects of acute ammonia toxicity on oxidative stress, DNA damage and apoptosis in digestive gland and gill of Asian clam (Corbicula fluminea). FISH & SHELLFISH IMMUNOLOGY 2020; 99:514-525. [PMID: 32092406 DOI: 10.1016/j.fsi.2020.02.046] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/06/2020] [Accepted: 02/18/2020] [Indexed: 05/06/2023]
Abstract
Ammonia is one of the major pollutants associated with the main river basins due to ammonification of uneaten food and animal excretion, which usually brings detrimental health effects to aquatic invertebrate. However, the mechanisms of ammonia toxicity in aquatic invertebrate have rarely been reported. In this study, C. fluminea was exposed to different levels of ammonia (control group, 10 mg/L, and 25 mg/L) for 24 h and 48 h, and digestive gland and gill were collected to explore toxic effects on oxidative stress, DNA damage and apoptosis under ammonia stress. The results showed that ammonia poisoning could increase the activity of oxidative stress enzyme (SOD and CAT), inducing differentially expressed genes (DRAM2, GADD45, P53, BAX, BCL2, CASP8, CASP9, CASP3, HSP70 and HSP90) and different cytokines (IL-1 beta, IL-8, IL-17 and TNF-alpha) of DNA damage and apoptosis. The difference of toxic effects induced by ammonia among digestive gland and gill were also observed by real-time PCR and TUNEL staining. Our results will be helpful to understand the mechanism of aquatic toxicology induced by ammonia in C. fluminea.
Collapse
Affiliation(s)
- Tianxu Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Juntao Fan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhengtao Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
22
|
Characterization of the cone-rod dystrophy retinal phenotype caused by novel homozygous DRAM2 mutations. Exp Eye Res 2019; 187:107752. [PMID: 31394102 DOI: 10.1016/j.exer.2019.107752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/22/2019] [Accepted: 08/05/2019] [Indexed: 12/28/2022]
Abstract
Cone-rod dystrophies (CRD) are a group of Inherited Retinal Dystrophies (IRD) characterized by the primary involvement of cone photoreceptors, resulting in the degeneration of the central retina, or macula. Although there are more than 55 CRD genes, a considerable percentage of cases remain unsolved. In this context, the present study aimed to describe and characterize the phenoptype and the genetic cause of 3 CRD families from a cohort of IRD cases. Clinical evaluation in each patient was supported by a complete ophthalmological examination, including visual acuity measurement, fundus retinography, fundus autofluorescence imaging, optical coherence tomography and full-field electroretinography. Molecular diagnoses were performed by whole exome sequencing analyzing a group of 279 IRD genes, and cosegregation of the identified pathogenic variants was confirmed by Sanger sequencing. Three novel homozygous mutations in the autophagy gene DRAM2 were identified as the molecular cause of disease in the three families: c.518-1G>A, c.628_629insAG and c.693+2T>A. Clinical data revealed that the 3 patients presented a shared CRD phenotype with adult-onset macular involvement and later peripheral degeneration, although the age of onset, evolution and severity were variable. In order to characterize the transcription effects of these variants, mRNA expression studies were performed. The results showed alterations in the DRAM2 transcription, including alternative splicing forms and lower levels of mRNA, which correlated with the phenotypic variability observed between patients. For instance, frameshift mutations were related to a less severe phenotype, with circumscribed mid-peripheral involvement, and lower levels of mRNA, suggesting an activation of the nonsense-mediated decay (NMD) pathway; while a more severe and widespread retinal degeneration was associated to the inframe alternative splicing variant reported, possibly due to a malfunctioning or toxicity of the resulting protein. Following these findings, DRAM2 expression was assessed in several human tissues by semi-quantitative RT-PCR and two isoforms were detected ubiquitously, yet with a singular tissue-specific pattern in retina and brain. Altogether, although the unique retinal phenotype described did not correlate with the ubiquitous expression, the retinal-specific expression and the essential role of autophagy in the photoreceptor survival could be key arguments to explain this particular DRAM2 phenotype.
Collapse
|