1
|
Zhou J, Li Y, Jiang X, Xin Z, Liu W, Zhang X, Zhai Y, Zhang Z, Shi T, Xue M, Zhang M, Wu Y, Chu Y, Wang S, Jin X, Zhu W, Gao J. PD-L1 siRNA incorporation into a cationic liposomal tumor mRNA vaccine enhances cytotoxic T cell activation and prevents immune evasion. Mater Today Bio 2025; 31:101603. [PMID: 40124340 PMCID: PMC11926701 DOI: 10.1016/j.mtbio.2025.101603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Engaging antigen-presenting cells and T lymphocytes is essential for invigorating the immune system's response to cancer. Nonetheless, challenges such as the low immunogenicity of tumor antigens, the genetic heterogeneity of tumor cells, and the elevated expression of immune checkpoint molecules frequently result in resistance to immunotherapy or enable immune evasion by tumors. To overcome this resistance, we developed a therapeutic tumor vaccine employing cationic liposomes to encapsulate MC38 total RNA alongside PD-L1 siRNA (siPD-L1). The encapsulated total RNA, enriched with tumor mRNA, effectively transduces dendritic cells (DCs), thereby enhancing antigen presentation. The incorporation of siPD-L1 specifically targets and diminishes PD-L1 expression on both DCs and tumor cells, synergistically amplifying the cytotoxic capabilities of CD8+ T cells. Furthermore, cationic liposomes play dual roles as carriers crucial for preserving the integrity of nucleic acids for antigen translation and as inhibitors of autophagy-a process essential for both promoting antigen cross-presentation and revitalizing MHC-I expression on tumor cells, thereby increasing their immunogenicity. This cationic liposomal vaccine represents a promising strategy in cancer immunotherapy, launching a multidimensional offensive against tumor cells that enhances cytotoxic T lymphocyte (CTL) activation and prevents tumor immune evasion.
Collapse
Affiliation(s)
- Jingsheng Zhou
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yuanyuan Li
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xianghe Jiang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Zhongyuan Xin
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wenshang Liu
- Department of Dermatology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China
| | - Zhuanzhuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
| | - Te Shi
- Department of Gastroenterology, Chinese People's Liberation Army Naval Medical Center, Shanghai, 200052, China
| | - Minghao Xue
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Mengya Zhang
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yanhui Chu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200000, China
| | - Xin Jin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Weiping Zhu
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Jie Gao
- Changhai Clinical Research Unit, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| |
Collapse
|
2
|
Wang H, Sun P, Yuan X, Xu Z, Jiang X, Xiao M, Yao X, Shi Y. Autophagy in tumor immune escape and immunotherapy. Mol Cancer 2025; 24:85. [PMID: 40102867 PMCID: PMC11921617 DOI: 10.1186/s12943-025-02277-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
The immunotherapy targeting tumor immune escape mechanisms has become a critical strategy in anticancer treatment; however, the challenge of immune resistance remains significant. Autophagy, a cellular response to various stressors, involves the degradation of damaged proteins and organelles via lysosomal pathways, maintaining cellular homeostasis. This process not only supports tumor cell survival but also profoundly impacts the efficacy of cancer immunotherapies. The modulation of autophagy in tumor cells or immune cells exerts dual effects on tumor immune escape and immunotherapy. However, the mechanistic details of how autophagy influences the immune system and therapy remain inadequately understood. Given this complexity, a deeper understanding of the role of autophagy in the tumor-immune landscape could reveal novel therapeutic avenues. By manipulating autophagy appropriately, it may be possible to overcome immune resistance and enhance the effectiveness of immunotherapeutic strategies. This article summarizes the role of autophagy in tumor immunity, its relationship with immunotherapy, and the potential therapeutic benefits of targeting autophagy to strengthen antitumor immune responses and optimize the outcomes of immunotherapy.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Sun
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xijing Yuan
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiyong Xu
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the, Fourth Affiliated Hospital of School of Medicine, and Internation School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xinyuan Jiang
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the, Fourth Affiliated Hospital of School of Medicine, and Internation School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Mingshu Xiao
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the, Fourth Affiliated Hospital of School of Medicine, and Internation School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, Center for Oncology Medicine, the, Fourth Affiliated Hospital of School of Medicine, and Internation School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
3
|
Chen P, Chen Z, Sui W, Han W. Recent advances in the mechanisms of PD-L1 expression in gastric cancer: a review. Biol Res 2025; 58:16. [PMID: 40091086 PMCID: PMC11912799 DOI: 10.1186/s40659-025-00597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
In the progression of gastric cancer (GC), various cell types in the tumor microenvironment (TME) exhibit upregulated expression of programmed death ligand 1 (PD-L1), leading to impaired T-cell function and evasion of immune surveillance. Infection with H. pylori and EBV leads to increased PD-L1 expression in various cell types within TME, resulting in immune suppression and facilitating immune escape of GC cells. In the TME, mesenchymal stem cells (MSCs), M1-like tumor-associated macrophages (MI-like TAM), and myeloid-derived suppressor cells (MDSCs) contribute to the upregulation of PD-L1 expression in GC cells. Conversely, mast cells, M2-like tumor-associated macrophages (M2-like TAM), and tumor-associated neutrophils (TANs) exhibit elevated levels of PD-L1 expression in response to the influence of GC cells. Together, these factors collectively contribute to the upregulation of PD-L1 expression in GC. This review aims to provide a comprehensive summary of the cellular expression patterns of PD-L1 in GC and the underlying molecular mechanisms. Understanding the complex regulatory pathways governing PD-L1 expression may offer novel insights for the development of effective immunotherapeutic interventions.
Collapse
Affiliation(s)
- Peifeng Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Zhangming Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Wannian Sui
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China
| | - Wenxiu Han
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Avenue, Shushan District, Hefei, Anhui Province, 230022, China.
| |
Collapse
|
4
|
Wang Y, Pei W, Yang Y, Xia C, Zhang Q, Geng Z, Shi X, Wang F. Inhibition of XIST restrains paclitaxel resistance in breast cancer cells by targeting hsa-let-7d-5p/ATG16L1 through regulation of autophagy. Cell Signal 2025; 127:111534. [PMID: 39638138 DOI: 10.1016/j.cellsig.2024.111534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Breast cancer is a fatal malignant tumor in women worldwide. The development of paclitaxel resistance remains a challenge. Autophagy is considered to have a significant part in the chemotherapeutic stress mechanism. This study aimed to investigate the function of long non-coding RNA (lncRNA) in breast cancer cell chemoresistance and autophagy. The paclitaxel (PTX)-resistant breast cancer cells were established. The function of X-inactive specific transcript (XIST) was demonstrated using in vitro and in vivo experiments. Transmission electron microscope (TEM) was used to observe autophagy vesicles. Protein and mRNA levels were determined using western blotting and quantitative real time polymerase chain reaction (qRT-PCR). We discovered that autophagic activity was correlated with chemoresistance in PTX-resistant breast cancer cells. In vitro and in vivo studies showed that XIST inhibition reduced cell resistance to paclitaxel, caused autophagy to be suppressed by regulating hsa-let-7d-5p and ATG16L1 expression. Mechanically, threonine protein kinase B (PKB; also known as AKT) - mammalian target of rapamycin (mTOR) pathway was activated when knockdown of XIST, while was reversed by inhibition of hsa-let-7d-5p. Our results verified that XIST played a significant role in developing chemoresistance via mediating autophagy in PTX-resistant breast cancer cells. It may be a potential target for breast cancer treatment strategies.
Collapse
Affiliation(s)
- Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu 233004, Anhui, China; The Fifth Clinical Medical College of Anhui Medical University, Hefei 230000, Anhui, China
| | - Wenhao Pei
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu 233030, Anhui, China
| | - Yuping Yang
- Department of Clinical Laboratory, Second Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Chaoqun Xia
- Department of Clinical Laboratory, Second Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Qiang Zhang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, Bengbu 233004, Anhui, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Xiuru Shi
- Department of Blood Transfusion, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China
| | - Fengchao Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, Anhui, China.
| |
Collapse
|
5
|
He Y, Du B, Liao W, Wang W, Su J, Guo C, Zhang K, Shi Z. Construction and evaluation of a prognostic model of autophagy-related genes in hepatocellular carcinoma. Biochem Biophys Rep 2025; 41:101893. [PMID: 39760097 PMCID: PMC11700244 DOI: 10.1016/j.bbrep.2024.101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a globally prevalent disease. Our article evaluates risk models based on autophagy- and HCC-related genes and their prognostic value by bioinformatics analytical methods to provide a scientific basis for clinical treatment. Methods Prognostic genes were identified by univariate and multivariate Cox analyses, and risk scores were calculated. The value of risk models was analysed by receiver operating characteristic curve (ROC), immune microenvironment and drug sensitivity. Prognostic gene-related regulatory mechanisms based on network database. Results We screened four prognosis-related genes (SQSTM1, GABARAPL1, CDKN2A, HSPB8) for model construction. The AUC for 1-, 2- and 3-year survival was higher than 0.6 in both the training and validation sets. The nomogram constructed based on risk scores, pathologic_T predicted the outcome better. There were differences in the tumour microenvironment between the high and low risk groups, as evidenced by differences in the distribution of immune cells and differences in the expression of immune checkpoints. Conclusion Our results illustrate that models, nomograms and risk scores were valuable for tumour progression. Clinical trial number Not applicable.
Collapse
Affiliation(s)
| | | | | | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| | - Jifeng Su
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| | - Chen Guo
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| | - Kai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| | - Zhitian Shi
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Kunming Medical University, No.374 Yunnan-Burma Road, Kunming, Yunnan, 650101, China
| |
Collapse
|
6
|
Kam NW, Lau CY, Lau JYH, Dai X, Liang Y, Lai SPH, Chung MKY, Yu VZ, Qiu W, Yang M, Smith C, Khanna R, Ng KM, Dai W, Che CM, Lee VHF, Kwong DLW. Cell-associated galectin 9 interacts with cytotoxic T cells confers resistance to tumor killing in nasopharyngeal carcinoma through autophagy activation. Cell Mol Immunol 2025; 22:260-281. [PMID: 39910335 PMCID: PMC11868493 DOI: 10.1038/s41423-024-01253-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 11/14/2024] [Accepted: 12/24/2024] [Indexed: 02/07/2025] Open
Abstract
Immune effector cells, including cytotoxic T lymphocytes (CTLs) play essential roles in eliminating cancer cells. However, their functionality is often compromised, even when they infiltrate the tumor microenvironment (TME) or are transferred to cancer patients adoptively. In this study, we focused on galectin 9 (G9), an inhibitory ligand that we observed to be predominately positioned on the plasma membrane and readily interacts with CD8 + CTL in the TME of nasopharyngeal carcinoma (NPC). We discovered that cell-cell contact between activated effector CTLs and target tumor cells (TarTC) with G9 overexpression led to cellular death defects. Despite the formation of CTL-TarTC conjugates, there is no impact on the cell number nor viability of CTL, and the release of cytolytic content and associated activity were not completely abrogated. Instead, this interaction promoted autophagy and restricted necrosis in the TarTC. Furthermore, reducing G9 expression in tumor cells enhanced the suppressive effect on tumor growth upon adoptive transfer of activated effector CTL. Additionally, inhibiting autophagy effectively controlled tumor growth in cases of G9 overexpression. Therefore, we highlight the contribution of G9 in facilitating the resistance of NPC to CTL-mediated killing by inducing a selection-cell death state in tumor cells, characterized by increased autophagy and decreased necrosis.
Collapse
Affiliation(s)
- Ngar-Woon Kam
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China
| | - Cho Yiu Lau
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China
| | | | - Xin Dai
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusi Liang
- LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Syrus Pak Hei Lai
- LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | - Valen Zhuoyou Yu
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Wenting Qiu
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Mengsu Yang
- Department of Biomedical Sciences and Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| | - Corey Smith
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development and Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Kwan Ming Ng
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China
| | - Wei Dai
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chi Ming Che
- Laboratory of Synthetic Chemistry and Chemical Biology Limited, Hong Kong, China
- Department of Chemistry, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Victor Ho-Fun Lee
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Dora L W Kwong
- Department of Clinical Oncology, Centre of Cancer Medicine, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
- Clinical Oncology Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
7
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
8
|
Zhang G, Chen Y, Huang X, Liang T. Cancer immunotherapeutic challenges from autophagy-immune checkpoint reciprocal regulation. Trends Cancer 2025; 11:169-184. [PMID: 39706727 DOI: 10.1016/j.trecan.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024]
Abstract
Multiple strategies have been clinically employed as combination partners to enhance the therapeutic efficacy of immune checkpoint inhibitors (ICIs). Although these combinations have demonstrated improved effectiveness in some instances, each presents its own limitations. Autophagy-targeting therapy offers several advantages when combined with ICIs, including enhanced tumor immunogenicity, reduced side effects, and broader applicability to diverse patient populations. However, emerging evidence reveals complex reciprocal regulation between autophagy and immune checkpoints which may complicate combination treatments targeting these two systems. This review focuses on the reciprocal interplay between autophagy and immune checkpoints, and provides valuable guidelines for the determination and adjustment of therapeutic regimens in the future.
Collapse
Affiliation(s)
- Gang Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China; Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; Zhejiang Clinical Research Center of Hepatobiliary and Pancreatic Diseases, Hangzhou 310003, Zhejiang, China; The Innovation Center for the Study of Pancreatic Diseases of Zhejiang Province, Hangzhou 310009, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
9
|
Zhao B, Yang J, Ran F, Shi Y, Yang L, Duan Y, Shi Z, Li X, Zhang J, Li Z, Wang J. CircBIRC6 affects prostate cancer progression by regulating miR-574-5p and DNAJB1. Cancer Biol Ther 2024; 25:2399363. [PMID: 39258752 PMCID: PMC11404571 DOI: 10.1080/15384047.2024.2399363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Prostate cancer (PCa) is among the three main types of cancer. Although prostate-specific antigen (PSA) is routinely tested, it has disadvantages, such as poor prognostic ability. Therefore, finding more PCa markers and therapeutic targets remains a subject of study. CircRNAs have been found to have regulatory roles in various diseases, such as diabetes, Central Nervous System (CNS) neuropathy, etc. where their application in cancer is even more valuable. Therefore, this paper aims to search for differentially expressed circRNAs in PCa and find downstream targeting pathways related to autophagy. METHOD By detecting the expression of circRNA in the samples, hsa_circ_0119816 was finally identified as the research target. The properties of circRNA were verified by RNase R, actinomycin D, and fluorescence in situ hybridization (FISH). The downstream target miRNAs and target proteins were predicted by an online database, and the targeting relationship was verified using dual luciferase and RNA Immunoprecipitation. The effects of circRNAs and their downstream signalling pathways on prostate cancer cell proliferation, migration, EMT and autophagy were examined by CCK-8, Transwell, immunofluorescence and Western blotting. RESULTS CircBIRC6 is highly expressed in prostate cancer samples. Knockdown of its expression inhibits cell proliferation, invasion, EMT and autophagy and promotes apoptosis. CircBIRC6/miRNA-574-5p/DNAJB1 is a molecular axis that regulates prostate cancer cells.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Jinye Yang
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Fengming Ran
- Department of Pathology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Yuanlong Shi
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Libo Yang
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Yuanpeng Duan
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Zhiyu Shi
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Xin Li
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Jianpeng Zhang
- Department of Urology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Zhiyao Li
- Department of Ultrasound Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
10
|
Pimentel JM, Zhou JY, Wu GS. Autophagy and cancer therapy. Cancer Lett 2024; 605:217285. [PMID: 39395780 DOI: 10.1016/j.canlet.2024.217285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Autophagy is an intracellular degradation process that sequesters cytoplasmic components in double-membrane vesicles known as autophagosomes, which are degraded upon fusion with lysosomes. This pathway maintains the integrity of proteins and organelles while providing energy and nutrients to cells, particularly under nutrient deprivation. Deregulation of autophagy can cause genomic instability, low protein quality, and DNA damage, all of which can contribute to cancer. Autophagy can also be overactivated in cancer cells to aid in cancer cell survival and drug resistance. Emerging evidence indicates that autophagy has functions beyond cargo degradation, including roles in tumor immunity and cancer stem cell survival. Additionally, autophagy can also influence the tumor microenvironment. This feature warrants further investigation of the role of autophagy in cancer, in which autophagy manipulation can improve cancer therapies, including cancer immunotherapy. This review discusses recent findings on the regulation of autophagy and its role in cancer therapy and drug resistance.
Collapse
Affiliation(s)
- Julio M Pimentel
- Department of Pharmacology, University of California San Diego, La Jolla, CA, 92093, USA; Institutional Research Academic Career Development Award Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jun Ying Zhou
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA
| | - Gen Sheng Wu
- Molecular Therapeutics Program, Karmanos Cancer Institute, Detroit, MI, 48201, USA; Department of Oncology, Wayne State University, Detroit, MI, 48201, USA; Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
11
|
Gao J, Zhai Y, Lu W, Jiang X, Zhou J, Wu L, Du L, Ou C, Zhang X, He H, Zhu J, Zhang Z, Li M, Wu Y, Pan X. ROS-sensitive PD-L1 siRNA cationic selenide nanogels for self-inhibition of autophagy and prevention of immune escape. Bioact Mater 2024; 41:597-610. [PMID: 39280899 PMCID: PMC11393550 DOI: 10.1016/j.bioactmat.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
In the field of cancer therapy, inhibiting autophagy has emerged as a promising strategy. However, pharmacological disruption of autophagy can lead to the upregulation of programmed death-ligand 1 (PD-L1), enabling tumor immune evasion. To address this issue, we developed innovative ROS-responsive cationic poly(ethylene imine) (PEI) nanogels using selenol chemistry-mediated multicomponent reaction (MCR) technology. This procedure involved simple mixing of low-molecular-weight PEI (LMW PEI), γ-selenobutylacetone (γ-SBL), and poly(ethylene glycol) methacrylate (PEGMA). Through high-throughput screening, we constructed a library of AxSeyOz nanogels and identified the optimized A1.8Se3O0.5/siPD-L1 nanogels, which exhibited a size of approximately 200 nm, excellent colloidal stability, and the most effective PD-L1 silencing efficacy. These nanogels demonstrated enhanced uptake by tumor cells, excellent oxidative degradation ability, and inhibited autophagy by alkalinizing lysosomes. The A1.8Se3O0.5/siPD-L1 nanogels significantly downregulated PD-L1 expression and increased the expression of major histocompatibility complex class I (MHC-I), resulting in robust proliferation of specific CD8+ T cells and a decrease in MC38 tumor growth. As a result, the A1.8Se3O0.5/siPD-L1 nanogels inhibited tumor growth through self-inhibition of autophagy, upregulation of MHC-I, and downregulation of PD-L1. Designed with dynamic diselenide bonds, the A1.8Se3O0.5/siPD-L1 nanogels showed synergistic antitumor efficacy through self-inhibition of autophagy and prevention of immune escape.
Collapse
Affiliation(s)
- Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Yonghua Zhai
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Weihong Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xianghe Jiang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jingsheng Zhou
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Chunqing Ou
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Xinyi Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Hanliang He
- The Department of Orthopedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215028, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Meiyun Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
12
|
Xing Y, Yang J, Peng A, Qian Y, Liu Y, Pan P, Liu Q. Lysosome Targeted Nanoparticle Aggregation Reverses Immunosuppressive Tumor Microenvironment for Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412730. [PMID: 39358936 DOI: 10.1002/adma.202412730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Nanotechnology has proven its enormous application value in clinical practice. However, current research on nanomedicines mainly focuses on developing nanoparticles as delivery carriers to maximize the bioavailability of therapeutic agents, with little attention on exploring their potential to directly regulate physiological processes. In this study, inspired by the lysosomal swelling caused by excessive accumulation of undegraded substances, this work presents a lysosomal-targeting aggregated nanoparticle (LTANP) for cancer treatment. By rationally engineering surface composition, properties, and interparticle interactions, LTANP achieves efficient tumor accumulation and selective targeted aggregation in lysosomes of cancer cells, leading to unrelievable lysosomal swelling, and ultimately inducing lysosomal membrane permeabilization (LMP) of cancer cells. Further analysis shows that nanoparticle aggregation-mediated LMP can effectively trigger immunogenic cell death (ICD) by impairing autophagy-lysosome pathway, evoking robust antitumor immune responses and reversing tumor immunogenicity from "cold" to "hot" in a melanoma model. Additionally, LTANP can combine with clinically approved programmed death ligand-1 (PD-L1) antibodies to further unleash T cell-mediated antitumor immunity, significantly enhancing antitumor performance, inhibiting tumor recurrence and metastasis. This work demonstrates the potential of rationally engineered nanostructures in directly combating cancer and provides novel insights for the development of advanced nanoparticle-based cancer treatment.
Collapse
Affiliation(s)
- Yumeng Xing
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianhui Yang
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Ao Peng
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yujing Qian
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yang Liu
- College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Pei Pan
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| | - Qi Liu
- Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230032, P. R. China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
13
|
Li L, Wang X, Jiang M, Li L, Wang D, Li Y. Advancements in a novel model of autophagy and immune network regulation in radioresistance of cancer stem cells. Biomed Pharmacother 2024; 179:117420. [PMID: 39255736 DOI: 10.1016/j.biopha.2024.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
Radiotherapy, a precise modality for treating malignant tumors, has undergone rapid advancements in primary and clinical research. The mechanisms underlying tumor radioresistance have become significant research. With the introduction and in-depth study of cancer stem cells (CSCs) theory, CSCs have been identified as the primary factor contributing to the development of tumor radioresistance. The "stemness" of CSCs is a biological characteristic of a small subset of cells within tumor tissues, characterized by self-renewal solid ability. This characteristic leads to resistance to radiotherapy, chemotherapy, and targeted therapies, driving tumor recurrence and metastasis. Another study revealed that cellular autophagy plays a pivotal role in maintaining the "stemness" of CSCs. Autophagy is a cellular mechanism that degrades proteins and organelles to generate nutrients and energy in response to stress. This process maintains cellular homeostasis and contributes to CSCs radioresistance. Furthermore, ionizing radiation (IR) facilitates epithelial-to-mesenchymal transition (EMT), vascular regeneration, and other tumor processes by influencing the infiltration of M2-type tumor-associated macrophages (TAMs). IR promotes the activation of the classical immunosuppressive "switch," PD-1/PD-L1, which diminishes T-cell secretion, leading to immune evasion and promoting radioresistance. Interestingly, recent studies have found that the immune pathway PD-1/PD-L1 is closely related to cellular autophagy. However, the interrelationships between immunity, autophagy, and radioresistance of CSCs and the regulatory mechanisms involved remain unclear. Consequently, this paper reviews recent research to summarize these potential connections, aiming to establish a theoretical foundation for future studies and propose a new model for the network regulation of immunity, autophagy, and radioresistance of tumor cells.
Collapse
Affiliation(s)
- Leyao Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Xin Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Mei Jiang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Lei Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Di Wang
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China
| | - Yajun Li
- Department of Oncology, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China; Scientific Research Center, The Third Affiliated Hospital of Zunyi Medical University (The First People's Hospital of Zunyi), Zunyi, Guizhou, China.
| |
Collapse
|
14
|
Shao BZ, Zhang WG, Liu ZY, Linghu EQ. Autophagy and its role in gastrointestinal diseases. World J Gastroenterol 2024; 30:4014-4020. [PMID: 39351250 PMCID: PMC11439115 DOI: 10.3748/wjg.v30.i36.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024] Open
Abstract
Gastrointestinal disorders encompass a spectrum of conditions affecting various organs within the digestive system, such as the esophagus, stomach, colon, rectum, pancreas, liver, small intestine, and bile ducts. The role of autophagy in the etiology and progression of gastrointestinal diseases has garnered significant attention. This paper seeks to evaluate the impact and mechanisms of autophagy in gastrointestinal disorders by synthesizing recent research findings. Specifically, we delve into inflammation-related gastrointestinal conditions, including ul-cerative colitis, Crohn's disease, and pancreatitis, as well as gastrointestinal cancers such as esophageal, gastric, and colorectal cancers. Additionally, we provide commentary on a recent publication by Chang et al in the World Journal of Gastroenterology. Our objective is to offer fresh perspectives on the mechanisms and therapeutic approaches for these gastrointestinal ailments. This review aims to offer new perspectives on the mechanisms and therapeutic strategies for gastrointestinal disorders by critically analyzing relevant publications. As discussed, the role of autophagy in gastrointestinal diseases is complex and, at times, contentious. To harness the full therapeutic potential of autophagy in treating these conditions, more in-depth research is imperative.
Collapse
Affiliation(s)
- Bo-Zong Shao
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Wen-Gang Zhang
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - Zhen-Yu Liu
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| | - En-Qiang Linghu
- Department of Gastroenterology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
15
|
Mei H, Jing T, Liu H, Liu Y, Zhu X, Wang J, Xu L. Ursolic Acid Alleviates Mitotic Catastrophe in Podocyte by Inhibiting Autophagic P62 Accumulation in Diabetic Nephropathy. Int J Biol Sci 2024; 20:3317-3333. [PMID: 38993555 PMCID: PMC11234211 DOI: 10.7150/ijbs.94096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 05/01/2024] [Indexed: 07/13/2024] Open
Abstract
The glomerular podocyte, a terminally differentiated cell, is crucial for the integrity of the glomerular filtration barrier. The re-entry of podocytes into the mitotic phase results in injuries or death, known as mitotic catastrophe (MC), which significantly contributes to the progression of diabetic nephropathy (DN). Furthermore, P62-mediated autophagic flux has been shown to regulate DN-induced podocyte injury. Although previous studies, including ours, have demonstrated that ursolic acid (UA) mitigates podocyte injury by enhancing autophagy under high glucose conditions, the protective functions and potential regulatory mechanisms of UA against DN have not been fully elucidated. For aiming to investigate the regulatory mechanism of podocyte injuries in DN progression, and the protective function of UA treatment against DN progression, we utilized db/db mice and high glucose (HG)-induced podocyte models in vivo and in vitro, with or without UA administration. Our findings indicate that UA treatment reduced DN progression by improving biochemical indices. P62 accumulation led to Murine Double Minute gene 2 (MDM2)-regulated MC in podocytes during DN, which was ameliorated by UA through enhanced P62-mediated autophagy. Additionally, the overexpression of NF-κB p65 or TNF-α abolished the protective effects of UA both in vivo and in vitro. Overall, our results provide strong evidence that UA could be a potential therapeutic agent for DN, regulated by inhibiting podocyte MC through the NF-κB/MDM2/Notch1 pathway by targeting autophagic-P62 accumulation.
Collapse
Affiliation(s)
- Hang Mei
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524003, PR China
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Tienan Jing
- Department of Oral Mucosa Disease, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, 110002, PR China
| | - Haojun Liu
- Department of Orthodontics, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524003, PR China
| | - Yue Liu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Jiao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, PR China
| | - Li Xu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524003, PR China
| |
Collapse
|
16
|
Marafie SK, Al-Mulla F, Abubaker J. mTOR: Its Critical Role in Metabolic Diseases, Cancer, and the Aging Process. Int J Mol Sci 2024; 25:6141. [PMID: 38892329 PMCID: PMC11173325 DOI: 10.3390/ijms25116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The mammalian target of rapamycin (mTOR) is a pivotal regulator, integrating diverse environmental signals to control fundamental cellular functions, such as protein synthesis, cell growth, survival, and apoptosis. Embedded in a complex network of signaling pathways, mTOR dysregulation is implicated in the onset and progression of a range of human diseases, including metabolic disorders such as diabetes and cardiovascular diseases, as well as various cancers. mTOR also has a notable role in aging. Given its extensive biological impact, mTOR signaling is a prime therapeutic target for addressing these complex conditions. The development of mTOR inhibitors has proven advantageous in numerous research domains. This review delves into the significance of mTOR signaling, highlighting the critical components of this intricate network that contribute to disease. Additionally, it addresses the latest findings on mTOR inhibitors and their clinical implications. The review also emphasizes the importance of developing more effective next-generation mTOR inhibitors with dual functions to efficiently target the mTOR pathways. A comprehensive understanding of mTOR signaling will enable the development of effective therapeutic strategies for managing diseases associated with mTOR dysregulation.
Collapse
Affiliation(s)
- Sulaiman K. Marafie
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Translational Research, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait;
| | - Jehad Abubaker
- Biochemistry and Molecular Biology Department, Dasman Diabetes Institute, P.O. Box 1180, Dasman 15462, Kuwait
| |
Collapse
|
17
|
Salminen A. The role of the immunosuppressive PD-1/PD-L1 checkpoint pathway in the aging process and age-related diseases. J Mol Med (Berl) 2024; 102:733-750. [PMID: 38600305 PMCID: PMC11106179 DOI: 10.1007/s00109-024-02444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
The accumulation of senescent cells within tissues is a hallmark of the aging process. Senescent cells are also commonly present in many age-related diseases and in the cancer microenvironment. The escape of abnormal cells from immune surveillance indicates that there is some defect in the function of cytotoxic immune cells, e.g., CD8+ T cells and natural killer (NK) cells. Recent studies have revealed that the expression of programmed death-ligand 1 (PD-L1) protein is abundantly increased in senescent cells. An increase in the amount of PD-L1 protein protects senescent cells from clearance by the PD-1 checkpoint receptor in cytotoxic immune cells. In fact, the activation of the PD-1 receptor suppresses the cytotoxic properties of CD8+ T and NK cells, promoting a state of immunosenescence. The inhibitory PD-1/PD-L1 checkpoint pathway acts in cooperation with immunosuppressive cells; for example, activation of PD-1 receptor can enhance the differentiation of regulatory T cells (Treg), myeloid-derived suppressor cells (MDSC), and M2 macrophages, whereas the cytokines secreted by immunosuppressive cells stimulate the expression of the immunosuppressive PD-L1 protein. Interestingly, many signaling pathways known to promote cellular senescence and the aging process are crucial stimulators of the expression of PD-L1 protein, e.g., epigenetic regulation, inflammatory mediators, mTOR-related signaling, cGAS-STING pathway, and AhR signaling. It seems that the inhibitory PD-1/PD-L1 immune checkpoint axis has a crucial role in the accumulation of senescent cells and thus it promotes the aging process in tissues. Thus, the blockade of the PD-1/PD-L1 checkpoint signaling might be a potential anti-aging senolytic therapy. KEY MESSAGES: Senescent cells accumulate within tissues during aging and age-related diseases. Senescent cells are able to escape immune surveillance by cytotoxic immune cells. Expression of programmed death-ligand 1 (PD-L1) markedly increases in senescent cells. Age-related signaling stimulates the expression of PD-L1 protein in senescent cells. Inhibitory PD-1/PD-L1 checkpoint pathway suppresses clearance of senescent cells.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| |
Collapse
|
18
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Liu Z, Li X, Muhammad A, Sun Q, Zhang Q, Wang Y, Wang Y, Ren J, Wang D. PACSIN1 promotes immunosuppression in gastric cancer by degrading MHC-I. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1473-1482. [PMID: 38826133 PMCID: PMC11532212 DOI: 10.3724/abbs.2024059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/07/2024] [Indexed: 06/04/2024] Open
Abstract
Gastric cancer (GC) is a common gastrointestinal system malignancy. PACSIN1 functions as an oncogene in various cancers. This study aims to investigate the potential of PACSIN1 as a target in GC treatment. Gene expression is determined by RT-qPCR, immunofluorescence staining, and immunohistochemistry assay. FISH is performed to determine the colocalization of PACSIN1 and the major histocompatibility complex (MHC-I). Cytokine release and cell functions are analyzed by flow cytometry. In vivo assays are also conducted. Histological analysis is performed using H&E staining. The results show that PACSIN1 is overexpressed in GC patients, especially in those with immunologically-cold tumors. A high level of PACSIN1 is associated with poor prognosis. PACSIN1 deficiency inhibits autophagy but increases antigen presentation in GC cells. Moreover, PACSIN1 deficiency inhibits the lysosomal fusion and selective autophagy of MHC-I, increases CD8 + T-cell infiltration, and suppresses tumor growth and liver metastasis in vivo. Additionally, PACSIN1 knockout enhances the chemosensitivity of cells to immune checkpoint blockade. In summary, PACSIN1 mediates lysosomal fusion and selective autophagy of MHC-I and suppresses antigen presentation and CD8 + T-cell infiltration, thus inhibiting antitumor immunity in GC.
Collapse
Affiliation(s)
- Zhu Liu
- The Yangzhou School of Clinical Medicine of Nanjing Medical UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Xin Li
- Northern Jiangsu People’s HospitalYangzhou225001China
- Department of PharmacyClinical Medical CollegeYangzhou UniversityNorthern Jiangsu People’s HospitalYangzhou225001China
| | - Ali Muhammad
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Qiannan Sun
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Qi Zhang
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Yang Wang
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Yong Wang
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Jun Ren
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| | - Daorong Wang
- The Yangzhou School of Clinical Medicine of Nanjing Medical UniversityYangzhou225001China
- Clinical Medical CollegeYangzhou UniversityYangzhou225001China
- Northern Jiangsu People’s HospitalYangzhou225001China
- General Surgery Institute of YangzhouYangzhou UniversityYangzhou225001China
- Yangzhou Key Laboratory of Basic and Clinical Transformation of Digestive and Metabolic DiseasesYangzhou225001China
| |
Collapse
|
20
|
Yu SK, Yang J, Zhang Q, Yu T, Lu KH. A novel signature based on twelve programmed cell death patterns to predict the prognosis of lung adenocarcinoma. Am J Transl Res 2024; 16:2082-2102. [PMID: 38883377 PMCID: PMC11170577 DOI: 10.62347/uamn8558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Programmed cell death (PCD) plays a pivotal role in tumor initiation and progression. However, the prognostic value and clinical characteristics of PCD-related genes (PRGs) remain unclear. We collected and analyzed genes associated with twelve PCD patterns, including apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis, and oxeiptosis to construct a gene signature. Our analysis identified 215 differentially expressed PRGs out of 1254 in lung adenocarcinoma (LUAD) and normal lung tissues. Subsequently, we performed univariate Cox regression analysis and identified 58 prognostic PRGs. Based on LASSO Cox regression analysis, we constructed a risk score using the expression levels of seven genes: DAPK2, DDIT4, E2F2, GAPDH, MET, PIM2, and FOXF1. Patients with lower risk scores showed earlier stages of cancer, longer survival times, and better immune infiltrations and functions. Notably, we found that knockdown of DDIT4 significantly increased apoptosis and impaired the proliferation of human LUAD cell lines. Our study proposes a PRG-based prognostic signature that sheds light on the potential role of PCD-related genes in LUAD and provides valuable insights into future therapeutic strategies.
Collapse
Affiliation(s)
- Shao-Kun Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University No. 300 Guangzhou Road, Nanjing, Jiangsu, China
| | - Jiu Yang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University No. 300 Guangzhou Road, Nanjing, Jiangsu, China
| | - Qi Zhang
- Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University Taizhou, Jiangsu, China
| | - Tao Yu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University No. 300 Guangzhou Road, Nanjing, Jiangsu, China
| | - Kai-Hua Lu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University No. 300 Guangzhou Road, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Chen YF, Qiu Q, Wang L, Li XR, Zhou S, Wang H, Jiang WD, Geng JY, Qin-Gao, Tang B, Wang HJ, Kang PF. Quercetin Ameliorates Myocardial Injury in Diabetic Rats by Regulating Autophagy and Apoptosis through AMPK/mTOR Signaling Pathway. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:841-864. [PMID: 38716618 DOI: 10.1142/s0192415x24500344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A high-glucose environment is involved in the progression of diabetes mellitus (DM). This study aims to explore the regulatory effects of quercetin (QUE) on autophagy and apoptosis after myocardial injury in rats with DM. The type 2 DM rat models were constructed using low-dose streptozotocin (STZ) treatment combined with a high-carbohydrate (HC) diet in vivo. Compared with the control group, the body weight was decreased, whereas blood pressure, blood glucose, and the LVW/BW ratio were increased in the diabetic group. The results showed that the myocardial fibers were disordered in the diabetic group. Moreover, we found that the myocardial collagen fibers, PAS-positive cells, and apoptosis were increased, whereas the mitochondrial structure was destroyed and autophagic vacuoles were significantly reduced in the diabetic group compared with the control group. The expression levels of autophagy-related proteins LC3 and Beclin1 were decreased, whereas the expression levels of P62, Caspae-3, and Bax/Bcl-2 were increased in the diabetic group in vitro and in vivo. Moreover, QUE treatment alleviated the cellular oxidative stress reaction under high-glucose environments. The results of immunoprecipitation (IP) showed that the autophagy protein Beclin1 was bound to Bcl-2, and the binding capacity increased in the HG group, whereas it decreased after QUE treatment, suggesting that QUE inhibited the binding capacity between Beclin1 and Bcl-2, thus leading to the preservation of Beclin1-induced autophagy. In addition, the blood pressure, blood glucose, and cardiac function of rats were improved following QUE treatment. In conclusion, QUE suppressed diabetic myocardial injury and ameliorated cardiac function by regulating myocardial autophagy and inhibition of apoptosis in diabetes through the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yong-Feng Chen
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Qi Qiu
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Lei Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Xiao-Rong Li
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Shun Zhou
- Department of Clinical Medicine, Grade 2019, Bengbu Medical University, Bengbu, Anhui 233030, P. R. China
| | - Heng Wang
- Department of Psychiatry, Grade 2019, Bengbu Medical University, Bengbu, Anhui 233030, P. R. China
| | - Wen-Di Jiang
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu, Anhui 233004, P. R. China
| | - Jia-Yi Geng
- Department of Psychiatry, Grade 2019, Bengbu Medical University, Bengbu, Anhui 233030, P. R. China
| | - Qin-Gao
- Department of Physiology, Bengbu Medical University, Bengbu, Anhui 233030, P. R. China
| | - Bi Tang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Hong-Ju Wang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| | - Pin-Fang Kang
- Department of Cardiovascular Disease, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
- Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical University, Bengbu, Anhui 233004, P. R. China
| |
Collapse
|
22
|
Hsu SK, Chou CK, Lin IL, Chang WT, Kuo IY, Chiu CC. Deubiquitinating enzymes: potential regulators of the tumor microenvironment and implications for immune evasion. Cell Commun Signal 2024; 22:259. [PMID: 38715050 PMCID: PMC11075295 DOI: 10.1186/s12964-024-01633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Ubiquitination and deubiquitination are important forms of posttranslational modification that govern protein homeostasis. Deubiquitinating enzymes (DUBs), a protein superfamily consisting of more than 100 members, deconjugate ubiquitin chains from client proteins to regulate cellular homeostasis. However, the dysregulation of DUBs is reportedly associated with several diseases, including cancer. The tumor microenvironment (TME) is a highly complex entity comprising diverse noncancerous cells (e.g., immune cells and stromal cells) and the extracellular matrix (ECM). Since TME heterogeneity is closely related to tumorigenesis and immune evasion, targeting TME components has recently been considered an attractive therapeutic strategy for restoring antitumor immunity. Emerging studies have revealed the involvement of DUBs in immune modulation within the TME, including the regulation of immune checkpoints and immunocyte infiltration and function, which renders DUBs promising for potent cancer immunotherapy. Nevertheless, the roles of DUBs in the crosstalk between tumors and their surrounding components have not been comprehensively reviewed. In this review, we discuss the involvement of DUBs in the dynamic interplay between tumors, immune cells, and stromal cells and illustrate how dysregulated DUBs facilitate immune evasion and promote tumor progression. We also summarize potential small molecules that target DUBs to alleviate immunosuppression and suppress tumorigenesis. Finally, we discuss the prospects and challenges regarding the targeting of DUBs in cancer immunotherapeutics and several urgent problems that warrant further investigation.
Collapse
Affiliation(s)
- Sheng-Kai Hsu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Chon-Kit Chou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau SAR, 999078, P.R. China
| | - I-Ling Lin
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Wen-Tsan Chang
- Division of General and Digestive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - I-Ying Kuo
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Chien-Chih Chiu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
| |
Collapse
|
23
|
Lou M, Iwatsuki M, Wu X, Zhang W, Matsumoto C, Baba H. Cancer-Associated Fibroblast-Derived IL-8 Upregulates PD-L1 Expression in Gastric Cancer Through the NF-κB Pathway. Ann Surg Oncol 2024; 31:2983-2995. [PMID: 38006530 DOI: 10.1245/s10434-023-14586-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND The expression of programmed death-ligand 1 (PD-L1) in tumor cells is a leading cause of tumor immune escape; however, the precise mechanism underlying the regulation of PD-L1 expression in gastric cancer (GC) cells remains unknown. In this study, we aimed to investigate the potential mechanism of cancer-associated fibroblasts (CAFs) regulating PD-L1 expression in GC cells. METHODS We evaluated the immunomodulatory effects of CAFs in GC cells in vitro via the transwell co-culture system, cytometric bead array, and Western blotting. We detected the role of interleukin (IL)-8 in affecting underlying pathways in GC cells via transfecting IL-8 small-interfering RNA (siRNA), and the protection effects of CAFs on GC cells exposed to CD8+ T cells via cytotoxicity assays. RESULTS The results revealed that CAFs upregulated PD-L1 expression of GC cells. IL-8 expression was increased after KATO III or MKN45 cells co-cultured with CAF. Additionally, CAF-derived IL-8 promoted PD-L1 expression in GC cells through the P38, JNK, and NF-κB pathways. Besides, repertaxin, an IL-8 receptors (CXCR1/2) inhibitor, reduced PD-L1 expression in GC cells by blocking the P38, JNK, and NF-κB pathways. Furthermore, the expressions of p-P38, p-JNK, and p-NF-κB decreased after GC cells co-cultured with siIL-8-treated CAF. Moreover, repertaxin attenuated the protection of CAFs to cancer cells that were resistant to CD8+ T-cell cytotoxicity, and improved the antibody effects of anti-PD-L1 facilitating CD8+ T-cell cytotoxicity by targeting IL-8. CONCLUSION Targeting CAF-derived IL-8 may defeat PD-L1 upregulation-mediated immune resistance in GC cells, which provides a novel approach to improve the immunotherapeutic efficacies of patients with GC.
Collapse
Affiliation(s)
- Meiyue Lou
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Xiyu Wu
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Weiliyun Zhang
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chihiro Matsumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
24
|
Deng D, Wang M, Su Y, Fang H, Chen Y, Su Z. Iridium(III)-Based PD-L1 Agonist Regulates p62 and ATF3 for Enhanced Cancer Immunotherapy. J Med Chem 2024; 67:6810-6821. [PMID: 38613772 DOI: 10.1021/acs.jmedchem.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Anti-PD-L1 immunotherapy, a new lung cancer treatment, is limited to a few patients due to low PD-L1 expression and tumor immunosuppression. To address these challenges, the upregulation of PD-L1 has the potential to elevate the response rate and efficiency of anti-PD-L1 and alleviate the immunosuppression of the tumor microenvironment. Herein, we developed a novel usnic acid-derived Iridium(III) complex, Ir-UA, that boosts PD-L1 expression and converts "cold tumors" to "hot". Subsequently, we administered Ir-UA combined with anti-PD-L1 in mice, which effectively inhibited tumor growth and promoted CD4+ and CD8+ T cell infiltration. To our knowledge, Ir-UA is the first iridium-based complex to stimulate the expression of PD-L1 by explicitly regulating its transcription factors, which not only provides a promising platform for immune checkpoint blockade but, more importantly, provides an effective treatment strategy for patients with low PD-L1 expression.
Collapse
Affiliation(s)
- Dongping Deng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mengmeng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- Department of Rheumatology and Immunology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, China
| | - Hongbao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
25
|
Cordani M, Strippoli R, Trionfetti F, Barzegar Behrooz A, Rumio C, Velasco G, Ghavami S, Marcucci F. Immune checkpoints between epithelial-mesenchymal transition and autophagy: A conflicting triangle. Cancer Lett 2024; 585:216661. [PMID: 38309613 DOI: 10.1016/j.canlet.2024.216661] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Accepted: 01/17/2024] [Indexed: 02/05/2024]
Abstract
Inhibitory immune checkpoint (ICP) molecules are pivotal in inhibiting innate and acquired antitumor immune responses, a mechanism frequently exploited by cancer cells to evade host immunity. These evasion strategies contribute to the complexity of cancer progression and therapeutic resistance. For this reason, ICP molecules have become targets for antitumor drugs, particularly monoclonal antibodies, collectively referred to as immune checkpoint inhibitors (ICI), that counteract such cancer-associated immune suppression and restore antitumor immune responses. Over the last decade, however, it has become clear that tumor cell-associated ICPs can also induce tumor cell-intrinsic effects, in particular epithelial-mesenchymal transition (EMT) and macroautophagy (hereafter autophagy). Both of these processes have profound implications for cancer metastasis and drug responsiveness. This article reviews the positive or negative cross-talk that tumor cell-associated ICPs undergo with autophagy and EMT. We discuss that tumor cell-associated ICPs are upregulated in response to the same stimuli that induce EMT. Moreover, ICPs themselves, when overexpressed, become an EMT-inducing stimulus. As regards the cross-talk with autophagy, ICPs have been shown to either stimulate or inhibit autophagy, while autophagy itself can either up- or downregulate the expression of ICPs. This dynamic equilibrium also extends to the autophagy-apoptosis axis, further emphasizing the complexities of cellular responses. Eventually, we delve into the intricate balance between autophagy and apoptosis, elucidating its role in the broader interplay of cellular dynamics influenced by ICPs. In the final part of this article, we speculate about the driving forces underlying the contradictory outcomes of the reciprocal, inhibitory, or stimulatory effects between ICPs, EMT, and autophagy. A conclusive identification of these driving forces may allow to achieve improved antitumor effects when using combinations of ICIs and compounds acting on EMT and/or autophagy. Prospectively, this may translate into increased and/or broadened therapeutic efficacy compared to what is currently achieved with ICI-based clinical protocols.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, 41-800 Zabrze, Poland; Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, 20134 Milan, Italy.
| |
Collapse
|
26
|
Chen M, Wang S. Preclinical development and clinical studies of targeted JAK/STAT combined Anti-PD-1/PD-L1 therapy. Int Immunopharmacol 2024; 130:111717. [PMID: 38387193 DOI: 10.1016/j.intimp.2024.111717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Programmed cell death protein 1 (PD-1) binds to its ligand to help tumours evade the immune system and promote tumour progression. Although anti-PD-1/PD-L1 therapies show powerful effects in some patients, most patients are unable to benefit from this treatment due to treatment resistance. Therefore, it is important to overcome tumour resistance to PD-1/PD-L1 blockade. There is substantial evidence suggesting that the JAK/STAT signalling pathway plays a significant role in PD-1/PD-L1 expression and anti-PD-1/PD-L1 treatment. Herein, we describe the effects of the JAK/STAT signalling pathway on PD-1/PD-L1. Subsequently, the relationship between molecular mutations in the JAK/STAT signalling pathway and immune resistance was analysed. Finally, the latest advancements in drugs targeting the JAK/STAT pathway combined with PD1/PD-L1 inhibitors are summarised.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Siliang Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
27
|
Li XY, Li RH, Cong JZ, Liu WS, Zhang Y, Guan HL, Zhu LL, Chen K, Pang LY, Jin H. Heating tumors with tumor cell-derived nanoparticles to enhance chemoimmunotherapy for colorectal cancer. Nanomedicine (Lond) 2024; 19:561-579. [PMID: 38265008 DOI: 10.2217/nnm-2023-0332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Aim: To investigate the mechanism of doxorubicin (DOX)-induced immunogenic cell death (ICD) and to improve immunotherapy efficacy. Materials & methods: In this study, hybrid vesicles containing DOX (HV-DOX) were prepared by thin-film hydration with extrusion, and the formulated nanoparticles were characterized physically. Furthermore, in vitro experiments and animal models were used to investigate the efficacy and new mechanisms of chemotherapy combined with immunotherapy. Results: DOX improved tumor immunogenicity by alkalinizing lysosomes, inhibiting tumor cell autophagy and inducing ICD. HVs could activate dendritic cell maturation, synergistically enhancing chemotherapeutic immunity. Conclusion: The mechanism of DOX-induced ICD was explored, and antitumor immunity was synergistically activated by HV-DOX to improve chemotherapeutic drug loading and provide relevant antigenic information.
Collapse
Affiliation(s)
- Xin-Ying Li
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
- Department of Laboratory & Diagnosis, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Rong-Hui Li
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Jun-Zi Cong
- Department of Scientific Research, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Wen-Shang Liu
- Department of Laboratory & Diagnosis, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yang Zhang
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Hui-Lin Guan
- Department of Scientific Research, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Ling-Ling Zhu
- Department of Hematology, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Kai Chen
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Li-Ying Pang
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| | - Hong Jin
- Department of Clinical Laboratory, Affiliated Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, 157011, China
| |
Collapse
|
28
|
Hu M, Fan JX, He ZY, Zeng J. The regulatory role of autophagy between TAMs and tumor cells. Cell Biochem Funct 2024; 42:e3984. [PMID: 38494666 DOI: 10.1002/cbf.3984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Cancer has become a global public health problem and its harmful effects have received widespread attention. Conventional treatments such as surgical resection, radiotherapy and other techniques are applicable to clinical practice, but new drugs are constantly being developed and other therapeutic approaches, such as immunotherapy are being applied. In addition to studying the effects on individual tumor cells, it is important to explore the role of tumor microenvironment on tumor cell development since tumor cells do not exist alone but in the tumor microenvironment. In the tumor microenvironment, tumor cells are interconnected with other stromal cells and influence each other, among which tumor-associated macrophages (TAMs) are the most numerous immune cells. At the same time, it was found that cancer cells have different levels of autophagy from normal cells. In cancer therapy, the occurrence of autophagy plays an important role in promoting tumor cell death or inhibiting tumor cell death, and is closely related to the environment. Therefore, elucidating the regulatory role of autophagy between TAMs and tumor cells may be an important breakthrough, providing new perspectives for further research on antitumor immune mechanisms and improving the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- Min Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jiao-Xiu Fan
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Zi-Yue He
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
| | - Jun Zeng
- College of Life Sciences, Chongqing Normal University, Chongqing, 401331, China
- Animal Biology Key Laboratory of Chongqing Education Commission of China
| |
Collapse
|
29
|
Zhang X, Zhang M, Cui H, Zhang T, Wu L, Xu C, Yin C, Gao J. Autophagy-modulating biomembrane nanostructures: A robust anticancer weapon by modulating the inner and outer cancer environment. J Control Release 2024; 366:85-103. [PMID: 38142964 DOI: 10.1016/j.jconrel.2023.12.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Recently, biomembrane nanostructures, such as liposomes, cell membrane-coated nanostructures, and exosomes, have demonstrated promising anticancer therapeutic effects. These nanostructures possess remarkable biocompatibility, multifunctionality, and low toxicity. However, their therapeutic efficacy is impeded by chemoresistance and radiotherapy resistance, which are closely associated with autophagy. Modulating autophagy could enhance the therapeutic sensitivity and effectiveness of these biomembrane nanostructures by influencing the immune system and the cancer microenvironment. For instance, autophagy can regulate the immunogenic cell death of cancer cells, antigen presentation of dendritic cells, and macrophage polarization, thereby activating the inflammatory response in the cancer microenvironment. Furthermore, combining autophagy-regulating drugs or genes with biomembrane nanostructures can exploit the targeting and long-term circulation properties of these nanostructures, leading to increased drug accumulation in cancer cells. This review explores the role of autophagy in carcinogenesis, cancer progression, metastasis, cancer immune responses, and resistance to treatment. Additionally, it highlights recent research advancements in the synergistic anticancer effects achieved through autophagy regulation by biomembrane nanostructures. The review also discusses the prospects and challenges associated with the future clinical translation of these innovative treatment strategies. In summary, these findings provide valuable insights into autophagy, autophagy-modulating biomembrane-based nanostructures, and the underlying molecular mechanisms, thereby facilitating the development of promising cancer therapeutics.
Collapse
Affiliation(s)
- Xinyi Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Hengqing Cui
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai 200003, China; Tongji Hospital,School of Medicine, Tongji University, Shanghai 200092, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Lili Wu
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Can Xu
- Department of Gastroenterology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| | - Chuan Yin
- Department of Gastroenterology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
30
|
Cho S, Kim W, Yoo D, Han Y, Hwang H, Kim S, Kim J, Park S, Park Y, Jo H, Pyun JC, Lee M. Impact of glucose metabolism on PD-L1 expression in sorafenib-resistant hepatocellular carcinoma cells. Sci Rep 2024; 14:1751. [PMID: 38243049 PMCID: PMC10798953 DOI: 10.1038/s41598-024-52160-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 01/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth leading cause of cancer-related mortality worldwide. Programmed cell death ligand-1 (PD-L1) is an immune checkpoint protein that binds to programmed cell death-1 (PD-1), which is expressed in activated T cells and other immune cells and has been employed in cancer therapy, including HCC. Recently, PD-L1 overexpression has been documented in treatment-resistant cancer cells. Sorafenib is a multikinase inhibitor and the only FDA-approved treatment for advanced HCC. However, several patients exhibit resistance to sorafenib during treatment. This study aimed to assess the effect of glucose deprivation on PD-L1 expression in HCC cells. We used PD-L1-overexpressing HepG2 cells and IFN-γ-treated SK-Hep1 cells to explore the impact of glycolysis on PD-L1 expression. To validate the correlation between PD-L1 expression and glycolysis, we analyzed data from The Cancer Genome Atlas (TCGA) and used immunostaining for HCC tissue analysis. Furthermore, to modulate PD-L1 expression, we treated HepG2, SK-Hep1, and sorafenib-resistant SK-Hep1R cells with rapamycin. Here, we found that glucose deprivation reduced PD-L1 expression in HCC cells. Additionally, TCGA data and immunostaining analyses confirmed a positive correlation between the expression of hexokinase II (HK2), which plays a key role in glucose metabolism, and PD-L1. Notably, rapamycin treatment decreased the expression of PD-L1 and HK2 in both high PD-L1-expressing HCC cells and sorafenib-resistant cells. Our results suggest that the modulation of PD-L1 expression by glucose deprivation may represent a strategy to overcome PD-L1 upregulation in patients with sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Sua Cho
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Wonjin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Dayoung Yoo
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yeonju Han
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hyemin Hwang
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Seunghwan Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Jimin Kim
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Sanghee Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yusun Park
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - HanHee Jo
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Misu Lee
- Division of Life Sciences, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
- Institute for New Drug Development, College of Life Science and Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
31
|
Li Y, Du X, Kong X, Fang Y, He Z, Liu D, Wu H, Ji J, Yang X, Ye L, Zhai G. A pro-death autophagy-based nanoplatform for enhancing antitumour efficacy with improved immune responses. Eur J Med Chem 2024; 263:115952. [PMID: 37992519 DOI: 10.1016/j.ejmech.2023.115952] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Due to the pro-survival effect of mild autophagy, the therapeutic effect of chemo-immunotherapy is unsatisfactory. In addition, the adverse tumour microenvironment (TME), including the lack of antigen presentation, the deficiency of oxygen supply and immunosuppressive cells, results in immune escape and metastasis. Herein, a novel nanoplatform (CS-3BP/PA@DOX) based on the autophagy cascade is proposed for the first time to deliver the chemotherapeutic doxorubicin (DOX) and respiration inhibitor 3-bromopyruvic acid (3BP) to overcome the above obstacles. CS-3BP/PA@DOX exerts a synergistic therapeutic effect to initiate pro-death autophagy and facilitate the antigen presentation process by combining DOX chemotherapy and starvation therapy with 3BP. Additionally, CS-3BP/PA@DOX remodelled the immunosuppressive TME by alleviating hypoxia, damaging dense ECM, and downregulating PD-L1 to enhance antitumour immunity. 3BP was found to promote GSH depletion by inhibiting respiration for the first time, which reduces the chemical resistance of cancer and increases the sensitivity of cells to ROS, providing a new therapeutic direction of 3BP for antitumour treatment. Collectively, this study offers an opportunity to magnify pro-death autophagy, augment antitumour efficacy, facilitate anti-metastatic effects, and boost immune responses.
Collapse
Affiliation(s)
- Yingying Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiyou Du
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, PR China.
| | - Xinru Kong
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Yuelin Fang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Zhijing He
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Dongzhu Liu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hang Wu
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Jianbo Ji
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaoye Yang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lei Ye
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Guangxi Zhai
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products and Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
32
|
Fuchs N, Zhang L, Calvo-Barreiro L, Kuncewicz K, Gabr M. Inhibitors of Immune Checkpoints: Small Molecule- and Peptide-Based Approaches. J Pers Med 2024; 14:68. [PMID: 38248769 PMCID: PMC10817355 DOI: 10.3390/jpm14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
The revolutionary progress in cancer immunotherapy, particularly the advent of immune checkpoint inhibitors, marks a significant milestone in the fight against malignancies. However, the majority of clinically employed immune checkpoint inhibitors are monoclonal antibodies (mAbs) with several limitations, such as poor oral bioavailability and immune-related adverse effects (irAEs). Another major limitation is the restriction of the efficacy of mAbs to a subset of cancer patients, which triggered extensive research efforts to identify alternative approaches in targeting immune checkpoints aiming to overcome the restricted efficacy of mAbs. This comprehensive review aims to explore the cutting-edge developments in targeting immune checkpoints, focusing on both small molecule- and peptide-based approaches. By delving into drug discovery platforms, we provide insights into the diverse strategies employed to identify and optimize small molecules and peptides as inhibitors of immune checkpoints. In addition, we discuss recent advances in nanomaterials as drug carriers, providing a basis for the development of small molecule- and peptide-based platforms for cancer immunotherapy. Ongoing research focused on the discovery of small molecules and peptide-inspired agents targeting immune checkpoints paves the way for developing orally bioavailable agents as the next-generation cancer immunotherapies.
Collapse
Affiliation(s)
- Natalie Fuchs
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Longfei Zhang
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Laura Calvo-Barreiro
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| | - Katarzyna Kuncewicz
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Moustafa Gabr
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (N.F.); (L.Z.); (L.C.-B.); (K.K.)
| |
Collapse
|
33
|
Yu X, Zhai X, Wu J, Feng Q, Hu C, Zhu L, Zhou Q. Evolving perspectives regarding the role of the PD-1/PD-L1 pathway in gastric cancer immunotherapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166881. [PMID: 37696462 DOI: 10.1016/j.bbadis.2023.166881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/08/2023] [Accepted: 09/04/2023] [Indexed: 09/13/2023]
Abstract
Gastric cancer (GC) is an increasing global health problem and is one of the leading cancers worldwide. Traditional therapies, such as radiation and chemotherapy, have made limited progress in enhancing their efficacy for advanced GC. The development of immunotherapy for advanced GC has considerably improved with a deeper understanding of the tumor microenvironment. Immunotherapy using checkpoint inhibitors is a new therapeutic option that has made substantial advances in the treatment of other malignancies and is increasingly used in other clinical oncology treatments. Particularly, therapeutic antibodies targeting the programmed cell death protein-1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway have been effectively used in the clinical treatment of cancer. Monoclonal antibodies blocking the PD-1/PD-L1 pathway have been developed for cancer immunotherapy to enhance T cell function to restore the immune response and represent a breakthrough in the treatment of GC. This review provides an outline of the progress of PD-1/PD-L1 blockade therapy and its expression characteristics and clinical application in advanced GC.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaoqian Zhai
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Juan Wu
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Qingbo Feng
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Affiliated Digestive Hospital of Zunyi Medical University, Zunyi, Guizhou Province, People's Republic of China
| | - Chenggong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China.
| |
Collapse
|
34
|
Cheng L, Xu L, Yuan H, Zhao Q, Yue W, Ma S, Wu X, Gu D, Sun Y, Shi H, Xu J. Jianpi Jiedu Recipe Inhibits Proliferation through Reactive Oxygen Species-Induced Incomplete Autophagy and Reduces PD-L1 Expression in Colon Cancer. Integr Cancer Ther 2024; 23:15347354241268064. [PMID: 39155544 PMCID: PMC11331576 DOI: 10.1177/15347354241268064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 08/20/2024] Open
Abstract
BACKGROUND Jianpi Jiedu Recipe has been used to treat digestive tract tumors in China since ancient times, and its reliability has been proven by clinical research. Currently, the specific biological mechanism of JPJDR in treating tumors is unclear. METHODOLOGY CCK-8 assay was used to detect cell viability. Clone formation assay and EdU assay were used to detect cell proliferation potential. DCFH-DA probe and JC-1 probe were used to detect total intracellular reactive oxygen species and mitochondrial membrane potential, respectively. Western blotting and immunofluorescence were used to detect protein expression level and subcellular localization of cells. The RFP-GFP-LC3B reporter system was used to observe the type of autophagy in cells. The xenograft tumor model was used to study the therapeutic effect of JPJDR in vivo. RESULTS JPJDR has an excellent inhibitory effect on various colorectal cancer cells and effectively reduces the proliferation ability of HT29 cells. After treatment with JPJDR, the amount of reactive oxygen species in HT29 cells increased significantly, and the mitochondrial membrane potential decreased. JPJDR induced the accumulation of autophagosomes in HT29 cells and was shown to be incomplete autophagy. At the same time, JPJDR reduced the expression of PD-L1. Meanwhile, JPJDR can exert an excellent therapeutic effect in xenograft tumor mice. CONCLUSION JPJDR is a low-toxicity and effective anti-tumor agent that can effectively treat colon cancer in vitro and in vivo. Its mechanism may be inducing mitochondrial dysfunction and incomplete autophagy injury to inhibit the proliferation of colon cancer cells.
Collapse
Affiliation(s)
- Lingling Cheng
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Liangfeng Xu
- Sheyang County People’s Hospital, Yancheng, Jiangsu, China
| | - Hua Yuan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Qihao Zhao
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Wei Yue
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Shuang Ma
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Xiaojing Wu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Dandan Gu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Yurong Sun
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| | - Haifeng Shi
- Sheyang County People’s Hospital, Yancheng, Jiangsu, China
| | - Jianlin Xu
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu, China
- Yancheng TCM Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
35
|
Wang Y, Zhou Y, Yang L, Lei L, He B, Cao J, Gao H. Challenges Coexist with Opportunities: Spatial Heterogeneity Expression of PD-L1 in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303175. [PMID: 37934012 PMCID: PMC10767451 DOI: 10.1002/advs.202303175] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Indexed: 11/08/2023]
Abstract
Cancer immunotherapy using anti-programmed death-ligand 1 (PD-L1) antibodies has been used in various clinical applications and achieved certain results. However, such limitations as autoimmunity, tumor hyperprogression, and overall low patient response rate impede its further clinical application. Mounting evidence has revealed that PD-L1 is not only present in tumor cell membrane but also in cytoplasm, exosome, or even nucleus. Among these, the dynamic and spatial heterogeneous expression of PD-L1 in tumors is mainly responsible for the unsatisfactory efficacy of PD-L1 antibodies. Hence, numerous studies focus on inhibiting or degrading PD-L1 to improve immune response, while a comprehensive understanding of the molecular mechanisms underlying spatial heterogeneity of PD-L1 can fundamentally transform the current status of PD-L1 antibodies in clinical development. Herein, the concept of spatial heterogeneous expression of PD-L1 is creatively introduced, encompassing the structure and biological functions of various kinds of PD-L1 (including mPD-L1, cPD-L1, nPD-L1, and exoPD-L1). Then an in-depth analysis of the regulatory mechanisms and potential therapeutic targets of PD-L1 is provided, seeking to offer a solid basis for future investigation. Moreover, the current status of agents is summarized, especially small molecular modulators development directed at these new targets, offering a novel perspective on potential PD-L1 therapeutics strategies.
Collapse
Affiliation(s)
- Yazhen Wang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Yang Zhou
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| | - Lianyi Yang
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Lei Lei
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Bin He
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Jun Cao
- National Engineering Research Center for BiomaterialsCollege of Biomedical EngineeringSichuan UniversityChengdu610064P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610041P. R. China
| |
Collapse
|
36
|
Zhang Z, Yu Y, Zhang Z, Li D, Liang Z, Wang L, Chen Y, Liang Y, Niu H. Cancer-associated fibroblasts-derived CXCL12 enhances immune escape of bladder cancer through inhibiting P62-mediated autophagic degradation of PDL1. J Exp Clin Cancer Res 2023; 42:316. [PMID: 38001512 PMCID: PMC10675892 DOI: 10.1186/s13046-023-02900-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs), the predominant stromal cell of tumor microenvironment (TME), play an important role in tumor progression and immunoregulation by remodeling extracellular matrix (ECM) and secreting cytokines. However, little is known about the details of the underlying mechanism in bladder cancer. METHODS Bioinformatics analysis was performed to analyze the prognostic value of CAFs and CXCL12 using GEO, TCGA and SRA databases. The effects of CXCL12 on bladder cancer progression were investigated through in vitro and in vivo assays. The biological mechanism of the effect of CXCL12 on PDL1 were investigated using western blotting, immunoprecipitation, RT-PCR, immunofluorescence, mass spectrometry, protein stability, and flow cytometry. RESULTS The results demonstrated that CAFs-derived CXCL12 promoted cancer cell migration and invasion and upregulated PDL1. Mechanistically, upon binding to its specific receptor, CXCL12 activated the downstream JAK2/STAT3 pathway and rapidly up-regulated the expression of deubiquitinase CYLD. CYLD deubiquitinated P62 causing P62 accumulation, which in turn inhibited the autophagic degradation of PDL1. In vivo experiments demonstrated that blocking CXCL12 inhibited tumor growth, reduced tumor PDL1 expression and increased immune cell infiltration. CONCLUSIONS This study revealed a novel mechanism for the role of CXCL12 in P62-mediated PDL1 autophagic regulation. Combined application of CXCL12 receptor blocker and PD1/PDL1 blocker can more effectively inhibit PDL1 expression and enhance antitumor immune response. Targeting CAFs-derived CXCL12 may provide an effective strategy for immunotherapy in bladder cancer.
Collapse
Affiliation(s)
- Zhao Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medicine College, Qingdao University, Qingdao, China
| | - Yongbo Yu
- Department of Urology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
- Medicine College, Qingdao University, Qingdao, China
| | - Zhilei Zhang
- Department of Urology, Weifang People's Hospital, Weifang Medical University, Weifang, China
| | - Dan Li
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zhijuan Liang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Liping Wang
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanbin Chen
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ye Liang
- Department of Urology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China.
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Haitao Niu
- Department of Urology, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China.
- Key Laboratory, Department of Urology and Andrology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
37
|
Liao H, Chang X, Gao L, Ye C, Qiao Y, Xie L, Lin J, Cai S, Dong H. IL-17A promotes tumorigenesis and upregulates PD-L1 expression in non-small cell lung cancer. J Transl Med 2023; 21:828. [PMID: 37978543 PMCID: PMC10656985 DOI: 10.1186/s12967-023-04365-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The tumor microenvironment plays a key role in non-small cell lung cancer (NSCLC) development and also influences the effective response to immunotherapy. The pro-inflammatory factor interleukin-17A mediates important immune responses in the tumor microenvironment. In this study, the potential role and mechanisms of IL-17A in NSCLC were investigated. METHODS We detected IL-17A by immunohistochemistry (IHC) in 39 NSCLC patients. Its expression was correlated with the programmed cell death-ligand1 (PD-L1). IL-17A knockdown and overexpression in A549 and SPC-A-1 cell models were constructed. The function of IL-17A was examined in vitro by wound healing, migration, invasion, plate colony formation and T cell killing assay. Western blot analysis, immunofluorescence assay and IHC were performed to investigate the regulation effects of IL-17A on autophagy in A549 and SPC-A-1. The effect of IL-17A on ROS/Nrf2/p62 signaling pathway was detected. Subcutaneous tumor models were established to examine the tumor-promoting effect of IL-17A in vivo and its effect on immunotherapy. RESULTS We found a prevalent expression of IL-17A in NSCLC tumor tissues and it was positively correlated with PD-L1 expression (r = 0.6121, p < 0.0001). In vitro, IL-17A promotes lung cancer cell migration, invasion and colony formation ability. Moreover, IL-17A upregulated N-cadherin, Twist, and Snail, and downregulated E-cadherin in NSCLC cells. IL-17A enhanced cell survival in the T cell killing assay. Mechanistically, IL-17A induced ROS production and increased Nrf2 and p62 expression, thereby inhibiting autophagy and reducing PD-L1 degradation. In vivo experiments, anti-IL-17A monoclonal antibody alone slowed the growth of subcutaneous tumors in mice. When combined with anti-PD-L1 monoclonal antibody, tumor tissue expression of PD-L1 was reduced and the therapeutic effect was diminished. CONCLUSION We found that IL-17A promoted NSCLC progression and inhibited autophagy through the ROS/Nrf2/p62 pathway leading to increased PD-L1 expression in cancer cells. Modulation of IL-17A may affect the therapeutic efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Respiratory and Critical Care Medicine, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Xiaodan Chang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- School of Nursing, Southern Medical University, Guangzhou, Guangdong, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Cuiping Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yujie Qiao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lingyan Xie
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
38
|
Wang X, Zhou L, Wang H, Chen W, Jiang L, Ming G, Wang J. Metabolic reprogramming, autophagy, and ferroptosis: Novel arsenals to overcome immunotherapy resistance in gastrointestinal cancer. Cancer Med 2023; 12:20573-20589. [PMID: 37860928 PMCID: PMC10660574 DOI: 10.1002/cam4.6623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Gastrointestinal cancer poses a serious health threat owing to its high morbidity and mortality. Although immune checkpoint blockade (ICB) therapies have achieved meaningful success in most solid tumors, the improvement in survival in gastrointestinal cancers is modest, owing to sparse immune response and widespread resistance. Metabolic reprogramming, autophagy, and ferroptosis are key regulators of tumor progression. METHODS A literature review was conducted to investigate the role of the metabolic reprogramming, autophagy, and ferroptosis in immunotherapy resistance of gastrointestinal cancer. RESULTS Metabolic reprogramming, autophagy, and ferroptosis play pivotal roles in regulating the survival, differentiation, and function of immune cells within the tumor microenvironment. These processes redefine the nutrient allocation blueprint between cancer cells and immune cells, facilitating tumor immune evasion, which critically impacts the therapeutic efficacy of immunotherapy for gastrointestinal cancers. Additionally, there exists profound crosstalk among metabolic reprogramming, autophagy, and ferroptosis. These interactions are paramount in anti-tumor immunity, further promoting the formation of an immunosuppressive microenvironment and resistance to immunotherapy. CONCLUSIONS Consequently, it is imperative to conduct comprehensive research on the roles of metabolic reprogramming, autophagy, and ferroptosis in the resistance of gastrointestinal tumor immunotherapy. This understanding will illuminate the clinical potential of targeting these pathways and their regulatory mechanisms to overcome immunotherapy resistance in gastrointestinal cancers.
Collapse
Affiliation(s)
- Xiangwen Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Liwen Zhou
- Department of StomatologyThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Hongpeng Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Wei Chen
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Lei Jiang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Guangtao Ming
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Jun Wang
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
39
|
Xie K. PHLPP2: A Prognostic Biomarker in Adenocarcinoma of the Rectum. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1099-1106. [PMID: 37737218 PMCID: PMC10645281 DOI: 10.5152/tjg.2023.23189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/10/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND/AIMS Adenocarcinoma of the rectum (READ) is typically diagnosed at advanced stages due to a lack of early-onset spe- cific features. MATERIALS AND METHODS The study used bioinformatics analysis of READ ribonucleic acid sequencing data from The Cancer Genome Atlas database to identify differentially expressed genes (DEGs). Overlapping genes between DEGs and autophagy-associated genes were screened for prognosis-associated DEGs, which were then validated in the OncoLnc database. RESULTS A total of 129 autophagy-associated DEGs were identified, with 17 genes found to be associated with READ prognosis. Multivariate Cox regression analysis revealed that only the PHLPP2 gene was significantly associated with READ prognosis (hazard ratio = 0.442, P = .026), and its low expression correlated with low survival in patients with brain lower-grade glioma (P = .00623) and pancreatic adenocarcinoma (P = .00109). CONCLUSIONS PHLPP2 expression may serve as a READ-specific prognostic biomarker and is involved in the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Keju Xie
- Department of Plastic Surgery, The Affiliated Hospital of Shaoxing University, Shaoxing Municipal Hospital, Shaoxing, China
| |
Collapse
|
40
|
Liang R, Tan H, Jin H, Wang J, Tang Z, Lu X. The tumour-promoting role of protein homeostasis: Implications for cancer immunotherapy. Cancer Lett 2023; 573:216354. [PMID: 37625777 DOI: 10.1016/j.canlet.2023.216354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
Protein homeostasis, an important aspect of cellular fitness that encompasses the balance of production, folding and degradation of proteins, has been linked to several diseases of the human body. Multiple interconnected pathways coordinate to maintain protein homeostasis within the cell. Recently, the role of the protein homeostasis network in tumorigenesis and tumour progression has gradually come to light. Here, we summarize the involvement of the most prominent components of the protein quality control mechanisms (HSR, UPS, autophagy, UPR and ERAD) in tumour development and cancer immunity. In addition, evidence for protein quality control mechanisms and targeted drugs is outlined, and attempts to combine these drugs with cancer immunotherapy are discussed. Altogether, combination therapy represents a promising direction for future investigations, and this exciting insight will be further illuminated by the development of drugs that can reach a balance between the benefits and hazards associated with protein homeostasis interference.
Collapse
Affiliation(s)
- Rong Liang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Huabing Tan
- Department of Infectious Diseases, Lab of Liver Disease, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Honglin Jin
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jincheng Wang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Faculty of Medicine, Hokkaido University, Japan
| | - Zijian Tang
- College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
41
|
Ruan Y, Wang J, Zhang Q, Wang H, Li C, Xu X, Zhai Z. Clinical implications of aberrant PD-1 expression for acute leukemia prognosis. Eur J Med Res 2023; 28:383. [PMID: 37759316 PMCID: PMC10536751 DOI: 10.1186/s40001-023-01352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) are the most common types of leukemia in adults with an overall poor prognosis. PD-1 alone or combined with other immune checkpoint blockade is a promising research direction for the treatment of acute leukemia (AL) patients. However, clinical Implications of aberrant PD-1 expression in peripheral CD4+ and CD8+ T lymphocytes of AML and ALL patients in assessing the prognosis of diseases, remains inconclusive. METHODS In the present study, we used flow cytometry to evaluate PD-1 expression on the surface of CD4+ and CD8+ T lymphocytes in the peripheral circulation of AML and ALL patients and its clinical significance. A total of 53 AML patients, 44 ALL patients and 28 healthy controls were enrolled in this study and peripheral blood specimens were detected by flow cytometry. RESULTS Our results indicated that percentages of CD4+ PD1+ and CD8+ PD1+ T lymphocytes in newly diagnosed and non-remission groups were significantly higher than healthy control both in AML and ALL patients. The high level of CD4+ PD1+ and CD8+ PD1+ T lymphocytes were respectively poor prognostic indicators of AML patients and ALL patients but had no significant correlation with most common clinical risks. CONCLUSIONS Our findings show that aberrant PD-1 expression correlates with the prognosis of AL patient and may thus serve as poor prognostic indicators. Immunotherapy using PD-1 inhibitors may be a promising strategy for AML and ALL patients with peripheral circulating CD4+ PD1+ and CD8+ PD1+ T lymphocytes positively expressed, respectively.
Collapse
Affiliation(s)
- Yanjie Ruan
- Department of Hematology, Hematology Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
- Department of Pathology, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, 230013, Anhui, China
| | - Jiyu Wang
- Department of Hematology, Hematology Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Qiuye Zhang
- People's Hospital of Taizhou, Fifth Affiliated Hospital of Nantong University, Taizhou, 225300, Jiangsu, China
| | - Huiping Wang
- Department of Hematology, Hematology Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Cong Li
- Department of Hematology, Hematology Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xuanxuan Xu
- Jingzhou Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, China
| | - Zhimin Zhai
- Department of Hematology, Hematology Research Center, The Second Hospital of Anhui Medical University, Hefei, 230601, Anhui, China.
| |
Collapse
|
42
|
Zhang H, Chen S, Xu S, Li X. COTE1 Facilitates Intrahepatic Cholangiocarcinoma Progression via Beclin1-Dependent Autophagy Inhibition. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5491682. [PMID: 37780485 PMCID: PMC10541304 DOI: 10.1155/2023/5491682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/26/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023]
Abstract
COTE1 was recently described as an oncogene in hepatocellular carcinoma and gastric cancer. However, the roles of COTE1 in intrahepatic cholangiocarcinoma (ICC) are little known. Our study is aimed at clarifying novel functions of COTE1 in ICC progression, including proliferation, invasion, and autophagy. By using quantitative real-time PCR, immunohistochemistry staining, and western blotting, we found that COTE1 expression was frequently upregulated in ICC tissues, compared to paracarcinoma tissues. High COTE1 expression was significantly correlated with aggressive clinical features and predicted poor prognosis of ICC patients. Functional experiments revealed that ectopic COTE1 expression promoted ICC cell proliferation, colony formation, cellular invasion, migration, and in vivo tumorigenicity; in contrast, COTE1 knockdown resulted in the opposite effects. At molecular mechanism in vitro and vivo, our study revealed that COTE1 overexpression suppressed autophagy via Beclin1 transcription inhibition; conversely, COTE1 silencing facilitated autophagy through promoting Beclin1 expression. Furthermore, the suppression of COTE1 knockdown on cellular growth and invasion was rescued/aggravated by Beclin1 inhibition/accumulation. Our data, for the first time, illustrate that COTE1 is an oncogene in ICC pathogenesis, and the ectopic COTE1 expression promotes ICC proliferation and invasion via Beclin1-dependent autophagy inhibition.
Collapse
Affiliation(s)
- Hai Zhang
- Key Laboratory on Living Donor Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Shu Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Sanrong Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Xiangcheng Li
- Key Laboratory on Living Donor Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
43
|
Spangenberg SH, Palermo A, Gazaniga NR, Martínez-Peña F, Guijas C, Chin EN, Rinschen MM, Sander PN, Webb B, Pereira LE, Jia Y, Meitz L, Siuzdak G, Lairson LL. Hydroxyproline metabolism enhances IFN-γ-induced PD-L1 expression and inhibits autophagic flux. Cell Chem Biol 2023; 30:1115-1134.e10. [PMID: 37467751 PMCID: PMC11426993 DOI: 10.1016/j.chembiol.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/20/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023]
Abstract
The immune checkpoint protein PD-L1 plays critical roles in both immune system homeostasis and tumor progression. Impaired PD-1/PD-L1 function promotes autoimmunity and PD-L1 expression within tumors promotes immune evasion. If and how changes in metabolism or defined metabolites regulate PD-L1 expression is not fully understood. Here, using a metabolomics activity screening-based approach, we have determined that hydroxyproline (Hyp) significantly and directly enhances adaptive (i.e., IFN-γ-induced) PD-L1 expression in multiple relevant myeloid and cancer cell types. Mechanistic studies reveal that Hyp acts as an inhibitor of autophagic flux, which allows it to regulate this negative feedback mechanism, thereby contributing to its overall effect on PD-L1 expression. Due to its prevalence in fibrotic tumors, these findings suggest that hydroxyproline could contribute to the establishment of an immunosuppressive tumor microenvironment and that Hyp metabolism could be targeted to pharmacologically control PD-L1 expression for the treatment of cancer or autoimmune diseases.
Collapse
Affiliation(s)
| | - Amelia Palermo
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Nathalia R Gazaniga
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Carlos Guijas
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Emily N Chin
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Markus M Rinschen
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Philipp N Sander
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bill Webb
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Laura E Pereira
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ying Jia
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lance Meitz
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, the Scripps Research Institute, La Jolla, CA 92037, USA; Department of Integrative Structural and Computational Biology, La Jolla, CA 92037, USA.
| | - Luke L Lairson
- Department of Chemistry, the Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
44
|
Takasaki R, Uchida F, Takaoka S, Ishii R, Fukuzawa S, Warabi E, Ishibashi-Kanno N, Yamagata K, Bukawa H, Yanagawa T. p62 Is a Potential Biomarker for Risk of Malignant Transformation of Oral Potentially Malignant Disorders (OPMDs). Curr Issues Mol Biol 2023; 45:7630-7641. [PMID: 37754264 PMCID: PMC10529731 DOI: 10.3390/cimb45090480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023] Open
Abstract
To determine the intracellular behavior of p62, a marker of selective autophagy, in oral potentially malignant disorders (OPMDs). This retrospective study includes 70 patients who underwent biopsy or surgical resection and were definitively diagnosed with OPMDs. Immunohistochemical staining for p62, XPO1, p53, and ki67 was performed on all samples and positive cell occupancy was calculated. We statistically investigated the correlation between protein expression in OPMDs and the association between malignant transformation, clinicopathological characteristics, and occupancy. ki67 expression was negatively correlated with p62 expression in the nucleus (p < 0.01) and positively correlated with p62 expression in the cytoplasm (p < 0.01). For malignant transformation, the expression of p62 in the nucleus (p = 0.03) was significantly lower in malignant transformation cases, whereas the expression of p62 in the cytoplasm (p = 0.03) and the aggregation expression (p < 0.01) were significantly higher. Our results suggest that the function of p62 is altered by its subcellular localization. In addition, defects in selective autophagy occur in cases of malignant transformation, suggesting that p62 is a potential biomarker of the risk of malignant transformation of OPMDs.
Collapse
Affiliation(s)
- Ryo Takasaki
- Oral and Maxillofacial Surgery, Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8875, Japan
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Fumihiko Uchida
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Shohei Takaoka
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Ryota Ishii
- Department of Biostatistics, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Satoshi Fukuzawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Eiji Warabi
- Department of Anatomy and Rmbryology, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Naomi Ishibashi-Kanno
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Kenji Yamagata
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Hiroki Bukawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
- Department of Oral and Maxillofacial Surgery, Ibaraki Prefectural Central Hospital, 6528 Koibuchi, Kasama 309-1793, Japan
| |
Collapse
|
45
|
Avgustinovich AV, Bakina OV, Afanas’ev SG, Spirina LV, Volkov AM. Safety and Efficacy of Neoadjuvant Chemoimmunotherapy in Gastric Cancer Patients with a PD-L1 Positive Status: A Case Report. Curr Issues Mol Biol 2023; 45:7642-7649. [PMID: 37754265 PMCID: PMC10529065 DOI: 10.3390/cimb45090481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
INTRODUCTION The landscape of gastric cancer treatment has changed owing to the widespread use of immune checkpoint inhibitors. Autophagy, involved in regulating the immune system, is a potential trigger of immunity in tumors. This study aims to find molecular-based evidence for the effectiveness of FLOT chemotherapy with immune checkpoint inhibitors in gastric cancer patients. MATERIALS AND METHODS Three patients with advanced gastric cancer received FLOT neoadjuvant chemotherapy with immunotherapy and surgery. IHC was used to determine the PD-L1 status. Real-time PCR was used to analyze expression patterns of transcriptional growth factors, AKT/mTOR signaling components, PD-1, PD-L1, PD-L2 and LC3B. The LC3B content was measured via Western blotting analysis. RESULTS The combination of FLOT neoadjuvant chemotherapy and immunotherapy was found to be efficient in patients with a PD-L1-positive status. Gastric tumors with a PD-L1-positive status exhibited autophagy activation and decreased PD-1 expression. CONCLUSIONS FLOT chemotherapy combined with immune checkpoint inhibitors showed high efficacy in gastric cancer patients with a positive PD-L1 status. Autophagy was involved in activating the tumor immunity. Further research is needed to clarify the mechanism of effective anticancer treatment.
Collapse
Affiliation(s)
- Alexandra V. Avgustinovich
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia; (A.V.A.); (S.G.A.); (A.M.V.)
| | - Olga V. Bakina
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences, 2/4 pr. Akademicheskii, Tomsk 634055, Russia;
- Medico-Biological Faculty, Division of Biochemistry and Molcecular Biology with Clinical Laboratory Diagnostics Course, Siberian State Medical University, 2, Moskovsky trakt, Tomsk 634050, Russia
| | - Sergey G. Afanas’ev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia; (A.V.A.); (S.G.A.); (A.M.V.)
| | - Liudmila V. Spirina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia; (A.V.A.); (S.G.A.); (A.M.V.)
- Medico-Biological Faculty, Division of Biochemistry and Molcecular Biology with Clinical Laboratory Diagnostics Course, Siberian State Medical University, 2, Moskovsky trakt, Tomsk 634050, Russia
| | - Alexander M. Volkov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5 Kooperativny Street, Tomsk 634050, Russia; (A.V.A.); (S.G.A.); (A.M.V.)
| |
Collapse
|
46
|
Thongchot S, Aksonnam K, Thuwajit P, Yenchitsomanus PT, Thuwajit C. Nucleolin‑based targeting strategies in cancer treatment: Focus on cancer immunotherapy (Review). Int J Mol Med 2023; 52:81. [PMID: 37477132 PMCID: PMC10555485 DOI: 10.3892/ijmm.2023.5284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
The benefits of treating several types of cancers using immunotherapy have recently been established. The overexpression of nucleolin (NCL) in a number of types of cancer provides an attractive antigen target for the development of novel anticancer immunotherapeutic treatments. NCL is a multifunctional protein abundantly distributed in the nucleus, cytoplasm and cell membrane. It influences carcinogenesis, and the proliferation, survival and metastasis of cancer cells, leading to cancer progression. Additionally, the meta‑analysis of total and cytoplasmic NCL overexpression indicates a poor prognosis of patients with breast cancer. The AS1411 aptamers currently appear to have therapeutic action in the phase II clinical trial. The authors' research group has recently explored the anticancer function of NCL through the activation of T cells by dendritic cell‑based immunotherapy. The present review describes and discusses the mechanisms through which the multiple functions of NCL can participate in the progression of cancer. In addition, the studies that define the utility of NCL‑dependent anticancer therapies are summarized, with specific focus being paid to cancer immunotherapeutic approaches.
Collapse
Affiliation(s)
- Suyanee Thongchot
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Krittaya Aksonnam
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Peti Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| | - Pa-Thai Yenchitsomanus
- Siriraj Center of Research Excellence for Cancer Immunotherapy (SiCORE-CIT), Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chanitra Thuwajit
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University
| |
Collapse
|
47
|
Ren Y, Wang R, Weng S, Xu H, Zhang Y, Chen S, Liu S, Ba Y, Zhou Z, Luo P, Cheng Q, Dang Q, Liu Z, Han X. Multifaceted role of redox pattern in the tumor immune microenvironment regarding autophagy and apoptosis. Mol Cancer 2023; 22:130. [PMID: 37563639 PMCID: PMC10413697 DOI: 10.1186/s12943-023-01831-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
The reversible oxidation-reduction homeostasis mechanism functions as a specific signal transduction system, eliciting related physiological responses. Disruptions to redox homeostasis can have negative consequences, including the potential for cancer development and progression, which are closely linked to a series of redox processes, such as adjustment of reactive oxygen species (ROS) levels and species, changes in antioxidant capacity, and differential effects of ROS on downstream cell fate and immune capacity. The tumor microenvironment (TME) exhibits a complex interplay between immunity and regulatory cell death, especially autophagy and apoptosis, which is crucially regulated by ROS. The present study aims to investigate the mechanism by which multi-source ROS affects apoptosis, autophagy, and the anti-tumor immune response in the TME and the mutual crosstalk between these three processes. Given the intricate role of ROS in controlling cell fate and immunity, we will further examine the relationship between traditional cancer therapy and ROS. It is worth noting that we will discuss some potential ROS-related treatment options for further future studies.
Collapse
Affiliation(s)
- Yuqing Ren
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruizhi Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
48
|
Wang H, Shi Y, Ma D, Cao M, Sun Y, Jiang X, Xu Z, Wang Y, Yang Y, Shi Y, Wang K. Cinchonine exerts anti-tumor and immunotherapy sensitizing effects in lung cancer by impairing autophagic-lysosomal degradation. Biomed Pharmacother 2023; 164:114980. [PMID: 37301135 DOI: 10.1016/j.biopha.2023.114980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, there are several treatments approaches available for lung cancer; however, patients who develop drug resistance or have poor survival rates urgently require new therapeutic strategies for lung cancer. In autophagy, damaged proteins or organelles are enclosed within autophagic vesicles with a bilayer membrane structure and transported to the lysosomes for degradation and recirculation. Autophagy is a crucial pathway involved in the clearance of reactive oxygen species (ROS) and damaged mitochondria. Meanwhile, inhibiting autophagy is a promising strategy for cancer treatment. In this study, we found for the first time that Cinchonine (Cin) can act as an autophagy suppressor and exert anti-tumor effects. Cin significantly inhibited the proliferation, migration, and invasion of cancer cells in vitro and the tumor growth and metastasis in vivo, without obvious toxic effects. We found that Cin suppressed the autophagic process by blocking autophagosome degradation through the inhibition of the maturation of lysosomal hydrolases. Cin-mediated autophagy inhibition resulted in the elevated ROS level and the accumulation of damaged mitochondria, which in turn promoted apoptosis. N-acetylcysteine, a potential ROS scavenger, significantly suppressed Cin-induced apoptosis. Additionally, Cin upregulated programmed death-ligand 1 (PD-L1) expression in lung cancer cells by inhibiting autophagy. Compared with monotherapy and control group, the combined administration of anti-PD-L1 antibody and Cin significantly reduced tumor growth. These results suggest that Cin exerts anti-tumor effects by inhibiting autophagy, and that the combination of Cin and PD-L1 blockade has synergistic anti-tumor effects. The data demonstrates the significant clinical potential of Cin in lung cancer treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Yuting Shi
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Dannv Ma
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqing Cao
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Yuchao Sun
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Xinyuan Jiang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Zhiyong Xu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Yongfang Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Yueli Shi
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China.
| |
Collapse
|
49
|
Li M, Zhang HY, Zhang RG. MFAP2 enhances cisplatin resistance in gastric cancer cells by regulating autophagy. PeerJ 2023; 11:e15441. [PMID: 37304872 PMCID: PMC10257393 DOI: 10.7717/peerj.15441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 06/13/2023] Open
Abstract
Background Cisplatin (CDDP) is of importance in cancer treatment and widely used in advanced gastric cancer (GC). However, its clinical usage is limited due to its resistance, and the regulatory mechanism of CDDP resistance in GC has not yet been fully elucidated. In this study, we first conducted a comprehensive study to investigate the role of MFAP2 through bioinformatics analysis. Methods The Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases were applied to downloadgene expression data and clinicopathologic data, and the differentially expressed genes (DEGs) were further analyzed. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and survival analysis were conducted. Furthermore, according to the clinicopathological characteristics of TCGA, clinical correlation analysis was conducted, and a receiver operating characteristic curve (ROC) was plotted. Results We revealed that FAP, INHBA and MFAP2 were good diagnostic factors of GC. However, the mechanism of MFAP2 in GC remains elusive, especially in the aspect of chemotherapy resistance. We developed the CDDP-resistant cell line, and found that MFAP2 was upregulated in CDDP-resistant cells, and MFAP2-knockdown improved CDDP sensitivity. Finally, we found that MFAP2 enhanced CDDP resistance by inducing autophagy in drug-resistant cell lines. Conclusions The above results suggested that MFAP2 could affect the chemotherapy resistance by altering the level of autophagy in GC patients as a potential therapeutic target.
Collapse
Affiliation(s)
- Meng Li
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Hong-Yi Zhang
- Department of Stomatology, Beijing Electric Power Hospital, Capital Medical University, Beijing, China
| | - Rong-Gui Zhang
- Department of Gastroenterology, General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
50
|
Zhang M, Li L, Li S, Liu Z, Zhang N, Sun B, Wang Z, Jia D, Liu M, Wang Q. Development of Clioquinol Platinum(IV) Conjugates as Autophagy-Targeted Antimetastatic Agents. J Med Chem 2023; 66:3393-3410. [PMID: 36891739 DOI: 10.1021/acs.jmedchem.2c01895] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A series of autophagy-targeted antimetastatic clioquinol (CLQ) platinum(IV) conjugates were designed and prepared by incorporating an autophagy activator CLQ into the platinum(IV) system. Complex 5 with the cisplatin core bearing dual CLQ ligands with potent antitumor properties was screened out as a candidate. More importantly, it displayed potent antimetastatic properties both in vitro and in vivo as expected. Mechanism investigation manifested that complex 5 induced serious DNA damage to increase γ-H2AX and P53 expression and caused mitochondria-mediated apoptosis through the Bcl-2/Bax/caspase3 pathway. Then, it promoted prodeath autophagy by suppressing PI3K/AKT/mTOR signaling and activating the HIF-1α/Beclin1 pathway. The T-cell immunity was elevated by restraining the PD-L1 expression and subsequently increasing CD3+ and CD8+ T cells. Ultimately, metastasis of tumor cells was suppressed by the synergistic effects of DNA damage, autophagy promotion, and immune activation aroused by CLQ platinum(IV) complexes. Key proteins VEGFA, MMP-9, and CD34 tightly associated with angiogenesis and metastasis were downregulated.
Collapse
Affiliation(s)
- Ming Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Linming Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Suying Li
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhifang Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Ning Zhang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Bin Sun
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Zhengping Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China.,Liaocheng High-Tech Biotechnology Co., Ltd, Liaocheng 252059, P. R. China
| | - Dianlong Jia
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252059, P. R. China
| | - Min Liu
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| | - Qingpeng Wang
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|