1
|
Feng Y, Cheng Z, Gao J, Huang T, Wang J, Tang Q, Pu K, Liu C. Revolutionizing prognostic predictions in colorectal cancer: Macrophage‑driven transcriptional insights from single‑cell RNA sequencing and gene co‑expression network analysis. Oncol Lett 2024; 28:587. [PMID: 39411205 PMCID: PMC11474140 DOI: 10.3892/ol.2024.14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/23/2024] [Indexed: 10/19/2024] Open
Abstract
Tumor-associated macrophages have become important biomarkers for cancer diagnosis, prognosis and therapy. The dynamic changes in macrophage subpopulations significantly impact the outcomes of cancer immunotherapy. Hence, identifying additional macrophage-related biomarkers is essential for enhancing prognostic predictions in colorectal cancer (CRC) immunotherapy. CRC single-cell RNA sequencing (scRNA-seq) data was obtained from the Gene Expression Omnibus (GEO) database. The data were processed, normalized and clustered using the 'Seurat' package. Cell types within each cluster were annotated using the 'SingleR' package. Weighted gene co-expression network analysis identified modules corresponding to specific cell types. A non-negative matrix factorization algorithm was employed to segregate different clusters based on the selected module. Differentially expressed genes (DEGs) were identified across various clusters and a prognostic model was constructed using lasso regression and Cox regression analyses. The robustness of the model was validated using The Cancer Genome Atlas (TCGA) database and GEO microarrays. Additionally, the prognosis, immune characteristics and response to immune checkpoint inhibitor (ICI) therapy were individually analyzed. The scRNA-seq data from GSE200997, consisting of 23 samples, were analyzed. Dimensionality reduction and cluster identification allowed the isolation of the primary myeloid cell subpopulations. The macrophage-related brown module was identified, which was further divided into two clusters. Using the DEGs from these clusters, a prognostic model was developed, comprising five macrophage-related genes. The robustness of the model was confirmed using microarray datasets GSE17536, GSE38832 and GSE39582, as well as TCGA cohort. Patients classified as high-risk by the present model exhibited poorer survival rates, lower tumor mutation burden, reduced microsatellite instability, lower tumor purity, more severe tumor immune dysfunction and exclusion, and less benefit from ICIs therapy compared with low-risk patients. The present prognostic model shows promise as a biomarker for risk stratification and predicting therapeutic efficacy in patients with CRC. However, further well-designed prospective studies are necessary to validate the findings.
Collapse
Affiliation(s)
- Yang Feng
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China
- Department of Neurosurgery, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, P.R. China
| | - Zhuo Cheng
- Department of Gastroenterology, Dazhou Central Hospital, Dazhou, Sichuan 635000, P.R. China
| | - Jingyuan Gao
- Department of Immunology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Tao Huang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Jun Wang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Qian Tang
- Statesboro Office, Southeast Medical Group, Atlanta, GA 30022, USA
| | - Ke Pu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Chang Liu
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, Shaanxi 710061, P.R. China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
2
|
Pu K, Gao J, Feng Y, Hu J, Tang S, Yang G, Xu C. Comprehensive evaluation of immunological attributes and immunotherapy responses of positive T cell function regulators in colorectal cancer. BMC Gastroenterol 2024; 24:339. [PMID: 39354362 PMCID: PMC11443709 DOI: 10.1186/s12876-024-03409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Positive regulators of T-cell function (PTFRs), integral to T-cell proliferation and activation, have been identified as potential prognostic markers in colorectal cancer (CRC). Despite this, their role within the tumor microenvironment (TME) and their response to immunotherapy are not yet fully understood. METHODS This study delved into PTFR-related CRC subtypes by analyzing four independent transcriptome datasets, emphasizing the most significant prognostic PTFRs. We identified differentially expressed genes (DEGs) between two subtypes and developed a PTFR risk model using LASSO and Cox regression methods. The model's associations with survival time, clinical features, TME characteristics, tumor mutation profiles, microsatellite instability (MSI), cancer stem cell (CSC) index, and responses to chemotherapy, targeted therapy, and immunotherapy were subsequently explored. RESULTS The PTFR risk model demonstrated a strong predictive capacity for CRC. It facilitated the estimation of immune cell composition, HLA expression levels, immune checkpoint expression, mutation burden, CSC index features, and the effectiveness of immunotherapy. CONCLUSIONS This study enhances our understanding of the role of PTFRs in CRC progression and introduces an innovative assessment framework for CRC immunotherapy. This framework improves the prediction of treatment outcomes and aids in the customization of therapeutic strategies.
Collapse
Affiliation(s)
- Ke Pu
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Jingyuan Gao
- Department of Immunology, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yang Feng
- Department of Neurosurgery, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, Xi'an, Shaanxi, 710018, China
| | - Jian Hu
- Department of Thoracic and Cardiovascular Surgery, Dazhou Second People's Hospital, Integrated TCM & Western Medicine Hospital, Dazhou, 635000, China
| | - Shunli Tang
- Department of Pathology, Dazhou Second People's Hospital, Integrated TCM & Western Medicine Hospital, Dazhou, 635000, China
| | - Guodong Yang
- Department of Gastroenterology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China.
| | - Chuan Xu
- Department of Oncology & Cancer Institute, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
3
|
Alhosani F, Ilce BY, Alhamidi RS, Bhamidimarri PM, Hamad AM, Alkhayyal N, Künstner A, Khandanpour C, Busch H, Al-Ramadi B, Sayed K, AlFazari A, Bendardaf R, Hamoudi R. Transcriptome Profiling Associated with CARD11 Overexpression in Colorectal Cancer Implicates a Potential Role for Tumor Immune Microenvironment and Cancer Pathways Modulation via NF-κB. Int J Mol Sci 2024; 25:10367. [PMID: 39408697 PMCID: PMC11476988 DOI: 10.3390/ijms251910367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
The immune system plays a critical role in inflammation by initiating responses to infections or tissue damage. The nuclear factor-κB (NF-κB) pathway plays a key role in inflammation and innate immunity, as well as other cellular activities. Dysregulation of this well-choreographed pathway has been implicated in various diseases, including cancer. CARD11 is a key molecule in the BCL10-MALT1 complex, which is involved in transducing the signal downstream of the NF-κB pathway. This study aims to elucidate how CARD11 overexpression exacerbates the prognosis of colorectal cancer (CRC). To identify the cellular pathways influenced by CARD11, transcriptomic analysis in both CRC cell lines and patients was carried out on CARD11- overexpressed HCT-116 and HT-29 CRC cell lines alongside empty vector-transfected cell lines. Furthermore, a comparison of transcriptomic data from adenoma and carcinoma CRC patients with low- (CARD11-) and high-(CARD11+) CARD11 expression was carried out. Whole transcriptomics and bioinformatics analysis results indicate that CARD11 appears to play a key role in CRC progression. Absolute GSEA (absGSEA) on HCT-116 transcriptomics data revealed that CARD11 overexpression promotes cell growth and tissue remodeling and enhances immune response. Key genes co-expressed with CARD11, such as EP300, KDM5A, HIF1A, NFKBIZ, and DUSP1, were identified as mediators of these processes. In the HT-29 cell line, CARD11 overexpression activated pathways involved in chemotaxis and extracellular matrix (ECM) organization, marked by IL1RN, MDK, SPP1, and chemokines like CXCL1, CXCL3, and CCL22, which were shown to contribute to the more invasive stage of CRC. In patient samples, adenoma patients exhibited increased expression of genes associated with the tumor immune microenvironment, such as IL6ST, collagen family members, and CRC transition markers, such as GLI3 and PIEZO2, in CARD11+ adenoma patients. Carcinoma patients showed a dramatic increase in the expression of MAPK8IP2 in CARD11+ carcinoma patients alongside other cancer-related genes, including EMB, EPHB6, and CPEB4.
Collapse
Affiliation(s)
- Faisal Alhosani
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
- Forensic Laboratory Department, Sharjah Police Headquarters, Sharjah P.O. Box 1965, United Arab Emirates
| | - Burcu Yener Ilce
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Reem Sami Alhamidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Poorna Manasa Bhamidimarri
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Alaa Mohamed Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
| | - Noura Alkhayyal
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Cyrus Khandanpour
- Department of Hematology and Oncology, University Cancer Center Schleswig-Holstein, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany;
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany; (A.K.); (H.B.)
| | - Basel Al-Ramadi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Kadria Sayed
- Department of Pathology and Laboratory Medicine, American Hospital Dubai, Dubai P.O. Box 3050, United Arab Emirates;
| | - Ali AlFazari
- Mediclinic Welcare Hospital, Dubai P.O. Box 31500, United Arab Emirates;
| | - Riyad Bendardaf
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates; (N.A.); (R.B.)
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (F.A.); (B.Y.I.); (R.S.A.); (P.M.B.); (A.M.H.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Center of Excellence for Precision Medicine, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- BIMAI-Lab, Biomedically Informed Artificial Intelligence Laboratory, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Dai N, Groenendyk J, Michalak M. Interplay between myotubularins and Ca 2+ homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119739. [PMID: 38710289 DOI: 10.1016/j.bbamcr.2024.119739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
The myotubularin family, encompassing myotubularin 1 (MTM1) and 14 myotubularin-related proteins (MTMRs), represents a conserved group of phosphatases featuring a protein tyrosine phosphatase domain. Nine members are characterized by an active phosphatase domain C(X)5R, dephosphorylating the D3 position of PtdIns(3)P and PtdIns(3,5)P2. Mutations in myotubularin genes result in human myopathies, and several neuropathies including X-linked myotubular myopathy and Charcot-Marie-Tooth type 4B. MTM1, MTMR6 and MTMR14 also contribute to Ca2+ signaling and Ca2+ homeostasis that play a key role in many MTM-dependent myopathies and neuropathies. Here we explore the evolving roles of MTM1/MTMRs, unveiling their influence on critical aspects of Ca2+ signaling pathways.
Collapse
Affiliation(s)
- Ning Dai
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jody Groenendyk
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
5
|
Yao Y, Lai J, Yang Y, Wang G, Lv J. An integrative analysis reveals the prognostic value and potential functions of MTMR2 in hepatocellular carcinoma. Sci Rep 2023; 13:18701. [PMID: 37907649 PMCID: PMC10618242 DOI: 10.1038/s41598-023-46089-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/27/2023] [Indexed: 11/02/2023] Open
Abstract
Abnormal expression of myotubularin-related protein 2 (MTMR2) has been identified in certain types of cancer, leading to varying effects on tumor genesis and progression. However, the various biological significances of MTMR2 in hepatocellular carcinoma (HCC) have not been systematically and comprehensively studied. The aim of this study was to explore the role of MTMR2 in HCC. We obtained the raw data from Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Afterward, we analyzed the data using R and cBioPortal. We investigated the connection between MTMR2 and its expression, prognosis, clinical significance, methylation, genetic alterations, tumor microenvironment (TME), tumor mutation burden (TMB), and drug reactivity in HCC patients. MTMR2 expression levels in HCC cells were validated through western blotting and RT-qPCR. MTMR2 exhibits high levels of expression across a wide range of cancer types, including HCC. MTMR2 is diagnostically valuable in detecting HCC, with its up-regulated expression often being indicative of poor prognosis among HCC patients. The in vitro experiments confirmed elevated MTMR2 expression in HepG2, HUH-7, and MHCC-97H cells. Univariate and multivariate Cox analysis demonstrated that MTMR2 was an independent prognostic factor in HCC patients. The cg20195272 site has the highest degree of methylation in MTMR2, and it is positively correlated with MTMR2 expression. Patients with high levels of methylation at the cg20195272 site show poor prognosis. Analysis of the TME indicates that high expression of MTMR2 is associated with elevated ESTIMATE score and that MTMR2 expression correlates positively with infiltration by resting memory CD4 T cells, activated dendritic cells, as well as several immune checkpoints. There is a negative correlation between MTMR2 expression and TMB, and drug sensitivity analyses have shown that higher MTMR2 expression is associated with lower IC50 values. This study indicates that increased expression of MTMR2 may play a crucial role in the occurrence, progression, diagnosis, prognostic prediction and drug therapy of HCC.
Collapse
Affiliation(s)
- Yuanqian Yao
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jiawen Lai
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Yuwen Yang
- Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Guangyao Wang
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Jianlin Lv
- The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, 530000, China.
| |
Collapse
|
6
|
Qi H, Wu F, Wang H. Function of TRPC1 in modulating hepatocellular carcinoma progression. Med Oncol 2023; 40:97. [PMID: 36797544 DOI: 10.1007/s12032-023-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023]
Abstract
The liver is the main organ of metabolism in the human body, and it is easy to suffer from hepatitis, cirrhosis, liver cancer, and other diseases, the most serious of which is liver cancer. Worldwide, liver cancer is the most common and deadly malignant tumor, the third leading cause of cancer death in the world. Based on TCGA and ICGC databases, our research discovered the important role of TRPC1 in liver cancer through bioinformatics. The results showed that TRPC1 was over-expressed in hepatocellular carcinoma, and the higher the expression level of TRPC1, the worse the OS and the lower the survival rate. TRPC1 was a risk factor affecting the overall survival probability of hepatocellular carcinoma patients. By analyzing the function of the TRP family in liver cancer, TRPC1 might promote the occurrence of liver cancer by up-regulating common signal pathways in tumors such as tumor proliferation signature, and down-regulating important metabolic reactions such as retinol metabolism. In addition, TRPC1 could promote the development of liver cancer by up-regulating the expression of ABI2, MAPRE1, YEATS2, MTA3, TMEM237, MTMR2, CCDC6, AC069544.2, and NCBP2 genes. These results illustrate that TRPC1 is very valuable in the study of liver cancer.
Collapse
Affiliation(s)
- Huimin Qi
- School of Basic Medicine, Weifang Medical University, Weifang, 261053, China
| | - Fengming Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
7
|
Jian L, Shi-wei L, Dan J, Juan W, Wei Z. GPR84 potently inhibits osteoclastogenesis and alleviates osteolysis in bone metastasis of colorectal cancer. J Orthop Surg Res 2023; 18:3. [PMID: 36593458 PMCID: PMC9806886 DOI: 10.1186/s13018-022-03473-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
The expression of GPR84 in bone marrow-derived monocytes/macrophages (BMMs) can inhibit osteoclast formation; however, its role in bone metastasis of colorectal cancer (CRC) is still unknown. To investigate the effects of GPR84 on bone metastasis of CRC, the murine CRC cell line MC-38 was injected into tibial bone marrow. We found that the expression of GPR84 in BMMs was gradually downregulated during bone metastasis of CRC, and the activation of GPR84 significantly prevented osteoclastogenesis in the tumor microenvironment. Mechanistically, the MAPK pathway mediated the effects of GPR84 on osteoclast formation. Moreover, we found that IL-11 at least partly inhibited the expression of GPR84 in the tumor microenvironment through the inactivation of STAT1. Additionally, activation of GPR84 could prevent osteolysis during bone metastasis of CRC. Our results suggest that CRC cells downregulate the expression of GPR84 in BMMs to promote osteoclastogenesis in an IL-11-dependent manner. Thus, GPR84 could be a potential therapeutic target to attenuate bone destruction induced by CRC metastasis.
Collapse
Affiliation(s)
- Li Jian
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China ,grid.413856.d0000 0004 1799 3643Chengdu Medical College, Rongdu Avenue No. 601, Chengdu, 610000 People’s Republic of China
| | - Long Shi-wei
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Jing Dan
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Wu Juan
- Department of Pharmacy, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China
| | - Zheng Wei
- Department of Orthopedics, General Hospital of Western Theater Command, Rongdu Avenue No. 270, Chengdu, 610000 People’s Republic of China ,grid.413856.d0000 0004 1799 3643Chengdu Medical College, Rongdu Avenue No. 601, Chengdu, 610000 People’s Republic of China
| |
Collapse
|
8
|
Zhang L, Li Q, Yang J, Xu P, Xuan Z, Xu J, Xu Z. Cytosolic TGM2 promotes malignant progression in gastric cancer by suppressing the TRIM21-mediated ubiquitination/degradation of STAT1 in a GTP binding-dependent modality. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 43:123-149. [PMID: 36353796 PMCID: PMC9859732 DOI: 10.1002/cac2.12386] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/30/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Previous studies have revealed the critical role of transglutaminase 2 (TGM2) as a potential therapeutic target in cancers, but the oncogenic roles and underlying mechanisms of TGM2 in gastric cancer (GC) are not fully understood. In this study, we examined the role and potential mechanism of TGM2 in GC. METHODS Western blotting, immunohistochemistry, CCK8, colony formation and transwell assays were used to measure TGM2 expression in the GC cells and tissues and to examine the in vitro role of TGM2 in GC. Xenograft and in vivo metastasis experiments were performed to examine the in vivo role of TGM2 in GC. Gene set enrichment analysis, quantitative PCR and western blotting were conducted to screen for potential TGM2 targets involved in GC. Gain/loss-of-function and rescue experiments were conducted to detect the biological roles of STAT1 in GC cells in the context of TGM2. Co-immunoprecipitation, mass spectrometry, quantitative PCR and western blotting were conducted to identify STAT1-interacting proteins and elucidate their regulatory mechanisms. Mutations in TGM2 and two molecules (ZM39923 and A23187) were used to identify the enzymatic activity of TGM2 involved in the malignant progression of GC and elucidate the underlying mechanism. RESULTS In this study, we demonstrated elevated TGM2 expression in the GC tissues, which closely related to pathological grade, and predicted poor survival in patients with GC. TGM2 overexpression or knockdown promoted (and inhibited) cell proliferation, migration, and invasion, which were reversed by STAT1 knockdown or overexpression. Further studies showed that TGM2 promoted GC progression by inhibiting STAT1 ubiquitination/degradation. Then, tripartite motif-containing protein 21 (TRIM21) was identified as a ubiquitin E3 ligase of STAT1 in GC. TGM2 maintained STAT1 stability by facilitating the dissociation of TRIM21 and STAT1 with GTP-binding enzymatic activity. A23187 abolished the role of TGM2 in STAT1 and reversed the pro-tumor role of TGM2 in vitro and in vivo. CONCLUSIONS This study revealed a critical role and regulatory mechanism of TGM2 on STAT1 in GC and highlighted the potential of TGM2 as a therapeutic target, which elucidates the development of medicine or strategies by regulating the GTP-binding activity of TGM2 in GC.
Collapse
Affiliation(s)
- Lu Zhang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Qingya Li
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Jing Yang
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Penghui Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Zhe Xuan
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Jianghao Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China
| | - Zekuan Xu
- Department of General SurgeryThe First Affiliated Hospital of Nanjing Medical UniversityNanjingJiangsu210029P. R. China,Jiangsu Key Lab of Cancer BiomarkersPrevention and TreatmentCollaborative Innovation Center for Personalized Cancer MedicineNanjing Medical UniversityNanjingJiangsu211166P. R. China
| |
Collapse
|
9
|
Ding H, Wang G, Yu Z, Sun H, Wang L. Role of interferon-gamma (IFN-γ) and IFN-γ receptor 1/2 (IFNγR1/2) in regulation of immunity, infection, and cancer development: IFN-γ-dependent or independent pathway. Biomed Pharmacother 2022; 155:113683. [PMID: 36095965 DOI: 10.1016/j.biopha.2022.113683] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/27/2022] [Accepted: 09/07/2022] [Indexed: 11/02/2022] Open
Abstract
IFN-γ, a soluble cytokine being produced by T lymphocytes, macrophages, mucosal epithelial cells, or natural killer cells, is able to bind to the IFN-γ receptor (IFNγR) and in turn activate the Janus kinase (JAK)-signal transducer and transcription protein (STAT) pathway and induce expression of IFN-γ-stimulated genes. IFN-γ is critical for innate and adaptive immunity and aberrant IFN-γ expression and functions have been associated with different human diseases. However, the IFN-γ/IFNγR signaling could be a double-edged sword in cancer development because the tissue microenvironments could determine its anti- or pro-tumorigenic activities. The IFNγR protein consists of two IFNγR1 and IFNγR2 chains, subunits of which play different roles under certain conditions. This review assessed IFNγR polymorphisms, expression and functions in development and progression of various human diseases in an IFN-γ-dependent or independent manner. This review also discussed tumor microenvironment, microbial infection, and vital molecules in the IFN-γ upstream signaling that might regulate IFNγR expression, drug resistance, and druggable strategy, to provide evidence for further application of IFNγR.
Collapse
Affiliation(s)
- Huihui Ding
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China.
| | - Gongfu Wang
- Center for Drug Evaluation, China Food and Drug Administration (CFDA), Beijing, China.
| | - Zhen Yu
- Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| | - Huimin Sun
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China.
| | - Lu Wang
- School of Pharmacy, Shandong First Medical University, Jinan, Shandong, China; Department of Pharmacy, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
10
|
Li Y, Qu J, Liu L, Sun Y, Zhang J, Han S, Zhang Y. Apogossypolone Inhibits Cell Proliferation and Epithelial-Mesenchymal Transition in Cervical Cancer via Activating DKK3. Front Oncol 2022; 12:948023. [PMID: 35924156 PMCID: PMC9341244 DOI: 10.3389/fonc.2022.948023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apogossypolone (ApoG2), a novel derivative of gossypol lacking of two aldehyde groups, exhibits anti-tumor effects. However, the mechanisms by which ApoG2 regulates cervical cancer (CC) cells remain unclear. In this study, we treated two CC cell lines (CaSki and HeLa) with an increasing concentration of ApoG2 for 24 h. Cell Counting Kit-8 (CCK-8) assay, colony formation assay, flow cytometry and transwell invasion assay were utilized to detect cell proliferation, apoptosis and invasion in vitro. We first observed that ApoG2 inhibited cell proliferation, invasion and epithelial-to-mesenchymal transition (EMT) process in CC cells, along with upregulation of Dickkopf Wnt signaling pathway inhibitor 3 (DKK3) in a dose-dependent manner. The immunohistochemistry confirmed the downregulation of DKK3 in tumor tissues. Moreover, DKK3 was correlated with FIGO stage and lymph node metastasis. Functionally, DKK3 overexpression significantly suppressed cell viability, colony formation and invasion, but promoted apoptosis in CaSki and HeLa cells. Overexpression of DKK3 upregulated the protein levels of cleaved caspase-3 and E-cadherin, but downregulated the protein levels of Bcl-2, N-cadherin and Vimentin. Furthermore, DKK3 knockdown reversed the suppressive effects of ApoG2 on CaSki cell proliferation, invasion and EMT markers, while DKK3 overexpression enhanced these effects. In addition, ApoG2 treatment inhibited CC xenograft tumor growth and upregulated the protein levels of DKK3, cleaved caspase-3 and E-cadherin. In conclusions, these findings suggested that ApoG2 could effectively inhibit the growth and invasion of CC cells at least partly by activating DKK3.
Collapse
Affiliation(s)
- Yuling Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jinfeng Qu
- Department of Obstetrics and Gynecology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Junhua Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Sai Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Youzhong Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Youzhong Zhang,
| |
Collapse
|
11
|
Novel roles of LSECtin in gastric cancer cell adhesion, migration, invasion, and lymphatic metastasis. Cell Death Dis 2022; 13:593. [PMID: 35821222 PMCID: PMC9276708 DOI: 10.1038/s41419-022-05026-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 01/21/2023]
Abstract
Liver and lymph node sinusoidal endothelial cell C-type lectin (LSECtin) plays an important regulatory role in a variety of diseases, including tumors. However, the underlying mechanism of LSECtin in gastric cancer (GC) remains largely unknown. In our research, LSECtin promoted the adhesion and invasion of GC cells, and was involved in lymphatic metastasis of GC cells. Mechanistically, LSECtin promoted the adhesion, proliferation and migration of GC cells by downregulating STAT1 expression. The circular RNA circFBXL4, which is regulated by LSECtin, sponges the microRNA miR-146a-5p to regulate STAT1 expression. The promotion of GC cell proliferation, migration and invasion mediated by LSECtin was largely inhibited by circFBXL4 overexpression or miR-146a-5p silencing. Moreover, in its role as a transcription factor, STAT1 modulated the expression of FN1 and CHD4. In conclusion, LSECtin might be involved in the lymphatic metastasis of GC by upregulating the expression of FN1 and CHD4 via the circFBXL4/miR-146a-5p/STAT1 axis, possibly indicating a newly discovered pathogenic mechanism.
Collapse
|
12
|
Yang Y, Shi L, Zhang J, Zheng Y, Wu G, Sun J, Liu M, Chen Z, Wang Y, Ji R, Guo Q, Zhou Y. A Novel Matrisomal-Related LncRNA Signature Associated With Survival Outcome and Immune Evasion in Patients With Gastric Cancer. Front Oncol 2022; 12:926404. [PMID: 35814410 PMCID: PMC9263572 DOI: 10.3389/fonc.2022.926404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Background Different matrisomal patterns are shared across carcinomas. However, little is known about whether there exists a unique tumor matrisome that modulates GC progression and immune regulation. Methods We conducted a genome-wide analysis based on matrisomal-related lncRNAs (MRLs) in 375 patients with GC from the Cancer Genome Atlas (TCGA) database. Patients were split into the training set and validation set at a ratio of 1:1 using the R package cart. Pearson correlation analysis (PCA) was performed to identify lncRNAs that correlated with matrisome based on differential expression genes. Subsequently, we performed univariate Cox regression analyses and lasso Cox analysis on these lncRNAs to construct a risk model. Considering the primary effect of GRASLND on the GC prognosis, we chose it for further validation in an experimental setting. Results We identified a 15-MRL signature to predict overall survival and immune cell infiltration of patients with GC. The AUC values to predict 5-year outcome in three sets were 0.89, 0.65, and 0.78, respectively. Further analyses suggested that the high-risk group showed more obvious immune cell infiltration, and demonstrated an immunologically “cold” profile. In vitro, knockdown of GRASLND could inhibit the invasion capability of GC cells, and downregulate the protein expression of crucial matrisomal-related gene MMP9. Conclusions The 15-MRL gene signature might serve as a relatively good predictive tool to manage patients with GC.
Collapse
Affiliation(s)
- Yuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Li Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Jun Zhang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Digestive Endoscopic Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Guozhi Wu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Jie Sun
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Min Liu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Zhaofeng Chen
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Rui Ji
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
| | - Qinghong Guo
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
- *Correspondence: Qinghong Guo, ; Yongning Zhou,
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Key Laboratory of Gastroenterology, Lanzhou University, Lanzhou, China
- *Correspondence: Qinghong Guo, ; Yongning Zhou,
| |
Collapse
|
13
|
Guo H, Tang H, Zhao Y, Zhao Q, Hou X, Ren L. Molecular Typing of Gastric Cancer Based on Invasion-Related Genes and Prognosis-Related Features. Front Oncol 2022; 12:848163. [PMID: 35719914 PMCID: PMC9203697 DOI: 10.3389/fonc.2022.848163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to construct a prognostic stratification system for gastric cancer (GC) using tumour invasion-related genes to more accurately predict the clinical prognosis of GC. Methodology Tumour invasion-related genes were downloaded from CancerSEA, and their expression data in the TCGA-STAD dataset were used to cluster samples via non-negative matrix factorisation (NMF). Differentially expressed genes (DEGs) between subtypes were identified using the limma package. KEGG pathway and GO functional enrichment analyses were conducted using the WebGestaltR package (v0.4.2). The immune scores of molecular subtypes were evaluated using the R package ESTIMATE, MCPcounter and the ssGSEA function of the GSVA package. Univariate, multivariate and lasso regression analyses of DEGs were performed using the coxph function of the survival package and the glmnet package to construct a RiskScore model. The robustness of the model was validated using internal and external datasets, and a nomogram was constructed based on the model. Results Based on 97 tumour invasion-related genes, 353 GC samples from TCGA were categorised into two subtypes, thereby indicating the presence of inter-subtype differences in prognosis. A total of 569 DEGs were identified between the two subtypes; of which, four genes were selected to construct the risk model. This four-gene signature was robust and exhibited stable predictive performance in different platform datasets (GSE26942 and GSE66229), indicating that the established model performed better than other existing models. Conclusion A prognostic stratification system based on a four-gene signature was developed with a desirable area under the curve in the training and independent validation sets. Therefore, the use of this system as a molecular diagnostic test is recommended to assess the prognostic risk of patients with GC.
Collapse
Affiliation(s)
- Haonan Guo
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Hui Tang
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Yang Zhao
- Department of Human Resources, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qianwen Zhao
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xianliang Hou
- Central Laboratory, Guangxi Health Commission Key Laboratory of Glucose and Lipid Metabolism Disorders, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Ren
- Department of Clinical Laboratory, The Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Chen J, Wang H, Zhou L, Liu Z, Chen H, Tan X. A necroptosis-related gene signature for predicting prognosis, immune landscape, and drug sensitivity in hepatocellular carcinoma. Cancer Med 2022; 11:5079-5096. [PMID: 35560794 PMCID: PMC9761093 DOI: 10.1002/cam4.4812] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a growing threat to global health. Necroptosis is a newly discovered form of cell necrosis that plays a vital role in cancer development. Thus, we conducted this study to identify a predictive signature of HCC based on necroptosis-related genes. METHODS The tumor samples in the liver hepatocellular carcinoma (LIHC) cohort from The Cancer Genome Atlas (TCGA) database were subtyped using the consensus clustering algorithm. Univariate Cox regression and LASSO-Cox analysis were performed to identify a gene signature from genes differentially expressed between tumor clusters. Then, we integrated the TNM stage and the prognostic model to build a nomogram. The gene signature and the nomogram were externally validated in the GSE14520 cohort from the Gene Expression Omnibus (GEO) and the LIRP-JP cohort from the International Cancer Genome Consortium (ICGC). Evaluations of predictive performance evaluations were conducted using Kaplan-Meier plots, time-dependent receiver operating characteristic curves, principal component analyses, concordance indices, and decision curve analyses. The tumor microenvironment was estimated using eight published methods. Finally, we forecasted the sensitivity of HCC patients to immunotherapy and chemotherapy based on this gene signature. RESULTS We identified two necroptosis-related clusters and a 10-gene signature (MTMR2, CDCA8, S100A9, ANXA10, G6PD, SLC1A5, SLC2A1, SPP1, PLOD2, and MMP1). The gene signature and the nomogram had good predictive ability in the TCGA, ICGC, and GEO cohorts. The risk score was positively associated with the levels of necroptosis and immune cell infiltrations (especially of immunosuppressive cells). The high-risk group could benefit more from immunotherapy and some chemotherapeutics than the low-risk group. CONCLUSION The necroptosis-related gene signature provides a new method for the risk stratification and treatment optimization of HCC. The nomogram can further improve predictive accuracy.
Collapse
Affiliation(s)
- Junliang Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Huaitao Wang
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Lei Zhou
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Zhihao Liu
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Hui Chen
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| | - Xiaodong Tan
- Department of General SurgeryShengjing Hospital of China Medical UniversityShenyangLiaoningP. R. China
| |
Collapse
|
15
|
Lee SS, Park J, Oh S, Kwack K. Downregulation of LOC441461 Promotes Cell Growth and Motility in Human Gastric Cancer. Cancers (Basel) 2022; 14:cancers14051149. [PMID: 35267457 PMCID: PMC8909665 DOI: 10.3390/cancers14051149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Gastric cancer is a common tumor, with a high mortality rate. The severity of gastric cancer is assessed by TNM staging. Long noncoding RNAs (lncRNAs) play a role in cancer treatment; investigating the clinical significance of novel biomarkers associated with TNM staging, such as lncRNAs, is important. In this study, we investigated the association between the expression of the lncRNA LOC441461 and gastric cancer stage. LOC441461 expression was lower in stage IV than in stages I, II, and III. The depletion of LOC441461 promoted cell proliferation, cell cycle progression, apoptosis, cell motility, and invasiveness. LOC441461 downregulation increased the epithelial-to-mesenchymal transition, as indicated by increased TRAIL signaling and decreased RUNX1 interactions. The interaction of the transcription factors RELA, IRF1, ESR1, AR, POU5F1, TRIM28, and GATA1 with LOC441461 affected the degree of the malignancy of gastric cancer by modulating gene transcription. The present study identified LOC441461 and seven transcription factors as potential biomarkers and therapeutic targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Sang-soo Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
| | - JeongMan Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
| | - Sooyeon Oh
- Chaum Life Center, CHA University School of Medicine, Seoul 06062, Korea;
| | - KyuBum Kwack
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (S.-s.L.); (J.P.)
- Correspondence: ; Tel.: +82-31-881-7141
| |
Collapse
|
16
|
Jiang L, Chen Y, Min G, Wang J, Chen W, Wang H, Wang X, Yao N. Bcl2-associated athanogene 4 promotes the invasion and metastasis of gastric cancer cells by activating the PI3K/AKT/NF-κB/ZEB1 axis. Cancer Lett 2021; 520:409-421. [PMID: 34419501 DOI: 10.1016/j.canlet.2021.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/25/2022]
Abstract
Bcl2-associated athanogene 4 (BAG4) has been found to be aberrantly expressed in several types of human cancers. However, little is known about its expression, role, and clinical significance in gastric cancer (GC). In this study, we aimed to address these issues and to explore the underlying mechanisms. The expression level of BAG4, measured by immunohistochemistry, was significantly higher in GC tissues than in paired normal tissues. Elevated BAG4 expression was positively correlated with T stage, lymph node metastasis, and tumor size of GC and was associated with unfavorable outcomes of the patients. The overexpression of BAG4 promoted the in vitro invasion and in vivo metastasis of GC cells, and opposite results were observed after silencing of BAG4. Silencing of BAG4 significantly reduced the phosphorylation of PI3K, AKT, and p65, whereas overexpression of BAG4 markedly enhanced the phosphorylation of these molecules. At the same time, manipulating BAG4 expression resulted in the corresponding changes in p65 nuclear translocation and ZEB1 expression. Luciferase reporter and chromatin immunoprecipitation assays verified that p65 binds to the promoter of ZEB1 to upregulate its transcription. Our results demonstrate that BAG4 plays an oncogenic role in the invasion and metastasis of GC cells by activating the PI3K/AKT/NF-κB/ZEB1 axis to induce epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Lei Jiang
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yan Chen
- Department of Stomatology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Guangtao Min
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Jun Wang
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Wei Chen
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Hongpeng Wang
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiangwen Wang
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Nan Yao
- Sixth Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Ebersbach C, Beier AMK, Thomas C, Erb HHH. Impact of STAT Proteins in Tumor Progress and Therapy Resistance in Advanced and Metastasized Prostate Cancer. Cancers (Basel) 2021; 13:4854. [PMID: 34638338 PMCID: PMC8508518 DOI: 10.3390/cancers13194854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Signal transducers and activators of transcription (STATs) are a family of transcription factors involved in several biological processes such as immune response, cell survival, and cell growth. However, they have also been implicated in the development and progression of several cancers, including prostate cancer (PCa). Although the members of the STAT protein family are structurally similar, they convey different functions in PCa. STAT1, STAT3, and STAT5 are associated with therapy resistance. STAT1 and STAT3 are involved in docetaxel resistance, while STAT3 and STAT5 are involved in antiandrogen resistance. Expression of STAT3 and STAT5 is increased in PCa metastases, and together with STAT6, they play a crucial role in PCa metastasis. Further, expression of STAT3, STAT5, and STAT6 was elevated in advanced and high-grade PCa. STAT2 and STAT4 are currently less researched in PCa. Since STATs are widely involved in PCa, they serve as potential therapeutic targets. Several inhibitors interfering with STATs signaling have been tested unsuccessfully in PCa clinical trials. This review focuses on the respective roles of the STAT family members in PCa, especially in metastatic disease and provides an overview of STAT-inhibitors evaluated in clinical trials.
Collapse
Affiliation(s)
- Celina Ebersbach
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Alicia-Marie K. Beier
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
- Mildred Scheel Early Career Center, Department of Urology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| | - Christian Thomas
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| | - Holger H. H. Erb
- Department of Urology, Technische Universität Dresden, 01307 Dresden, Germany; (C.E.); (A.-M.K.B.); (C.T.)
| |
Collapse
|
18
|
Vinette V, Aubry I, Insull H, Uetani N, Hardy S, Tremblay ML. Protein tyrosine phosphatome metabolic screen identifies TC-PTP as a positive regulator of cancer cell bioenergetics and mitochondrial dynamics. FASEB J 2021; 35:e21708. [PMID: 34169549 DOI: 10.1096/fj.202100207r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Metabolic reprogramming occurs in cancer cells and is regulated partly by the opposing actions of tyrosine kinases and tyrosine phosphatases. Several members of the protein tyrosine phosphatase (PTP) superfamily have been linked to cancer as either pro-oncogenic or tumor-suppressive enzymes. In order to investigate which PTPs can modulate the metabolic state of cancer cells, we performed an shRNA screen of PTPs in HCT116 human colorectal cancer cells. Among the 72 PTPs efficiently targeted, 24 were found to regulate mitochondrial respiration, 8 as negative and 16 as positive regulators. Of the latter, we selected TC-PTP (PTPN2) for further characterization since inhibition of this PTP resulted in major functional defects in oxidative metabolism without affecting glycolytic flux. Transmission electron microscopy revealed an increase in the number of damaged mitochondria in TC-PTP-null cells, demonstrating the potential role of this PTP in regulating mitochondrial homeostasis. Downregulation of STAT3 by siRNA-mediated silencing partially rescued the mitochondrial respiration defect observed in TC-PTP-deficient cells, supporting the role of this signaling axis in regulating mitochondrial activity. In addition, mitochondrial stress prevented an increased expression of electron transport chain-related genes in cells with TC-PTP silencing, correlating with decreased ATP production, cellular proliferation, and migration. Our shRNA-based metabolic screen revealed that PTPs can serve as either positive or negative regulators of cancer cell metabolism. Taken together, our findings uncover a new role for TC-PTP as an activator of mitochondrial metabolism, validating this PTP as a key target for cancer therapeutics.
Collapse
Affiliation(s)
- Valerie Vinette
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Isabelle Aubry
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Hayley Insull
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Noriko Uetani
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Serge Hardy
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - Michel L Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Lu XQ, Zhang JQ, Zhang SX, Qiao J, Qiu MT, Liu XR, Chen XX, Gao C, Zhang HH. Identification of novel hub genes associated with gastric cancer using integrated bioinformatics analysis. BMC Cancer 2021; 21:697. [PMID: 34126961 PMCID: PMC8201699 DOI: 10.1186/s12885-021-08358-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 05/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common solid malignant tumors worldwide with a high-recurrence-rate. Identifying the molecular signatures and specific biomarkers of GC might provide novel clues for GC prognosis and targeted therapy. Methods Gene expression profiles were obtained from the ArrayExpress and Gene Expression Omnibus database. Differentially expressed genes (DEGs) were picked out by R software. The hub genes were screened by cytohubba plugin. Their prognostic values were assessed by Kaplan–Meier survival analyses and the gene expression profiling interactive analysis (GEPIA). Finally, qRT-PCR in GC tissue samples was established to validate these DEGs. Results Total of 295 DEGs were identified between GC and their corresponding normal adjacent tissue samples in E-MTAB-1440, GSE79973, GSE19826, GSE13911, GSE27342, GSE33335 and GSE56807 datasets, including 117 up-regulated and 178 down-regulated genes. Among them, 7 vital upregulated genes (HMMR, SPP1, FN1, CCNB1, CXCL8, MAD2L1 and CCNA2) were selected. Most of them had a significantly worse prognosis except SPP1. Using qRT-PCR, we validated that their transcriptions in our GC tumor tissue were upregulated except SPP1 and FN1, which correlated with tumor relapse and predicts poorer prognosis in GC patients. Conclusions We have identified 5 upregulated DEGs (HMMR, CCNB1, CXCL8, MAD2L1, and CCNA2) in GC patients with poor prognosis using integrated bioinformatical methods, which could be potential biomarkers and therapeutic targets for GC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08358-7.
Collapse
Affiliation(s)
- Xiao-Qing Lu
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Jia-Qian Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jun Qiao
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Meng-Ting Qiu
- Department of Rheumatology, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiang-Rong Liu
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Xiao-Xia Chen
- Department of Breast Surgery, Shanxi Cancer Hospital, Taiyuan, Shanxi, China
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Huan-Hu Zhang
- Department of Gastroenterology, Shanxi Cancer Hospital, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
20
|
Xu X, Wu Y, Yi K, Hu Y, Ding W, Xing C. IRF1 regulates the progression of colorectal cancer via interferon‑induced proteins. Int J Mol Med 2021; 47:104. [PMID: 33907823 PMCID: PMC8054637 DOI: 10.3892/ijmm.2021.4937] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Radiation is one of the main methods for the treatment of colorectal cancer (CRC) before or after surgery. However, radiotherapy tolerance of patients with CRC is often a major concern. Interferon regulatory factor 1 (IRF1) is a member of the IRF family and is involved in the development of multiple diseases, including tumors. The present study investigated the role of IRF1 in the development and radiation sensitivity of CRC. Immunohistochemistry was performed to examine the expression levels of IRF1 in tissue samples from patients with CRC, as well as in nude mice. MTT, 5‑ethynyl‑20‑deoxyuridine, colony formation, cell cycle alteration and apoptosis assays were performed in CRC cell lines. Western blotting and immunofluorescence were used to detect the expression levels of a series of proteins. RNA sequencing was applied to identify genes whose expression was upregulated by IRF1 overexpression. Xenograft nude mouse models and hematoxylin and eosin staining were used to validate the present findings in vivo. It was revealed that the expression levels of IRF1 were significantly lower in CRC tissues than in adjacent tissues. IRF1 upregulation inhibited cell proliferation and colony formation, caused G1 cell arrest, promoted cell apoptosis, and enhanced the sensitivity of CRC cells to X‑ray irradiation. The role of IRF1 in promoting the radiosensitivity of CRC was further demonstrated in nude mice with CRC xenografts. In addition, RNA sequencing revealed that overexpression of IRF1 in CRC cells significantly increased the expression levels of interferon‑induced protein family members interferon α inducible protein 6, interferon induced transmembrane protein 1 and interferon induced protein 35 (fold change >2.0). In summary, the present study demonstrated that the upregulation of IRF1 inhibited the progression and promoted the radiosensitivity of CRC, likely by regulating interferon‑induced proteins.
Collapse
Affiliation(s)
- Xiaohui Xu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
- Department of General Surgery, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Yong Wu
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Weiqun Ding
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
21
|
LncRNA DLEU2 is activated by STAT1 and induces gastric cancer development via targeting miR-23b-3p/NOTCH2 axis and Notch signaling pathway. Life Sci 2021; 277:119419. [PMID: 33785336 DOI: 10.1016/j.lfs.2021.119419] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Gastric cancer (GC) has severely affected the health of patients and caused high mortality around the world. Long non-coding RNAs (lncRNAs) have been validated to play significant roles in biological process of multiple cancers. METHODS Quantitative real-time PCR (RT-qPCR) and western blot analysis were conducted to evaluate the expression levels and protein levels of related genes in GC cells. Functional assays were implemented to explore the effect of deleted in lymphocytic leukemia 2 (DLEU2). The upstream and downstream mechanisms of DLEU2 were verified by mechanism investigations. RESULTS The expression of long non-coding RNA (lncRNA) DLEU2 was observably high in GC cells and tissues. DLEU2 silence depressed the capacities of proliferation, migration and invasion but promoted apoptosis in GC cells. Moreover, DLEU2 was activated by signal transducer and activator of transcription 1 (STAT1) and sequestered microRNA-23b-3p (miR-23b-3p) to modulate the expression of notch receptor 2 (NOTCH2), thereby stimulating Notch signaling pathway. More importantly, DLEU2 contributed to GC progression via targeting miR-23b-3p/NOTCH2 axis. CONCLUSIONS In summary, our research identified the STAT1/DLEU2/miR-23b-3p/NOTCH2/Notch axis in GC development, indicating that DLEU2 might function as a novel biomarker in GC.
Collapse
|
22
|
Mitsuda M, Shiozaki A, Kudou M, Shimizu H, Arita T, Kosuga T, Konishi H, Komatsu S, Kubota T, Fujiwara H, Okamoto K, Kishimoto M, Konishi E, Otsuji E. Functional Analysis and Clinical Significance of Chloride Channel 2 Expression in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2021; 28:5384-5397. [PMID: 33565032 DOI: 10.1245/s10434-021-09659-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Chloride channel 2 (CLCN2) was recently shown to affect tumor behavior. The present study examined the functions of CLCN2 in the regulation of genes that play a role in tumor progression, as well as its clinicopathological significance in esophageal squamous cell carcinoma (ESCC). METHODS Knockdown experiments were conducted using CLCN2-small-interfering RNA, and changes in proliferation, survival, and cellular movement in human ESCC cell lines were investigated. A microarray analysis of gene expression profiles in CLCN2-depleted ESCC cells was conducted. Fifty-four primary ESCC samples were examined by immunohistochemistry (IHC). RESULTS The strong expression of CLCN2 was detected in TE5 and KYSE70 cells. Downregulated expression of CLCN2 enhanced proliferation and decreased apoptosis, whereas its upregulation inhibited proliferation and increased apoptosis. The effects of lubiprostone, a CLCN2 activator, were also investigated. In lubiprostone-treated cells, proliferation was inhibited and apoptosis was increased. The microarray analysis demonstrated that interferon (IFN) signaling-related genes were downregulated in CLCN2-depleted cells. IHC showed the presence of CLCN2 in the cytoplasm and cell membranes of ESCC cells. The prognostic analysis revealed a relationship between weak CLCN2 expression and shorter overall survival. CONCLUSIONS The present results indicate that tumor progression is regulated by CLCN2 through its effects on IFN signaling. Furthermore, weak CLCN2 expression was associated with poorer outcomes in ESCC patients. The present study will contribute to a clearer understanding of the role of CLCN2 as a mediator of ESCC, as well as its use as a biomarker for this cancer.
Collapse
Affiliation(s)
- Masato Mitsuda
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | - Michihiro Kudou
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Shimizu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Arita
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Kubota
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsuo Kishimoto
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eiichi Konishi
- Department of Pathology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
23
|
Shahi Thakuri P, Lamichhane A, Singh S, Gupta M, Luker GD, Tavana H. Modeling Adaptive Resistance of KRAS Mutant Colorectal Cancer to MAPK Pathway Inhibitors with a Three-Dimensional Tumor Model. ACS Pharmacol Transl Sci 2020; 3:1176-1187. [PMID: 33344895 DOI: 10.1021/acsptsci.0c00115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Indexed: 02/07/2023]
Abstract
Single-agent drug treatment of KRASmut colorectal cancers is often ineffective because the activation of compensatory signaling pathways leads to drug resistance. To mimic cyclic chemotherapy treatments of patients, we showed that intermittent treatments of 3D tumor spheroids of KRASmut colorectal cancer cells with inhibitors of mitogen-activated protein kinase (MAPK) signaling pathway temporarily suppressed growth of spheroids. However, the efficacy of successive single-agent treatments was significantly reduced. Molecular analysis showed compensatory activation of PI3K/AKT and STAT kinases and EGFR family proteins. To overcome the adaptation of cancer cells to MAPK pathway inhibitors, we treated tumor spheroids with a combination of MEK and EGFR inhibitors. This approach significantly blocked signaling of MAPK and PI3K/AKT pathways and prevented the growth of spheroids, but it was not effective against STAT signaling. Although the combination treatment blocked the matrix invasion of DLD1 cells, additional treatments with STAT inhibitors were necessary to prevent invasiveness of HCT116 cells. Overall, our drug resistance model elucidated the mechanisms of treatment-induced growth and invasiveness of cancer cells and allowed design-driven testing and identifying of effective treatments to suppress these phenotypes.
Collapse
Affiliation(s)
- Pradip Shahi Thakuri
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Astha Lamichhane
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sunil Singh
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Megha Gupta
- Department of Arts and Sciences, The University of Akron, Akron, Ohio 44325, United States
| | - Gary D Luker
- Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States.,Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States.,Department of Radiology, Microbiology and Immunology, and Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Hossein Tavana
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
24
|
Exosomes: Insights from Retinoblastoma and Other Eye Cancers. Int J Mol Sci 2020; 21:ijms21197055. [PMID: 32992741 PMCID: PMC7582726 DOI: 10.3390/ijms21197055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes, considered as cell debris or garbage bags, have been later characterized as nanometer-sized extracellular double-membrane lipid bilayer bio-vesicles secreted by the fusion of vesicular bodies with the plasma membrane. The constituents and the rate of exosomes formation differ in different pathophysiological conditions. Exosomes are also observed and studied in different parts of the eye, like the retina, cornea, aqueous, and vitreous humor. Tear fluid consists of exosomes that are shown to regulate various cellular processes. The role of exosomes in eye cancers, especially retinoblastoma (RB), is not well explored, although few studies point towards their presence. Retinoblastoma is an intraocular tumor that constitutes 3% of cases of cancer in children. Diagnosis of RB may require invasive procedures, which might lead to the spread of the disease to other parts. Due to this reason, better ways of diagnosis are being explored. Studies on the exosomes in RB tumors and serum might help designing better diagnostic approaches for RB. In this article, we reviewed studies on exosomes in the eye, with a special emphasis on RB. We also reviewed miRNAs expressed in RB tumor, serum, and cell lines and analyzed the targets of these miRNAs from the proteins identified in the RB tumor exosomes. hsa-miR-494 and hsa-miR-9, upregulated and downregulated, respectively in RB, have the maximum number of targets. Although oppositely regulated, they share the same targets in the proteins identified in RB tumor exosomes. Overall this review provides the up-to-date progress in the area of eye exosome research, with an emphasis on RB.
Collapse
|
25
|
Xu S, Zhang H, Wang A, Ma Y, Gan Y, Li G. Silibinin suppresses epithelial-mesenchymal transition in human non-small cell lung cancer cells by restraining RHBDD1. Cell Mol Biol Lett 2020; 25:36. [PMID: 32528541 PMCID: PMC7285460 DOI: 10.1186/s11658-020-00229-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Rhomboid domain containing 1 (RHBDD1) plays a crucial role in tumorigenesis. Silibinin, which is a natural extract from milk thistle, has shown anti-tumor effects against various tumors. Here, we investigate whether silibinin affects the function of RHBDD1 in non-small cell lung cancer (NSCLC) cell proliferation, migration and invasion. METHODS The Oncomine database and an immunohistochemistry (IHC) assay were used to determine the RHBDD1 expression levels in lung cancer tissues. The associations between RHBDD1 and overall survival rate or clinicopathological parameters were respectively assessed using the Kaplan-Meier overall survival analysis or Chi-squared test. CCK-8 and Transwell assays were applied to analyze cell proliferation, migration and invasion. A549 cells were incubated with increasing concentrations of silibinin. RHBDD1 knockdown and overexpression were achieved via transfection with si-RHBDD1 or RHBDD1 overexpression plasmid, respectively. Western blotting was performed to measure the expressions of epithelial-mesenchymal transition (EMT) markers. RESULTS We found that overexpression of RHBDD1 in lung cancer tissues correlates with a poor prognosis of survival. Clinical specimen analysis showed that upregulation of RHBDD1 correlates remarkably well with TNM stage and lymph node metastasis. Silibinin suppresses A549 cell proliferation, migration, invasion and EMT in a dose-dependent manner. Importantly, RHBDD1 was downregulated in silibinin-treated A549 cells. RHBDD1 overexpression reversed the suppressive effects of silibinin on A549 cell proliferation, migration, invasion and EMT expression, while its knockdown enhanced them. CONCLUSIONS These findings shown an anti-tumor impact of silibinin on NSCLC cells via repression of RHBDD1.
Collapse
Affiliation(s)
- Suyan Xu
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Hongyan Zhang
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Aifeng Wang
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Yongcheng Ma
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Yuan Gan
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| | - Guofeng Li
- Department of Pharmacy, Henan Provincial People Hospital, Department of Pharmacy of Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 450003 Henan China
| |
Collapse
|
26
|
Wang F, Zhang L, Liu J, Zhang J, Xu G. Highly expressed STAT1 contributes to the suppression of stemness properties in human paclitaxel-resistant ovarian cancer cells. Aging (Albany NY) 2020; 12:11042-11060. [PMID: 32516753 PMCID: PMC7346083 DOI: 10.18632/aging.103317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Signal transducer and activator of transcription-1 (STAT1) is an important factor in various cellular processes. The cancer stem cell (CSC) is considered as a tumor-initiating cell that drives the inner hierarchy in many cancers including epithelial ovarian cancer (EOC). Here, we explored for the first time the regulation of STAT1 on stemness properties in chemoresistant EOC cells. The paclitaxel (PTX)-resistant EOC cell line (OV3R-PTX) was derived from PTX-sensitive OVCAR-3 cells treated by the PTX regimen. A single cell clone OV3R-PTX-B4 was selected by fluorescence-activated cell sorting. PTX-resistant cells grew slowly in conventional 2D and 3D cultures, but tumor xenograft with PTX-resistant cells grew fast in nude mice. Interestingly, OV3R-PTX-B4 cells shared the characteristics of CSCs and stemness properties were found to be increased in the non-adherent spheroid culture system. The PTX-resistant cells had a high expression of CSC-related markers and low expression of STAT1 that had a high methylation level of CpG in its promoter region. Overexpressed STAT1 suppressed stemness properties, cell proliferation, and colony formation and favored the overall survival of patients with EOC. In summary, these data indicate a regulatory mechanism of STAT1 underlying drug resistance and provide a potential therapeutic application for EOC patients with PTX resistance.
Collapse
Affiliation(s)
- Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lingyun Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jiao Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai 201508, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai 201508, China
| |
Collapse
|
27
|
A dual role of Irf1 in maintaining epithelial identity but also enabling EMT and metastasis formation of breast cancer cells. Oncogene 2020; 39:4728-4740. [PMID: 32404986 DOI: 10.1038/s41388-020-1326-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/02/2020] [Accepted: 05/05/2020] [Indexed: 01/06/2023]
Abstract
An epithelial to mesenchymal transition (EMT) is an embryonic dedifferentiation program which is aberrantly activated in cancer cells to acquire cellular plasticity. This plasticity increases the ability of breast cancer cells to invade into surrounding tissue, to seed metastasis at distant sites and to resist to chemotherapy. In this study, we have observed a higher expression of interferon-related factors in basal-like and claudin-low subtypes of breast cancer in patients, known to be associated with EMT. Notably, Irf1 exerts essential functions during the EMT process, yet it is also required for the maintenance of an epithelial differentiation status of mammary gland epithelial cells: RNAi-mediated ablation of Irf1 in mammary epithelial cells results in the expression of mesenchymal factors and Smad transcriptional activity. Conversely, ablation of Irf1 during TGFβ-induced EMT prevents a mesenchymal transition and stabilizes the expression of E-cadherin. In the basal-like murine breast cancer cell line 4T1, RNAi-mediated ablation of Irf1 reduces colony formation and cell migration in vitro and shedding of circulating tumor cells and metastasis formation in vivo. This context-dependent dual role of Irf1 in the regulation of epithelial-mesenchymal plasticity provides important new insights into the functional contribution and therapeutic potential of interferon-regulated factors in breast cancer.
Collapse
|
28
|
Zhang J, Wang F, Liu F, Xu G. Predicting STAT1 as a prognostic marker in patients with solid cancer. Ther Adv Med Oncol 2020; 12:1758835920917558. [PMID: 32426049 PMCID: PMC7222261 DOI: 10.1177/1758835920917558] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Aberrant activities of signal transducer and activator of transcription 1 (STAT1) have been implicated in cancer development. However, the prognostic value of STAT1 remains unclear. This report identified the role of STAT1 in prognosis in patients with solid cancer through open literature and The Cancer Genome Atlas (TCGA) database. METHODS Published articles were obtained from PubMed, Web of Science, and Embase databases according to a search strategy up to October 2019. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were extracted to assess the prognostic factors of patients. TCGA datasets were used to explore the prognostic value of STAT1 in various cancers. RESULTS A total of 15 studies incorporating 2839 patients with solid cancers were included. Pooled data showed that overexpressed STAT1 favored long overall survival (OS) (HR = 0.604, 95% CI = 0.431-0.846, p = 0.003) and disease-specific survival (DSS) (HR = 0.650, 95% CI = 0.512-0.825, p = 0.000). In subgroup analyses, highly expressed STAT1 was correlated with long OS of patients with high-grade serous ovarian cancer and oral squamous cell carcinoma. Data extracted from TCGA datasets unveiled that STAT1 expression was significantly higher in 12 cancers (e.g. bladder and breast) than their adjacent normal tissues. Again, highly expressed STAT1 favored long OS of patients with ovarian cancer as well as rectum adenocarcinoma, sarcoma, and skin cutaneous melanoma. However, in renal carcinoma, brain lower grade glioma, lung adenocarcinoma, and pancreatic cancer, highly expressed STAT1 was correlated with poor OS of patients. Particularly in renal carcinoma, increased STAT1 expression was associated with high grade, later stage, large tumor size, and lymph node and distant metastasis. CONCLUSION STAT1 has been identified to have prognostic value in patients with solid cancer. Highly expressed STAT1 may predict prognosis in cancer patients based on their tumor types.
Collapse
Affiliation(s)
- Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangran Liu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, P.R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
29
|
Lv X, Guo X, Ru Y, Zhou F, Yang X, Ge J, Li J, Liu S, Jiang K, Chen B. Dysbindin facilitates invasion and metastasis by promoting phosphorylation of ERK in epithelial ovarian cancer. J Cancer 2020; 11:2821-2829. [PMID: 32226500 PMCID: PMC7086264 DOI: 10.7150/jca.39269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Dysbindin has been reported to be correlated with several malignancies. However, the clinical significance and biological role of dysbindin in epithelial ovarian cancer remains largely unknown. Here we demonstrated that the mRNA and protein levels of dysbindin were significantly upregulated in EOC tissues compared with normal ovarian tissues. High levels of dysbindin were significantly correlated with worse clinicopathological characteristics and poor prognosis in EOC patients. Overexpression and silencing of dysbindin promoted and inhibited, respectively, invasion and metastasis of EOC cells in vitro and in vivo. Mechanistically, dysbindin activates phosphorylation of ERK to promote the epithelial-mesenchymal transition and to mediate the invasive and metastatic ability of EOC cells. Our findings suggest that dysbindin facilitates invasion and metastasis by promoting the EMT of EOC cells and may serve as a potential therapeutic target in EOC.
Collapse
Affiliation(s)
- Xiaohui Lv
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xin Guo
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing 100853, China.,Department of Endoscopic Surgery, Chinese People's Liberation Army 986 th Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710054, China
| | - Yi Ru
- Department of biochemistry and molecular biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fuxing Zhou
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoshan Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junli Ge
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jia Li
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Shujuan Liu
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kuo Jiang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710054, China
| | - Biliang Chen
- Department of Gynecology and Obstetrics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| |
Collapse
|
30
|
Natural Sesquiterpene Lactones Enhance Chemosensitivity of Tumor Cells through Redox Regulation of STAT3 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4568964. [PMID: 31781335 PMCID: PMC6855087 DOI: 10.1155/2019/4568964] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/07/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
STAT3 is a nuclear transcription factor that regulates genes involved in cell cycle, cell survival, and immune response. Although STAT3 activation drives cells to physiological response, its deregulation is often associated with the development and progression of many solid and hematological tumors as well as with drug resistance. STAT3 is a redox-sensitive protein, and its activation state is related to intracellular GSH levels. Under oxidative conditions, STAT3 activity is regulated by S-glutathionylation, a reversible posttranslational modification of cysteine residues. Compounds able to suppress STAT3 activation and, on the other hand, to modulate intracellular redox homeostasis may potentially improve cancer treatment outcome. Nowadays, about 35% of commercial drugs are natural compounds that derive from plant extracts used in phytotherapy and traditional medicine. Sesquiterpene lactones are an interesting chemical group of plant-derived compounds often employed in traditional medicine against inflammation and cancer. This review focuses on sesquiterpene lactones able to downmodulate STAT3 signaling leading to an antitumor effect and correlates the anti-STAT3 activity with their ability to decrease GSH levels in cancer cells. These properties make them lead compounds for the development of a new therapeutic strategy for cancer treatment.
Collapse
|
31
|
Bellio M, Caux M, Vauclard A, Chicanne G, Gratacap MP, Terrisse AD, Severin S, Payrastre B. Phosphatidylinositol 3 monophosphate metabolizing enzymes in blood platelet production and in thrombosis. Adv Biol Regul 2019; 75:100664. [PMID: 31604685 DOI: 10.1016/j.jbior.2019.100664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/19/2019] [Accepted: 09/30/2019] [Indexed: 02/09/2023]
Abstract
Blood platelets, produced by the fragmentation of megakaryocytes, play a key role in hemostasis and thrombosis. Being implicated in atherothrombosis and other thromboembolic disorders, they represent a major therapeutic target for antithrombotic drug development. Several recent studies have highlighted an important role for the lipid phosphatidylinositol 3 monophosphate (PtdIns3P) in megakaryocytes and platelets. PtdIns3P, present in small amounts in mammalian cells, is involved in the control of endocytic trafficking and autophagy. Its metabolism is finely regulated by specific kinases and phosphatases. Class II (α, β and γ) and III (Vps34) phosphoinositide-3-kinases (PI3Ks), INPP4 and Fig4 are involved in the production of PtdIns3P whereas PIKFyve, myotubularins (MTMs) and type II PIPK metabolize PtdIns3P. By regulating the turnover of different pools of PtdIns3P, class II (PI3KC2α) and class III (Vps34) PI3Ks have been recently involved in the regulation of platelet production and functions. These pools of PtdIns3P appear to modulate membrane organization and intracellular trafficking. Moreover, PIKFyve and INPP4 have been recently implicated in arterial thrombosis. In this review, we will discuss the role of PtdIns3P metabolizing enzymes in platelet production and function. Potential new anti-thrombotic therapeutic perspectives based on inhibitors targeting specifically PtdIns3P metabolizing enzymes will also be commented.
Collapse
Affiliation(s)
- Marie Bellio
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Manuella Caux
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Alicia Vauclard
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Gaëtan Chicanne
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Marie-Pierre Gratacap
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Anne-Dominique Terrisse
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Sonia Severin
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Bernard Payrastre
- Inserm U1048 and Université Paul Sabatier, Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France; Laboratoire d'Hématologie, Hopital Universitaire de Toulouse, Toulouse, France.
| |
Collapse
|
32
|
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles Targeting STATs in Cancer Therapy. Cells 2019; 8:E1158. [PMID: 31569687 PMCID: PMC6829305 DOI: 10.3390/cells8101158] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, an increase in the incidence rate of cancer has been witnessed. Although many efforts have been made to manage and treat this life threatening condition, it is still one of the leading causes of death worldwide. Therefore, scientists have attempted to target molecular signaling pathways involved in cancer initiation and metastasis. It has been shown that signal transducers and activator of transcription (STAT) contributes to the progression of cancer cells. This important signaling pathway is associated with a number of biological processes including cell cycle, differentiation, proliferation and apoptosis. It appears that dysregulation of the STAT signaling pathway promotes the migration, viability and malignancy of various tumor cells. Hence, there have been many attempts to target the STAT signaling pathway. However, it seems that currently applied therapeutics may not be able to effectively modulate the STAT signaling pathway and suffer from a variety of drawbacks such as low bioavailability and lack of specific tumor targeting. In the present review, we demonstrate how nanocarriers can be successfully applied for encapsulation of STAT modulators in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar 6451741117, Iran.
| | - Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway H91 W2TY, Ireland.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|