1
|
Cao Q, Liu L, Ma X, Zhong C, Tang M, Liu M, Qu LB, Wei B, Xu X. 1, 8-Cineole Ameliorated Staphylococcus aureus-Induced Pneumonia through Modulation of TRP-KYN and Arginine-NO Reprogramming. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40314286 DOI: 10.1021/acs.jafc.4c10860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
1, 8-Cineole (Cin), a cyclic monoterpenoid derived from tea trees and eucalyptus species, exhibits diverse pharmacological properties. Yet, its therapeutic impact and underlying mechanism against Staphylococcus aureus (S. aureus) pneumonia remain to be elucidated. In this study, metabolomics based on UPLC-MS/MS was integrated with network pharmacology, molecular biology, and molecular docking to investigate the effects of Cin. The findings demonstrated that Cin markedly reduced mortality and lung bacterial load, lessened pulmonary damage while suppressing the levels of proinflammatory factors, including tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in the bronchoalveolar lavage fluid (BALF) of infected mice. Additionally, 19 metabolites, primarily involved in tryptophan metabolism and arginine biosynthesis, were notably modified by Cin via suppressing the enzymatic activity of indoleamine 2, 3-dioxygenase 1 (IDO1) and inducible nitric oxide synthase (iNOS), thereby attenuating the inflammatory response. Notably, knockdown of IDO1 or iNOS significantly diminished the anti-inflammation effect of Cin. In conclusion, our study validates the therapeutic potential of Cin against S. aureus pneumonia via anti-inflammation by downregulating IDO1 and iNOS. Our results provide a theoretical basis of natural substances applied in bacterial pneumonia treatment.
Collapse
Affiliation(s)
- Qianwen Cao
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Luyao Liu
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xiaoge Ma
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Chaomin Zhong
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengqi Tang
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mengge Liu
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ling-Bo Qu
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Bo Wei
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xia Xu
- School of Pharmaceutical Science, Food Laboratory of Zhongyuan Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
2
|
Liu ZQ, Ciudad MT, McGaha TL. New insights into tryptophan metabolism in cancer. Trends Cancer 2025:S2405-8033(25)00076-7. [PMID: 40274457 DOI: 10.1016/j.trecan.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/26/2025]
Abstract
Tryptophan (Trp) is an essential amino acid and key intermediate in a range of biological processes. Early studies identified altered Trp utilization in cancer cells favoring cancer survival and growth. Seminal findings linking Trp metabolism and suppression of immunity led to an explosion of interest ultimately culminating in clinical trials targeting these pathways in melanoma. The failure of these trials led to a clinical retreat in this approach; however, recent insights into the complex interplay of the various Trp circuits and between tumor cells, immune cells, and the microbiota have shown that reconsideration of Trp metabolism is needed. Here, we discuss recent developments in our understanding of Trp metabolism and apparent contradictions in the field. We also discuss adaptations that occur when Trp pathways are manipulated, which may impact therapy responses.
Collapse
Affiliation(s)
- Zhe Qi Liu
- Tumor Immunotherapy Program Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - M Teresa Ciudad
- Tumor Immunotherapy Program Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program Princess Margaret Cancer Centre, Toronto, ON, M5G 2M9, Canada; Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
3
|
Wang Z, Xu C, Wang Q, Wang Y. Repurposing of nervous system drugs for cancer treatment: recent advances, challenges, and future perspectives. Discov Oncol 2025; 16:396. [PMID: 40133751 PMCID: PMC11936871 DOI: 10.1007/s12672-025-02067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
The nervous system plays a critical role in developmental biology and oncology, influencing processes from ontogeny to the complex dynamics of cancer progression. Interactions between the nervous system and cancer significantly affect oncogenesis, tumor growth, invasion, metastasis, treatment resistance, inflammation that promotes tumors, and the immune response. A comprehensive understanding of the signal transduction pathways involved in cancer biology is essential for devising effective anti-cancer strategies and overcoming resistance to existing therapies. Recent advances in cancer neuroscience promise to establish a new cornerstone of cancer therapy. Repurposing drugs originally developed for modulating nerve signal transduction represent a promising approach to target oncogenic signaling pathways in cancer treatment. This review endeavors to investigate the potential of repurposing neurological drugs, which target neurotransmitters and neural pathways, for oncological applications. In this context, it aims to bridge the interdisciplinary gap between neurology, psychiatry, internal medicine, and oncology. By leveraging already approved drugs, researchers can utilize existing extensive safety and efficacy data, thereby reducing both the time and financial resources necessary for the development of new cancer therapies. This strategy not only promises to enhance patient outcomes but also to expand the array of available treatments, thereby enriching the therapeutic landscape in oncology.
Collapse
Affiliation(s)
- Zixun Wang
- Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Chen Xu
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Qi Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Yudong Wang
- Department of Gynecologic Oncology, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Municipal Key Clinical Specialty, Female Tumor Reproductive Specialty, Shanghai Key Laboratory of Embryo Original Disease, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
4
|
Yao L, Qin W, Hu L, Shi T, Yu Yang J, Li Q, Nie H, Li J, Wang X, Zhu L, Liu D, Zhang Y, Jiang S, Zhang Z, Yang X, Li D, Zhang X. Reciprocal tumor-platelet interaction through the EPHB1-EFNB1 axis in the liver metastatic niche promotes metastatic tumor outgrowth in pancreatic ductal adenocarcinoma. Cancer Commun (Lond) 2025; 45:143-166. [PMID: 39648610 PMCID: PMC11833672 DOI: 10.1002/cac2.12637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/08/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024] Open
Abstract
BACKGROUND The interaction between the metastatic microenvironment and tumor cells plays an important role in metastatic tumor formation. Platelets play pivotal roles in hematogenous cancer metastasis through tumor cell-platelet interaction in blood vessels. Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy distinguished by its notable tendency to metastasize to the liver. However, the role of platelet in the liver metastatic niche of PDAC remains elusive. This study aimed to elucidate the role of platelets and their interactions with tumor cells in the liver metastatic niche of PDAC. METHODS An mCherry niche-labeling system was established to identify cells in the liver metastatic niche of PDAC. Platelet depletion in a liver metastasis mouse model was used to observe the function of platelets in PDAC liver metastasis. Gain-of-function and loss-of-function of erythropoietin-producing hepatocellular receptor B1 (Ephb1), tumor cell-platelet adhesion, recombinant protein, and tryptophan hydroxylase 1 (Tph1)-knockout mice were used to study the crosstalk between platelets and tumor cells in the liver metastatic niche. RESULTS The mCherry metastatic niche-labeling system revealed the presence of activated platelets in the liver metastatic niche of PDAC patients. Platelet depletion decreased liver metastatic tumor growth in mice. Mechanistically, tumor cell-expressed EPHB1 and platelet-expressed Ephrin B1 (EFNB1) mediated contact-dependent activation of platelets via reverse signaling-mediated AKT signaling activation, and in turn, activated platelet-released 5-HT, further enhancing tumor growth. CONCLUSION We revealed the crosstalk between platelets and tumor cells in the liver metastatic niche of PDAC. Reciprocal tumor-platelet interaction mediated by the EPHB1-EFNB1 reverse signaling promoted metastatic PDAC outgrowth via 5-HT in the liver. Interfering the tumor-platelet interaction by targeting the EPHB1-EFNB1 axis may represent a promising therapeutic intervention for PDAC liver metastasis.
Collapse
Affiliation(s)
- Lin‐Li Yao
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Wei‐Ting Qin
- Department of Radiation OncologyRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Li‐Peng Hu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Tie‐Zhu Shi
- Department of UrologyShanghai General HospitalShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jian Yu Yang
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Qing Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Hui‐Zhen Nie
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Jun Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xu Wang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Lei Zhu
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - De‐Jun Liu
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Yan‐Li Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Shu‐Heng Jiang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Zhi‐Gang Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xiao‐Mei Yang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Dong‐Xue Li
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Xue‐Li Zhang
- State Key Laboratory of Systems Medicine for CancerShanghai Cancer InstituteRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| |
Collapse
|
5
|
Xu C, Jiang C, Tian Y, Liu Y, Zhang H, Xiang Z, Xue H, Gu L, Xu Q. Nervous system in colorectal cancer. Cancer Lett 2024; 611:217431. [PMID: 39725147 DOI: 10.1016/j.canlet.2024.217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
6
|
Li J, Mei B, Feng L, Wang X, Wang D, Huang J, Zhang G. Amitriptyline revitalizes ICB response via dually inhibiting Kyn/Indole and 5-HT pathways of tryptophan metabolism in ovarian cancer. iScience 2024; 27:111488. [PMID: 39759009 PMCID: PMC11697709 DOI: 10.1016/j.isci.2024.111488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/26/2024] [Accepted: 11/25/2024] [Indexed: 01/07/2025] Open
Abstract
Reprogramming tryptophan metabolism (TRP) may be able to overcome immunosuppression and restore the immune checkpoint blockade (ICB) response in patients with epithelial ovarian cancer (EOC) resistant to ICB therapy because TRP metabolism is involved in the kynurenine/indole and serotonin pathways of tryptophan metabolism. Herein, employing amitriptyline (AMI), an antagonist of TLR4 and serotonin transporter (SERT), we revealed that AMI remodels the immunological landscape of EOC. In particular, AMI lowered the expression of IDO1, IL-4I1, and PD-L1, the quantity of KYN and indoles, and the level of immunosuppressive immune cells MDSC, Tregs, and CD8+CD39+/PD-1+ T cell. AMI boosted the killing potential of anti-PD-1-directed CD8+T cells and worked in concert with PD-1 inhibitors to suppress tumor growth and to prolong the survival of EOC-bearing mice. This work highlights AMI as an effective regulator of ICB response by manipulating EOC cell TRP metabolism, indicating it could be a potential strategy for improving EOC ICB therapy.
Collapse
Affiliation(s)
- Junyang Li
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Bingjie Mei
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Lu Feng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaoxin Wang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Dengfeng Wang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jianming Huang
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Guonan Zhang
- Department Gynecological Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
7
|
Chai B, Zhang A, Liu Y, Zhang X, Kong P, Zhang Z, Guo Y. KLF7 Promotes Hepatocellular Carcinoma Progression Through Regulating SLC1A5-Mediated Tryptophan Metabolism. J Cell Mol Med 2024; 28:e70245. [PMID: 39648156 PMCID: PMC11625504 DOI: 10.1111/jcmm.70245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/24/2024] [Accepted: 11/15/2024] [Indexed: 12/10/2024] Open
Abstract
Krüppel-like factor 7 is a transcriptional activator and acts as an oncogene in human cancers, including hepatocellular carcinoma (HCC). Tryptophan metabolism is important for HCC cell proliferation, metastasis, and invasion. It is unclear whether KLF7 could regulate Trp metabolism in HCC. In this study, we found that Trp metabolism was suppressed in HCC cells with KLF7 knockdown. The mRNA and protein levels of SLC1A5, SLC7A5, and TPH1, as well as the content of Trp and serotonin, were reduced after KLF7 knockdown, and were potentiated following KLF7 overexpression. Increasing the content of serotonin could restore the malignancy of tumour cells in vitro and tumour growth in vivo. Conversely, decreasing the content of serotonin suppressed HCC cell proliferation. The binding activity of KLF7 was on the promoter of SLC1A5, and KLF7 positively regulated the expression of SLC1A5. KLF7 contributed to the proliferation and migration of HCC cells by up-regulation of SLC1A5. Collectively, KLF7 promotes the progression of HCC through regulating Trp metabolism. The newly identified axis of KLF7/ SLC1A5 in HCC could represent a potential target for HCC therapy.
Collapse
Affiliation(s)
- Bao Chai
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Academy of Medical sciences, TongilShanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Anhong Zhang
- Department of SurgeryThe First Affiliated Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| | - Yang Liu
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Xi Zhang
- Shanxi Medical UniversityTaiyuanShanxiChina
| | - Pengzhou Kong
- Translational Medicine Research Center, Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Department of PathologyShanxi Medical UniversityTaiyuanShanxiChina
| | - Zhuowei Zhang
- College of Medical ImagingShanxi Medical UniversityTaiyuanShanxiChina
| | - Yarong Guo
- Department of Digestive System Oncology, Shanxi Bethune Hospital, Shanxi Academy of Medical sciences, TongilShanxi HospitalThird Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
- Department of OncologyThe First Affiliated Hospital of Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
8
|
Yan J, Chen D, Ye Z, Zhu X, Li X, Jiao H, Duan M, Zhang C, Cheng J, Xu L, Li H, Yan D. Molecular mechanisms and therapeutic significance of Tryptophan Metabolism and signaling in cancer. Mol Cancer 2024; 23:241. [PMID: 39472902 PMCID: PMC11523861 DOI: 10.1186/s12943-024-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024] Open
Abstract
Tryptophan (Trp) metabolism involves three primary pathways: the kynurenine (Kyn) pathway (KP), the 5-hydroxytryptamine (serotonin, 5-HT) pathway, and the indole pathway. Under normal physiological conditions, Trp metabolism plays crucial roles in regulating inflammation, immunity, and neuronal function. Key rate-limiting enzymes such as indoleamine-2,3-dioxygenase (IDO), Trp-2,3-dioxygenase (TDO), and kynurenine monooxygenase (KMO) drive these metabolic processes. Imbalances in Trp metabolism are linked to various cancers and often correlate with poor prognosis and adverse clinical characteristics. Dysregulated Trp metabolism fosters tumor growth and immune evasion primarily by creating an immunosuppressive tumor microenvironment (TME). Activation of the KP results in the production of immunosuppressive metabolites like Kyn, which modulate immune responses and promote oncogenesis mainly through interaction with the aryl hydrocarbon receptor (AHR). Targeting Trp metabolism therapeutically has shown significant potential, especially with the development of small-molecule inhibitors for IDO1, TDO, and other key enzymes. These inhibitors disrupt the immunosuppressive signals within the TME, potentially restoring effective anti-tumor immune responses. Recently, IDO1 inhibitors have been tested in clinical trials, showing the potential to enhance the effects of existing cancer therapies. However, mixed results in later-stage trials underscore the need for a deeper understanding of Trp metabolism and its complex role in cancer. Recent advancements have also explored combining Trp metabolism inhibitors with other treatments, such as immune checkpoint inhibitors, chemotherapy, and radiotherapy, to enhance therapeutic efficacy and overcome resistance mechanisms. This review summarizes the current understanding of Trp metabolism and signaling in cancer, detailing the oncogenic mechanisms and clinical significance of dysregulated Trp metabolism. Additionally, it provides insights into the challenges in developing Trp-targeted therapies and future research directions aimed at optimizing these therapeutic strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Di Chen
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Zi Ye
- Department of Scientific Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuqiang Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Henan Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mengjiao Duan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Chaoli Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Henan, Zhengzhou, China
| | - Lixia Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Hongjiang Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Dong F, He K, Zhang S, Song K, Jiang L, Hu LP, Li Q, Zhang XL, Zhang N, Li BT, Zhu LL, Li J, Feng M, Gao Y, Chen J, Hu X, Wang J, Jiang C, Wang C, Zhu HH, Da LT, Ji J, Zhang ZG, Bao Z, Jiang SH. SSRI antidepressant citalopram reverses the Warburg effect to inhibit hepatocellular carcinoma by directly targeting GLUT1. Cell Rep 2024; 43:114818. [PMID: 39388353 DOI: 10.1016/j.celrep.2024.114818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/20/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have shown promise in cancer therapy, particularly for hepatocellular carcinoma (HCC), but their molecular targets and mechanisms remain unclear. Here, we show that SSRIs exhibit significant anti-HCC effects independent of their classical target, the serotonin reuptake transporter (SERT). Using global inverse gene expression profiling, drug affinity responsive target stability assays, and in silico molecular docking, we demonstrate that citalopram targets glucose transporter 1 (GLUT1), resulting in reduced glycolytic flux. A mutant GLUT1 variant at the citalopram binding site (E380) diminishes the drug's inhibitory effects on the Warburg effect and tumor growth. In preclinical models, citalopram dampens the growth of GLUT1high liver tumors and displays a synergistic effect with anti-PD-1 therapy. Retrospective analysis reveals that SSRI use correlates with a lower risk of metastasis among patients with HCC. Our study describes a role for SSRIs in cancer metabolism, establishing a rationale for their repurposing as potential anti-cancer drugs for HCC.
Collapse
Affiliation(s)
- Fangyuan Dong
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Kang He
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shan Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kaiyuan Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Luju Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Peng Hu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qing Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Li Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqi Zhang
- Center for Primary Health Care Research, Lund University, Region Skåne, Sweden
| | - Bo-Tai Li
- Shanghai Immune Therapy Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Li-Li Zhu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingxuan Feng
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yunchen Gao
- Shanghai United International School Qingpu Campus, Shanghai 201799, China
| | - Jie Chen
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xiaona Hu
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jiaofeng Wang
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Chongyi Jiang
- Department of General Surgery, Hepato-Biliary-Pancreatic Center, Huadong Hospital, Fudan University, Shanghai 200040, China
| | - Cun Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Helen He Zhu
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med-X Stem Cell Research Center, Shanghai Cancer Institute & Department of Urology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University, Region Skåne, Sweden; Department of Public Health and Medicinal Administration, Faculty of Health Sciences, University of Macau, Macao, Macao SAR, China.
| | - Zhi-Gang Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zhijun Bao
- Department of Gastroenterology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai 200040, China; Shanghai Institute of Geriatrics and Gerontology, Shanghai 200040, China; Department of Geriatrics, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Shu-Heng Jiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Gu Y, Jiang L, Shui M, Luo H, Zhou X, Zhang S, Jiang C, Huang J, Chen H, Tang J, Fu Y, Luo H, Yang G, Xu K, Chi H, Liu J, Huang S. Revealing the association between East Asian oral microbiome and colorectal cancer through Mendelian randomization and multi-omics analysis. Front Cell Infect Microbiol 2024; 14:1452392. [PMID: 39355266 PMCID: PMC11443854 DOI: 10.3389/fcimb.2024.1452392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/14/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) poses a global health threat, with the oral microbiome increasingly implicated in its pathogenesis. This study leverages Mendelian Randomization (MR) to explore causal links between oral microbiota and CRC using data from the China National GeneBank and Biobank Japan. By integrating multi-omics approaches, we aim to uncover mechanisms by which the microbiome influences cellular metabolism and cancer development. METHODS We analyzed microbiome profiles from 2017 tongue and 1915 saliva samples, and GWAS data for 6692 CRC cases and 27178 controls. Significant bacterial taxa were identified via MR analysis. Single-cell RNA sequencing and enrichment analyses elucidated underlying pathways, and drug predictions identified potential therapeutics. RESULTS MR identified 19 bacterial taxa significantly associated with CRC. Protective effects were observed in taxa like RUG343 and Streptococcus_umgs_2425, while HOT-345_umgs_976 and W5053_sp000467935_mgs_712 increased CRC risk. Single-cell RNA sequencing revealed key pathways, including JAK-STAT signaling and tyrosine metabolism. Drug prediction highlighted potential therapeutics like Menadione Sodium Bisulfite and Raloxifene. CONCLUSION This study establishes the critical role of the oral microbiome in colorectal cancer development, identifying specific microbial taxa linked to CRC risk. Single-cell RNA sequencing and drug prediction analyses further elucidate key pathways and potential therapeutics, providing novel insights and personalized treatment strategies for CRC.
Collapse
Affiliation(s)
- Yuheng Gu
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lai Jiang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Min Shui
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Honghao Luo
- Department of Radiology, Xichong People’s Hospital, Nanchong, China
| | - Xuancheng Zhou
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shengke Zhang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Chenglu Jiang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jinbang Huang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Haiqing Chen
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jingyi Tang
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yiping Fu
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Huiyan Luo
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Ke Xu
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Hao Chi
- School of Clinical Medicine, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jie Liu
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
- Department of general surgery, Dazhou Central Hospital, Dazhou, China
| | - Shangke Huang
- Department of Oncology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Chen L, Huang S, Wu X, He W, Song M. Serotonin signalling in cancer: Emerging mechanisms and therapeutic opportunities. Clin Transl Med 2024; 14:e1750. [PMID: 38943041 PMCID: PMC11213692 DOI: 10.1002/ctm2.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine) is a multifunctional bioamine serving as a neurotransmitter, peripheral hormone and mitogen in the vertebrate system. It has pleiotropic activities in central nervous system and gastrointestinal function via an orchestrated action of serotonergic elements, particularly serotonin receptor-mediated signalling cascades. The mitogenic properties of serotonin have garnered recognition for years and have been exploited for repurposing serotonergic-targeted drugs in cancer therapy. However, emerging conflicting findings necessitate a more comprehensive elucidation of serotonin's role in cancer pathogenesis. MAIN BODY AND CONCLUSION Here, we provide an overview of the biosynthesis, metabolism and action modes of serotonin. We summarise our current knowledge regarding the effects of the peripheral serotonergic system on tumourigenesis, with a specific emphasis on its immunomodulatory activities in human cancers. We also discuss the dual roles of serotonin in tumour pathogenesis and elucidate the potential of serotonergic drugs, some of which display favourable safety profiles and impressive efficacy in clinical trials, as a promising avenue in cancer treatment. KEY POINTS Primary synthesis and metabolic routes of peripheral 5-hydroxytryptamine in the gastrointestinal tract. Advanced research has established a strong association between the serotonergic components and carcinogenic mechanisms. The interplay between serotonergic signalling and the immune system within the tumour microenvironment orchestrates antitumour immune responses. Serotonergic-targeted drugs offer valuable clinical options for cancer therapy.
Collapse
Affiliation(s)
- Lulu Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Shuting Huang
- School of Public HealthSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaoxue Wu
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| | - Weiling He
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
- Department of Gastrointestinal SurgeryXiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenChina
| | - Mei Song
- Institute of Precision MedicineThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhouChina
| |
Collapse
|
12
|
Zhang L, Ji Q, Chen Q, Wei Z, Liu S, Zhang L, Zhang Y, Li Z, Liu H, Sui H. Akkermansia muciniphila inhibits tryptophan metabolism via the AhR/β-catenin signaling pathway to counter the progression of colorectal cancer. Int J Biol Sci 2023; 19:4393-4410. [PMID: 37781044 PMCID: PMC10535706 DOI: 10.7150/ijbs.85712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
Akkermansia muciniphila (A. muciniphila), a gram-negative anaerobic bacterium, is selectively decreased in the fecal microbiota of patients with colorectal cancer (CRC), but its molecular mechanism in CRC development remains inconclusive. In this study, we first confirmed the inhibitory effect of A. muciniphila on CRC formation and analyzed the metabolic role of intestinal flora in human Polyps, A-CRA (advanced colorectal adenoma) and CRC samples. To better clarify the role of A. muciniphila in CRC development, a pseudo-germ-free (GF) azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model was established, followed by infection with or without A. muciniphila. Metabolomic analysis and RNA-seq analysis showed tryptophan-mediated aryl hydrocarbon receptor (AhR) was significantly down-regulated in A. muciniphila-infected CRC mice. Then, mice with intestinal specific AhR deficiency (AhRfl/fl Cre) were generated and were used in 2 murine models: AOM/DSS treatment as a model of carcinogen-induced colon cancer and a genetically induced model using ApcMin/+ mice. Notably, AhR deficiency inhibited CRC growth in the AOM/DSS and ApcMin/+ mouse model. Moreover, AhR deficiency inhibited, rather than enhanced, tumor formation and tumor-derived organoids in Apc-deficient cells both in vivo and in vitro by activating Wnt/β-catenin signaling and TCF4/LEF1-dependent transcription. Furthermore, the antitumor effectiveness of A. muciniphila was abolished either in a human colon cancer tumor model induced by subcutaneous transplantation of AhR-silenced CRC cells, or AhR-deficienty spontaneous colorectal cancer model. In conclusion, supplementation with A. muciniphila. protected mice from CRC development by specifically inhibiting tryptophan-mediated AhR/β-catenin signaling.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Combine Traditional Chinese & Western, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Qing Ji
- Department of Medical Oncology and Cancer Institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Chen
- Department of critical care medicine, Henan Provincial Hospital of Traditional Chinese Medicine, Zhengzhou, 450002, China
| | - Zhenzhen Wei
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai General Hospital Jiading Branch-Pharmacy school of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Translational medicine Research Center for Cancer Prevention and Treatment, Shanghai 201803, China
| | - Shuochuan Liu
- Department of Breast disease, Henan Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Long Zhang
- University of Shanghai for Science and Technology and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, Institute of Biomedical Sciences and Clinical Technology Transformation, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuli Zhang
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai General Hospital Jiading Branch-Pharmacy school of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Translational medicine Research Center for Cancer Prevention and Treatment, Shanghai 201803, China
| | - Zan Li
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai General Hospital Jiading Branch-Pharmacy school of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Translational medicine Research Center for Cancer Prevention and Treatment, Shanghai 201803, China
| | - Huaimin Liu
- Department of Combine Traditional Chinese & Western, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Hua Sui
- Medical Experiment Center, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
- Shanghai General Hospital Jiading Branch-Pharmacy school of Shanghai University of Traditional Chinese Medicine Joint Laboratory, Translational medicine Research Center for Cancer Prevention and Treatment, Shanghai 201803, China
| |
Collapse
|
13
|
Zhang J, Zou S, Fang L. Metabolic reprogramming in colorectal cancer: regulatory networks and therapy. Cell Biosci 2023; 13:25. [PMID: 36755301 PMCID: PMC9906896 DOI: 10.1186/s13578-023-00977-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
With high prevalence and mortality, together with metabolic reprogramming, colorectal cancer is a leading cause of cancer-related death. Metabolic reprogramming gives tumors the capacity for long-term cell proliferation, making it a distinguishing feature of cancer. Energy and intermediate metabolites produced by metabolic reprogramming fuel the rapid growth of cancer cells. Aberrant metabolic enzyme-mediated tumor metabolism is regulated at multiple levels. Notably, tumor metabolism is affected by nutrient levels, cell interactions, and transcriptional and posttranscriptional regulation. Understanding the crosstalk between metabolic enzymes and colorectal carcinogenesis factors is particularly important to advance research for targeted cancer therapy strategies via the investigation into the aberrant regulation of metabolic pathways. Hence, the abnormal roles and regulation of metabolic enzymes in recent years are reviewed in this paper, which provides an overview of targeted inhibitors for targeting metabolic enzymes in colorectal cancer that have been identified through tumor research or clinical trials.
Collapse
Affiliation(s)
- Jieping Zhang
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Shaomin Zou
- grid.12981.330000 0001 2360 039XDepartment of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655 Guangdong China ,Guangdong Institute of Gastroenterology, Guangzhou, 510655 China
| | - Lekun Fang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital, Sun Yat-Sen University, 26 Yuanchun Er Heng Road, Guangzhou, 510655, Guangdong, China. .,Guangdong Institute of Gastroenterology, Guangzhou, 510655, China.
| |
Collapse
|
14
|
Nerves in gastrointestinal cancer: from mechanism to modulations. Nat Rev Gastroenterol Hepatol 2022; 19:768-784. [PMID: 36056202 DOI: 10.1038/s41575-022-00669-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/20/2022] [Indexed: 12/08/2022]
Abstract
Maintenance of gastrointestinal health is challenging as it requires balancing multifaceted processes within the highly complex and dynamic ecosystem of the gastrointestinal tract. Disturbances within this vibrant environment can have detrimental consequences, including the onset of gastrointestinal cancers. Globally, gastrointestinal cancers account for ~19% of all cancer cases and ~22.5% of all cancer-related deaths. Developing new ways to more readily detect and more efficiently target these malignancies are urgently needed. Whereas members of the tumour microenvironment, such as immune cells and fibroblasts, have already been in the spotlight as key players of cancer initiation and progression, the importance of the nervous system in gastrointestinal cancers has only been highlighted in the past few years. Although extrinsic innervations modulate gastrointestinal cancers, cells and signals from the gut's intrinsic innervation also have the ability to do so. Here, we shed light on this thriving field and discuss neural influences during gastrointestinal carcinogenesis. We focus on the interactions between neurons and components of the gastrointestinal tract and tumour microenvironment, on the neural signalling pathways involved, and how these factors affect the cancer hallmarks, and discuss the neural signatures in gastrointestinal cancers. Finally, we highlight neural-related therapies that have potential for the management of gastrointestinal cancers.
Collapse
|
15
|
Pappula AL, Gibson LN, Bouley RA, Petreaca RC. In silico analysis of a SLC6A4 G100V mutation in lung cancers. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000645. [PMID: 36247322 PMCID: PMC9554669 DOI: 10.17912/micropub.biology.000645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
SLC6A4 is a serotonin re-uptake transporter which has been a target for anti-depressant therapies but recently some mutations have been described in cancer cells. Here, we characterize mutations in SLC6A4 that appear in cancer cells. We employed several validated computational and artificial intelligence algorithms to characterize the mutations. We identified a previously uncharacterized G100V mutation in lung cancers. In sillico structural analysis reveals that this mutation may affect SLC6A4 ligand binding and subsequently its function. We also identified several other mutations that may affect the structure of the protein. This preliminary analysis highlights the role of SLC6A4 in human cancers.
Collapse
Affiliation(s)
| | | | | | - Ruben C Petreaca
- The Ohio State University
,
Correspondence to: Ruben C Petreaca (
)
| |
Collapse
|
16
|
Sertraline inhibits stress-induced tumor growth through regulating CD8+ T cell-mediated anti-tumor immunity. Anticancer Drugs 2022; 33:935-942. [PMID: 36066403 DOI: 10.1097/cad.0000000000001383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic stress has been reported to be associated with tumor initiation and progression. But the underlying mechanism and the specific role of tumor immunity in this process are still unknown. Herein, we applied the repeated restrain stress model in C57BL/6J mice and found that the tumor growth in stressed mice was accelerated compared with that in control mice. In addition, serotonin, also called 5-hydroxytryptamine (5-HT), in the serum of stressed mice was also elevated. Sertraline, a selective serotonin reuptake inhibitor used in the clinic, can restore the serum 5-HT level in stressed mice and restrain tumor growth. We further explored the distribution of major immune cells, including B lymphocytes cells, T lymphocytes, natural killer cells, dendritic cells, tumor-associated macrophages (TAM) and regulatory T cells (Treg). We found that the infiltration of CD8+ T cells in the tumor microenvironment (TME) decreased significantly in stressed mice. And the extra 5-HT treatment could further decrease the infiltration of CD8+ T cells in the TME. The expression of IFN-γ and Granular enzyme B (GzmB) in CD8+ T cells were also dropped in the stressed mice group, whereas the expression of programmed cell death protein 1 (PD-1) on CD8+ T cells was increased. The T cell deficiency induced by stress can be reversed by sertraline, indicating its promising role in strengthening the efficacy of anti-PDL1/PD-1 immunotherapy. The present study provides new mechanistic insights into the impact of chronic stress on antitumor immunity and implicates a novel combined immunotherapy strategy for cancer patients with chronic stress.
Collapse
|
17
|
Wang Y, Li L, Li F, Yu K, Liu X, Wang Z, Xie T, Chen J, Wang X, Feng Q, Huang Y. Action Mechanism of Zhuang Medicine Jin-mu Granules Against Chronic Pelvic Inflammatory Disease Explored Using Comprehensive Network Pharmacology and Metabolomics. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zhuang Medicine Jin-mu Granules (ZMJG) are prescriptions derived from the Zhuang nationality, which is the largest minority among 56 ethnic groups in China. They have been widely used in the treatment of chronic pelvic inflammatory disease (CPID) in Guangxi Zhuang Autonomous Region for clearing away heat and toxins, removing dampness and poisoning. CPID is a common gynecological disease of female reproductive organs and surrounding tissues and is characterized by persistent and recurrent symptoms, causing serious physical and psychological damage to the patient. Preliminary research found that ZMJG have beneficial effects on CPID model rats, but the metabolic mechanism underlying their protective effects is unclear. In this study, we used the strategy of combining network pharmacology, pharmacodynamic, and metabolomic approaches to investigate the molecular mechanisms and potential targets of ZMJG for the treatment of CPID. First, a network diagram of “medicinal materials-components-targets-pathways” based on network pharmacology was constructed to obtain a preliminary understanding of the biologically active compounds and related targets of ZMJG and clarify their molecular mechanism in CPID. Subsequently, the in vivo efficacy of ZMJG was verified in a rat model. Furthermore, we analyzed the corresponding metabolomics profile to explore the differentially induced metabolic markers and elucidate the metabolic mechanism by which ZMJG treat CPID. The results show that the therapeutic effect of ZMJG on CPID is mediated through multiple pathways, metabolic pathways, and multi-component multi-target modes, providing a detailed theoretical basis for the development and clinical application of ZMJG and a new research idea for the treatment of CPID in Chinese medicine.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Linjie Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Kai Yu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Xiao Liu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Zhiping Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Tanfang Xie
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jun Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiaoxun Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Qiao Feng
- Guangxi International Hospital, Nanning, Guangxi, China
| | - Yan Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
18
|
Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Lett 2022; 543:215766. [PMID: 35690285 DOI: 10.1016/j.canlet.2022.215766] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 11/23/2022]
Abstract
The occurrence and development of tumors depend on the tumor microenvironment (TME), which consists of various types of cellular and acellular components. Tumor-associated macrophages (TAMs) are the most abundant stromal cell types in the TME. The competition for nutrients between tumor cells and macrophages leads to a limited supply of nutrients, such as glucose, lipids, and amino acids, to immune cells, which affects the differentiation and function of macrophages. Other factors in the TME, such as cytokines, chemokines, and immune checkpoints, also affect the polarization and function of macrophages. Remodeling the tumor microenvironment induces changes in macrophage nutrient uptake and polarization status, which enhance anti-tumor immunity and oxidative stress resistance and suppress immune escape. This review summarizes the influence factors on tumor progression and immune function under different conditions of macrophages. It also demonstrates the metabolic heterogeneity and phenotypic plasticity of macrophages, which provides novel strategies for anti-tumor treatment.
Collapse
|
19
|
Haq S, Wang H, Grondin J, Banskota S, Marshall JK, Khan II, Chauhan U, Cote F, Kwon YH, Philpott D, Brumell JH, Surette M, Steinberg GR, Khan WI. Disruption of autophagy by increased 5-HT alters gut microbiota and enhances susceptibility to experimental colitis and Crohn's disease. SCIENCE ADVANCES 2021; 7:eabi6442. [PMID: 34739317 PMCID: PMC8570609 DOI: 10.1126/sciadv.abi6442] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Autophagy, an essential intracellular recycling process, is linked to the pathogenesis of various diseases including Crohn’s disease (CD). Factors that lead to the development of impaired autophagy during intestinal inflammation remain largely unexplored. Here, we report the impact of the interaction between serotonin [5-hydroxytryptamine;(5-HT)] and autophagy in colitis in mouse and human studies. In mice, increased gut 5-HT inhibited autophagy and led to enhanced colitis susceptibility. Reciprocally, mice with reduced 5-HT exhibited up-regulated autophagy via the mammalian target of rapamycin pathway, which resulted in significantly decreased colitis. Deletion of autophagy gene, Atg7, in an epithelial-specific manner, in concert with reduced 5-HT, promoted the development of a colitogenic microbiota and abolished the protective effects conferred by reduced 5-HT. Notably, in control and patient peripheral blood mononuclear cells, we uncovered that 5-HT treatment inhibited autophagy. Our findings suggest 5-HT as a previously unidentified therapeutic target in intestinal inflammatory disorders such as CD that exhibits dysregulated autophagy.
Collapse
Affiliation(s)
- Sabah Haq
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Huaqing Wang
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Jensine Grondin
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Suhrid Banskota
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - John K. Marshall
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Irfan I. Khan
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Usha Chauhan
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Francine Cote
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Yun Han Kwon
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dana Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - John H. Brumell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Ontario and Cell Biology Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Surette
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gregory R. Steinberg
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
| | - Waliul I. Khan
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Hamilton Health Sciences, Hamilton, Ontario, Canada
- Centre for Metabolism Obesity and Diabetes Research, McMaster University, Hamilton, Ontario, Canada
- Corresponding author.
| |
Collapse
|