1
|
Deng Z, Zhu H, Cheng Z, Li R, Peng H. Identification and validation of pyroptosis patterns in AML via comprehensive bioinformatics analysis. Discov Oncol 2025; 16:509. [PMID: 40208371 PMCID: PMC11985831 DOI: 10.1007/s12672-025-02298-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Pyroptosis, a lytic inflammatory cell death mechanism, plays dual roles in tumorigenesis, but its clinical relevance in acute myeloid leukemia (AML) remains poorly understood. Through an integrative analysis of 40 pyroptosis-related genes in newly diagnosed AML patients (TCGA, n = 151) and healthy controls (GTEx, n = 386), we identified 32 genes with aberrant expression. Among these, 9 genes were found to be significant prognostic markers, including ELANE (protective), and CASP1, CHMP4B, BAK1, and CHMP2A (risk), which retained their prognostic significance after adjusting for age and gender. Using unsupervised nonnegative matrix factorization (NMF) on TCGA data, we classified AML into two pyroptosis patterns: the ELANEhigh subtype, associated with favorable survival, and the ELANElow subtype, which was enriched in poor karyotypes and adverse outcomes. This classification was validated in an independent cohort (GSE10358, n = 91). Single-cell RNA sequencing data (GSE116256, n = 15) revealed that the ELANElow subtype is characterized by an immunologically active microenvironment, marked by an expansion of cytotoxic T cells and naive CD4 + /CD8 + T cells. Factor analysis revealed associations between pyroptosis patterns and other forms of cell death, including ferroptosis, autophagy, and apoptosis, as well as with karyotype, leukemia stemness, and TP53/FLT3-ITD mutations. Prognostic immune gene sets enriched in the ELANElow subtype were associated with interferon signaling and ubiquitin-mediated degradation pathways. Furthermore, protein-protein interaction (PPI) network analysis identified three sub-networks and nine key hub genes. This study integrates gene expression data from newly diagnosed AML patients, revealing the heterogeneity of pyroptosis patterns within the population. It highlights the potential links between distinct pyroptosis patterns, the immune microenvironment, various cell death pathways, leukemia stemness, and genomic alterations, offering novel biomarkers and therapeutic targets for risk stratification and immunomodulatory interventions in AML.
Collapse
Affiliation(s)
- Zeyu Deng
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Hongkai Zhu
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Zhao Cheng
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China
| | - Ruijuan Li
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China.
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Hematology, Central South University, Changsha, Hunan, People's Republic of China.
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, Changsha, Hunan, People's Republic of China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Shirani N, Abdi N, Chehelgerdi M, Yaghoobi H, Chehelgerdi M. Investigating the role of exosomal long non-coding RNAs in drug resistance within female reproductive system cancers. Front Cell Dev Biol 2025; 13:1485422. [PMID: 39925739 PMCID: PMC11802832 DOI: 10.3389/fcell.2025.1485422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Exosomes, as key mediators of intercellular communication, have been increasingly recognized for their role in the oncogenic processes, particularly in facilitating drug resistance. This article delves into the emerging evidence linking exosomal lncRNAs to the modulation of drug resistance mechanisms in cancers such as ovarian, cervical, and endometrial cancer. It synthesizes current research findings on how these lncRNAs influence cancer cell survival, tumor microenvironment, and chemotherapy efficacy. Additionally, the review highlights potential therapeutic strategies targeting exosomal lncRNAs, proposing a new frontier in overcoming drug resistance. By mapping the interface of exosomal lncRNAs and drug resistance, this article aims to provide a comprehensive understanding that could pave the way for innovative treatments and improved patient outcomes in female reproductive system cancers.
Collapse
Affiliation(s)
- Nooshafarin Shirani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Neda Abdi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
3
|
Xing L, Guo X, Zhang X, Wang Y, Ren J. SUMO-specific protease 1 exacerbates acute myeloid leukemia by enhancing beclin 1-dependent autophagy through polypyrimidine tract-binding protein 1 deSUMOylation. J Leukoc Biol 2024; 116:1454-1468. [PMID: 38934654 DOI: 10.1093/jleuko/qiae143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Genetic association between SUMO-specific protease 1 (SENP1) and acute myeloid leukemia (AML) has been validated. However, the mechanism by which SENP1 affects AML proliferation, apoptosis, and autophagy remains unknown. The levels of SENP1 and polypyrimidine tract-binding protein 1 (PTBP1) were measured in patients with AML, AML cell lines, and xenograft tissues. The effects of SENP1 on AML proliferation, apoptosis, and beclin 1 (BECN1)-dependent autophagy were assessed through in vitro and in vivo loss- or gain-of-function experiments. SUMOylation analysis using immunoprecipitation (IP), RNA pull-down, RNA IP (RIP), and RNA stability assays were used to explore the molecular mechanism of SENP1 in AML development. The SENP1 level was elevated in AML samples. Silencing SENP1 impeded the development of AML, as evidenced by the inhibition of proliferation and promotion of G1-phase arrest and apoptosis resulting from SENP1 depletion in AML cells. Moreover, silencing of SENP1 restrained BECN1-depentent autophagy in AML cells. In addition, the overexpression of BECN1 or PTBP1 partially neutralized the effect of SENP1 knockdown on AML cell behavior. Mechanistically, SENP1 mediated PTBP1 deSUMOylation, which then directly interacted with BECN1 mRNA and enhanced its stability. In vivo experiments further confirmed the repressive effects of SENP1 suppression on AML development. Collectively, the SENP1/PTBP1/BECN1 signaling axis has been identified as a significant therapeutic target for enhancing AML treatment.
Collapse
Affiliation(s)
- Lina Xing
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, No. 215, West Heping Road, Shijiazhuang 050000, Hebei Province, China
| | - Xuefei Guo
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, No. 215, West Heping Road, Shijiazhuang 050000, Hebei Province, China
| | - Xiaolei Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, No. 215, West Heping Road, Shijiazhuang 050000, Hebei Province, China
| | - Ying Wang
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, No. 215, West Heping Road, Shijiazhuang 050000, Hebei Province, China
| | - Jinhai Ren
- Department of Hematology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Hematology, No. 215, West Heping Road, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
4
|
Zhu Z, Li M, Weng J, Li S, Guo T, Guo Y, Xu Y. LncRNA GAS6-AS1 contributes to 5-fluorouracil resistance in colorectal cancer by facilitating the binding of PCBP1 with MCM3. Cancer Lett 2024; 589:216828. [PMID: 38521199 DOI: 10.1016/j.canlet.2024.216828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/08/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
5-Fluorouracil (5-FU) resistance has always been a formidable obstacle in the adjuvant treatment of advanced colorectal cancer (CRC). In recent years, long non-coding RNAs have emerged as key regulators in various pathophysiological processes including 5-FU resistance. TRG is a postoperative pathological score of the chemotherapy effectiveness for CRC, of which TRG 0-1 is classified as chemotherapy sensitivity and TRG 3 as chemotherapy resistance. Here, RNA-seq combined with weighted gene correlation network analysis confirmed the close association of GAS6-AS1 with TRG. GAS6-AS1 expression was positively correlated with advanced clinicopathological features and poor prognosis in CRC. GAS6-AS1 increased the 50% inhibiting concentration of 5-FU, enhanced cell proliferation and accelerated G1/S transition, both with and without 5-FU, both in vitro and in vivo. Mechanistically, GAS6-AS1 enhanced the stability of MCM3 mRNA by recruiting PCBP1, consequently increasing MCM3 expression. Furthermore, PCBP1 and MCM3 counteracted the effects of GAS6-AS1 on 5-FU resistance. Notably, the PDX model indicated that combining chemotherapeutic drugs with GAS6-AS1 knockdown yielded superior outcomes in vivo. Together, our findings elucidate that GAS6-AS1 directly binds to PCBP1, enhancing MCM3 expression and thereby promoting 5-FU resistance. GAS6-AS1 may serve as a robust biomarker and potential therapeutic target for combination therapy in CRC.
Collapse
Affiliation(s)
- Zhonglin Zhu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Minghan Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Junyong Weng
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Shanbao Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China
| | - Tianan Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Yang Guo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, PR China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, PR China.
| |
Collapse
|
5
|
Chetty VK, Ghanam J, Lichá K, Brenzel A, Reinhardt D, Thakur BK. Y-box binding protein 1 in small extracellular vesicles reduces mesenchymal stem cell differentiation to osteoblasts-implications for acute myeloid leukaemia. J Extracell Vesicles 2024; 13:e12417. [PMID: 38499475 PMCID: PMC10948369 DOI: 10.1002/jev2.12417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/20/2024] Open
Abstract
Small extracellular vesicles (sEVs) released by acute myeloid leukaemia (AML) cells have been reported to influence the trilineage differentiation of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it remains elusive which biological cargo from AML-sEVs is responsible for this effect. In this study, sEVs were isolated from cell-conditioned media and blood plasma using size-exclusion chromatography and ultrafiltration and characterized according to MISEV2018 guidelines. Our results demonstrated that AML-sEVs increased the proliferation of BM-MSCs. Conversely, key proteins that are important for normal haematopoiesis were downregulated in BM-MSCs. Additionally, we revealed that AML-sEVs significantly reduced the differentiation of BM-MSCs to osteoblasts without affecting adipogenic or chondrogenic differentiation. Next, LC-MS/MS proteomics elucidated that various proteins, including Y-box-binding protein 1 (YBX1), were upregulated in both AML-sEVs and BM-MSCs treated with AML-sEVs. Clinically relevant, we found that YBX1 is considerably upregulated in most paediatric AML patient-derived sEVs compared to healthy controls. Interestingly, sEVs isolated after the downregulation of YBX1 in AML cells remarkably rescued the osteoblastic differentiation of BM-MSCs. Altogether, our data demonstrate for the first time that YBX1 containing AML-sEVs is one of the key players that disrupt the normal function of bone marrow microenvironment by reducing the osteogenic differentiation of BM-MSCs.
Collapse
Affiliation(s)
| | - Jamal Ghanam
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Kristína Lichá
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- Institute of Molecular Biomedicine, Faculty of MedicineComenius University in BratislavaBratislavaSlovakia
| | | | - Dirk Reinhardt
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
| | - Basant Kumar Thakur
- Department of Pediatrics IIIUniversity Hospital EssenEssenGermany
- European Liquid Biopsy SocietyHamburgGermany
| |
Collapse
|
6
|
Yan JH, Liao KQ, Yao L, Chen JL, Xiong LF, Tao XZ. LncRNA AL645608.3 mediates malignant progression of acute myeloid leukemia. Am J Transl Res 2024; 16:342-355. [PMID: 38322561 PMCID: PMC10839383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
OBJECTIVE To investigate the role of lncRNA AL645608.3 in the malignant progression of acute myeloid leukemia (AML) cells and explore relevant molecular mechanisms. METHODS The expression level of AL645608.3 was measured in AML cell lines (THP-1, HL-60, KG-1, and AML-193) via real-time quantitative polymerase chain reaction (RT-qPCR). Small hairpin RNA (shRNA) and open reading frame of AL645608.3 were cloned into lentiviral vectors and were infected into THP-1 and AML-193 cells. The expression of casitas B-lineage lymphoma (CBL), interferon regulatory factor 6 (IRF6), and interferon beta 1 (IFNB1) was detected through RT-qPCR, and western blot. Co-immunoprecipitation (Co-IP) on IRF6 was conducted. Matrix metalloprotease-9 (MMP-9) activity was evaluated via gelatin zymography assay. RESULTS LncRNA AL645608.3 was expressed in the four AML cell lines (THP-1, HL-60, KG-1, and AML-193). Silencing AL645608.3 mitigated the expression of IRF6 and IFNB1 but elevated the expression of CBL in THP-1 cells. Oppositely, AL645608.3 overexpression up-regulated the expression of IRF6 and IFNB1 but decreased the expression of CBL in AML-193 cells. Co-IP results proved that AL645608.3 could directly mediate IRF6 activity in THP-1 and AML-193 cells. MMP-9 activity was decreased by AL645608.3 knockdown and was improved by AL645608.3 overexpression in AML-193 cells. CONCLUSION AL645608.3 is expressed in different AML cell lines, and mediates the expression of CBL, IRF6, IFNB1, and MMP-9. These findings might deepen our comprehension of the molecular mechanisms underlying AML.
Collapse
Affiliation(s)
- Jin-Hua Yan
- School of Information Management, Jiangxi University of Finance and EconomicsNanchang 330013, Jiangxi, China
| | - Kai-Qiong Liao
- Department of Hematology, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| | - Ling Yao
- Department of Gastroenterology, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| | - Jian-Lan Chen
- Department of Hematology, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| | - Li-Fang Xiong
- Department of Hematology, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| | - Xu-Zhang Tao
- Department of Nuclear Medicine, The First Hospital of NanchangNanchang 330008, Jiangxi, China
| |
Collapse
|
7
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
8
|
Li Z, Guo Z, Xiao H, Chen X, Liu W, Zhou H. Simulating neuronal development: exploring potential mechanisms for central nervous system metastasis in acute lymphoblastic leukemia. Front Oncol 2024; 13:1331802. [PMID: 38239636 PMCID: PMC10794646 DOI: 10.3389/fonc.2023.1331802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/07/2023] [Indexed: 01/22/2024] Open
Abstract
Background Acute lymphoblastic leukemia (ALL) is prone to metastasize to the central nervous system (CNS), which is an important cause of poor treatment outcomes and unfavorable prognosis. However, the pathogenesis of CNS metastasis of ALL cells has not been fully illuminated. Recent reports have shed some light on the correlation between neural mechanisms and ALL CNS metastasis. These progressions prompt us to study the relationship between ALL central nervous system metastasis and neuronal development, exploring potential biomarkers and therapeutic targets of CNS metastasis. Materials and methods ALL central nervous system metastasis- and neuronal development-related differentially expressed genes (DEGs) were identified by analyzing gene expression datasets GSE60926 and GSE13715. Target prediction and network analysis methods were applied to assess protein-protein interaction networks. Gene Ontology (GO) terms and pathway enrichment for DEGs were assessed. Co-expressed differentially expressed genes (co-DEGs) coupled with corresponding predicted microRNAs (miRNAs) were studied as well. Reverse transcription-polymerase chain reaction (RT-PCR) and flow cytometry were employed for the validation of key co-DEGs in primary ALL cells. Furthermore, ALL cells were treated with a vascular endothelial growth factor (VEGF) inhibitor to block neuronal development and assess changes in the co-DEGs. Results We identified 216, 208, and 204 DEGs in ALL CNS metastasis specimens and neuronal development samples (GSE60926 and GSE13715). CD2, CD3G, CD3D, and LCK may be implicated in ALL CNS metastasis. LAMB1, MATN3, IGFBP3, LGALS1, and NEUROD1 may be associated with neuronal development. Specifically, four co-DEGs (LGALS1, TMEM71, SHISA2, and S100A11) may link ALL central nervous system metastasis and neuronal development process. The miRNAs for each co-DEG could be potential biomarkers or therapeutic targets for ALL central nervous system metastasis, especially hsa-miR-22-3p, hsa-miR-548t-5p, and hsa-miR-6134. Additionally, four co-DEGs (LGALS1, TMEM71, SHISA2, and S100A11) were validated in CNS-infiltrated ALL cells. The VEGF inhibitor demonstrated a suppressive effect on mRNA and protein expression of key co-DEGs. Conclusion The bioinformatic survey and key gene validation suggest a possible correlation between ALL CNS metastasis and the neuronal development process. Simulating the neuronal development process might be a possible strategy for CNS metastasis in ALL. LGALS1, TMEM71, SHISA2, and S100A11 genes are promising and novel biomarkers and targets in ALL CNS metastasis.
Collapse
Affiliation(s)
- Ziping Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Guo
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Haitao Xiao
- Department of Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuexing Chen
- Institute of Hematology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Xie Y, Zhang Z, Lai D, Liang J, Zhao Z, Lu W, Ke J, Lin W, He H. Lymph node metastasis-related lncRNA GAS6-AS1 facilitates the progression of esophageal squamous cell carcinoma. J Gastrointest Oncol 2023; 14:2293-2308. [PMID: 38196547 PMCID: PMC10772685 DOI: 10.21037/jgo-23-798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 01/11/2024] Open
Abstract
Background Lymph node metastasis is the main type of metastasis in esophageal squamous cell carcinoma (ESCC), especially when the primary tumor invasion depth reaches above the adventitia layer (T3 stage), the incidence of lymph node metastasis increases sharply. Abnormal expression of long non-coding RNAs (lncRNAs) has been confirmed in ESCC, but there are still many unknown connections between lncRNAs and lymph node metastasis. Methods We used transcriptome sequencing (RNA-seq) to analyze 10 pairs of ESCC tissues with primary tumor stage T3 and their paired normal epithelium. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to further verify the sequencing results, and survival curve analysis, logistic regression analysis, and receiver operating characteristic (ROC) curve analysis were used to investigate its clinical application value. We investigated the growth and metastasis effects of lncRNA GAS6-AS1 on ESCC cell lines TE-1 and KYSE410 in vitro and in vivo. Other functional experiments included cell apoptosis and cell cycle experiments. Results Based on our RNA-seq data, lncRNA GAS6-AS1 is highly expressed in ESCC tissues, especially in cancer tissues with lymph node metastasis. The qRT-PCR experiment analysis showed that high expression of GAS6-AS1 was related to poor tumor differentiation and tumor stage. Logistic regression analysis showed that it was an independent risk factor for lymph node metastasis, and ROC analysis validated that it could predict lymph node metastasis. Further survival analysis suggested that high expression of GAS6-AS1 was associated with patients' poor prognosis. In vitro experiments, knocking down GAS6-AS1 inhibited the growth and metastasis of ESCC cells and inhibited tumor growth in vivo. In addition, knocking down GAS6-AS1 can inhibit cell cycle and promote cell apoptosis. Conclusions Our results revealed that lncRNA GAS6-AS1 obtained from RNA-seq can be used as an independent risk factor for ESCC lymph node metastasis and an effective biomarker to predict, and that it was related to the growth and metastasis of ESCC. It may represent a new biomarker to aid in the assessment of the lymph node metastasis of ESCC.
Collapse
Affiliation(s)
- Yujie Xie
- Department of Thoracic Surgery, Gaozhou People’s Hospital, Maoming, China
| | - Zhanfei Zhang
- Department of Cardiothoracic Surgery, Zhongshan City People’s Hospital, Zhongshan, China
| | - Dongmei Lai
- Department of Oncology, Gaozhou People’s Hospital, Maoming, China
| | - Jin Liang
- Department of Cardiothoracic Surgery, Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Zhengang Zhao
- Department of Cardiothoracic Surgery, Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Weicheng Lu
- Department of Thoracic Surgery, Maoming People’s Hospital, Maoming, China
| | - Junli Ke
- Department of Cardiothoracic Surgery, Graduate School of Guangdong Medical University, Zhanjiang, China
| | - Wanli Lin
- Department of Thoracic Surgery, Gaozhou People’s Hospital, Maoming, China
| | - Haiquan He
- Department of Thoracic Surgery, Gaozhou People’s Hospital, Maoming, China
| |
Collapse
|
10
|
Guo C, Gao YY, Li ZL. Predicting leukemic transformation in myelodysplastic syndrome using a transcriptomic signature. Front Genet 2023; 14:1235315. [PMID: 37953918 PMCID: PMC10634373 DOI: 10.3389/fgene.2023.1235315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
Background: For prediction on leukemic transformation of MDS patients, emerging model based on transcriptomic datasets, exhibited superior predictive power to traditional prognostic systems. While these models were lack of external validation by independent cohorts, and the cell origin (CD34+ sorted cells) limited their feasibility in clinical practice. Methods: Transformation associated co-expressed gene cluster was derived based on GSE58831 ('WGCNA' package, R software). Accordingly, the least absolute shrinkage and selection operator algorithm was implemented to establish a scoring system (i.e., MDS15 score), using training set (GSE58831 originated from CD34+ cells) and testing set (GSE15061 originated from unsorted cells). Results: A total of 68 gene co-expression modules were derived, and the 'brown' module was recognized to be transformation-specific (R2 = 0.23, p = 0.005, enriched in transcription regulating pathways). After 50,000-times LASSO iteration, MDS15 score was established, including the 15-gene expression signature. The predictive power (AUC and Harrison's C index) of MDS15 model was superior to that of IPSS/WPSS in both training set (AUC/C index 0.749/0.777) and testing set (AUC/C index 0.933/0.86). Conclusion: By gene co-expression analysis, the crucial gene module was discovered, and a novel prognostic system (MDS15) was established, which was validated not only by another independent cohort, but by a different cell origin.
Collapse
Affiliation(s)
| | | | - Zhen-Ling Li
- Department of Hematology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
11
|
Yang J, Zhou F, Yang X, Ma P, Ma X. A prognostic signature based on seven T-cell-related cell clustering genes in bladder urothelial carcinoma. Open Med (Wars) 2023; 18:20230773. [PMID: 37745978 PMCID: PMC10512444 DOI: 10.1515/med-2023-0773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 07/10/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023] Open
Abstract
Bladder urothelial carcinoma (BLCA) is one of the most common cancer-related deaths in the world, along with high mortality. Due to the difficult detection of early symptoms, the treatment for this disease is still dissatisfactory. Thus, the current research hotspot is beginning to focus on the immune microenvironment in this disease, aiming to provide guidance for diagnosis and treatment. In this study, the single-cell RNA sequencing data downloaded from the gene expression omnibus database was used to classify the immune cells of BLCA. And the final seven T-cell-related cell clustering genes associated with BLCA prognosis (HSPA2, A2M, JUN, PDGFRB, GBP2, LGALS1, and GAS6) were screened out, and then used for constructing the prognostic model against BLCA based on the Cox and LASSO regression analysis. Satisfactorily, the model could efficiently evaluate the overall survival of BLCA and had the potential to be applied for the clinic treatment. Moreover, we also revealed that the difference in immune infiltration levels and gene mutation might account for the diverse prognosis in BLCA patients. In a word, our findings provided a novel insight for designing efficient immunotherapies for BLCA.
Collapse
Affiliation(s)
- Jie Yang
- The First School of Clinical Medicine, Lanzhou University/Department of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Fenghai Zhou
- The First School of Clinical Medicine, Lanzhou University/Department of Urology, Gansu Provincial Hospital, No. 204 Donggang West Road, Chengguan District, Lanzhou, Gansu, 730000, P.R. China
| | - Xia Yang
- Department of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Pengcheng Ma
- Department of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| | - Xiaoling Ma
- Department of Reproductive Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, P.R. China
| |
Collapse
|
12
|
Li H, Zhang D, Fu Q, Wang S, Wang Z, Zhang X, Chen X, Zhu X, An N, Chen Y, Zhou L, Lu D, Zhao N. YBX1 as an oncogenic factor in T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:4874-4885. [PMID: 37339496 PMCID: PMC10469076 DOI: 10.1182/bloodadvances.2022009648] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Y-box-binding protein 1 (YBX1), a member of the RNA-binding protein family, is a critical regulator of cell survival in various solid tumors and acute myeloid leukemia. However, the function of YBX1 in T-cell acute lymphoblastic leukemia (T-ALL) remains elusive. Here, we found that YBX1 was upregulated in patients with T-ALL, T-ALL cell lines, and NOTCH1-induced T-ALL mice. Furthermore, depletion of YBX1 dramatically reduced cell proliferation, induced cell apoptosis, and induced G0/G1 phase arrest in vitro. Moreover, YBX1 depletion significantly decreased the leukemia burden in the human T-ALL xenograft and NOTCH1-induced T-ALL mice model in vivo. Mechanistically, downregulation of YBX1 markedly inhibited the expression of total AKT serine/threonine kinase (AKT), p-AKT, total extracellular signal-regulated kinase (ERK), and p-ERK in T-ALL cells. Taken together, our results uncovered a critical role of YBX1 in the leukemogenesis of T-ALL, which may have great potential as a biomarker and therapeutic target in T-ALL.
Collapse
Affiliation(s)
- Huan Li
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Danlan Zhang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Qiuxia Fu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Zhongyuan Wang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xin Zhang
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xin Chen
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Xiaoyu Zhu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Na An
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liang Zhou
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Desheng Lu
- Department of Pharmacology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, China
| | - Na Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
13
|
Mikuteit M, Zschäbitz S, Stöhr C, Herrmann E, Polifka I, Agaimy A, Trojan L, Ströbel P, Becker F, Wülfing C, Barth P, Stöckle M, Staehler M, Stief C, Haferkamp A, Hohenfellner M, Duensing S, Macher-Göppinger S, Wullich B, Noldus J, Brenner W, Roos F, Walter B, Otto W, Burger M, Erlmeier M, Schrader AJ, Hartmann A, Erlmeier F, Steffens S. Evaluation of Gas 6 as a Prognostic Marker in Papillary Renal Cell Carcinoma. Urol Int 2023; 107:713-722. [PMID: 37348477 PMCID: PMC10413799 DOI: 10.1159/000529898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/06/2023] [Indexed: 06/24/2023]
Abstract
INTRODUCTION Growth arrest-specific protein 6 (Gas 6) is a ligand that plays a role in proliferation and migration of cells. For several tumor entities, high levels of Gas 6 are associated with poorer survival. We examined the prognostic role of Gas 6 in renal cell carcinoma (RCC), especially in papillary RCC (pRCC), which is still unclear. METHODS The patients' sample collection is a joint collaboration of the PANZAR consortium. Patients' medical history and tumor specimens were collected from n = 240 and n = 128 patients with type 1 and 2 pRCC, respectively. Expression of Gas 6 was determined by immunohistochemistry. RESULTS In total, Gas 6 staining was evaluable in 180 of 240 type 1 and 110 of 128 type 2 pRCC cases. Kaplan-Meier analysis disclosed no significant difference in 5-year overall survival for all pRCC nor either subtype. Also, Gas+ and Gas- groups did not significantly differ in any tumor or patient characteristics. CONCLUSION Gas 6 was not found to be an independent prognostic marker in pRCC. Future studies are warranted to determine if Gas 6 plays a role as prognostic marker or therapeutic target in pRCC.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Christine Stöhr
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Edwin Herrmann
- Department of Urology, University Hospital Muenster, Muenster, Germany
| | - Iris Polifka
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Abbas Agaimy
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Lutz Trojan
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
| | - Philipp Ströbel
- Department of Pathology, University Hospital Göttingen, Göttingen, Germany
| | - Frank Becker
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
| | - Christian Wülfing
- Institute of Pathology, University Hospital Göttingen, Göttingen, Germany
| | - Peter Barth
- Department of Urology, University of Marburg, Marburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
| | - Michael Staehler
- Department of Urology, University Hospital Munich, Munich, Germany
| | - Christian Stief
- Department of Urology, University Hospital Munich, Munich, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Mainz, Mainz, Germany
| | | | - Stefan Duensing
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernd Wullich
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
| | - Walburgis Brenner
- Clinic for Obstretics and Woman's Health and Department of Urology, University Medical Center, Mainz, Germany
- Department of Urology, University of Mainz, Mainz, Germany
| | - Frederik Roos
- Department of Urology, University Hospital Frankfurt, Frankfurt/Main, Germany
| | - Bernhard Walter
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Wolfgang Otto
- Department of Urology, University of Regensburg, Regensburg, Germany
| | - Maximilian Burger
- Department of Urology, University of Regensburg, Regensburg, Germany
| | | | | | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
| | - Sandra Steffens
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
| | - German Network of Kidney Cancer
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean’s Office, Curriculum Development, Hannover Medical School, Hannover, Germany
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Hospital Erlangen-Nuernberg, Friedrich Alexander University (FAU), Erlangen, Germany
- Department of Urology, University Hospital Muenster, Muenster, Germany
- Department of Urology, University Hospital Göttingen, Göttingen, Germany
- Department of Pathology, University Hospital Göttingen, Göttingen, Germany
- Department of Urology and Pediatric Urology, University of Saarland (UKS), Homburg, Germany
- Institute of Pathology, University Hospital Göttingen, Göttingen, Germany
- Department of Urology, University of Marburg, Marburg, Germany
- Department of Urology, University Hospital Munich, Munich, Germany
- Department of Urology, University Hospital Mainz, Mainz, Germany
- Department of Urology, University Hospital Heidelberg, Heidelberg, Germany
- Institute of Pathology, University Hospital Mainz, Mainz, Germany
- Department of Urology and Pediatric Urology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Erlangen, Germany
- Department of Urology, Marien Hospital Herne, Ruhr University Bochum, Herne, Germany
- Clinic for Obstretics and Woman's Health and Department of Urology, University Medical Center, Mainz, Germany
- Department of Urology, University of Mainz, Mainz, Germany
- Department of Urology, University Hospital Frankfurt, Frankfurt/Main, Germany
- Department of Urology, University of Regensburg, Regensburg, Germany
- Department of Urology, München Klinik Bogenhausen, Munich, Germany
| |
Collapse
|
14
|
Yang R, Li L, Hou Y, Li Y, Zhang J, Yang N, Zhang Y, Ji W, Yu T, Lv L, Liang H, Li X, Li T, Shan H. Long non-coding RNA KCND1 protects hearts from hypertrophy by targeting YBX1. Cell Death Dis 2023; 14:344. [PMID: 37253771 DOI: 10.1038/s41419-023-05852-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
Cardiac hypertrophy is a common structural remodeling in many cardiovascular diseases. Recently, long non-coding RNAs (LncRNAs) were found to be involved in the physiological and pathological processes of cardiac hypertrophy. In this study, we found that LncRNA KCND1 (LncKCND1) was downregulated in both transverse aortic constriction (TAC)-induced hypertrophic mouse hearts and Angiotensin II (Ang II)-induced neonatal mouse cardiomyocytes. Further analyses showed that the knockdown of LncKCND1 impaired cardiac mitochondrial function and led to hypertrophic changes in cardiomyocytes. In contrast, overexpression of LncKCND1 inhibited Ang II-induced cardiomyocyte hypertrophic changes. Importantly, enhanced expression of LncKCND1 protected the heart from TAC-induced pathological cardiac hypertrophy and improved heart function in TAC mice. Subsequent analyses involving mass spectrometry and RNA immunoprecipitation assays showed that LncKCND1 directly binds to YBX1. Furthermore, overexpression of LncKCND1 upregulated the expression level of YBX1, while silencing LncKCND1 had the opposite effect. Furthermore, YBX1 was downregulated during cardiac hypertrophy, whereas overexpression of YBX1 inhibited Ang II-induced cardiomyocyte hypertrophy. Moreover, silencing YBX1 reversed the effect of LncKCND1 on cardiomyocyte mitochondrial function and its protective role in cardiac hypertrophy, suggesting that YBX1 is a downstream target of LncKCND1 in regulating cardiac hypertrophy. In conclusion, our study provides mechanistic insights into the functioning of LncKCND1 and supports LncKCND1 as a potential therapeutic target for pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Rui Yang
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology, School of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Liangliang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yumeng Hou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yingnan Li
- Center for Tumor and Immunology, the Precision Medical Institute, Xi'an Jiaotong University, Xi'an, 710115, China
| | - Jing Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Na Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuhan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Weihang Ji
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lifang Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Department of Basic Medicine, The Centre of Functional Experiment Teaching, Harbin Medical University, Harbin, 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xuelian Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
15
|
Downregulated Circulating Long Non-coding RNA GAS6-AS1 Screens and Predicts Acute Myocardial Infarction. Anatol J Cardiol 2023; 27:167-172. [PMID: 36856591 PMCID: PMC9995557 DOI: 10.14744/anatoljcardiol.2022.2496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Acute myocardial infarction seriously threatens human health and life quality, which needs novel biomarkers to improve its early detection and development prediction. This study aimed to assess the potential of long non-coding RNA GAS6-AS1 in discriminating acute myocardial infarction patients and predicting patients' outcomes. METHODS The circulating expression of GAS6-AS1 in 83 acute myocardial infarction patients and 62 healthy individuals was evaluated using polymerase chain reaction. The value of GAS6-AS1 in the distinguishing acute myocardial infarction patients was evaluated with receiver operating characteristic analysis, and its prognosis predictive potential was assessed by Kaplan-Meier and Cox analysis. Additionally, the correlation of GAS6-AS1 with patients' critical features was evaluated by Spearman's correlation analysis. RESULTS Significant downregulation of GAS6-AS1 was observed in the plasma of acute myocardial infarction patients relative to healthy individuals. Reduced GAS6-AS1 could discriminate acute myocardial infarction patients from healthy controls and indicate patients' unoptimistic prognosis. Moreover, GAS6-AS1 was found to be negatively cor-related with the levels of creatine kinase, creatine kinasemyocardial bland, lactic dehy-drogenase, hydroxybutyrate dehydrogenase, troponin T, and positively correlated with the ejection fraction of acute myocardial infarction patients. CONCLUSION Changes in circulating GAS6-AS1 in acute myocardial infarction served as a potential diagnostic and prognostic biomarker of acute myocardial infarction.
Collapse
|
16
|
Liu M, Liu C, Li X, Li S. RP11-79H23.3 Inhibits the Proliferation and Metastasis of Non-small-cell Lung Cancer Through Promoting miR-29c. Biochem Genet 2022; 61:506-520. [PMID: 35972581 DOI: 10.1007/s10528-022-10263-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Evidences indicate that long non-coding RNAs (lncRNAs) are closely involved and contributed to tumorigenesis and cancer progression. As a novel lncRNA, RP11-79H23.3 was found to be an anti-oncogene in bladder cancer. However, the essential roles and functions of RP11-79H23.3 in non-small-cell lung cancer (NSCLC) remains to be elucidated. Here, loss of functional assay was applied to gain insights into the functions of RP11-79H23.3 on the proliferation and metastasis capabilities of A549 and H1299 cells. Meantime, Real-time PCR was utilized to measure RP11-79H23.3 and miR-29c expression in NSCLC tissues. Dual-luciferase reporter assay, CCK8, colony formation assay, transwell and Western blot were performed to illustrate the potential molecular basis of RP11-79H23.3 in NSCLC. RP11-79H23.3 downregulation facilitated cell proliferation, migration, and invasion of NSCLC. The result of dual-luciferase reporter assay represented a direct interaction of RP11-79H23.3 with miR-29c, which suppressed miR-29c expression that showed inversely correlation in NSCLC. Moreover, RP11-79H23.3 siRNA facilitated the progression of NSCLC partially via regulating the expression of miR-29c and the activation of Wnt/β-catenin signaling pathway. Our findings highlighted that RP11-79H23.3, served as an anti-oncogene, accelerated NSCLC progression through sequestering miR-29c, providing a promising therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Mulin Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Chang Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China
| | - Xi Li
- Department of Clinical Laboratory, Weifang People's Hospital, Weifang, 261000, Shandong Province, China
| | - Shijun Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Dalian Medical University, No. 222 Zhongshan Road, Dalian, 116011, Liaoning Province, China.
| |
Collapse
|
17
|
Chen Q, Zhou L, Ma D, Hou J, Lin Y, Wu J, Tao M. LncRNA GAS6-AS1 facilitates tumorigenesis and metastasis of colorectal cancer by regulating TRIM14 through miR-370-3p/miR-1296-5p and FUS. J Transl Med 2022; 20:356. [PMID: 35962353 PMCID: PMC9373365 DOI: 10.1186/s12967-022-03550-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are essential regulators of tumorigenesis and the development of colorectal cancer (CRC). Here, we aimed to investigate the role of lncRNA GAS6-AS1 in CRC and its potential mechanisms. Methods Bioinformatics analyses evaluated the level of GAS6-AS1 in colon cancer, its correlation with clinicopathological factors, survival curve and diagnostic value. qRT-PCR were performed to detect the GAS6-AS1 level in CRC samples and cell lines. The CCK8, EdU, scratch healing, transwell assays and animal experiments were conducted to investigate the function of GAS6-AS1 in CRC. RNA immunoprecipitation (RIP) and dual-luciferase reporter gene analyses were carried out to reveal interaction between GAS6-AS1, TRIM14, FUS, and miR-370-3p/miR-1296-5p. Results GAS6-AS1 was greatly elevated in CRC and positively associated with unfavorable prognosis of CRC patients. Functionally, GAS6-AS1 positively regulates CRC proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and induces CRC growth and metastasis in vivo. Moreover, GAS6-AS1 exerted oncogenic function by competitively binding to miR-370-3p and miR-1296-5p, thereby upregulating TRIM14. Furthermore, we verified that GAS6-AS1 and TRIM14 both interact with FUS and that GAS6-AS1 stabilized TRIM14 mRNA by recruiting FUS. Besides, rescue experiments furtherly demonstrated that GAS6-AS1 facilitate progression of CRC by regulating TRIM14. Conclusion Collectively, these findings demonstrate that GAS6-AS1 promotes TRIM14-mediated cell proliferation, migration, invasion, and EMT of CRC via ceRNA network and FUS-dependent manner, suggesting that GAS6-AS1 could be utilized as a novel biomarker and therapeutic target for CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03550-0.
Collapse
Affiliation(s)
- Qing Chen
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu, China.,Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Lin Zhou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - De Ma
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu, China
| | - Juan Hou
- Department of Oncology, Jingjiang People's Hospital, The Seventh Affiliated Hospital of Yangzhou University, Jingjiang, Jiangsu, China
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China. .,Department of Oncology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
18
|
Mikuteit M, Zschäbitz S, Erlmeier M, Autenrieth M, Weichert W, Hartmann A, Steffens S, Erlmeier F. Growth Arrest-Specific 6 in Chromophobe Renal Cell Carcinoma. Oncology 2022; 100:536-541. [PMID: 35760058 PMCID: PMC9677856 DOI: 10.1159/000525601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Overexpression of tumor-associated growth arrest-specific protein 6 (Gas6) is found in many tumor entities. The prognostic value of Gas6 in renal cell carcinoma (RCC), especially in non-clear cell RCC, is still unclear. AIM The aim of the study was to evaluate the prognostic impact of Gas6 expression in a large cohort of patients with chromophobe RCC (chRCC). MATERIAL AND METHODS Patients who underwent renal surgery due to chRCC were retrospectively evaluated. Tumor specimens were analyzed for Gas6 expression by immunohistochemistry. RESULTS Eighty-one chRCC patients were eligible for analysis; of these, 24 (29.6%) patients were positive for Gas6. No significant associations were found for Gas6 expression and clinical attributes in patients with chRCC. The Kaplan-Meier analysis revealed no differences in 5-year overall survival for Gas6- compared to Gas6+ (89.6% vs. 100.0%; p = 0.288) tumors. CONCLUSION In chRCC, Gas6 expression is not associated with survival and other parameters of aggressiveness. Due to the rare incidence of chRCC, further studies with larger cohorts are warranted.
Collapse
Affiliation(s)
- Marie Mikuteit
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean's Office − Curriculum Development, Hannover Medical School, Hannover, Germany
| | - Stefanie Zschäbitz
- Department of Medical Oncology, National Center of Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Michael Autenrieth
- Department of Urology, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Wilko Weichert
- Institute for Pathology and Pathological Anatomy, Technical University Munich, Munich, Germany
- Member of the German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| | - Sandra Steffens
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Dean's Office − Curriculum Development, Hannover Medical School, Hannover, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Franziska Erlmeier
- Institute of Pathology, University Hospital of Erlangen, Erlangen, Germany
| |
Collapse
|
19
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|