1
|
Khan D, Sridhar A, Moffett CR. GLP-1R/NPY2R regulate gene expression, ovarian and adrenal morphology in HFD mice. J Endocrinol 2025; 264:e240189. [PMID: 39692365 PMCID: PMC11798413 DOI: 10.1530/joe-24-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/19/2024]
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) and neuropeptide Y receptors (NPYRs) are expressed in reproductive tissues contributing to the regulation of gonadal function. This exploratory study examines the potential impact of their modulation by assessing the effects of exendin-4 (Ex-4) and peptide YY (PYY) (3-36) on endocrine ovaries and adrenals in high-fat diet (HFD) mice. Ex-4 and PYY(3-36) reduced blood glucose and energy intake, with no effects on body weight. While HFD did not impact the estrous cycle, Ex-4 increased metestrus frequency and decreased diestrus frequency resulting in 0% mice experiencing repeated diestrus or becoming acyclic. Luteinizing hormone levels were significantly higher in the Ex-4 and PYY(3-36) groups compared to the normal diet and HFD controls. In the adrenals, reduced capsule and zona glomerulosa thickness caused by HFD was reversed after peptide treatments. Within the ovaries, HFD increased the number of atretic follicles, an effect that disappeared after Ex-4 and PYY(3-36) treatments. Ex-4 also increased the number of corpora lutea owing to the prolonged metestrus phase. Gene expression analysis within the adrenals revealed the upregulation of Insr and the downregulation of Prgtr in HFD mice, while Ex-4 downregulated the expression of Gipr. The ovarian gene expression of Gipr, Npy1r and Prgtr was downregulated by Ex-4 treatment, while PYY(3-36) significantly downregulated the Prgtr expression compared to HFD mice. These data indicate that manipulating GLP-1R and NPY2R leads to changes in the reproductive physiology of mice. In addition, the observed alterations in the morphology and gene expression in the adrenals and ovaries imply a direct impact of these peptides on female reproductive function.
Collapse
Affiliation(s)
- Dawood Khan
- Diabetes Research Group, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, UK
| | | | | |
Collapse
|
2
|
Zariñán T, Espinal-Enriquez J, De Anda-Jáuregui G, Lira-Albarrán S, Hernández-Montes G, Gutiérrez-Sagal R, Rebollar-Vega RG, Bousfield GR, Butnev VY, Hernández-Lemus E, Ulloa-Aguirre A. Differential effects of follicle-stimulating hormone glycoforms on the transcriptome profile of cultured rat granulosa cells as disclosed by RNA-seq. PLoS One 2024; 19:e0293688. [PMID: 38843139 PMCID: PMC11156319 DOI: 10.1371/journal.pone.0293688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/16/2024] [Indexed: 06/09/2024] Open
Abstract
It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: a. human pituitary FSH18/21 (hypo-glycosylated); b. human pituitary FSH24 (fully glycosylated); c. Equine FSH (eqFSH) (hypo-glycosylated); and d. Chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 x 125 bp paired-end format, 10-15 x 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent distinctly different regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | | | | | - Saúl Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Georgina Hernández-Montes
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - Rosa G. Rebollar-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita Kansas, Kansas, United States of America
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita Kansas, Kansas, United States of America
| | | | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, Mexico
| |
Collapse
|
3
|
Chang Y, Guo R, Zeng T, Sun H, Tian Y, Han X, Cao Y, Xu L, Duan M, Lu L, Chen L. Analysis of Transcriptomic Differences in the Ovaries of High- and Low-Laying Ducks. Genes (Basel) 2024; 15:181. [PMID: 38397170 PMCID: PMC10887599 DOI: 10.3390/genes15020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The egg-laying performance of Shan Ma ducks (Anas Platyrhynchos) is a crucial economic trait. Nevertheless, limited research has been conducted on the egg-laying performance of this species. We examined routine blood indicators and observed higher levels of metabolic and immune-related factors in the high-egg-production group compared with the low-egg-production group. Furthermore, we explored the ovarian transcriptome of both high- and low-egg-production groups of Shan Ma ducks using Illumina NovaSeq 6000 sequencing. A total of 1357 differentially expressed genes (DEGs) were identified, with 686 down-regulated and 671 up-regulated in the high-egg-production (HEP) ducks and low-egg-production (LEP) ducks. Several genes involved in the regulation of ovarian development, including neuropeptide Y (NPY), cell cycle protein-dependent kinase 1 (CDK1), and transcription factor 1 (E2F1), exhibited significant differential expressions at varying stages of egg production. Pathway functional analysis revealed that the DEGs were primarily associated with the steroid biosynthesis pathway, and the neuroactive ligand-receptor interaction pathway exhibited higher activity in the HEP group compared to the LEP group. This study offers valuable information about and novel insights into high egg production.
Collapse
Affiliation(s)
- Yuguang Chang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Rongbing Guo
- College of Animal Sciences and Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China;
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Hanxue Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Yong Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Xue Han
- Institute of Animal Husbandry and Veterinary Science, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China;
| | - Yongqing Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Ligen Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Mingcai Duan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| | - Li Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (Y.C.); (T.Z.); (H.S.); (Y.T.); (Y.C.); (L.X.); (M.D.); (L.L.)
| |
Collapse
|
4
|
Sridhar A, Khan D, Moffett RC. The impact of diabetes and obesity on fertility and the potential role of gut hormones as treatment. Diabet Med 2023; 40:e15230. [PMID: 37734917 DOI: 10.1111/dme.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
AIMS Alongside its metabolic implications, obesity and associated diabetes impair female reproductive function, causing infertility and polycystic ovarian syndrome (PCOS). Recently, gut hormones and their receptors have been identified in various reproductive organs indicating their potential regulatory effects on reproductive function. This review aims to give an overview of their potential effects. METHODS This review focuses on literature that outlines modifications during obesity, diabetes and related infertility with an emphasis on gut hormones and their therapeutic potential. RESULTS Evidence suggests that bariatric surgery has positive effects on fertility and PCOS where major alterations in metabolism occurs through restoration of gut hormone levels. This is thought to be due to the indirect effect weight loss and regulation of blood glucose has on the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axis influencing reproduction. CONCLUSIONS Further research is required to elucidate the cellular mechanisms involved in the direct effects of gut hormone receptor activation on reproductive tissues. Current observations suggest a therapeutic role for gut hormones in infertility/PCOS associated with metabolic pathophysiology.
Collapse
Affiliation(s)
- Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, UK
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, UK
| |
Collapse
|
5
|
Zariñán T, Espinal-Enriquez J, De Anda-Jáuregui G, Lira-Albarrán S, Hernández-Montes G, Gutiérrez-Sagal R, Rebollar-Vega RG, Bousfield GR, Butnev VY, Hernández-Lemus E, Ulloa-Aguirre A. Differential effects of follicle-stimulating hormone glycoforms on the transcriptome profile of cultured rat granulosa cells as disclosed by RNA-seq. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562995. [PMID: 37905087 PMCID: PMC10614937 DOI: 10.1101/2023.10.18.562995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
It has been documented that variations in glycosylation on glycoprotein hormones, confer distinctly different biological features to the corresponding glycoforms when multiple in vitro biochemical readings are analyzed. We here applied next generation RNA sequencing to explore changes in the transcriptome of rat granulosa cells exposed for 0, 6, and 12 h to 100 ng/ml of four highly purified follicle-stimulating hormone (FSH) glycoforms, each exhibiting different glycosylation patterns: human pituitary FSH18/21 and equine FSH (eqFSH) (hypo-glycosylated), and human FSH24 and chinese-hamster ovary cell-derived human recombinant FSH (recFSH) (fully-glycosylated). Total RNA from triplicate incubations was prepared from FSH glycoform-exposed cultured granulosa cells obtained from DES-pretreated immature female rats, and RNA libraries were sequenced in a HighSeq 2500 sequencer (2 × 125 bp paired-end format, 10-15 × 106 reads/sample). The computational workflow focused on investigating differences among the four FSH glycoforms at three levels: gene expression, enriched biological processes, and perturbed pathways. Among the top 200 differentially expressed genes, only 4 (0.6%) were shared by all 4 glycoforms at 6 h, whereas 118 genes (40%) were shared at 12 h. Follicle-stimulating hormone glycocoforms stimulated different patterns of exclusive and associated up regulated biological processes in a glycoform and time-dependent fashion with more shared biological processes after 12 h of exposure and fewer treatment-specific ones, except for recFSH, which exhibited stronger responses with more specifically associated processes at this time. Similar results were found for down-regulated processes, with a greater number of processes at 6 h or 12 h, depending on the particular glycoform. In general, there were fewer downregulated than upregulated processes at both 6 h and 12 h, with FSH18/21 exhibiting the largest number of down-regulated associated processes at 6 h while eqFSH exhibited the greatest number at 12 h. Signaling cascades, largely linked to cAMP-PKA, MAPK, and PI3/AKT pathways were detected as differentially activated by the glycoforms, with each glycoform exhibiting its own molecular signature. These data extend previous observations demonstrating glycosylation-dependent differential regulation of gene expression and intracellular signaling pathways triggered by FSH in granulosa cells. The results also suggest the importance of individual FSH glycoform glycosylation for the conformation of the ligand-receptor complex and induced signalling pathways.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | | | | | - Saúl Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City, 14080, Mexico
| | - Georgina Hernández-Montes
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - Rosa G. Rebollar-Vega
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita Kansas, 67260, USA
| | - Viktor Y. Butnev
- Department of Biological Sciences, Wichita State University, Wichita Kansas, 67260, USA
| | | | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición SZ, 14080, Mexico City, Mexico
| |
Collapse
|
6
|
Khan D, Sridhar A, Flatt PR, Moffett RC. Disturbed ovarian morphology, oestrous cycling and fertility of high fat fed rats are linked to alterations of incretin receptor expression. Reprod Biol 2023; 23:100784. [PMID: 37343433 DOI: 10.1016/j.repbio.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Obesity is a major cause of infertility in females with a direct correlation between energy intake and reproductive dysfunction. To explore underlying mechanisms, disturbances in reproductive health and incretin/reproductive hormone receptor expression were studied in female Wistar rats fed a high-fat-diet for 20-weeks. Metabolic parameters and ovarian/adrenal gene expression were monitored along with estrous cycling and fertility upon mating. High-fat-feeding significantly increased body weight, plasma insulin and HOMA-IR, indicative of obesity and insulin resistance. Estrous cycles were prolonged compared to normal chow-fed rats, with 50 % having an average cycle length ≥ 7days. Reproductive outcomes revealed high-fat-diet reduced litter size by 48 %, with 16 % rats unable to achieve pregnancy. Furthermore, 80 % of the high-fat group took > 35 days to become pregnant compared to 33 % fed a normal-diet. Also, 35 % of pups born to high-fat-fed rats were eaten by mothers or born dead which was not observed with control rats. These changes were associated with downregulation of Amh, Npy2R and GcgR gene expression in ovaries with upregulation of InsR and Glp-1R genes. In adrenals, Glp-1R, GipR, Npy2R, InsR, GcgR, GshR and Esr-1 genes were upregulated. Histological analysis of high-fat-diet ovaries and adrenals revealed changes in morphology with significantly increased number of cysts and reduced adrenal capsule thickness. Circulating levels of insulin, testosterone and progesterone was significantly higher in high-fat group with reduced FSH levels in plasma. These data demonstrate that high-fat feeding disrupts female reproductive function and suggest important interactions between gut and reproductive hormones in ovaries and adrenals which merit further investigation.
Collapse
Affiliation(s)
- Dawood Khan
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom.
| | - Ananyaa Sridhar
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Peter R Flatt
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - R Charlotte Moffett
- Biomedical Sciences Research Institute, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| |
Collapse
|
7
|
Chen WH, Shi YC, Huang QY, Chen JM, Wang ZY, Lin S, Shi QY. Potential for NPY receptor-related therapies for polycystic ovary syndrome: an updated review. Hormones (Athens) 2023; 22:441-451. [PMID: 37452264 PMCID: PMC10449684 DOI: 10.1007/s42000-023-00460-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrine disease that can cause female infertility and bring economic burden to families and to society. The clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, and polycystic ovarian changes, often accompanied by insulin resistance and obesity. Although its pathogenesis is unclear, PCOS involves the abnormal regulation of the hypothalamic-pituitary-ovarian axis and the abnormal activation of GnRH neurons. Neuropeptide Y (NPY) is widely distributed in the arcuate nucleus of the hypothalamus and functions as the physiological integrator of two neuroendocrine systems, one governing feeding and the other controlling reproduction. In recent years, an increasing number of studies have focused on the improvement of the reproductive and metabolic status of PCOS through the therapeutic application of NPY and its receptors. In this review, we summarize the central and peripheral regulation of NPY and its receptors in the development of PCOS and discuss the potential for NPY receptor-related therapies for PCOS.
Collapse
Affiliation(s)
- Wei-Hong Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Yan-Chuan Shi
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Qiao-Yi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Jia-Ming Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Zhi-Yi Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | - Qi-Yang Shi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical University, No.34 North Zhongshan Road, Quanzhou, 362000, Fujian Province, China.
| |
Collapse
|
8
|
Urata Y, Salehi R, Wyse BA, Jahangiri S, Librach CL, Tzeng CR, Osuga Y, Tsang B. Neuropeptide Y directly reduced apoptosis of granulosa cells, and the expression of NPY and its receptors in PCOS subjects. J Ovarian Res 2023; 16:182. [PMID: 37653540 PMCID: PMC10469470 DOI: 10.1186/s13048-023-01261-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Most women with anovulatory infertility show polycystic ovarian syndrome (PCOS), and androgen excess is known as a key factor involved in pathogenicity of PCOS. However, the mechanism of follicular developmental arrest in PCOS is not completely understood. The reproductive function of Neuropeptide Y (NPY) in the ovary during folliculogenesis was previously reported; NPY function in apoptosis and proliferation of granulosa cells (GCs) is follicular-stage dependent. The objective of this study was to investigate the role of NPY in ovarian follicular development and the pathogenesis of PCOS. METHODS To simulate the PCOS phenotype using a rat model, 21-day old Sprague Dawley rats were implanted with dihydrotestosterone (DHT) capsule (83 µg/day) and euthanized after 28 days. mRNA and protein content of NPY and its receptors were assessed in GCs from DHT treated rats using RT-qPCR and Western blot, respectively. Proliferation and apoptosis of GCs was assessed using Ki67- and TUNEL assays. Finally, NPY levels were measured in human follicular fluid (FF) from matched PCOS and non-PCOS patients using ELISA. RESULTS GCs from DHT treated rats (PCOS-GCs) contained significantly less NPY protein and Npy mRNA by 0.16- and 0.56-fold, respectively, and more NPY receptor type 2 and 5 protein by 2.21- and 3.17-fold, respectively, when compared to sham control. Addition of recombinant NPY to PCOS-GCs culture did not alter Ki67-positive but significantly decreased TUNEL-positive cells by 0.65-fold, but not to baseline levels. There was no significant difference in NPY levels in FF between PCOS and non-PCOS subjects. CONCLUSIONS These results indicate that DHT modulates expression of NPY and its receptors, NPY decreases DHT-induced GCs apoptosis. That alterations in NPY's function might be involved in follicular developmental failure of PCOS.
Collapse
Affiliation(s)
- Yoko Urata
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
- Department of Obstetrics and Gynecology, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Reza Salehi
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada
- Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | | | | | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Departments of Obstetrics & Gynaecology and Physiology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Biological Sciences, DAN Women & Babies Research Program, Sunnybrook Research Institute, Toronto, Canada
| | - Chii-Ruey Tzeng
- Center for Reproductive Medicine and Science, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Benjamin Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Canada.
- Chronic Disease Program, Ottawa Hospital Research Institute, Critical Care Wing, 3rd floor, Room W3107, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada.
| |
Collapse
|
9
|
Sheng W, Yu M, Wang X, Jin M, Pang X, Li C, Zhang S, Li P, Wang X, Zhang C, Zhang Y, Liu K. Localization of neuropeptide receptor NPY4R in rat retina. Neuropeptides 2022; 93:102246. [PMID: 35453028 DOI: 10.1016/j.npep.2022.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/24/2022] [Accepted: 04/03/2022] [Indexed: 11/21/2022]
Abstract
Neuropeptide Y (NPY) is a significant neuromodulator implicated in a multitude of physiological functions via activating NPY receptors which belong to seven transmembrane G-protein-coupled receptors (GPCRs). However, the detailed cellular expression of NPY receptors in retina has been scarcely investigated. In this study, the expression of the special NPY4R receptor in rat retina was assessed using Western blot analysis and immunofluorescent staining. The detailed cellular localization of NPY4R receptor was studied using double immunofluorescent staining and laser-scanning confocal microscopy. Our data demonstrated that NPY4R receptor was weakly expressed in the inner segment of outer photoreceptors and extensively expressed in the outer segment of S-opsin-positive blue cones, L/M-opsin-positive red/green cones and in the somata of CB-positive horizontal cells, GAD65-positive GABAnergic amacrine cells, ChAT-positive cholinergic amacrine cells, TH-positive dopaminergic CA1 amacrine cells and CA2 amacrine cells, PV-positive AII amacrine cells, Brn3a-positive conventional ganglion cells and melanopsin-containing ipRGCs. In addition, NPY4R receptor was diffusely distributed throughout the full thickness of the inner plexiform layer and outer plexiform layer. However, the outer segment of Rho4D2-positive rods, the somata of ChX10-positive bipolar cells and CRALBP-positive Müller glial cells seemed to lack immunoreactivity of NPY4R receptor. The new finding that multiple types of retinal cell express NPY4R receptor provides new neurobiological basis for the participation of NPY in the regulation of retinal functions through activating NPY4R receptor.
Collapse
Affiliation(s)
- Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China.
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xue Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Xiangming Pang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Can Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Xixin Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Changqing Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan, China; Shandong Provincial Engineering Laboratory for Biological Testing Technology, Jinan, China.
| |
Collapse
|
10
|
Liu J, Wang X, Sun J, Chen Y, Li J, Huang J, Du H, Gan L, Qiu Z, Li H, Ren G, Wei Y. The Novel Methylation Biomarker NPY5R Sensitizes Breast Cancer Cells to Chemotherapy. Front Cell Dev Biol 2022; 9:798221. [PMID: 35087836 PMCID: PMC8787223 DOI: 10.3389/fcell.2021.798221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/15/2021] [Indexed: 11/26/2022] Open
Abstract
Breast cancer (BC) is the most common tumor in women, and the molecular mechanism underlying its pathogenesis remains unclear. In this study, we aimed to investigate gene modules related to the phenotypes of BC, and identify representative candidate biomarkers for clinical prognosis of BC patients. Using weighted gene co-expression network analysis, we here identified NPY5R as a hub gene in BC. We further found that NPY5R was frequently downregulated in BC tissues compared with adjacent tumor-matched control tissues, due to its aberrant promoter CpG methylation which was confirmed by methylation analysis and treatment with demethylation agent. Higher expression of NPY5R was closely associated with better prognosis for BC patients. Gene set enrichment analysis showed that transcriptome signatures concerning apoptosis and cell cycle were critically enriched in specimens with elevated NPY5R. Ectopic expression of NPY5R significantly curbed breast tumor cell growth, induced cell apoptosis and G2/M arrest. Moreover, NPY5R also promoted the sensitivity of BC cells to doxorubicin. Mechanistically, we found that NPY5R restricted STAT3 signaling pathway activation through interacting with IL6, which may be responsible for the antitumor activity of NPY5R. Collectively, our findings indicate that NPY5R functions as a tumor suppressor but was frequently downregulated in BC.
Collapse
Affiliation(s)
- Jiazhou Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Gan
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Qiu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Islam MR, Ichii O, Nakamura T, Irie T, Masum MA, Otani Y, Namba T, Chuluunbaatar T, Elewa YHA, Kon Y. Developmental Changes of the Ovary in Neonatal Cotton Rat ( Sigmodon hispidus). Front Physiol 2021; 11:601927. [PMID: 33519507 PMCID: PMC7838641 DOI: 10.3389/fphys.2020.601927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
The reproductive characteristics and ovarian development in cotton rats (Sigmodon hispidus, CRs) are unclear, although CRs are commonly used as animal models in biomedical research. We previously reported that young (6-8 weeks) CRs showed multi-oocyte follicles (MOFs) and double nucleated oocytes (DNOs) in different stages of follicles. The developmental changes in neonatal CR ovaries were investigated in the present study and were compared with our findings in previous studies of unique phenotypes, particularly in oocytes. CR ovaries at postnatal days (PND) 0, 4, and 7 were obtained from the Hokkaido Institute of Public Health. Samples were analyzed by light and transmission electron microscopy. The general histology and folliculogenesis in CR ovaries were similar to those in other experimental rodents. However, DNOs were observed in all age categories and were frequently observed in primordial follicles, whereas MOFs started to develop from PND4 with greater frequency in primary follicles. Almost all developing follicles expressed DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 and forkhead box L2, which are representative markers of oocytes and follicular epithelial cells, respectively. Ki-67 staining demonstrated the proliferative activity of granulosa cells, but not of oocytes, in follicles. Moreover, rapid folliculogenesis of CR due to a small number of apoptotic oocytes was suggested, based on results of the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, confirming the formation of DNOs or MOFs. These findings clarify the development of unique phenotypes of neonatal CR ovaries and support it as a useful model to better understand folliculogenesis and oocytogenesis as well as their abnormalities in humans and other animals.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Surgery and Theriogenology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Takao Irie
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tsolmon Chuluunbaatar
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Basic Science of Veterinary Medicine, School of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|