1
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KMO, Commisso C, Smith DM, Sun X, Carlin AF, Sidman RL, Croker BA, Snyder EY. A therapy for suppressing canonical and noncanonical SARS-CoV-2 viral entry and an intrinsic intrapulmonary inflammatory response. Proc Natl Acad Sci U S A 2024; 121:e2408109121. [PMID: 39028694 PMCID: PMC11287264 DOI: 10.1073/pnas.2408109121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 07/21/2024] Open
Abstract
The prevalence of "long COVID" is just one of the conundrums highlighting how little we know about the lung's response to viral infection, particularly to syndromecoronavirus-2 (SARS-CoV-2), for which the lung is the point of entry. We used an in vitro human lung system to enable a prospective, unbiased, sequential single-cell level analysis of pulmonary cell responses to infection by multiple SARS-CoV-2 strains. Starting with human induced pluripotent stem cells and emulating lung organogenesis, we generated and infected three-dimensional, multi-cell-type-containing lung organoids (LOs) and gained several unexpected insights. First, SARS-CoV-2 tropism is much broader than previously believed: Many lung cell types are infectable, if not through a canonical receptor-mediated route (e.g., via Angiotensin-converting encyme 2(ACE2)) then via a noncanonical "backdoor" route (via macropinocytosis, a form of endocytosis). Food and Drug Administration (FDA)-approved endocytosis blockers can abrogate such entry, suggesting adjunctive therapies. Regardless of the route of entry, the virus triggers a lung-autonomous, pulmonary epithelial cell-intrinsic, innate immune response involving interferons and cytokine/chemokine production in the absence of hematopoietic derivatives. The virus can spread rapidly throughout human LOs resulting in mitochondrial apoptosis mediated by the prosurvival protein Bcl-xL. This host cytopathic response to the virus may help explain persistent inflammatory signatures in a dysfunctional pulmonary environment of long COVID. The host response to the virus is, in significant part, dependent on pulmonary Surfactant Protein-B, which plays an unanticipated role in signal transduction, viral resistance, dampening of systemic inflammatory cytokine production, and minimizing apoptosis. Exogenous surfactant, in fact, can be broadly therapeutic.
Collapse
Affiliation(s)
- Sandra L. Leibel
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
| | - Rachael N. McVicar
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Rabi Murad
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Elizabeth M. Kwong
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Alex E. Clark
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Asuka Alvarado
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Bethany A. Grimmig
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Ruslan Nuryyev
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Randee E. Young
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Jamie C. Lee
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Weiqi Peng
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Yanfang P. Zhu
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Eric Griffis
- Nikon Imaging Center, University of California San Diego, La Jolla, CA92093
| | - Cameron J. Nowell
- Monash Institute of Pharmaceutical Sciences, Parkville, VIC3052, Australia
| | - Brian James
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Suzie Alarcon
- La Jolla Institute for Immunology, La Jolla, CA92037
| | - Atul Malhotra
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of California San Diego, La Jolla, CA92093
| | - Linden J. Gearing
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Molecular and Translational Sciences, Monash University Clayton, Clayton, VIC3168, Australia
| | - Paul J. Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC3168, Australia
- Department of Molecular and Translational Sciences, Monash University Clayton, Clayton, VIC3168, Australia
| | - Cheska M. Galapate
- Sanford Burnham Prebys Medical Discovery Institute Cell & Molecular Biology of Cancer, La Jolla, CA92037
| | - Koen M. O. Galenkamp
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| | - Cosimo Commisso
- Sanford Burnham Prebys Medical Discovery Institute Cell & Molecular Biology of Cancer, La Jolla, CA92037
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Xin Sun
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Aaron F. Carlin
- Department of Medicine, University of California San Diego, La Jolla, CA92093
| | - Richard L. Sidman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA02115
| | - Ben A. Croker
- Department of Pediatrics, University of California San Diego, La Jolla, CA92093
| | - Evan Y. Snyder
- Sanford Consortium for Regenerative Medicine, La Jolla, CA92037
- Sanford Burnham Prebys Medical Discovery Institute, Center for Stem Cells & Regenerative Medicine, La Jolla, CA92037
| |
Collapse
|
2
|
Pannu S, Exline MC, Bednash JS, Englert JA, Diaz P, Bartlett A, Brock G, Wu Q, Davis IC, Crouser ED. SCARLET (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial): study protocol for a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 trial of i.v. citicoline (CDP-choline) in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure. Trials 2024; 25:328. [PMID: 38760804 PMCID: PMC11102211 DOI: 10.1186/s13063-024-08155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The SARS CoV-2 pandemic has resulted in more than 1.1 million deaths in the USA alone. Therapeutic options for critically ill patients with COVID-19 are limited. Prior studies showed that post-infection treatment of influenza A virus-infected mice with the liponucleotide CDP-choline, which is an essential precursor for de novo phosphatidylcholine synthesis, improved gas exchange and reduced pulmonary inflammation without altering viral replication. In unpublished studies, we found that treatment of SARS CoV-2-infected K18-hACE2-transgenic mice with CDP-choline prevented development of hypoxemia. We hypothesize that administration of citicoline (the pharmaceutical form of CDP-choline) will be safe in hospitalized SARS CoV-2-infected patients with hypoxemic acute respiratory failure (HARF) and that we will obtain preliminary evidence of clinical benefit to support a larger Phase 3 trial using one or more citicoline doses. METHODS We will conduct a single-site, double-blinded, placebo-controlled, and randomized Phase 1/2 dose-ranging and safety study of Somazina® citicoline solution for injection in consented adults of any sex, gender, age, or ethnicity hospitalized for SARS CoV-2-associated HARF. The trial is named "SCARLET" (Supplemental Citicoline Administration to Reduce Lung injury Efficacy Trial). We hypothesize that SCARLET will show that i.v. citicoline is safe at one or more of three doses (0.5, 2.5, or 5 mg/kg, every 12 h for 5 days) in hospitalized SARS CoV-2-infected patients with HARF (20 per dose) and provide preliminary evidence that i.v. citicoline improves pulmonary outcomes in this population. The primary efficacy outcome will be the SpO2:FiO2 ratio on study day 3. Exploratory outcomes include Sequential Organ Failure Assessment (SOFA) scores, dead space ventilation index, and lung compliance. Citicoline effects on a panel of COVID-relevant lung and blood biomarkers will also be determined. DISCUSSION Citicoline has many characteristics that would be advantageous to any candidate COVID-19 therapeutic, including safety, low-cost, favorable chemical characteristics, and potentially pathogen-agnostic efficacy. Successful demonstration that citicoline is beneficial in severely ill patients with SARS CoV-2-induced HARF could transform management of severely ill COVID patients. TRIAL REGISTRATION The trial was registered at www. CLINICALTRIALS gov on 5/31/2023 (NCT05881135). TRIAL STATUS Currently enrolling.
Collapse
Affiliation(s)
- Sonal Pannu
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Matthew C Exline
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joseph S Bednash
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Joshua A Englert
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Philip Diaz
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Amy Bartlett
- Center for Clinical and Translational Sciences, The Ohio State University, Columbus, OH, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Qing Wu
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Ian C Davis
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA.
| | - Elliott D Crouser
- Division of Pulmonary, Critical Care and Sleep Medicine of the Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Barlang LA, Deimel I, Mohl BP, Blaurock C, Balkema-Buschmann A, Weinbender K, Hess B, Obernolte H, Merkel OM, Popp A. Distribution and suitability of pulmonary surfactants as a vehicle for topically applied antibodies in healthy and SARS-CoV-2 infected rodent lungs. Eur J Pharm Sci 2024; 196:106744. [PMID: 38471595 DOI: 10.1016/j.ejps.2024.106744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/07/2024] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
The use of natural pulmonary surfactants (PS) as a drug delivery vehicle for biologics is a more recent therapeutic modality. Herein, we tested different contents of PS regarding their physicochemical properties under stress conditions. The PS content of 12.25 mg/ml (Formulation B) showed desired properties such as an isotonic osmolality ∼300 mOsm/kg and an acceptable viscosity of 8.61 cSt, being lower than in commercially available PS solutions. Formulation B passed the specifications of surface lowering capacities of >80 % total lung capacity and physiologically desired formulation properties were independent of the antibody used in the composition. The identified formulation showed the capability of significantly increasing the oxygen saturation in ex vivo isolated perfused rat lungs, compared to a control and up to 30 min post lavage. In the in vivo setting, we showed that intratracheal administration of a human mAB with and without pulmonary surfactant led to higher amounts of delivered antibody within the alveolar tissue compared to intravenous administration. The antibody with the PS formulation remained longer in the alveolar tissues than the antibody without the PS formulation. Further, SARS-CoV-2 infected Golden Syrian hamsters showed that the intranasally applied antibody reached the site of infection in the alveoli and could be detected in the alveolar region 24 h after the last administration. With this work, we demonstrated that pulmonary surfactants can be used as a pulmonary drug delivery mechanism for antibodies and may subsequently improve the antibody efficacy by increasing the residence time at the desired site of action in the alveolar tissue.
Collapse
Affiliation(s)
- Lea-Adriana Barlang
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany; Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5‑13, 8133 Munich, Germany; Quantitative, Translational & ADME Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany.
| | - Isabelle Deimel
- Biologics Drug Product Development Department, AbbVie Deutschland GmbH & Co.KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Björn-Patrick Mohl
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Claudia Blaurock
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Anne Balkema-Buschmann
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Suedufer 10, 17493 Greifswald- Insel Riems, Germany
| | - Kristina Weinbender
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| | - Brian Hess
- Quality Control Laboratories, AbbVie Inc. Illinois, USA
| | - Helena Obernolte
- Department of Preclinical Pharmacology and In Vitro Toxicology, Fraunhofer ITEM, Nikolai-Fuchs-Straße 1, 30625 Hannover, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmacy, Ludwig-Maximilians-University, Butenandtstraße 5‑13, 8133 Munich, Germany
| | - Andreas Popp
- Preclinical Safety, AbbVie Deutschland GmbH & Co. KG, Knollstraße, 67061 Ludwigshafen, Germany
| |
Collapse
|
4
|
Santo KP, Neimark AV. Adsorption of pulmonary and exogeneous surfactants on SARS-CoV-2 spike protein. J Colloid Interface Sci 2023; 650:28-39. [PMID: 37392497 PMCID: PMC10279468 DOI: 10.1016/j.jcis.2023.06.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
COVID-19 is transmitted by airborne particles containing virions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus virions represent nanoparticles enveloped by a lipid bilayer decorated by a "crown" of Spike protein protrusions. Virus transmission into the cells is induced by binding of Spike proteins with ACE2 receptors of alveolar epithelial cells. Active clinical search is ongoing for exogenous surfactants and biologically active chemicals capable of hindering virion-receptor binding. Here, we explore by using coarse-grained molecular dynamics simulations the physico-chemical mechanisms of adsorption of selected pulmonary surfactants, zwitterionic dipalmitoyl phosphatidyl choline and cholesterol, and exogeneous anionic surfactant, sodium dodecyl sulfate, on the S1-domain of the Spike protein. We show that surfactants form micellar aggregates that selectively adhere to the specific regions of the S1-domain that are responsible for binding with ACE2 receptors. We find distinctly higher cholesterol adsorption and stronger cholesterol-S1 interactions in comparison with other surfactants, that is consistent with the experimental observations of the effects of cholesterol on COVID-19 infection. Distribution of adsorbed surfactant along the protein residue chain is highly specific and inhomogeneous with preferential adsorption around specific amino acid sequences. We observe preferential adsorption of surfactants on cationic arginine and lysine residues in the receptor-binding domain (RBD) that play an important role in ACE2 binding and are present in higher amounts in Delta and Omicron variants, which may lead to blocking direct Spike-ACE2 interactions. Our findings of strong selective adhesion of surfactant aggregates to Spike proteins have important implications for informing clinical search for therapeutic surfactants for curing and preventing COVID-19 caused by SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Kolattukudy P Santo
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
5
|
Leibel SL, McVicar RN, Murad R, Kwong EM, Clark AE, Alvarado A, Grimmig BA, Nuryyev R, Young RE, Lee JC, Peng W, Zhu YP, Griffis E, Nowell CJ, Liu K, James B, Alarcon S, Malhotra A, Gearing LJ, Hertzog PJ, Galapate CM, Galenkamp KM, Commisso C, Smith DM, Sun X, Carlin AF, Croker BA, Snyder EY. The lung employs an intrinsic surfactant-mediated inflammatory response for viral defense. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525578. [PMID: 36747824 PMCID: PMC9900938 DOI: 10.1101/2023.01.26.525578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) causes an acute respiratory distress syndrome (ARDS) that resembles surfactant deficient RDS. Using a novel multi-cell type, human induced pluripotent stem cell (hiPSC)-derived lung organoid (LO) system, validated against primary lung cells, we found that inflammatory cytokine/chemokine production and interferon (IFN) responses are dynamically regulated autonomously within the lung following SARS-CoV-2 infection, an intrinsic defense mechanism mediated by surfactant proteins (SP). Single cell RNA sequencing revealed broad infectability of most lung cell types through canonical (ACE2) and non-canonical (endocytotic) viral entry routes. SARS-CoV-2 triggers rapid apoptosis, impairing viral dissemination. In the absence of surfactant protein B (SP-B), resistance to infection was impaired and cytokine/chemokine production and IFN responses were modulated. Exogenous surfactant, recombinant SP-B, or genomic correction of the SP-B deletion restored resistance to SARS-CoV-2 and improved viability.
Collapse
|
6
|
Santo KP, Neimark AV. Adsorption of Pulmonary and Exogeneous Surfactants on SARS-CoV-2 Spike Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.04.490631. [PMID: 35547841 PMCID: PMC9094101 DOI: 10.1101/2022.05.04.490631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 is transmitted by inhaling SARS-CoV-2 virions, which are enveloped by a lipid bilayer decorated by a "crown" of Spike protein protrusions. In the respiratory tract, virions interact with surfactant films composed of phospholipids and cholesterol that coat lung airways. Here, we explore by using coarse-grained molecular dynamics simulations the physico-chemical mechanisms of surfactant adsorption on Spike proteins. With examples of zwitterionic dipalmitoyl phosphatidyl choline, cholesterol, and anionic sodium dodecyl sulphate, we show that surfactants form micellar aggregates that selectively adhere to the specific regions of S1 domain of the Spike protein that are responsible for binding with ACE2 receptors and virus transmission into the cells. We find high cholesterol adsorption and preferential affinity of anionic surfactants to Arginine and Lysine residues within S1 receptor binding motif. These findings have important implications for informing the search for extraneous therapeutic surfactants for curing and preventing COVID-19 by SARS-CoV-2 and its variants.
Collapse
|
7
|
Li D, Wang X, Liao Y, Wang S, Shan J, Ji J. Insights Gained Into the Treatment of COVID19 by Pulmonary Surfactant and Its Components. Front Immunol 2022; 13:842453. [PMID: 35592339 PMCID: PMC9110697 DOI: 10.3389/fimmu.2022.842453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pulmonary surfactant constitutes an important barrier that pathogens must cross to gain access to the rest of the organism via the respiratory surface. The presence of pulmonary surfactant prevents the dissemination of pathogens, modulates immune responses, and optimizes lung biophysical activity. Thus, the application of pulmonary surfactant for the treatment of respiratory diseases provides an effective strategy. Currently, several clinical trials are investigating the use of surfactant preparations to treat patients with coronavirus disease 2019 (COVID-19). Some factors have been considered in the application of pulmonary surfactant for the treatment COVID-19, such as mechanical ventilation strategy, timing of treatment, dose delivered, method of delivery, and preparation utilized. This review supplements this list with two additional factors: accurate measurement of surfactants in patients and proper selection of pulmonary surfactant components. This review provides a reference for ongoing exogenous surfactant trials involving patients with COVID-19 and provides insight for the development of surfactant preparations for the treatment of viral respiratory infections.
Collapse
Affiliation(s)
- Dan Li
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xianzheng Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yingzhao Liao
- Pediatrics of Traditional Chinese Medicine, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jianjian Ji
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
8
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
9
|
Verheijen AC, Janssen EER, van der Putten ME, van Horck MWP, van Well GTJ, Van Loo IHM, Hütten MC, Van Mechelen K. Management of severe neonatal respiratory distress due to vertical transmission of severe acute respiratory syndrome coronavirus 2: a case report. J Med Case Rep 2022; 16:140. [PMID: 35346370 PMCID: PMC8958934 DOI: 10.1186/s13256-022-03364-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
Background Neonates with severe acute respiratory syndrome coronavirus 2 infection are usually asymptomatic or have mild to moderate symptoms. Acute respiratory distress syndrome due to severe acute respiratory syndrome coronavirus 2 with respiratory insufficiency is rare. Therefore, information about the best intensive care strategy for neonates requiring mechanical ventilation is lacking. We report a neonatal case of severe acute respiratory distress syndrome, probably due to vertical transmission of severe acute respiratory syndrome coronavirus 2, complicated by Staphylococcus aureus sepsis. We aim to inform pediatric providers on the clinical course and acute management considerations in coronavirus disease-related neonatal acute respiratory distress syndrome. Case presentation A late preterm (gestational age 36 0/7 weeks) Caucasian girl was born from a severe acute respiratory syndrome coronavirus 2-positive mother and tested positive for severe acute respiratory syndrome coronavirus 2 at 19 hours after birth. She developed acute respiratory distress syndrome requiring intensive care admission and mechanical ventilation. The clinical course was complicated by S. aureus pneumonia and bacteremia. Multimodal management included well-established interventions for respiratory distress syndrome such as surfactant therapy, high-frequency oscillatory ventilation, and inhaled nitric oxide, combined with therapies extrapolated from adult care for severe acute respiratory syndrome coronavirus 2 patients such as dexamethasone, coronavirus disease 2019-specific immunoglobins, and prophylactic low-molecular-weight heparin. The neonate was successfully weaned from the ventilator and improved clinically. Conclusion This case shows a rare but serious neonatal severe acute respiratory syndrome coronavirus 2 infection, leading to severe acute respiratory distress syndrome. Because of limited therapy guidelines for neonates, we suggest multimodal management with awareness of the possibility of S. aureus coinfection, to treat this age group successful.
Collapse
|
10
|
Abstract
To provide novel data on surfactant levels in adult COVID-19 patients, we collected bronchoalveolar lavage fluid less than 72 h after intubation and used Fourier Transform Infrared Spectroscopy to measure levels of dipalmitoylphosphatidylcholine (DPPC). A total of eleven COVID-19 patients with moderate-to-severe ARDS (CARDS) and 15 healthy controls were included. CARDS patients had lower DPPC levels than healthy controls. Moreover, a principal component analysis was able to separate patient groups into distinguishable subgroups. Our findings indicate markedly impaired pulmonary surfactant levels in COVID-19 patients, justifying further studies and clinical trials of exogenous surfactant.
Collapse
|
11
|
Sazgarnejad S, Yazdanpanah N, Rezaei N. Anti-inflammatory effects of GLP-1 in patients with COVID-19. Expert Rev Anti Infect Ther 2022; 20:373-381. [PMID: 34348067 PMCID: PMC8425436 DOI: 10.1080/14787210.2021.1964955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/03/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Understanding the pathogenesis and risk factors to control the coronavirus disease 2019 (COVID-19) is necessary. Due to the importance of the inflammatory pathways in the pathogenesis of COVID-19 patients, evaluating the effects of anti-inflammatory medications is important. Glucagon-like peptide 1 receptor agonist (GLP-1 RA) is awell-known glucose-lowering agent with anti-inflammatory effects. AREAS COVERED Resources were extracted from the PubMed database, using keywords such as glucagon-like peptide-1, GLP-1 RA, SARS-CoV-2, COVID-19, inflammation, in April2021. In this review, the effects of GLP-1RA in reducing inflammation and modifying risk factors of COVID-19 severe complications are discussed. However, GLP-1 is degraded by DPP-4 with aplasma half-life of about 2-5 minutes, which makes it difficult to measure GLP-1 plasma level in clinical settings. EXPERT OPINION Since no definitive treatment is available for COVID-19 so far, determining promising targets to design and/or repurpose effective medications is necessary.
Collapse
Affiliation(s)
- Saharnaz Sazgarnejad
- School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University Of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
| | - Niloufar Yazdanpanah
- School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
- Research Center For Immunodeficiencies, Children’s Medical Center, Tehran University Of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (Niima), Universal Scientific Education and Research Network (Usern), Tehran, Iran
- Research Center For Immunodeficiencies, Children’s Medical Center, Tehran University Of Medical Sciences, Tehran, Iran
- Department Of Immunology, School Of Medicine, Tehran University Of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Leach DA, Brooke GN, Bevan CL. Roles of steroid receptors in the lung and COVID-19. Essays Biochem 2021; 65:1025-1038. [PMID: 34328182 PMCID: PMC8628186 DOI: 10.1042/ebc20210005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/13/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
COVID-19 symptoms and mortality are largely due to its devastating effects in the lungs. The disease is caused by the SARS (Severe Acute Respiratory Syndrome)-CoV-2 coronavirus, which requires host cell proteins such as ACE2 (angiotensin-converting enzyme 2) and TMPRSS2 (transmembrane serine protease 2) for infection of lung epithelia. The expression and function of the steroid hormone receptor family is important in many aspects that impact on COVID-19 effects in the lung - notably lung development and function, the immune system, and expression of TMPRSS2 and ACE2. This review provides a brief summary of current knowledge on the roles of the steroid hormone receptors [androgen receptor (AR), glucocorticoid receptor (GR), progesterone receptor (PR), mineralocorticoid receptor (MR) and oestrogen receptor (ER)] in the lung, their effects on host cell proteins that facilitate SARS-CoV-2 uptake, and provides a snapshot of current clinical trials investigating the use of steroid receptor (SR) ligands to treat COVID-19.
Collapse
Affiliation(s)
- Damien A. Leach
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| | - Greg N. Brooke
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, U.K
| | - Charlotte L. Bevan
- Division of Cancer, Imperial Centre for Translational and Experimental Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, U.K
| |
Collapse
|
13
|
Calkovska A, Kolomaznik M, Calkovsky V. Alveolar type II cells and pulmonary surfactant in COVID-19 era. Physiol Res 2021; 70:S195-S208. [PMID: 34913352 DOI: 10.33549/physiolres.934763] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this review, we discuss the role of pulmonary surfactant in the host defense against respiratory pathogens, including novel coronavirus SARS-CoV-2. In the lower respiratory system, the virus uses angiotensin-converting enzyme 2 (ACE2) receptor in conjunction with serine protease TMPRSS2, expressed by alveolar type II (ATII) cells as one of the SARS-CoV-2 target cells, to enter. ATII cells are the main source of surfactant. After their infection and the resulting damage, the consequences may be severe and may include injury to the alveolar-capillary barrier, lung edema, inflammation, ineffective gas exchange, impaired lung mechanics and reduced oxygenation, which resembles acute respiratory distress syndrome (ARDS) of other etiology. The aim of this review is to highlight the key role of ATII cells and reduced surfactant in the pathogenesis of the respiratory form of COVID-19 and to emphasize the rational basis for exogenous surfactant therapy in COVID-19 ARDS patients.
Collapse
Affiliation(s)
- A Calkovska
- Department of Physiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine, Comenius University, University Hospital Martin, Martin, Slovak Republic.
| | | | | |
Collapse
|
14
|
Konduri KS, Pattisapu R, Pattisapu J, Konduri GG, Zwetchkenbaum J, Roy B, Barman M, Frazier A, Hurst BL, Düzgüneş N. ProLung™-budesonide Inhibits SARS-CoV-2 Replication and Reduces Lung Inflammation. ARCHIVES OF PHARMACOLOGY AND THERAPEUTICS 2021; 3:52-65. [PMID: 34766166 PMCID: PMC8580381 DOI: 10.33696/pharmacol.3.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: Inhaled budesonide benefits patients with COVID-19. ProLung™-budesonide enables the sustained, low dose administration of budesonide within a delivery vehicle similar to lung surfactant. ProLung™-budesonide may offer anti-inflammatory and protective effects to the lung in COVID-19, yet it’s effect on SARS-CoV-2 replication is unknown. Objective: To determine the efficacy of ProLung™-budesonide against SARS-CoV-2-infection in vitro, evaluate its ability to decrease inflammation, and airway hyperresponsiveness in an animal model of lung inflammation. Methods: SARS-CoV-2-infected Vero 76 cells were treated with ProLung™-budesonide ([0.03–100 µg/ml]) for 3 days, and virus yield in the supernatant was measured. Ovalbumin-sensitized C57BL/6 mice received aerosolized (a) ProLung™-budesonide weekly, (b) only budesonide, either daily or weekly, or (c) weekly empty ProLung™ carrier (without budesonide). All treatment groups were compared to sensitized untreated, or normal mice using histopathologic examination, electron microscopy (EM), airway hyperresponsiveness (AHR) to Methacholine (Mch) challenge, and eosinophil peroxidase activity (EPO) measurements in bronchioalveolar lavage (BAL). Results: ProLung™-budesonide showed significant inhibition of viral replication of SARS-CoV-2-infected cells with the selectivity index (SI) value >24. Weekly ProLung™-budesonide and daily budesonide therapy significantly decreased lung inflammation and EPO in BAL. ProLung™-budesonide localized in type II pneumocytes, and was the only group to significantly decrease AHR, and EPO in BAL with Mch challenge Conclusions: ProLung™-budesonide significantly inhibited viral replication in SARS-CoV-2-infected cells. It localized into type II pneumocytes, decreased lung inflammation, AHR and EPO activity with Mch challenge. This novel drug formulation may offer a potential inhalational treatment for COVID-19.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Adria Frazier
- University of the Pacific School of Dentistry, San Francisco, CA USA
| | | | - Nejat Düzgüneş
- University of the Pacific School of Dentistry, San Francisco, CA USA
| |
Collapse
|
15
|
Qaisrani MN, Belousov R, Rehman JU, Goliaei EM, Girotto I, Franklin-Mergarejo R, Güell O, Hassanali A, Roldán É. Phospholipids dock SARS-CoV-2 spike protein via hydrophobic interactions: a minimal in-silico study of lecithin nasal spray therapy. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:132. [PMID: 34718875 PMCID: PMC8556817 DOI: 10.1140/epje/s10189-021-00137-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Understanding the physical and chemical properties of viral infections at molecular scales is a major challenge for the scientific community more so with the outbreak of global pandemics. There is currently a lot of effort being placed in identifying molecules that could act as putative drugs or blockers of viral molecules. In this work, we computationally explore the importance in antiviral activity of a less studied class of molecules, namely surfactants. We employ all-atoms molecular dynamics simulations to study the interaction between the receptor-binding domain of the SARS-CoV-2 spike protein and the phospholipid lecithin (POPC), in water. Our microsecond simulations show a preferential binding of lecithin to the receptor-binding motif of SARS-CoV-2 with binding free energies significantly larger than [Formula: see text]. Furthermore, hydrophobic interactions involving lecithin non-polar tails dominate these binding events, which are also accompanied by dewetting of the receptor binding motif. Through an analysis of fluctuations in the radius of gyration of the receptor-binding domain, its contact maps with lecithin molecules, and distributions of water molecules near the binding region, we elucidate molecular interactions that may play an important role in interactions involving surfactant-type molecules and viruses. We discuss our minimal computational model in the context of lecithin-based liposomal nasal sprays as putative mitigating therapies for COVID-19.
Collapse
Affiliation(s)
- Muhammad Nawaz Qaisrani
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55099 Mainz, Germany
| | - Roman Belousov
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
- Present Address: EMBL - European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jawad Ur Rehman
- Dipartimento di Scienze Chimiche e Farmaceutiche, Universitá degli Studi di Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| | - Elham Moharramzadeh Goliaei
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ivan Girotto
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Ricardo Franklin-Mergarejo
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Oriol Güell
- Comercial Douma S.L., Carrer de València 5, 08015 Barcelona, Spain
| | - Ali Hassanali
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| | - Édgar Roldán
- ICTP - The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
16
|
Sriram K, Insel MB, Insel PA. Inhaled β2 Adrenergic Agonists and Other cAMP-Elevating Agents: Therapeutics for Alveolar Injury and Acute Respiratory Disease Syndrome? Pharmacol Rev 2021; 73:488-526. [PMID: 34795026 DOI: 10.1124/pharmrev.121.000356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Inhaled long-acting β-adrenergic agonists (LABAs) and short-acting β-adrenergic agonists are approved for the treatment of obstructive lung disease via actions mediated by β2 adrenergic receptors (β2-ARs) that increase cellular cAMP synthesis. This review discusses the potential of β2-AR agonists, in particular LABAs, for the treatment of acute respiratory distress syndrome (ARDS). We emphasize ARDS induced by pneumonia and focus on the pathobiology of ARDS and actions of LABAs and cAMP on pulmonary and immune cell types. β2-AR agonists/cAMP have beneficial actions that include protection of epithelial and endothelial cells from injury, restoration of alveolar fluid clearance, and reduction of fibrotic remodeling. β2-AR agonists/cAMP also exert anti-inflammatory effects on the immune system by actions on several types of immune cells. Early administration is likely critical for optimizing efficacy of LABAs or other cAMP-elevating agents, such as agonists of other Gs-coupled G protein-coupled receptors or cyclic nucleotide phosphodiesterase inhibitors. Clinical studies that target lung injury early, prior to development of ARDS, are thus needed to further assess the use of inhaled LABAs, perhaps combined with inhaled corticosteroids and/or long-acting muscarinic cholinergic antagonists. Such agents may provide a multipronged, repurposing, and efficacious therapeutic approach while minimizing systemic toxicity. SIGNIFICANCE STATEMENT: Acute respiratory distress syndrome (ARDS) after pulmonary alveolar injury (e.g., certain viral infections) is associated with ∼40% mortality and in need of new therapeutic approaches. This review summarizes the pathobiology of ARDS, focusing on contributions of pulmonary and immune cell types and potentially beneficial actions of β2 adrenergic receptors and cAMP. Early administration of inhaled β2 adrenergic agonists and perhaps other cAMP-elevating agents after alveolar injury may be a prophylactic approach to prevent development of ARDS.
Collapse
Affiliation(s)
- Krishna Sriram
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Michael B Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| | - Paul A Insel
- Departments of Pharmacology (K.S., P.A.I.) and Medicine (P.A.I.), University of California San Diego, La Jolla, California; Department of Medicine (M.B.I.) University of Arizona, Tucson, Arizona
| |
Collapse
|
17
|
Chen J, Mir M, Pinezich MR, O'Neill JD, Guenthart BA, Bacchetta M, Vunjak-Novakovic G, Huang SXL, Kim J. Non-destructive vacuum-assisted measurement of lung elastic modulus. Acta Biomater 2021; 131:370-380. [PMID: 34192570 PMCID: PMC9245063 DOI: 10.1016/j.actbio.2021.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022]
Abstract
In living tissues, mechanical stiffness and biological function are intrinsically linked. Alterations in the stiffness of tissues can induce pathological interactions that affect cellular activity and tissue function. Underlying connections between tissue stiffness and disease highlights the importance of accurate quantitative characterizations of soft tissue mechanics, which can improve our understanding of disease and inform therapeutic development. In particular, accurate measurement of lung mechanical properties has been especially challenging due to the anatomical and mechanobiological complexities of the lung. Discrepancies between measured mechanical properties of dissected lung tissue samples and intact lung tissues in vivo has limited the ability to accurately characterize integral lung mechanics. Here, we report a non-destructive vacuum-assisted method to evaluate mechanical properties of soft biomaterials, including intact tissues and hydrogels. Using this approach, we measured elastic moduli of rat lung tissue that varied depending on stress-strain distribution throughout the lung. We also observed that the elastic moduli of enzymatically disrupted lung parenchyma increased by at least 64%. The reported methodology enables assessment of the nonlinear viscoelastic characteristics of intact lungs under normal and abnormal (i.e., injured, diseased) conditions and allows measurement of mechanical properties of tissue-mimetic biomaterials for use in therapeutics or in vitro models. STATEMENT OF SIGNIFICANCE: Accurate quantification of tissue stiffness is critical for understanding mechanisms of disease and developing effective therapeutics. Current modalities to measure tissue stiffness are destructive and preclude accurate assessment of lung mechanical properties, as lung mechanics are determined by complex features of the intact lung. To address the need for alternative methods to assess lung mechanics, we report a non-destructive vacuum-based approach to quantify tissue stiffness. We applied this method to correlate lung tissue mechanics with tissue disruption, and to assess the stiffness of biomaterials. This method can be used to inform the development of tissue-mimetic materials for use in therapeutics and disease models, and could potentially be applied for in-situ evaluation of tissue stiffness as a diagnostic or prognostic tool.
Collapse
Affiliation(s)
- Jiawen Chen
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Mohammad Mir
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Meghan R Pinezich
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - John D O'Neill
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY, United States
| | - Brandon A Guenthart
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Matthew Bacchetta
- Department of Thoracic Surgery, Vanderbilt University, Nashville, TN, United States
| | | | - Sarah X L Huang
- Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Jinho Kim
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States.
| |
Collapse
|
18
|
Agrafiotis AC, Rummens P, Lardinois I. Pneumothorax in otherwise healthy non-intubated patients suffering from COVID-19 pneumonia: a systematic review. J Thorac Dis 2021; 13:4519-4529. [PMID: 34422378 PMCID: PMC8339789 DOI: 10.21037/jtd-21-208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023]
Abstract
Background Cases of spontaneous pneumothorax have been described in patients suffering from coronavirus disease 2019 (COVID-19) pneumonia. The aim of this study is to systematically review all the cases of spontaneous pneumothorax that occurred in healthy patients with no underlying lung disease and who did not receive invasive mechanical ventilation. Methods A PubMed research was conducted. The following data were collected: age, sex, side of the pneumothorax, smoking habit, time form onset of symptoms to the diagnosis of pneumothorax, the development of new bullous lesions on computed tomography and the type of treatment. In order to analyze the most homogeneous population possible, intubated patients were deliberately excluded. In total, 44 cases of spontaneous pneumothorax in otherwise healthy patients were taken into account. Since the available data were extracted from small observational studies, no particular bias risk assessment was performed. Descriptive statistics were used to synthesize results. Results There were 37 male (84.1%) and 6 female (13.6%) patients. The majority of patients (66%) were treated only by chest tube thoracostomy, which most of the times resulted in a complete resolution of the pneumothorax. Simple surveillance was applied in 10 cases. Three patients underwent minimally invasive surgery. In 14 cases (31.8%) air-filled lesions were detected on imaging. Eleven patients received corticosteroids during their hospital stay. In the majority of cases (86.3%) the pneumothorax was resolved. Discussion Even if the level of evidence, derived from case reports and small case series is low, the existence of a true secondary spontaneous pneumothorax due to SARS-CoV-2 should be recognized. Imaging techniques should be repeated throughout the clinical course of the patients in order to detect newly developed pulmonary complications. Surgical treatment is feasible and patients whose general condition permits, should be offered surgery according to the existing guidelines regarding spontaneous pneumothorax. National registries and databases are necessary in order to better understand the pathogenesis and complications of this novel entity.
Collapse
Affiliation(s)
- Apostolos C Agrafiotis
- Department of Thoracic Surgery, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Peter Rummens
- Department of Respiratory Medicine, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Ines Lardinois
- Department of Thoracic Surgery, Saint-Pierre University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
19
|
Yuan S, Jiang SC, Zhang ZW, Fu YF, Hu J, Li ZL. The Role of Alveolar Edema in COVID-19. Cells 2021; 10:cells10081897. [PMID: 34440665 PMCID: PMC8391241 DOI: 10.3390/cells10081897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) has spread over the world for more than one year. COVID-19 often develops life-threatening hypoxemia. Endothelial injury caused by the viral infection leads to intravascular coagulation and ventilation-perfusion mismatch. However, besides above pathogenic mechanisms, the role of alveolar edema in the disease progression has not been discussed comprehensively. Since the exudation of pulmonary edema fluid was extremely serious in COVID-19 patients, we bring out a hypothesis that severity of alveolar edema may determine the size of poorly-ventilated area and the blood oxygen content. Treatments to pulmonary edema (conservative fluid management, exogenous surfactant replacements and ethanol–oxygen vapor therapy hypothetically) may be greatly helpful for reducing the occurrences of severe cases. Given that late mechanical ventilation may cause mucus (edema fluid) to be blown deep into the small airways, oxygen therapy should be given at the early stages. The optimal time and blood oxygen saturation (SpO2) threshold for oxygen therapy are also discussed.
Collapse
Affiliation(s)
- Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-F.F.)
- Correspondence:
| | - Si-Cong Jiang
- Chengdu Kang Hong Pharmaceutical Group Comp. Ltd., Chengdu 610036, China;
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-F.F.)
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China; (Z.-W.Z.); (Y.-F.F.)
| | - Jing Hu
- School of Medicine, Northwest University, Xi’an 710069, China;
| | - Zi-Lin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Medical University of the Air Force, Xi’an 710032, China;
| |
Collapse
|
20
|
Wang S, Li Z, Wang X, Zhang S, Gao P, Shi Z. The Role of Pulmonary Surfactants in the Treatment of Acute Respiratory Distress Syndrome in COVID-19. Front Pharmacol 2021; 12:698905. [PMID: 34267664 PMCID: PMC8276044 DOI: 10.3389/fphar.2021.698905] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
Lung alveolar type-II (AT-II) cells produce pulmonary surfactant (PS), consisting of proteins and lipids. The lipids in PS are primarily responsible for reducing the air-fluid surface tension inside the alveoli of the lungs and to prevent atelectasis. The proteins are of two types: hydrophilic and hydrophobic. Hydrophilic surfactants are primarily responsible for opsonisation, thereby protecting the lungs from microbial and environmental contaminants. Hydrophobic surfactants are primarily responsible for respiratory function. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) enters the lungs through ACE-2 receptors on lungs and replicates in AT-II cells leading to the etiology of Coronavirus disease - 2019 (COVID-19). The SARS-CoV-2 virus damages the AT-II cells and results in decreased production of PS. The clinical symptoms of acute respiratory distress syndrome (ARDS) in COVID-19 patients are like those of neonatal respiratory distress syndrome (NRDS). The PS treatment is first-line treatment option for NRDS and found to be well tolerated in ARDS patients with inconclusive efficacy. Over the past 70°years, a lot of research is underway to produce natural/synthetic PS and developing systems for delivering PS directly to the lungs, in addition to finding the association between PS levels and respiratory illnesses. In the present COVID-19 pandemic situation, the scientific community all over the world is searching for the effective therapeutic options to improve the clinical outcomes. With a strong scientific and evidence-based background on role of PS in lung homeostasis and infection, few clinical trials were initiated to evaluate the functions of PS in COVID-19. Here, we connect the data on PS with reference to pulmonary physiology and infection with its possible therapeutic benefit in COVID-19 patients.
Collapse
Affiliation(s)
- Shengguang Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhen Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiming Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Peng Gao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zuorong Shi
- School of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
21
|
Chen L, Tao W, Ji W, Lu Y, Zhao X. Effects of Pulmonary Fibrosis and Surface Tension on Alveolar Sac Mechanics in Diffuse Alveolar Damage. J Biomech Eng 2021; 143:1106234. [PMID: 33817746 DOI: 10.1115/1.4050789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Indexed: 01/08/2023]
Abstract
Diffuse alveolar damage (DAD) is a characteristic histopathologic pattern in most cases of acute respiratory distress syndrome and severe viral pneumonia, such as COVID-19. DAD is characterized by an acute phase with edema, hyaline membranes, and inflammation followed by an organizing phase with pulmonary fibrosis and hyperplasia. The degree of pulmonary fibrosis and surface tension is different in the pathological stages of DAD. The effects of pulmonary fibrosis and surface tension on alveolar sac mechanics in DAD are investigated by using the fluid-structure interaction (FSI) method. The human pulmonary alveolus is idealized by a three-dimensional honeycomb-like geometry, with alveolar geometries approximated as closely packed 14-sided polygons. A dynamic compression-relaxation model for surface tension effects is adopted. Compared to a healthy model, DAD models are created by increasing the tissue thickness and decreasing the concentration of the surfactant. The FSI results show that pulmonary fibrosis is more influential than the surface tension on flow rate, volume, P-V loop, and resistance. The lungs of the disease models become stiffer than those of the healthy models. According to the P-V loop results, the surface tension plays a more important role in hysteresis than the material nonlinearity of the lung tissue. Our study demonstrates the differences in air flow and lung function on the alveolar sacs between the healthy and DAD models.
Collapse
Affiliation(s)
- Long Chen
- Key Laboratory of Unsteady Aerodynamics and Flow Control, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Weiwei Tao
- Department of Echocardiography, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210017, China
| | - Wei Ji
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210017, China
| | - Yan Lu
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210017, China
| | - Xia Zhao
- Department of Rheumatology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210017, China
| |
Collapse
|
22
|
Avdeev SN, Trushenko NV, Chikina SY, Tsareva NA, Merzhoeva ZM, Yaroshetskiy AI, Sopova VI, Sopova MI, Rosenberg OA, Schermuly RT, Kosanovic D. Beneficial effects of inhaled surfactant in patients with COVID-19-associated acute respiratory distress syndrome. Respir Med 2021; 185:106489. [PMID: 34087610 PMCID: PMC8163691 DOI: 10.1016/j.rmed.2021.106489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 05/25/2021] [Indexed: 12/02/2022]
Abstract
Background We have investigated the use of nebulized surfactant as a potential therapeutic option for the patients with coronavirus disease 2019 (COVID-19)-associated acute respiratory distress syndrome (ARDS) undergoing non-invasive ventilation. Methods The patients were divided into 2 groups: surfactant (n = 33) and control (n = 32). The subjects in the surfactant group received the inhaled surfactant at daily dose of 150–300 mg. The oxygenation parameters and several clinical outcomes were analyzed. Results On the 5 day of therapy, PaO2/FiO2 improved significantly in the surfactant group compared to the control group (184 (155–212) mmHg vs 150 (91–173) mmHg, p = 0.02). The inhaled surfactant significantly reduced the need for transfer of patients to intensive care units (24.2% vs 46.9%, p = 0.05) and invasive mechanical ventilation (18.2% vs 40.6%, p = 0.04). Even more, the nebulized surfactant shortened the length of non-invasive ventilation (7 (3–13) days vs 11 (5–22) days, p = 0.02) and time spent in hospital (18 (16–27) days vs 26 (21–31) days, p = 0.003) in patients suffering from COVID-19-linked ARDS. Conclusions Our preliminary data provided indications that inhaled surfactant therapy may represent a promising option for patients with COVID-19-associated ARDS. However, larger clinical trials are crucially needed.
Collapse
Affiliation(s)
- Sergey N Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
| | - Natalia V Trushenko
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Svetlana Yu Chikina
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Natalia A Tsareva
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Zamira M Merzhoeva
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Andrey I Yaroshetskiy
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Violetta I Sopova
- International School 'Medicine of the Future', I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Margarita I Sopova
- International School 'Medicine of the Future', I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Oleg A Rosenberg
- Granov Russian Research Centre Radiology & Surgical Technology, St. Petersburg, Russia
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Justus-Liebig University Giessen, Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
23
|
Effects of non-invasive respiratory support on gas exchange and outcomes in COVID-19 outside the ICU. Respir Med 2021; 185:106481. [PMID: 34077874 PMCID: PMC8143910 DOI: 10.1016/j.rmed.2021.106481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Non-invasive respiratory support (NRS) outside of the ICU has played an important role in the management of COVID-19 pneumonia. There is little data to guide selection of NRS modality. We present outcomes of NRS outside the ICU and discuss the effects of NRS on gas exchange with implications for management.
Collapse
|
24
|
Deng Y, Angelova A. Coronavirus-Induced Host Cubic Membranes and Lipid-Related Antiviral Therapies: A Focus on Bioactive Plasmalogens. Front Cell Dev Biol 2021; 9:630242. [PMID: 33791293 PMCID: PMC8006408 DOI: 10.3389/fcell.2021.630242] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Coronaviruses have lipid envelopes required for their activity. The fact that coronavirus infection provokes the formation of cubic membranes (CM) (denoted also as convoluted membranes) in host cells has not been rationalized in the development of antiviral therapies yet. In this context, the role of bioactive plasmalogens (vinyl ether glycerophospholipids) is not completely understood. These lipid species display a propensity for non-lamellar phase formation, facilitating membrane fusion, and modulate the activity of membrane-bound proteins such as enzymes and receptors. At the organism level, plasmalogen deficiency is associated with cardiometabolic disorders including obesity and type 2 diabetes in humans. A straight link is perceived with the susceptibility of such patients to SARS-CoV-2 (severe acute respiratory syndrome-coronavirus-2) infection, the severity of illness, and the related difficulty in treatment. Based on correlations between the coronavirus-induced modifications of lipid metabolism in host cells, plasmalogen deficiency in the lung surfactant of COVID-19 patients, and the alterations of lipid membrane structural organization and composition including the induction of CM, we emphasize the key role of plasmalogens in the coronavirus (SARS-CoV-2, SARS-CoV, or MERS-CoV) entry and replication in host cells. Considering that plasmalogen-enriched lung surfactant formulations may improve the respiratory process in severe infected individuals, plasmalogens can be suggested as an anti-viral prophylactic, a lipid biomarker in SARS-CoV and SARS-CoV-2 infections, and a potential anti-viral therapeutic component of lung surfactant development for COVID-19 patients.
Collapse
Affiliation(s)
- Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay UMR 8612, Châtenay-Malabry, France
| |
Collapse
|
25
|
Abstract
Objectives Effective treatment options for surfactant therapy in acute respiratory distress syndrome and coronavirus disease 2019 have not been established. To conduct preclinical studies in vitro and in vivo to evaluate efficiency, particle size, dosing, safety, and efficacy of inhaled surfactant using a breath-synchronized, nebulized delivery system in an established acute respiratory distress syndrome model. Design Preclinical study. Setting Research laboratory. Subjects Anesthetized pigs. Intervention In vitro analysis included particle size distribution and inhaled dose during simulated ventilation using a novel breath-synchronized nebulizer. Physiologic effects of inhaled aerosolized surfactant (treatment) were compared with aerosolized normal saline (control) in an adult porcine model (weight of 34.3 ± 0.6 kg) of severe acute respiratory distress syndrome (Pao2/Fio2 <100) with lung lavages and ventilator-induced lung injury during invasive ventilation. Measurements and Main Results Mass median aerosol diameter was 2.8 µm. In vitro dose delivered distal to the endotracheal tube during mechanical ventilation was 85% ± 5%. Nebulizers were functional up to 20 doses of 108 mg of surfactant. Surfactant-treated animals (n = 4) exhibited rapid improvement in oxygenation with nearly full recovery of Pao2/Fio2 (~300) and end-expiratory lung volumes with nominal dose less than 30 mg/kg of surfactant, whereas control subjects (n = 3) maintained Pao2/Fio2 less than 100 over 4.5 hours with reduced end-expiratory lung volume. There was notably greater surfactant phospholipid content and lower indicators of lung inflammation and pathologic lung injury in surfactant-treated pigs than controls. There were no peridosing complications associated with nebulized surfactant, but surfactant-treated animals had progressively higher airway resistance post treatment than controls with no differences in ventilation effects between the two groups. Conclusions Breath-synchronized, nebulized bovine surfactant appears to be a safe and feasible treatment option for use in coronavirus disease 2019 and other severe forms of acute respiratory distress syndrome.
Collapse
|
26
|
Surfactant for the Treatment of ARDS in a Patient With COVID-19. Chest 2021; 160:e9-e12. [PMID: 33493441 PMCID: PMC7825915 DOI: 10.1016/j.chest.2021.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/03/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022] Open
Abstract
Patients with COVID-19 report severe respiratory symptoms consistent with ARDS. The clinical presentation of ARDS in COVID-19 is often atypical, as patients with COVID-19 exhibit a disproportionate hypoxemia compared with relatively preserved lung mechanics. This pattern is more similar to neonatal respiratory distress syndrome secondary to surfactant deficiency, which has been shown to benefit from exogenous surfactant. We present our experience with exogenous surfactant treatment in a patient with COVID-19 experiencing COVID-19-related ARDS. The patient responded with improved oxygenation, and we believe surfactant was the catalyst for the successful extubation and clinical improvement of the patient.
Collapse
|