1
|
Wang J, Shi J, Xiang Y, Wang ZW, Qi FF, Li ZY, Zhao LL, Zhu GH, Duan YY, Yang ZY, Li JP, Liao XH. LINC00525 enhances ZNF460-regulated CD24 expression through the sponge miR-125a-5p to promote malignant progression of breast cancer. J Cancer Res Clin Oncol 2024; 150:317. [PMID: 38914670 PMCID: PMC11196364 DOI: 10.1007/s00432-024-05830-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/02/2024] [Indexed: 06/26/2024]
Abstract
INTRODUCTION CD24 is a highly glycosylated glycosylphosphatidylinositol anchored membrane protein that plays an important role in tumor progression. The aim of this study was to investigate the effect of abnormal expression of CD24 on the proliferation, migration and invasion of breast cancer (BC) cells, and the molecular mechanism of regulating CD24 expression in breast cancer. METHODOLOGY The bioinformatics method was used to predict the expression level of CD24 in BC and its relationship with the occurrence and development of BC. IHC, RT-qPCR and WB were used to detect the expression of CD24 in BC tissues and cells. The proliferation of CD24 was evaluated by CCK-8 and colony formation assay, and the migration and invasion of CD24 were evaluated by wound healing and transwell. In addition, the effect of CD24 on the malignancy of BC in vivo was further evaluated by subcutaneous tumorigenesis assay. Molecular mechanisms were measured by luciferase reporter assays, biotin-labeled miRNA pull-down assay, RIP, and western blotting. RESULTS The results show that CD24 is highly expressed in breast cancer tissues and cell lines, and knockdown of CD24 in vivo and in vitro can inhibit the proliferation, migration and invasion of BC cells. Mechanistically, the transcription factor ZNF460 promotes its expression by binding to the CD24 promoter, and the expression of ZNF460 is regulated by miR-125a-5p, which inhibits its expression by targeting the 3'UTR of ZNF460. In addition, LINC00525 acts as a ceRNA sponge to adsorb miR-125a-5p and regulate its expression. CONCLUSIONS Overexpression of CD24 is involved in the development and poor prognosis of BC, which can be used as a potential target for the treatment of BC and provide a theoretical basis for the treatment of BC.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Ji Shi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Yuan Xiang
- Department of Medical Laboratory, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Wen Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
- Key Laboratory of Chronic Noncommunicable Diseases, Yueyang Vocational Technical College, Yueyang, China
| | - Fei-Fei Qi
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Zi-Yi Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Li-Li Zhao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Guan-Hua Zhu
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Yuan-Yuan Duan
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Zhong-Yi Yang
- Yueyang Engineering Technology Research Center of Breast Disease Diagnosis and Treatment, Yueyang People's Hospital, Yueyang Hospital, Affiliated to Hunan Normal University, Yueyang, China
| | - Jia-Peng Li
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Lv Y, Wang Y, Zhang Y, Chen S, Yao Y. Predicting the Risk of Breast Cancer Recurrence and Metastasis based on
miRNA Expression. Curr Bioinform 2024; 19:482-489. [DOI: 10.2174/1574893618666230914105741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/18/2023] [Accepted: 08/09/2023] [Indexed: 01/04/2025]
Abstract
Background:
Even after surgery, breast cancer patients still suffer from recurrence and
metastasis. Thus, it is critical to predict accurately the risk of recurrence and metastasis for individual
patients, which can help determine the appropriate adjuvant therapy.
Methods:
The purpose of this study is to investigate and compare the performance of several categories of molecular biomarkers, i.e., microRNA (miRNA), long non-coding RNA (lncRNA), messenger RNA (mRNA), and copy number variation (CNV), in predicting the risk of breast cancer recurrence and metastasis. First, the molecular data (miRNA, lncRNA, mRNA, and CNV) of 483 breast
cancer patients were downloaded from the Cancer Genome Atlas, which were then randomly divided
into the training and test sets with a ratio of 7:3. Second, the feature selection process was applied by
univariate Cox and multivariate Cox variance analysis on the training set (e.g., 15 miRNAs). According to the selected features (e.g., 15 miRNAs), a random forest classifier and several other classification methods were established according to the label of recurrence and metastasis. Finally, the performances of the classification models were compared and evaluated on the test set.
Results:
The area under the ROC curve was 0.70 for miRNA, better than those using other biomarkers.
Conclusion:
These results indicated that miRNA has important guiding significance in predicting
recurrence and metastasis of breast cancer.
Collapse
Affiliation(s)
- Yaping Lv
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China
- Genies Beijing Co., Ltd.,
Beijing 100102, China
| | - Yanfeng Wang
- Department of Pathology, Beidahuang Industry Group General Hospital, Haerbin 150088,
China
| | - Yumeng Zhang
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China
| | - Shuzhen Chen
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China
| | - Yuhua Yao
- School of Mathematics and Statistics, Hainan Normal University, Haikou 570100, China
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University,
Haikou, China
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou, China
| |
Collapse
|
3
|
Alavanda C, Dirimtekin E, Mortoglou M, Arslan Ates E, Guney AI, Uysal-Onganer P. BRCA Mutations and MicroRNA Expression Patterns in the Peripheral Blood of Breast Cancer Patients. ACS OMEGA 2024; 9:17217-17228. [PMID: 38645356 PMCID: PMC11025100 DOI: 10.1021/acsomega.3c10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/08/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024]
Abstract
Breast cancer (BC) persists as the predominant malignancy globally, standing as the foremost cause of cancer-related mortality among women. Despite notable advancements in prevention and treatment, encompassing the incorporation of targeted immunotherapies, a continued imperative exists for the development of innovative methodologies. These methodologies would facilitate the identification of women at heightened risk, enhance the optimization of therapeutic approaches, and enable the vigilant monitoring of emergent treatment resistance. Circulating microRNAs (miRNAs), found either freely circulating in the bloodstream or encapsulated within extracellular vesicles, have exhibited substantial promise for diverse clinical applications. These applications range from diagnostic and prognostic assessments to predictive purposes. This study aimed to explore the potential associations between BRCA mutations and specific miRNAs (miR-21, miR-155, miR-126, and miR-200c) expression that are known to be dysregulated in BC patient samples. Our findings indicate a robust correlation between miRNA expression status and disease subtypes. We found a correlation between the expression status of miRNAs and distinct disease subtypes. Intriguingly, however, no significant associations were discerned between disease status, subtypes, or miRNA expression levels and the presence of BRCA mutations. To advance the validation of miRNAs as clinically relevant biomarkers, additional investigations within larger and meticulously selected patient cohorts are deemed imperative. These microRNA entities hold the potential to emerge as groundbreaking and readily accessible tools, poised for seamless integration into the landscape of clinical practice.
Collapse
Affiliation(s)
- Ceren Alavanda
- Department
of Medical Genetics, School of Medicine, Marmara University, 34854 Istanbul, Turkey
- Department
of Medical Genetics, Van Research and Training
Hospital, 10300 Van, Turkey
| | - Esra Dirimtekin
- Department
of Medical Genetics, School of Medicine, Marmara University, 34854 Istanbul, Turkey
| | - Maria Mortoglou
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, U.K.
| | - Esra Arslan Ates
- Department
of Medical Genetics, Istanbul University-Cerrahpasa,
Cerrahpasa Faculty of Medicine, 34098 Istanbul, Turkey
| | - Ahmet Ilter Guney
- Department
of Medical Genetics, School of Medicine, Marmara University, 34854 Istanbul, Turkey
| | - Pinar Uysal-Onganer
- Cancer
Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, U.K.
| |
Collapse
|
4
|
Polak M, Wieczorek J, Botor M, Auguścik-Duma A, Hoffmann A, Wnuk-Wojnar A, Gawron K, Mizia-Stec K. Principles and Limitations of miRNA Purification and Analysis in Whole Blood Collected during Ablation Procedure from Patients with Atrial Fibrillation. J Clin Med 2024; 13:1898. [PMID: 38610663 PMCID: PMC11012484 DOI: 10.3390/jcm13071898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Background: MicroRNA (miRNA) have the potential to be non-invasive and attractive biomarkers for a vast number of diseases and clinical conditions; however, a reliable analysis of miRNA expression in blood samples meets a number of methodological challenges. In this report, we presented and discussed, specifically, the principles and limitations of miRNA purification and analysis in blood plasma samples collected from the left atrium during an ablation procedure on patients with atrial fibrillation (AF). Materials and Methods: Consecutive patients hospitalized in the First Department of Cardiology for pulmonary vein ablation were included in this study (11 with diagnosed paroxysmal AF, 14 with persistent AF, and 5 without AF hospitalized for left-sided WPW ablation-control group). Whole blood samples were collected from the left atrium after transseptal puncture during the ablation procedure of AF patients. Analysis of the set of miRNA molecules was performed in blood plasma samples using the MIHS-113ZF-12 kit and miScript microRNA PCR Array Human Cardiovascular Disease. Results: The miRNS concentrations were in the following ranges: paroxysmal AF: 7-23.1 ng/µL; persistent AF: 4.9-66.8 ng/µL; controls: 6.3-10.6 ng/µL. The low A260/280 ratio indicated the protein contamination and the low A260/A230 absorbance ratio suggested the contamination by hydrocarbons. Spectrophotometric measurements also indicated low concentration of nucleic acids (<10 ng/µL). Further steps of analysis revealed that the concentration of cDNA after the Real-Time PCR (using the PAXgene RNA Blood kit) reaction was higher (148.8 ng/µL vs. 68.4 ng/µL) and the obtained absorbance ratios (A260/A280 = 2.24 and A260/A230 = 2.23) indicated adequate RNA purity. Conclusions: Although developments in miRNA sequencing and isolation technology have improved, detection of plasma-based miRNA, low RNA content, and sequencing bias introduced during library preparation remain challenging in patients with AF. The measurement of the quantity and quality of the RNA obtained is crucial for the interpretation of an efficient RNA isolation.
Collapse
Affiliation(s)
- Mateusz Polak
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Wieczorek
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Malwina Botor
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Aleksandra Auguścik-Duma
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Andrzej Hoffmann
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Anna Wnuk-Wojnar
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| | - Katarzyna Mizia-Stec
- First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-055 Katowice, Poland
| |
Collapse
|
5
|
Siniscalco D, Galderisi U, Peluso G, Finicelli M. Circulating microRNAs in Cancer: A 5-Year Update with a Focus on Breast and Lung Cancers. Int J Mol Sci 2024; 25:3140. [PMID: 38542114 PMCID: PMC10969845 DOI: 10.3390/ijms25063140] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/20/2024] [Accepted: 03/07/2024] [Indexed: 03/07/2025] Open
Abstract
Circulating microRNAs (c-miRNAs) are non-coding RNAs found in different bodily fluids and are highly investigated for their prognostic potential and biological role in cancer. In this narrative review, we provide an update of the last five years' published papers (2018-2023) on PubMed about c-miRNAs in cancer research. We aim to capture the latest research interests in terms of the highly studied cancers and the insights about c-miRNAs. Our analysis revealed that more than 150 papers focusing on c-miRNAs and cancer were published in the last five years. Among these, there was a high prevalence of papers on breast cancer (BC) and lung cancer (LC), which are estimated to be the most diagnosed cancers globally. Thus, we focus on the main evidence and research trends about c-miRNAs in BC and LC. We report evidence of the effectiveness of c-miRNAs in hot topics of cancer research, such as, early detection, therapeutic resistance, recurrence risk and novel detection platform approaches. Moreover, we look at the deregulated c-miRNAs shared among BC and LC papers, focusing on miR-21 and miR-145. Overall, these data clearly indicate that the role of c-miRNAs in cancer is still a hot topic for oncologic research and that blood is the most investigated matrix.
Collapse
Affiliation(s)
- Dario Siniscalco
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy; (D.S.); (U.G.)
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy
| | - Umberto Galderisi
- Department of Experimental Medicine, Division of Molecular Biology, Biotechnology and Histology, University of Campania, 80138 Naples, Italy; (D.S.); (U.G.)
| | - Gianfranco Peluso
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Mauro Finicelli
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Via Pietro Castellino 111, 80131 Naples, Italy;
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
6
|
Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel) 2023; 13:3072. [PMID: 37835815 PMCID: PMC10572677 DOI: 10.3390/diagnostics13193072] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNAs (miRNAs) constitute a subclass of non-coding RNAs that exert substantial influence on gene-expression regulation. Their tightly controlled expression plays a pivotal role in various cellular processes, while their dysregulation has been implicated in numerous pathological conditions, including cancer. Among cancers affecting women, breast cancer (BC) is the most prevalent malignant tumor. Extensive investigations have demonstrated distinct expression patterns of miRNAs in normal and malignant breast cells. Consequently, these findings have prompted research efforts towards leveraging miRNAs as diagnostic tools and the development of therapeutic strategies. The aim of this review is to describe the role of miRNAs in BC. We discuss the identification of oncogenic, tumor suppressor and metastatic miRNAs among BC cells, and their impact on tumor progression. We describe the potential of miRNAs as diagnostic and prognostic biomarkers for BC, as well as their role as promising therapeutic targets. Finally, we evaluate the current use of artificial intelligence tools for miRNA analysis and the challenges faced by these new biomedical approaches in its clinical application. The insights presented in this review underscore the promising prospects of utilizing miRNAs as innovative diagnostic, prognostic, and therapeutic tools for the management of BC.
Collapse
Affiliation(s)
- Juan P. Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Pablo Pérez-Moreno
- Programa de Comunicación Celular en Cáncer, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago 7780272, Chile
| | - Yasmín Pérez
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile
| |
Collapse
|
7
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
8
|
González-Martínez C, Garrido-Navas C, Alcaide-Lucena M, Hidalgo JL, Ortega FG, Serrano MJ. microRNAs signature in relapse metastasis and de novo metastasis of breast cancer. A systematic review. Crit Rev Oncol Hematol 2023:104060. [PMID: 37353177 DOI: 10.1016/j.critrevonc.2023.104060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023] Open
Abstract
miRNAs have been widely identified as important players in cancer development and progression. Metastasis in breast cancer can occur as relapse of a treated primary tumour or at the time of diagnosis of the tumour. The aim of this review is to show if both metastasis are different molecular entities characterised by different miRNA signatures that could be studied as specific biomarkers for each entity. For this, we systematically searched the PubMed, Scopus and Web of Science databases. After searching and reviewing the literature, a total of 30 records were included in this review. Results showed a genetic signature including a total of 5 upregulated miRNAs in metastasis compared with early stages. Of them, miR-23b and miR-200c were exclusively present in relapse metastasis. Finally, we proposed a molecular signature for future studies that can be used as a complementary tool at clinical trials for the diagnosis and characterization of metastasis.
Collapse
Affiliation(s)
- Coral González-Martínez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Department of Legal Medicine, University of Granada, Av. de la Investigación, 11, 18071 Granada, Spain
| | - Carmen Garrido-Navas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain
| | - Miriam Alcaide-Lucena
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; General Surgery and Digestive System Unit, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - J López Hidalgo
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Pathological Anatomy Unit, Hospital Clínico San Cecilio, 18016 Granada, Spain
| | - Francisco Gabriel Ortega
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain.
| | - María José Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government. Avenida de la Ilustracion 114, 18016 Granada, Spain; IBS Granada, Institute of Biomedical Research. Avenida de Madrid 15, 18012 Granada, Spain; Integral Oncology Division, Hospital Virgen de las Nieves, 18014 Granada, Spain.
| |
Collapse
|
9
|
Bouz Mkabaah L, Davey MG, Lennon JC, Bouz G, Miller N, Kerin MJ. Assessing the Role of MicroRNAs in Predicting Breast Cancer Recurrence-A Systematic Review. Int J Mol Sci 2023; 24:7115. [PMID: 37108278 PMCID: PMC10138898 DOI: 10.3390/ijms24087115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Identifying patients likely to develop breast cancer recurrence remains a challenge. Thus, the discovery of biomarkers capable of diagnosing recurrence is of the utmost importance. MiRNAs are small, non-coding RNA molecules which are known to regulate genetic expression and have previously demonstrated relevance as biomarkers in malignancy. To perform a systematic review evaluating the role of miRNAs in predicting breast cancer recurrence. A formal systematic search of PubMed, Scopus, Web of Science, and Cochrane databases was performed. This search was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) checklist. A total of 19 studies involving 2287 patients were included. These studies identified 44 miRNAs which predicted breast cancer recurrence. Results from nine studies assessed miRNAs in tumour tissues (47.4%), eight studies included circulating miRNAs (42.1%), and two studies assessed both tumour and circulating miRNAs (10.5%). Increased expression of 25 miRNAs were identified in patients who developed recurrence, and decreased expression of 14 miRNAs. Interestingly, five miRNAs (miR-17-5p, miR-93-5p, miR-130a-3p, miR-155, and miR-375) had discordant expression levels, with previous studies indicating both increased and reduced expression levels of these biomarkers predicting recurrence. MiRNA expression patterns have the ability to predict breast cancer recurrence. These findings may be used in future translational research studies to identify patients with breast cancer recurrence to improve oncological and survival outcomes for our prospective patients.
Collapse
Affiliation(s)
- Luis Bouz Mkabaah
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| | - Matthew G. Davey
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| | - James C. Lennon
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| | - Ghada Bouz
- Faculty of Pharmacy in Hradec Králové, Charles University, 50005 Hradec Králové, Czech Republic
| | - Nicola Miller
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| | - Michael J. Kerin
- Discipline of Surgery, Lambe Institute for Translational Research, University of Galway, H91 YR71 Galway, Ireland; (L.B.M.); (J.C.L.)
| |
Collapse
|
10
|
Desouky EM, Khaliefa AK, Hozayen WG, Shaaban SM, Hasona NA. Signature of miR-21 and MEG-2 and their correlation with TGF-β signaling in breast cancer. Hum Exp Toxicol 2023; 42:9603271231159799. [PMID: 36825546 DOI: 10.1177/09603271231159799] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Breast cancer is highly prevalent and considered the main challenge to public health among females in Egypt as in other countries. MicroRNA-21 (miR-21) and MEG-2 are noncoding RNA attributed to their aberrant expression in several diseases, including breast cancer. This study aimed to assess the reliability of serum expression levels of miR-21 and MEG-2 in discriminating stages of breast cancer and scrutinize their correlations with the targeted transforming growth factor-beta (TGF-β) expression. One hundred and 30 participants whose ages ranged from 28 to 62 years were included in this study, divided into one hundred breast cancer patients and 30 healthy participants. miR-21 and TGF-β expression levels showed upregulation in patients with BC and elevated miR-21/TGF-β levels consistent with the BC stage. In addition, LncRNA (MEG-2) showed down-regulation in patients with BC. MEG-2 expression levels revealed a gradual decrease consistent with the BC stage. In addition, a negative relationship between the MEG-2 and the miR-21 and TGF-β differential expression was also noticed. This study suggested that miR-21 and MEG-2 can be used as prospective diagnostic biomarkers and emphasized the crucible role of TGF-β as therapeutic targets for BC.
Collapse
Affiliation(s)
- E M Desouky
- Department of Biochemistry, Faculty of Science, 158406Beni-Suef University, Beni-Suef, Egypt
| | - A K Khaliefa
- Department of Biochemistry, Faculty of Science, 158406Beni-Suef University, Beni-Suef, Egypt
| | - W G Hozayen
- Department of Biochemistry, Faculty of Science, 158406Beni-Suef University, Beni-Suef, Egypt
| | - S M Shaaban
- Department of Oncology, Faculty of Medicine, 158411Beni-Suef University, Beni-Suef, Egypt
| | - N A Hasona
- Department of Biochemistry, Faculty of Science, 158406Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
Elkholi IE, Lalonde A, Park M, Côté JF. Breast Cancer Metastatic Dormancy and Relapse: An Enigma of Microenvironment(s). Cancer Res 2022; 82:4497-4510. [PMID: 36214624 PMCID: PMC9755970 DOI: 10.1158/0008-5472.can-22-1902] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/01/2022] [Accepted: 10/04/2022] [Indexed: 01/24/2023]
Abstract
Multiple factors act in concert to define the fate of disseminated tumor cells (DTC) to enter dormancy or develop overt metastases. Here, we review these factors in the context of three stages of the metastatic cascade that impact DTCs. First, cells can be programmed within the primary tumor microenvironment to promote or inhibit dissemination, and the primary tumor can condition a premetastatic niche. Then, cancer cells from the primary tumor spread through hematogenous and lymphatic routes, and the primary tumor sends cues systematically to regulate the fate of DTCs. Finally, DTCs home to their metastatic site, where they are influenced by various organ-specific aspects of the new microenvironment. We discuss these factors in the context of breast cancer, where about one-third of patients develop metastatic relapse. Finally, we discuss how the standard-of-care options for breast cancer might affect the fate of DTCs.
Collapse
Affiliation(s)
- Islam E. Elkholi
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada.,Corresponding Authors: Jean-François Côté, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal H2W 1R7, Québec, Canada. Phone: 514-987-5647; E-mail: ; and Islam E. Elkholi, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal (QC) Canada, H2W 1R7. Phone: 514-987-5656; E-mail:
| | - Andréane Lalonde
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montréal, Québec, Canada
| | - Jean-François Côté
- Montreal Clinical Research Institute (IRCM), Montreal, Québec, Canada.,Molecular Biology Programs, Université de Montréal, Montreal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montréal, Québec, Canada.,Corresponding Authors: Jean-François Côté, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal H2W 1R7, Québec, Canada. Phone: 514-987-5647; E-mail: ; and Islam E. Elkholi, Montreal Clinical Research Institute (IRCM), 110 Avenue des Pins Ouest, Montréal (QC) Canada, H2W 1R7. Phone: 514-987-5656; E-mail:
| |
Collapse
|
12
|
Addressing the Clinical Feasibility of Adopting Circulating miRNA for Breast Cancer Detection, Monitoring and Management with Artificial Intelligence and Machine Learning Platforms. Int J Mol Sci 2022; 23:ijms232315382. [PMID: 36499713 PMCID: PMC9736108 DOI: 10.3390/ijms232315382] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Detecting breast cancer (BC) at the initial stages of progression has always been regarded as a lifesaving intervention. With modern technology, extensive studies have unraveled the complexity of BC, but the current standard practice of early breast cancer screening and clinical management of cancer progression is still heavily dependent on tissue biopsies, which are invasive and limited in capturing definitive cancer signatures for more comprehensive applications to improve outcomes in BC care and treatments. In recent years, reviews and studies have shown that liquid biopsies in the form of blood, containing free circulating and exosomal microRNAs (miRNAs), have become increasingly evident as a potential minimally invasive alternative to tissue biopsy or as a complement to biomarkers in assessing and classifying BC. As such, in this review, the potential of miRNAs as the key BC signatures in liquid biopsy are addressed, including the role of artificial intelligence (AI) and machine learning platforms (ML), in capitalizing on the big data of miRNA for a more comprehensive assessment of the cancer, leading to practical clinical utility in BC management.
Collapse
|
13
|
Papadaki C, Stratigos M, Markakis G, Spiliotaki M, Mastrostamatis G, Nikolaou C, Mavroudis D, Agelaki S. Correction to: Circulating microRNAs in the early prediction of disease recurrence in primary breast cancer. Breast Cancer Res 2022; 24:53. [PMID: 35869494 PMCID: PMC9306056 DOI: 10.1186/s13058-022-01544-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
14
|
Ghalkhani E, Akbari MT, Izadi P, Mahmoodzadeh H, Kamali F. The Expression Levels of Circulating miR-129 and miR-203a in Association with Breast Cancer and Related Metastasis. IRANIAN JOURNAL OF PUBLIC HEALTH 2022; 51:2808-2816. [PMID: 36742232 PMCID: PMC9874213 DOI: 10.18502/ijph.v51i12.11472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/21/2021] [Indexed: 12/29/2022]
Abstract
Background A significant part of deaths related to breast cancer is the result of invasion to other organs. It is essential to discover new non-invasive biomarkers to improve anticipation of recurrence risk in breast cancer patients. In this study, the plasma levels of miR-129 and miR-203a were evaluated to investigate their diagnostic potential in breast cancer and its metastasis. Methods In this case-control study, conducted in Tarbiat Modares University, Tehran, Iran, in 2019, Invasive Ductal Carcinoma blood samples were divided into 3 groups based on their stages as I, II/III, IV. Each group contained 30 individuals. We also recruited 30 normal individuals as a control group. Real-Time PCR was conducted to evaluate miR-129 and miR-203a expression levels. The discriminatory ability of the evaluated plasma miRNAs was assessed by ROC (Receiver Operating Characteristic) curves in breast cancer diagnosis and its metastasis. Results MiR-129 and miR-203a expression levels were significantly downregulated in breast cancer. Reducing tendency was observed in the mentioned miRNAs from less to more invasive stages. The expression level of miR-129 was decreased in metastatic than non-metastatic patients and it was significantly related to metastasis. A significant association between miR-129 expression level and lymph node status was also observed (P=0.04). Evaluation of ROC curves revealed that miR-129 and miR-203a were able to discriminate breast cancer fairly and poorly respectively. The ability of miR-129 in the diagnosis of breast cancer metastasis was poor. Conclusion MiR-129 and miR-203a may both act as tumor suppressor miRNAs. Our results need further evidence in a large population to be confirmed as diagnostic markers.
Collapse
Affiliation(s)
- Esmat Ghalkhani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Taghi Akbari
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran,Corresponding Author:
| | - Pantea Izadi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Habibollah Mahmoodzadeh
- Iran National Tumor Bank, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Kamali
- Department of Surgery, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Identification of potential microRNA diagnostic panels and uncovering regulatory mechanisms in breast cancer pathogenesis. Sci Rep 2022; 12:20135. [PMID: 36418345 PMCID: PMC9684445 DOI: 10.1038/s41598-022-24347-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
Early diagnosis of breast cancer (BC), as the most common cancer among women, increases the survival rate and effectiveness of treatment. MicroRNAs (miRNAs) control various cell behaviors, and their dysregulation is widely involved in pathophysiological processes such as BC development and progress. In this study, we aimed to identify potential miRNA biomarkers for early diagnosis of BC. We also proposed a consensus-based strategy to analyze the miRNA expression data to gain a deeper insight into the regulatory roles of miRNAs in BC initiation. Two microarray datasets (GSE106817 and GSE113486) were analyzed to explore the differentially expressed miRNAs (DEMs) in serum of BC patients and healthy controls. Utilizing multiple bioinformatics tools, six serum-based miRNA biomarkers (miR-92a-3p, miR-23b-3p, miR-191-5p, miR-141-3p, miR-590-5p and miR-190a-5p) were identified for BC diagnosis. We applied our consensus and integration approach to construct a comprehensive BC-specific miRNA-TF co-regulatory network. Using different combination of these miRNA biomarkers, two novel diagnostic models, consisting of miR-92a-3p, miR-23b-3p, miR-191-5p (model 1) and miR-92a-3p, miR-23b-3p, miR-141-3p, and miR-590-5p (model 2), were obtained from bioinformatics analysis. Validation analysis was carried out for the considered models on two microarray datasets (GSE73002 and GSE41922). The model based on similar network topology features, comprising miR-92a-3p, miR-23b-3p and miR-191-5p was the most promising model in the diagnosis of BC patients from healthy controls with 0.89 sensitivity, 0.96 specificity and area under the curve (AUC) of 0.98. These findings elucidate the regulatory mechanisms underlying BC and represent novel biomarkers for early BC diagnosis.
Collapse
|
16
|
Ismail A, El-Mahdy HA, Abulsoud AI, Sallam AAM, Eldeib MG, Elsakka EG, Zaki MB, Doghish AS. Beneficial and detrimental aspects of miRNAs as chief players in breast cancer: A comprehensive review. Int J Biol Macromol 2022; 224:1541-1565. [DOI: 10.1016/j.ijbiomac.2022.10.241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022]
|
17
|
Abbate JM, Giannetto A, Arfuso F, Brunetti B, Lanteri G. RT-qPCR Expression Profiles of Selected Oncogenic and Oncosuppressor miRNAs in Formalin-Fixed, Paraffin-Embedded Canine Mammary Tumors. Animals (Basel) 2022; 12:ani12212898. [PMID: 36359024 PMCID: PMC9654908 DOI: 10.3390/ani12212898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) can act as oncogenes or oncosuppressor genes, and their involvement in nearly all cancer-associated processes makes these small molecules promising diagnostic and prognostic biomarkers in cancer, as well as specific targets for cancer therapy. This study aimed to investigate the expression of 7 miRNAs (miR-18a, miR-18b, miR-22, miR-124, miR-145, miR-21, miR-146b) in formalin-fixed, paraffin-embedded canine mammary tumors (CMTs) by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Twenty-six mammary samples were selected, including 22 CMTs (7 benign; 15 malignant) and 4 control samples (3 normal mammary gland and 1 case of lobular hyperplasia). Oncogenic miR-18a, miR-18b and miR-21 were significantly upregulated in malignant tumors compared with control tissues (p < 0.05). Conversely, oncosuppressor miR-146b was significantly downregulated in benign and malignant mammary tumors compared with control samples (p < 0.05) while, no group-related differences in the expression levels of miR-22, miR-124 and miR-145 were found (p > 0.05). Upregulated miRNAs found here, may regulate genes involved in receptor-mediated carcinogenesis and proteoglycan remodeling in cancer; while miRNA with reduced expression can regulate genes involved in Toll-like receptor and MAPK signaling pathways. According to the results obtained in the current study, the oncogenic and oncosuppressor miRNAs analyzed here are dysregulated in CMTs and the dysregulation of miRNA targets may lead to specific altered cellular processes and key pathways involved in carcinogenesis. Of note, since oncogenic miRNAs predicted to regulate neoplastic cell proliferation and hormonal activities, they may play an active role in neoplastic transformation and/or progression, having mechanistic and prognostic relevance in CMTs.
Collapse
Affiliation(s)
- Jessica Maria Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Alessia Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Universitario Papardo, 98166 Messina, Italy
| | - Francesca Arfuso
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, 98168 Messina, Italy
| | - Barbara Brunetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, via Tolara di Sopra, Ozzano Emilia, 40064 Bologna, Italy
- Correspondence:
| | - Giovanni Lanteri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Polo Universitario Papardo, 98166 Messina, Italy
| |
Collapse
|
18
|
Circulating miR-200 Family and CTCs in Metastatic Breast Cancer before, during, and after a New Line of Systemic Treatment. Int J Mol Sci 2022; 23:ijms23179535. [PMID: 36076930 PMCID: PMC9455626 DOI: 10.3390/ijms23179535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The extracellular circulating microRNA (miR)-200 regulates epithelial-mesenchymal transition and, thus, plays an essential role in the metastatic cascade and has shown itself to be a promising prognostic and predictive biomarker in metastatic breast cancer (MBC). Expression levels of the plasma miR-200 family were analyzed in relationship to systemic treatment, circulating tumor cells (CTC) count, progression-free survival (PFS), and overall survival (OS). Expression of miR-200a, miR-200b, miR-200c, miR-141, and miR-429, and CTC status (CTC-positive ≥ 5 CTC/7.5 mL) was assessed in 47 patients at baseline (BL), after the first completed cycle of a new line of systemic therapy (1C), and upon the progression of disease (PD). MiR-200a, miR-200b, and miR-141 expression was reduced at 1C compared to BL. Upon PD, all miR-200s were upregulated compared to 1C. At all timepoints, the levels of miR-200s were elevated in CTC-positive versus CTC-negative patients. Further, heightened miR-200s expression and positive CTC status were associated with poorer OS at BL and 1C. In MBC patients, circulating miR-200 family members decreased after one cycle of a new line of systemic therapy, were elevated during PD, and were indicative of CTC status. Notably, increased levels of miR-200s and elevated CTC count correlated with poorer OS and PFS. As such, both are promising biomarkers for optimizing the clinical management of MBC.
Collapse
|
19
|
Liu X, Papukashvili D, Wang Z, Liu Y, Chen X, Li J, Li Z, Hu L, Li Z, Rcheulishvili N, Lu X, Ma J. Potential utility of miRNAs for liquid biopsy in breast cancer. Front Oncol 2022; 12:940314. [PMID: 35992785 PMCID: PMC9386533 DOI: 10.3389/fonc.2022.940314] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Breast cancer (BC) remains the most prevalent malignancy due to its incidence rate, recurrence, and metastasis in women. Conventional strategies of cancer detection– mammography and tissue biopsy lack the capacity to detect the complete cancer genomic landscape. Besides, they often give false- positive or negative results. The presence of this and other disadvantages such as invasiveness, high-cost, and side effects necessitates developing new strategies to overcome the BC burden. Liquid biopsy (LB) has been brought to the fore owing to its early detection, screening, prognosis, simplicity of the technique, and efficient monitoring. Remarkably, microRNAs (miRNAs)– gene expression regulators seem to play a major role as biomarkers detected in the samples of LB. Particularly, miR-21 and miR-155 among other possible candidates seem to serve as favorable biomarkers in the diagnosis and prognosis of BC. Hence, this review will assess the potential utility of miRNAs as biomarkers and will highlight certain promising candidates for the LB approach in the diagnosis and management of BC that may optimize the patient outcome.
Collapse
Affiliation(s)
- Xiangrong Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Dimitri Papukashvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Wang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Yan Liu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Xiaoxia Chen
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jianrong Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zhiyuan Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Linjie Hu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Zheng Li
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Nino Rcheulishvili
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Lu
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| | - Jinfeng Ma
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaoqing Lu, ; Jinfeng Ma,
| |
Collapse
|
20
|
MicroRNA-21 is immunosuppressive and pro-metastatic via separate mechanisms. Oncogenesis 2022; 11:38. [PMID: 35821197 PMCID: PMC9276829 DOI: 10.1038/s41389-022-00413-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 06/07/2022] [Accepted: 06/28/2022] [Indexed: 11/22/2022] Open
Abstract
MiR-21 was identified as a gene whose expression correlated with the extent of metastasis of murine mammary tumours. Since miR-21 is recognised as being associated with poor prognosis in cancer, we investigated its contribution to mammary tumour growth and metastasis in tumours with capacity for spontaneous metastasis. Unexpectedly, we found that suppression of miR-21 activity in highly metastatic tumours resulted in regression of primary tumour growth in immunocompetent mice but did not impede growth in immunocompromised mice. Analysis of the immune infiltrate of the primary tumours at the time when the tumours started to regress revealed an influx of both CD4+ and CD8+ activated T cells and a reduction in PD-L1+ infiltrating monocytes, providing an explanation for the observed tumour regression. Loss of anti-tumour immune suppression caused by decreased miR-21 activity was confirmed by transcriptomic analysis of primary tumours. This analysis also revealed reduced expression of genes associated with cell cycle progression upon loss of miR-21 activity. A second activity of miR-21 was the promotion of metastasis as shown by the loss of metastatic capacity of miR-21 knockdown tumours established in immunocompromised mice, despite no impact on primary tumour growth. A proteomic analysis of tumour cells with altered miR-21 activity revealed deregulation of proteins known to be associated with tumour progression. The development of therapies targeting miR-21, possibly via targeted delivery to tumour cells, could be an effective therapy to combat primary tumour growth and suppress the development of metastatic disease.
Collapse
|
21
|
Dormancy in Breast Cancer, the Role of Autophagy, lncRNAs, miRNAs and Exosomes. Int J Mol Sci 2022; 23:ijms23095271. [PMID: 35563661 PMCID: PMC9105119 DOI: 10.3390/ijms23095271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women for which numerous diagnostic and therapeutic options have been developed. Namely, the targeted treatment of BC, for the most part, relies on the expression of growth factors and hormone receptors by these cancer cells. Despite this, close to 30% of BC patients may experience relapse due to the presence of minimal residual disease (MRD) consisting of surviving disseminated tumour cells (DTCs) from the primary tumour which can colonise a secondary site. This can lead to either detectable metastasis or DTCs entering a dormant state for a prolonged period where they are undetectable. In the latter, cells can re-emerge from their dormant state due to intrinsic and microenvironmental cues leading to relapse and metastatic outgrowth. Pre- and clinical studies propose that targeting dormant DTCs may inhibit metastasis, but the choice between keeping them dormant or forcing their “awakening” is still controversial. This review will focus on cancer cells’ microenvironmental cues and metabolic and molecular properties, which lead to dormancy, relapse, and metastatic latency in BC. Furthermore, we will focus on the role of autophagy, long non-coding RNAs (lncRNAs), miRNAs, and exosomes in influencing the induction of dormancy and awakening of dormant BC cells. In addition, we have analysed BC treatment from a viewpoint of autophagy, lncRNAs, miRNAs, and exosomes. We propose the targeted modulation of these processes and molecules as modern aspects of precision medicine for BC treatment, improving both novel and traditional BC treatment options. Understanding these pathways and processes may ultimately improve BC patient prognosis, patient survival, and treatment response.
Collapse
|
22
|
Wu HJ, Chu PY. Current and Developing Liquid Biopsy Techniques for Breast Cancer. Cancers (Basel) 2022; 14:2052. [PMID: 35565189 PMCID: PMC9105073 DOI: 10.3390/cancers14092052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer and leading cause of cancer mortality among woman worldwide. The techniques of diagnosis, prognosis, and therapy monitoring of breast cancer are critical. Current diagnostic techniques are mammography and tissue biopsy; however, they have limitations. With the development of novel techniques, such as personalized medicine and genetic profiling, liquid biopsy is emerging as the less invasive tool for diagnosing and monitoring breast cancer. Liquid biopsy is performed by sampling biofluids and extracting tumor components, such as circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), cell-free mRNA (cfRNA) and microRNA (miRNA), proteins, and extracellular vehicles (EVs). In this review, we summarize and focus on the recent discoveries of tumor components and biomarkers applied in liquid biopsy and novel development of detection techniques, such as surface-enhanced Raman spectroscopy (SERS) and microfluidic devices.
Collapse
Affiliation(s)
- Hsing-Ju Wu
- Research Assistant Center, Show Chwan Memorial Hospital, Changhua 500, Taiwan;
- Department of Medical Research, Chang Bing Show Chwan Memorial Hospital, Lukang Town, Changhua 505, Taiwan
- Department of Biology, National Changhua University of Education, Changhua 500, Taiwan
| | - Pei-Yi Chu
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
- Department of Pathology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Health Food, Chung Chou University of Science and Technology, Changhua 510, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan
| |
Collapse
|
23
|
Circulating miR-200 family as predictive markers during systemic therapy of metastatic breast cancer. Arch Gynecol Obstet 2022; 306:875-885. [PMID: 35237856 PMCID: PMC9411224 DOI: 10.1007/s00404-022-06442-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/10/2022] [Indexed: 12/09/2022]
Abstract
Purpose Circulating miRNAs can provide valid prognostic and predictive information for breast cancer diagnosis and subsequent management. They may comprise quintessential biomarkers that can be obtained minimally invasively from liquid biopsy in metastatic breast cancer patients. Therefore, they would be clinically crucial for monitoring therapy response, with the goal of detecting early relapse. This study investigated miRNA expression in patients with early and/or late relapse, and the predictive value for assessing overall (OS) and progression-free survival (PFS). Methods Forty-seven patients with metastatic breast cancer from the University Women’s Hospital Heidelberg were enrolled in this study. Expression of miR-200a, miR-200b, miR-200c, miR-141, and miR-429 was analyzed by RT-qPCR before a new line of systemic therapy and after the first cycle of a respective therapy. Tumor response was assessed every 3 months using the RECIST criteria. Statistical analysis focused on the relation of miR-200s expression and early vs. late cancer relapse in relation to systemic treatment. The association of miRNAs with PFS and OS was investigated. Results Before starting a new line of systemic therapy, miR-429 (p = 0.024) expression was significantly higher in patients with early relapse (PFS ≤ 4 months) than in patients with late relapse (PFS > 4 months). After one cycle of systemic therapy, miR-200a (p = 0.039), miR-200b (p = 0.003), miR-141 (p = 0.017), and miR-429 (p = 0.010) expression was higher in early than in late progressive cancer. In addition, 4 out of 5 miR-200 family members (miR-200a, miR-200b, miR-141, and miR-429) predicted PFS (p = 0.048, p = 0.008, p = 0.026, and p = 0.016, respectively). Patients with heightened miRNA levels showed a significant reduction in OS and PFS. Conclusion Circulating miR-200s were differentially expressed among patients with late and/or early relapse. 4 of 5 members of the miR-200 family predicted significantly early relapse after systemic treatment. Our results encourage the use of circulating miR-200s as valuable prognostic biomarkers during metastatic breast cancer therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-022-06442-2.
Collapse
|
24
|
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D’Agostino DM, Ciminale V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers (Basel) 2021; 13:5874. [PMID: 34884985 PMCID: PMC8656820 DOI: 10.3390/cancers13235874] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers. This review provides a summary of the role of miR-200 family members in EMT, factors that regulate their expression, and important targets for miR-200-mediated repression that are involved in EMT. The second part of the review discusses the potential utility of circulating miR-200 family members as diagnostic/prognostic biomarkers for breast, colorectal, lung, ovarian, prostate and bladder cancers.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Francesco Ciccarese
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Evgeniya Sharova
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Loredana Urso
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| | - Vittoria Raimondi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Micol Silic-Benussi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Donna M. D’Agostino
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| |
Collapse
|
25
|
Ramadan ES, Salem NY, Emam IA, AbdElKader NA, Farghali HA, Khattab MS. MicroRNA-21 expression, serum tumor markers, and immunohistochemistry in canine mammary tumors. Vet Res Commun 2021; 46:377-388. [PMID: 34787777 DOI: 10.1007/s11259-021-09861-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Canine mammary tumors (CMTs) are one of the most common malignancies in dogs and are associated with significant mortality. Serum tumor markers and non-coding microRNAs have gained widespread popularity in human oncology studies. The present study has two aims, first one is to investigate the miR-21 expression compared with changes in serum tumor markers (CEA and CA15-3) in CMT. The second aim is to detect the immunohistochemistry markers as vimentin, P63, and -SMA in CMT. METHODS This study enrolled 17 female dogs: 10 with mammary tumors and seven controls without tumors. Blood samples were collected to measure miR-21, CEA, and CA 15-3, and histological samples were prepared for histological grading and immunohistochemistry. RESULTS CA 15-3 was elevated in all animals, whereas CEA levels showed no change compared with controls. miR-21 was upregulated 12.84-fold in animals with CMT. The most frequently recorded CMT was the mixed type. Myoepithelial cells were identified by P63 immunoreactivity, but not SMA. High expression of miR-21 was observed with positive vimentin immunoreactivity, indicating the mesenchymal origin of the tumor cells. CONCLUSION The present study showed that miR-21 was elevated to a greater extent than CA 15-3 (12.84-fold vs. threefold). Tumors that was positive for vimentin immunoreactivity was also associated with an elevation in the levels of miR-21, showing that miR-21 is released from mesenchymal cells. These findings support the hypothesis that miR-21 may be a more sensitive, noninvasive indicator for CMT.
Collapse
Affiliation(s)
- Eman S Ramadan
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Noha Y Salem
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ibrahim A Emam
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Naglaa A AbdElKader
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Haithem A Farghali
- Department of Surgery and Anesthesia, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Marwa S Khattab
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| |
Collapse
|
26
|
Otsuka K, Ochiya T. Possible connection between diet and microRNA in cancer scenario. Semin Cancer Biol 2021; 73:4-18. [DOI: 10.1016/j.semcancer.2020.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
|
27
|
Tito C, De Falco E, Rosa P, Iaiza A, Fazi F, Petrozza V, Calogero A. Circulating microRNAs from the Molecular Mechanisms to Clinical Biomarkers: A Focus on the Clear Cell Renal Cell Carcinoma. Genes (Basel) 2021; 12:1154. [PMID: 34440329 PMCID: PMC8391131 DOI: 10.3390/genes12081154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
microRNAs (miRNAs) are emerging as relevant molecules in cancer development and progression. MiRNAs add a post-transcriptional level of control to the regulation of gene expression. The deregulation of miRNA expression results in changing the molecular circuitry in which miRNAs are involved, leading to alterations of cell fate determination. In this review, we describe the miRNAs that are emerging as innovative molecular biomarkers from liquid biopsies, not only for diagnosis, but also for post-surgery management in cancer. We focus our attention on renal cell carcinoma, in particular highlighting the crucial role of circulating miRNAs in clear cell renal cell carcinoma (ccRCC) management. In addition, the functional deregulation of miRNA expression in ccRCC is also discussed, to underline the contribution of miRNAs to ccRCC development and progression, which may be relevant for the identification and design of innovative clinical strategies against this tumor.
Collapse
Affiliation(s)
- Claudia Tito
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Elena De Falco
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
- Mediterranea Cardiocentro, 80122 Naples, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| | - Alessia Iaiza
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology & Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy; (C.T.); (A.I.); (F.F.)
| | - Vincenzo Petrozza
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| | - Antonella Calogero
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy; (E.D.F.); (P.R.); (V.P.)
| |
Collapse
|
28
|
Thomopoulou K, Papadaki C, Monastirioti A, Koronakis G, Mala A, Kalapanida D, Mavroudis D, Agelaki S. MicroRNAs Regulating Tumor Immune Response in the Prediction of the Outcome in Patients With Breast Cancer. Front Mol Biosci 2021; 8:668534. [PMID: 34179081 PMCID: PMC8220200 DOI: 10.3389/fmolb.2021.668534] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/27/2021] [Indexed: 12/29/2022] Open
Abstract
MicroRNAs (miRNAs) are key regulators in immune surveillance and immune escape as well as modulators in the metastatic process of breast cancer cells. We evaluated the differential expression of plasma miR-10b, miR-19a, miR-20a, miR-126 and miR-155, which regulate immune response in breast cancer progression and we investigated their clinical relevance in the outcomes of breast cancer patients. Plasma samples were obtained from early (eBC; n = 140) and metastatic (mBC; n = 64) breast cancer patients before adjuvant or first-line chemotherapy, respectively. Plasma miRNA expression levels were assessed by qRT-PCR. We revealed a 4-miRNA panel consisted of miR-19a, miR-20a, miR-126, and miR-155 able to discriminate eBC from mBC patients with an AUC of 0.802 (p < 0.001). Survival analysis in eBC patients revealed that low miR-10b and miR-155 expression was associated with shorter disease free survival (disease free survival; p = 0.012 and p = 0.04, respectively) compared to high expression. Furthermore, miR-126 expression was associated with shorter overall survival (overall survival; p = 0.045). In multivariate analysis the number of infiltrated axillary lymph nodes and low miR-10b expression independently predicted for shorter DFS (HR: 2.538; p = 0.002 and HR: 1.943; p = 0.033, respectively) and axillary lymph nodes and low miR-126 for shorter OS (HR: 3.537; p = 0.001 and HR: 2.558; p = 0.018). In the subgroup of triple negative breast cancer (TNBC) patients, low miR-155 expression independently predicted for shorter DFS (HR: 5.056; p = 0.037). Accordingly in mBC, patients with low miR-10b expression had shorter progression free survival and OS compared to patients with high expression (p = 0.0017 and p = 0.042, respectively). In multivariate analysis, recurrent disease and low miR-10b expression independently predicted for shorter PFS (HR: 2.657; p = 0.001 and HR: 1.920; p = 0.017, respectively), whereas performance status two independently predicted for shorter OS (HR: 2.031; p = 0.03). In summary, deregulated expression of circulating miRNAs involved in tumor and immune cell interactions evaluated before adjuvant and 1st-line chemotherapy can distinguish disease status and emerge as independent predictors for outcomes of breast cancer patients.
Collapse
Affiliation(s)
- Konstantina Thomopoulou
- Department of Medical Oncology, University General Hospital, Crete, Heraklion, Greece
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Chara Papadaki
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Alexia Monastirioti
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Koronakis
- Department of Medical Oncology, University General Hospital, Crete, Heraklion, Greece
| | - Anastasia Mala
- Department of Medical Oncology, University General Hospital, Crete, Heraklion, Greece
| | - Despoina Kalapanida
- Department of Medical Oncology, University General Hospital, Crete, Heraklion, Greece
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University General Hospital, Crete, Heraklion, Greece
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| | - Sofia Agelaki
- Department of Medical Oncology, University General Hospital, Crete, Heraklion, Greece
- Laboratory of Translational Oncology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
29
|
Adam-Artigues A, Garrido-Cano I, Simón S, Ortega B, Moragón S, Lameirinhas A, Constâncio V, Salta S, Burgués O, Bermejo B, Henrique R, Lluch A, Jerónimo C, Eroles P, Cejalvo JM. Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer. ESMO Open 2021; 6:100039. [PMID: 33477007 PMCID: PMC7820029 DOI: 10.1016/j.esmoop.2020.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, microRNAs have been demonstrated to be potential non-invasive biomarkers for diagnosis, prognosis assessment or prediction of response to treatment in cancer. In this study, we evaluate the potential of miR-30b-5p as a biomarker for early diagnosis of breast cancer (BC) in tissue and plasma. METHODS Expression of miR-30b-5p was determined in a series of 112 BC and 40 normal breast tissues. Circulating miR-30b-5p levels in plasma samples were determined in a discovery cohort of 38 BC patients and 40 healthy donors and in a validation cohort of 83 BC patients and 83 healthy volunteers. miR-30b-5p expression was measured by quantitative real-time PCR and receiver operating characteristics curve analysis was carried out. RESULTS The miR-30b-5p expression was significantly lower in BC tissue than in healthy breast samples. In contrast, circulating miR-30b-5p levels were significantly higher in BC patients compared with healthy donors. Furthermore, circulating miR-30b-5p levels were significantly higher in patients with positive axillary lymph node and de novo metastatic patients. Receiver operating characteristics curve analysis demonstrated a good diagnostic potential of miR-30b-5p to detect BC even at an early stage of the disease. CONCLUSION Thus, we highlight the potential of miR-30b-5p as a non-invasive, fast, reproducible and cost-effective diagnostic biomarker of BC.
Collapse
Affiliation(s)
| | | | - S Simón
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - B Ortega
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - S Moragón
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - A Lameirinhas
- Biomedical Research Institute INCLIVA, Valencia, Spain
| | - V Constâncio
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal
| | - S Salta
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal
| | - O Burgués
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - B Bermejo
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - R Henrique
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar University of Porto (ICBAS-UP), Porto, Portugal
| | - A Lluch
- Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Medicine, Universitat de València, Valencia, Spain
| | - C Jerónimo
- Cancer Biology and Epigenetics Group Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar University of Porto (ICBAS-UP), Porto, Portugal
| | - P Eroles
- Biomedical Research Institute INCLIVA, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Physiology, Universitat de València, València, Spain.
| | - J M Cejalvo
- Biomedical Research Institute INCLIVA, Valencia, Spain; Clinical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
30
|
Parker VL, Gavriil E, Marshall B, Pacey A, Heath PR. Profiling microRNAs in uncomplicated pregnancies: Serum vs. plasma. Biomed Rep 2021; 14:24. [PMID: 33408858 DOI: 10.3892/br.2020.1400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 12/31/2022] Open
Abstract
Blood-derived microRNAs (miRNAs/miRs) are ideal clinical biomarkers, as they can be relatively non-invasively extracted and are stable across a range of storage conditions. However, the concentration and profile of miRNAs differ between specific patient groups and starting media, which must be a key consideration before embarking upon uses for clinical applications. The optimum blood-derived starting media for biomarker discovery involving pregnant women with an uncomplicated pregnancy has not been determined. Paired serum and plasma samples were collected from 10 pregnant women with uncomplicated low-risk pregnancies at three time points: i) During the second trimester of pregnancy; ii) during the third trimester; and iii) 6 weeks post-partum. Sample miRNA content was assessed using an Agilent Bioanalyzer Small RNA chip and reverse transcription-quantitative (RT-q)PCR using four constitutively expressed miRNAs: hsa-miR-222-3p, hsa-miR-23a, hsa-miR-30e-5p and hsa-miR-451a. Quality control spike-ins measured RNA extraction (UniSp2) and cDNA extraction (cel-miR-39-3p) efficiency. MiRNA concentration and percentage were significantly higher in the serum vs. plasma samples based on data obtained from the Bioanalyzer; however, RT-qPCR failed to replicate these differences in the majority of comparisons using the ΔCq values of the four constitutively expressed miRNAs. Using the standard deviations of the ΔCq values, the consistency of serum and plasma in terms of miRNA expression levels were equivalent. Thus, clinicians and researchers should take into consideration that different miRNA quantification methods can yield contrasting results with regards to the starting media utilized. Based on the equivalent performance of serum and plasma assessed using RT-qPCR, which is less likely to be influenced by the coagulation process or degraded long RNAs, both starting media assessed in the present study are equally suitable for ongoing biomarker discovery studies involving healthy pregnant women at any gestational time point or immediately postpartum.
Collapse
Affiliation(s)
- Victoria L Parker
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, United Kingdom
| | - Eleftherios Gavriil
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, United Kingdom
| | - Benjamin Marshall
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, United Kingdom
| | - Allan Pacey
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2SF, United Kingdom
| | - Paul R Heath
- Sheffield Institute of Translational Neuroscience, The University of Sheffield, Sheffield S10 2HQ, United Kingdom
| |
Collapse
|
31
|
Baek SJ, Ban HJ, Park SM, Lee B, Choi Y, Baek Y, Lee S, Cha S. Circulating microRNAs as Potential Diagnostic Biomarkers for Poor Sleep Quality. Nat Sci Sleep 2021; 13:1001-1012. [PMID: 34234603 PMCID: PMC8254567 DOI: 10.2147/nss.s311541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/21/2021] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Persistent poor sleep quality leads to impaired cognitive performance and an inability to perform daily activities. Biomarker-assisted diagnosis is important for the early treatment of poor sleep quality; however, diagnostic biomarkers for poor sleep quality remain unidentified. Circulating microRNAs (miRNAs) have been reported to be linked to the pathogenesis of poor sleep quality, indicating their possible role in sleep problem diagnosis. The present study aimed to identify potential miRNA biomarkers for poor sleep quality. PATIENTS AND METHODS Differentially expressed serum miRNAs in patients with poor sleep quality and healthy controls (n=20) were analyzed via small RNA sequencing. Two-step quantitative RT-PCR in the two independent populations and receiver operating characteristic (ROC) analyses were used to validate the identified miRNAs. In silico analysis was then used to identify the target genes. RESULTS Of the 59 circulating miRNAs identified via differential analysis, six were validated for differential expression by quantitative RT-PCR (n=60). Two of these six miRNAs, miR-4433b-3p and miR-619-5p, were reconfirmed in the second validation with an independent validation cohort (n=59). ROC analyses (n=40) revealed the probability of the two miRNAs as potential biomarkers with areas under the ROC curve (AUCs) of 0.81 and 0.70, respectively. The combined AUC was 0.86, which was much higher than that of each miRNA. Using in silico target gene analysis, the target genes of the two miRNAs were identified to be associated with the regulation of the circadian rhythm and inflammatory pathways. CONCLUSION Our results revealed that miR-619-5p and miR-4433b-3p could be developed as potential diagnostic biomarkers for poor sleep quality. The combination of both miRNAs may be more effective than the use of the individual miRNA for sleep problem diagnosis.
Collapse
Affiliation(s)
- Su-Jin Baek
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Hyo-Jeong Ban
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Sang-Min Park
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Boyoung Lee
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Yoorae Choi
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Younghwa Baek
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Siwoo Lee
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Seongwon Cha
- Future Medicine Division, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
32
|
Cheng G, Li M, Ma X, Nan F, Zhang L, Yan Z, Li H, Zhang G, Han Y, Xie L, Guo X. Systematic Analysis of microRNA Biomarkers for Diagnosis, Prognosis, and Therapy in Patients With Clear Cell Renal Cell Carcinoma. Front Oncol 2020; 10:543817. [PMID: 33344224 PMCID: PMC7746831 DOI: 10.3389/fonc.2020.543817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
The ever-increasing morbidity and mortality of clear cell renal cell carcinoma (ccRCC) urgently demands updated biomarkers. MicroRNAs (miRNAs) are involved in diverse biological processes such as cell proliferation, differentiation, apoptosis by regulating their target genes' expression. In kidney cancers, miRNAs have been reported to be involved in tumorigenesis and to be the diagnostic, prognostic, and therapeutic response biomarkers. Here, we performed a systematic analysis for ccRCC-related miRNAs as biomarkers by searching keywords in the NCBI PubMed database and found 118 miRNAs as diagnostic biomarkers, 28 miRNAs as prognostic biomarkers, and 80 miRNAs as therapeutic biomarkers in ccRCC. miRNA-21, miRNA-155, miRNA-141, miRNA-126, and miRNA-221, as significantly differentially expressed miRNAs between cancer and normal tissues, play extensive roles in the cell proliferation, differentiation, apoptosis of ccRCC. GO and KEGG enrichment analysis of these miRNAs' target genes through Metascape showed these target genes are enriched in Protein Domain Specific Binding (GO:0019904). In this paper, we identified highly specific miRNAs in the pathogenesis of ccRCC and explored their potential applications for diagnosis, prognosis, and treatment of ccRCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Longxiang Xie
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| | - Xiangqian Guo
- Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Department of Preventive Medicine, School of Basic Medical Sciences, Institute of Biomedical Informatics, Henan University, Kaifeng, China
| |
Collapse
|
33
|
Yavropoulou MP, Pazaitou-Panayiotou K, Yovos JG, Poulios C, Anastasilakis AD, Vlachodimitropoulos D, Vambakidis K, Tsave O, Chrisafi S, Daskalaki E, Makras P. Circulating and Tissue Expression Profile of MicroRNAs in Primary Hyperparathyroidism Caused by Sporadic Parathyroid Adenomas. JBMR Plus 2020; 5:e10431. [PMID: 33615103 PMCID: PMC7872342 DOI: 10.1002/jbm4.10431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 01/07/2023] Open
Abstract
We investigated the expression profile of selected microRNAs (miRs) in serum and tissue samples from patients with sporadic parathyroid adenomas (sPAs). This was a prospective, controlled cohort study. Forty patients with sPAs who had undergone parathyroidectomy (PTX) were included. MiR extraction was performed from (i) 40 formalin‐fixed paraffin‐embedded samples (FFPEs) of sPAs, (ii) 10 FFPEs of normal parathyroid tissue (NPT), (iii) serum samples of the 40 patients with sPAs (t1 = baseline; t2 = 2 months post‐PTX), and (vi) serum samples of 10 healthy individuals (controls; t1 = baseline and t2 = 2 months later). Ten miRs were selected based on their interaction with genes related to parathyroid tumorigenesis (miR‐17‐5p, miR‐24‐3p, miR‐29b‐3p, miR‐31‐5p, miR‐135b‐5p, miR‐186‐5p, miR‐195‐5p, miR‐330‐3p, miR‐483‐3p, and miR‐877‐5p). At tissue level, the relative expression of miR‐17‐5p, miR‐31‐5p, miR‐135b‐5p, miR‐186‐5p, and miR‐330‐3p was significantly decreased (fold change [FC]: 0.17, FC: 0.03, FC: 0.01, FC: 0.10, FC: 0.10, respectively; all p values <0.001), and the expression of miR‐24‐3p and miR‐29b‐3p was significantly increased (FC: 12.4, p < 0.001; FC: 18.5, p = 0.011, respectively) in sPA compared with NPT samples. The relative expression of miR‐135b‐5p was also significantly decreased in the serum samples of patients compared with controls (FC: 0.7, p = 0.035). No significant differences were found in the serum samples of patients before and after PTX. MiRs that regulate genes linked to parathyroid tumors such as menin 1 (miR‐24‐3p, miR‐29b‐3p), cyclin D1 (miR‐17‐5p), calcium sensing receptor (miR‐31‐5p, miR‐135b‐5p), cyclin‐dependent kinase inhibitors (miR‐186‐5p), and β‐catenin (miR‐330‐3p) were significantly deregulated in sPAs compared with NPT samples, suggesting a role for epigenetic changes in parathyroid tumorigenesis. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Maria P Yavropoulou
- Endocrinology Unit, 1st Department of Propaedeutic and Internal Medicine, Medical School National and Kapodistrian University of Athens Athens Greece.,Department of Medical Research 251 Hellenic Air Force & VA General Hospital Athens Greece
| | | | - John G Yovos
- Faculty of Medicine Aristotle University of Thessaloniki Thessaloniki Greece
| | - Christos Poulios
- Pathology Department, Faculty of Medicine Aristotle University of Thessaloniki Greece
| | | | - Dimitris Vlachodimitropoulos
- Laboratory of Forensic Medicine and Toxicology, Medical School National and Kapodistrian University of Athens Athens Greece
| | | | - Olga Tsave
- Department of Medical Research 251 Hellenic Air Force & VA General Hospital Athens Greece
| | - Sofia Chrisafi
- Pathology Department, Faculty of Medicine Aristotle University of Thessaloniki Greece
| | - Emily Daskalaki
- Pathology Department, Faculty of Medicine Aristotle University of Thessaloniki Greece
| | - Polyzois Makras
- Department of Medical Research 251 Hellenic Air Force & VA General Hospital Athens Greece
| |
Collapse
|
34
|
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer 2020; 1874:188413. [PMID: 32827583 DOI: 10.1016/j.bbcan.2020.188413] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs that are essential for regulation of gene expression of the target genes. Large number of miRNAs are organized into defined units known as miRNA clusters (MCs). The MCs consist of two or more than two miRNA encoding genes driven by a single promoter, transcribed together in the same orientation, that are not separated from each other by a transcription unit. Aberrant miRNA clusters expression is reported in breast cancer (BC), exhibiting both pro-tumorogenic and anti-tumorigenic role. Altered MCs expression facilitates to breast carcinogenesis by promoting the breast cells to acquire the various hallmarks of the cancer. Since miRNA clusters contain multiple miRNA encoding genes, targeting cluster may be more attractive than targeting individual miRNAs. Besides targeting dysregulated miRNA clusters in BC, studies have focused on the mechanism of action, and its contribution to the progression of the BC. The present review provides a comprehensive overview of dysregulated miRNA clusters and its role in the acquisition of cancer hallmarks in BC. More specifically, we have presented the regulation, differential expression, classification, targets, mechanism of action, and signaling pathways of miRNA clusters in BC. Additionally, we have also discussed the potential utility of the miRNA cluster as a diagnostic and prognostic indicator in BC.
Collapse
Affiliation(s)
- Amoolya Kandettu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576106, India; Center for DNA Repair and Genome Stability (CDRGS), Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
35
|
Alba-Bernal A, Lavado-Valenzuela R, Domínguez-Recio ME, Jiménez-Rodriguez B, Queipo-Ortuño MI, Alba E, Comino-Méndez I. Challenges and achievements of liquid biopsy technologies employed in early breast cancer. EBioMedicine 2020; 62:103100. [PMID: 33161226 PMCID: PMC7670097 DOI: 10.1016/j.ebiom.2020.103100] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common cancer type in women worldwide and its early detection is crucial to curing the disease. Tissue biopsy, currently the method of choice to obtain tumour molecular information, is invasive and might be affected by tumour heterogeneity rendering it incapable to portray the complete molecular picture. Liquid biopsy permits to study disease features in a more comprehensive manner by sampling biofluids and extracting tumour components such as circulating-tumour DNA (ctDNA), circulating-tumour cells (CTCs), and/or circulating-tumour RNA (ctRNA) amongst others in a monitoring-compatible manner. In this review, we describe the recent progress in the utilization of the circulating tumour components using early breast cancer samples. We review the most important analytes and technologies employed for their study.
Collapse
Affiliation(s)
- Alfonso Alba-Bernal
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - Rocío Lavado-Valenzuela
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - María Emilia Domínguez-Recio
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - Begoña Jiménez-Rodriguez
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - María Isabel Queipo-Ortuño
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain
| | - Emilio Alba
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain.
| | - Iñaki Comino-Méndez
- Unidad de Gestión Clínica Intercentros de Oncología Medica, Hospitales Universitarios Regional y Virgen de la Victoria. The Biomedical Research Institute of Málaga (IBIMA-CIMES-UMA), Málaga 29010, Spain.
| |
Collapse
|
36
|
Tabor S, Szostakowska-Rodzos M, Fabisiewicz A, Grzybowska EA. How to Predict Metastasis in Luminal Breast Cancer? Current Solutions and Future Prospects. Int J Mol Sci 2020; 21:ijms21218415. [PMID: 33182512 PMCID: PMC7665153 DOI: 10.3390/ijms21218415] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/28/2020] [Accepted: 11/07/2020] [Indexed: 12/12/2022] Open
Abstract
Breast cancer metastasis is the main cause of breast cancer mortality. Luminal breast cancer represents the majority of breast cancer cases and, despite relatively good prognosis, its heterogeneity creates problems with a proper stratification of patients and correct identification of the group with a high risk of metastatic relapse. Current prognostic tools are based on the analysis of the primary tumor and, despite their undisputed power of prediction, they might be insufficient to foresee the relapse in an accurate and precise manner, especially if the relapse occurs after a long period of dormancy, which is very common in luminal breast cancer. New approaches tend to rely on body fluid analyses, which have the advantage of being non-invasive and versatile and may be repeated and used for monitoring the disease in the long run. In this review we describe the current, newly-developed, and only-just-discovered methods which are or may become useful in the assessment of the probability of the relapse.
Collapse
|
37
|
Liquid biopsy for breast cancer using extracellular vesicles and cell-free microRNAs as biomarkers. Transl Res 2020; 223:40-60. [PMID: 32413499 DOI: 10.1016/j.trsl.2020.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/24/2022]
Abstract
Improvement of breast cancer (BC) patient's outcome is directly related to early detection. However, there is still a lack of reliable biomarkers for diagnosis, prognosis and, treatment follow up in BC, leading researchers to study the potential of liquid biopsy based on circulating microRNAs (c-miRNAs). These c-miRNAs can be cell-free or associated with extracellular vesicles (EVs), and have great advantages such as stability in biofluids, noninvasive accessibility compared to current techniques (core-biopsy and surgery), and expression associated with pathogenic conditions. Recently, a new promising field of EV-derived miRNAs (EV-miRNAs) as cancer biomarkers has emerged, receiving special attention due to their selective vesicle sorting which makes them accurate for disease detection. In this review, we discuss new findings about c-miRNA and their potential as biomarkers for BC diagnosis, prognosis, and therapy. Additionally, we address the impact of limitations associated with the standardization of analysis techniques and methods on the implementation of these biomarkers in the clinical setting.
Collapse
|
38
|
Fahim SA, Abdullah MS, Espinoza-Sánchez NA, Hassan H, Ibrahim AM, Ahmed SH, Shakir G, Badawy MA, Zakhary NI, Greve B, El-Shinawi M, Götte M, Ibrahim SA. Inflammatory Breast Carcinoma: Elevated microRNA miR-181b-5p and Reduced miR-200b-3p, miR-200c-3p, and miR-203a-3p Expression as Potential Biomarkers with Diagnostic Value. Biomolecules 2020; 10:E1059. [PMID: 32708601 PMCID: PMC7407124 DOI: 10.3390/biom10071059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammatory breast cancer (IBC) is a rare yet aggressive breast cancer variant, associated with a poor prognosis. The major challenge for IBC is misdiagnosis due to the lack of molecular biomarkers. We profiled dysregulated expression of microRNAs (miRNAs) in primary samples of IBC and non-IBC tumors using human breast cancer miRNA PCR array. We discovered that 28 miRNAs were dysregulated (10 were upregulated, while 18 were underexpressed) in IBC vs. non-IBC tumors. We identified 128 hub genes, which are putative targets of the differentially expressed miRNAs and modulate important cancer biological processes. Furthermore, our qPCR analysis independently verified a significantly upregulated expression of miR-181b-5p, whereas a significant downregulation of miR-200b-3p, miR-200c-3p, and miR-203a-3p was detected in IBC tumors. Receiver operating characteristic (ROC) curves implied that the four miRNAs individually had a diagnostic accuracy in discriminating patients with IBC from non-IBC and that miR-203a-3p had the highest diagnostic value with an AUC of 0.821. Interestingly, a combination of miR-181b-5p, miR-200b-3p, and miR-200c-3p robustly improved the diagnostic accuracy, with an area under the curve (AUC) of 0.897. Intriguingly, qPCR revealed that the expression of zinc finger E box-binding homeobox 2 (ZEB2) mRNA, the putative target of miR-200b-3p, miR-200c-3p, and miR-203a-3p, was upregulated in IBC tumors. Overall, this study identified a set of miRNAs serving as potential biomarkers with diagnostic relevance for IBC.
Collapse
Affiliation(s)
- Sarah Atef Fahim
- Biochemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Mahmoud Salah Abdullah
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
| | | | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| | - Ayman M. Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| | - Sarah Hamdy Ahmed
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
| | - George Shakir
- Biotechnology/Biomolecular Chemistry Program, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt; (M.S.A.); (S.H.A.); (G.S.)
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University, 80539 Munich, Germany
| | - Mohamed A. Badawy
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Nadia I. Zakhary
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt;
| | - Burkhard Greve
- Department of Radiotherapy–Radiooncology, University Hospital Münster, 48149 Münster, Germany;
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, 48149 Münster, Germany;
| | - Sherif Abdelaziz Ibrahim
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt; (H.H.); (A.M.I.)
| |
Collapse
|
39
|
Terkelsen T, Russo F, Gromov P, Haakensen VD, Brunak S, Gromova I, Krogh A, Papaleo E. Secreted breast tumor interstitial fluid microRNAs and their target genes are associated with triple-negative breast cancer, tumor grade, and immune infiltration. Breast Cancer Res 2020; 22:73. [PMID: 32605588 PMCID: PMC7329449 DOI: 10.1186/s13058-020-01295-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background Studies on tumor-secreted microRNAs point to a functional role of these in cellular communication and reprogramming of the tumor microenvironment. Uptake of tumor-secreted microRNAs by neighboring cells may result in the silencing of mRNA targets and, in turn, modulation of the transcriptome. Studying miRNAs externalized from tumors could improve cancer patient diagnosis and disease monitoring and help to pinpoint which miRNA-gene interactions are central for tumor properties such as invasiveness and metastasis. Methods Using a bioinformatics approach, we analyzed the profiles of secreted tumor and normal interstitial fluid (IF) microRNAs, from women with breast cancer (BC). We carried out differential abundance analysis (DAA), to obtain miRNAs, which were enriched or depleted in IFs, from patients with different clinical traits. Subsequently, miRNA family enrichment analysis was performed to assess whether any families were over-represented in the specific sets. We identified dysregulated genes in tumor tissues from the same cohort of patients and constructed weighted gene co-expression networks, to extract sets of co-expressed genes and co-abundant miRNAs. Lastly, we integrated miRNAs and mRNAs to obtain interaction networks and supported our findings using prediction tools and cancer gene databases. Results Network analysis showed co-expressed genes and miRNA regulators, associated with tumor lymphocyte infiltration. All of the genes were involved in immune system processes, and many had previously been associated with cancer immunity. A subset of these, BTLA, CXCL13, IL7R, LAMP3, and LTB, was linked to the presence of tertiary lymphoid structures and high endothelial venules within tumors. Co-abundant tumor interstitial fluid miRNAs within this network, including miR-146a and miR-494, were annotated as negative regulators of immune-stimulatory responses. One co-expression network encompassed differences between BC subtypes. Genes differentially co-expressed between luminal B and triple-negative breast cancer (TNBC) were connected with sphingolipid metabolism and predicted to be co-regulated by miR-23a. Co-expressed genes and TIF miRNAs associated with tumor grade were BTRC, CHST1, miR-10a/b, miR-107, miR-301a, and miR-454. Conclusion Integration of IF miRNAs and mRNAs unveiled networks associated with patient clinicopathological traits, and underlined molecular mechanisms, specific to BC sub-groups. Our results highlight the benefits of an integrative approach to biomarker discovery, placing secreted miRNAs within a biological context.
Collapse
Affiliation(s)
- Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Francesco Russo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Gromov
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vilde Drageset Haakensen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Irina Gromova
- Breast Cancer Biology Group, Genome Integrity Unit, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anders Krogh
- Unit of Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark. .,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
40
|
Wadaa Allah A, Yahya M, Elsaeidy KS, Alkanj S, Hamam K, El-Saady M, Ebada MA. Clinical assessment of miRNA-23b as a prognostic factor for various carcinomas: A systematic review and meta-analysis. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
41
|
Circulating MicroRNAs Regulating DNA Damage Response and Responsiveness to Cisplatin in the Prognosis of Patients with Non-Small Cell Lung Cancer Treated with First-Line Platinum Chemotherapy. Cancers (Basel) 2020; 12:cancers12051282. [PMID: 32438598 PMCID: PMC7281609 DOI: 10.3390/cancers12051282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 12/29/2022] Open
Abstract
The expression of microRNA (miR)-21, miR-128, miR-155, and miR-181a involved in DNA damage response (DDR) and tumor responsiveness to platinum was assessed by RT-qPCR in the plasma of patients with non-small cell lung cancer (NSCLC; n = 128) obtained prior to initiation of first-line platinum chemotherapy. U6 small nuclear RNA (snRNA) was used for normalization, and fold change of each miRNA expression relative to the expression in healthy controls was calculated by the 2−ΔΔCt method. MicroRNA expression levels were correlated with patients’ outcomes. Integrated function and pathway enrichment analysis was performed to identify putative target genes. MiR-128, miR-155, and miR-181a expressions were higher in patients compared to healthy donors. MiRNA expression was not associated with response to treatment. High miR-128 and miR-155 were correlated with shorter overall survival (OS), whereas performance status (PS) 2 and high miR-128 independently predicted for decreased OS. In the squamous (SqCC) subgroup (n = 41), besides miR-128 and miR-155, high miR-21 and miR-181a expressions were also associated with worse survival and high miR-155 independently predicted for shorter OS. No associations of miRNA expression with clinical outcomes were observed in patients with non-SqCC (n = 87). Integrated function and pathway analysis on miRNA targets revealed significant enrichments in hypoxia-related pathways. Our study shows for the first time that plasma miR-128 and miR-155 hold independent prognostic implications in NSCLC patients treated with platinum-based chemotherapy possibly related to their involvement in tumor response to hypoxia. Further studies are needed to investigate the potential functional role of these miRNAs in an effort to exploit their therapeutic potential.
Collapse
|
42
|
Fish EJ, Martinez-Romero EG, DeInnocentes P, Koehler JW, Prasad N, Smith AN, Bird RC. Circulating microRNA as biomarkers of canine mammary carcinoma in dogs. J Vet Intern Med 2020; 34:1282-1290. [PMID: 32342546 PMCID: PMC7255679 DOI: 10.1111/jvim.15764] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Differentiating benign from canine malignant mammary tumors requires invasive surgical biopsy. Circulating microRNAs (miRNA) may represent promising minimally invasive cancer biomarkers in people and animals. Objectives To evaluate the serum mRNA profile between dogs with and without mammary carcinoma, and to determine if any of these markers have prognostic significance. Animals Ten healthy client‐owned female dogs (5 intact, 5 spayed) and 10 dogs with histologically confirmed mammary carcinoma were included; 9 were client‐owned, whereas 1 was a research colony dog. Methods Retrospective study. Serum miRNA was evaluated by RNA deep‐sequencing (RNAseq) and digital droplet PCR (dPCR).Expression of candidate biomarkers miR‐18a, miR‐19b, miR‐29b, miR‐34c, miR‐122, miR‐125a, and miR‐181a was compared with clinical characteristics, including grade, metastasis, and survival. Results 452 unique serum miRNAs were detected by RNAseq. Sixty‐five individual miRNAs were differentially expressed (>±1.5‐fold) and statistically significant between groups. Serum miR‐19b (P = .003) and miR‐125a (P < .001) were significantly higher in the mammary carcinoma group by dPCR. Both had high accuracy based on receiver operator characteristic area under the curve (0.930 for miR‐125a; 0.880 for miR‐19b). Circulating miR‐18a by RNAseq was significantly higher in mammary carcinoma dogs with histologic evidence of lymphatic invasion (P = 0.03). There was no significant association with any miRNA and survival or inflammatory status. Conclusions and Clinical Importance Circulating miRNAs are differentially expressed in dogs with mammary carcinoma. Serum miR‐19b and miR‐18a represent candidate biomarkers for diagnosis and prognosis, respectively.
Collapse
Affiliation(s)
- Eric J Fish
- Department of Pathobiology, College of Veterinary Medicine, AURIC-Auburn University Research Initiative in Cancer, Auburn University, Auburn, Alabama, United States
| | - Esther Gisela Martinez-Romero
- Department of Pathobiology, College of Veterinary Medicine, AURIC-Auburn University Research Initiative in Cancer, Auburn University, Auburn, Alabama, United States
| | - Patricia DeInnocentes
- Department of Pathobiology, College of Veterinary Medicine, AURIC-Auburn University Research Initiative in Cancer, Auburn University, Auburn, Alabama, United States
| | - Jey W Koehler
- Department of Pathobiology, College of Veterinary Medicine, AURIC-Auburn University Research Initiative in Cancer, Auburn University, Auburn, Alabama, United States
| | - Nripesh Prasad
- Genomic Services Laboratory, Hudson Alpha Institute for Biotechnology, Huntsville, Alabama, United States
| | - Annette N Smith
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, Alabama, United States
| | - Richard Curt Bird
- Department of Pathobiology, College of Veterinary Medicine, AURIC-Auburn University Research Initiative in Cancer, Auburn University, Auburn, Alabama, United States
| |
Collapse
|
43
|
microRNAs in the Antitumor Immune Response and in Bone Metastasis of Breast Cancer: From Biological Mechanisms to Therapeutics. Int J Mol Sci 2020; 21:ijms21082805. [PMID: 32316552 PMCID: PMC7216039 DOI: 10.3390/ijms21082805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is the most common type of cancer in women, and the occurrence of metastasis drastically worsens the prognosis and reduces overall survival. Understanding the biological mechanisms that regulate the transformation of malignant cells, the consequent metastatic transformation, and the immune surveillance in the tumor progression would contribute to the development of more effective and targeted treatments. In this context, microRNAs (miRNAs) have proven to be key regulators of the tumor-immune cells crosstalk for the hijack of the immunosurveillance to promote tumor cells immune escape and cancer progression, as well as modulators of the metastasis formation process, ranging from the preparation of the metastatic site to the transformation into the migrating phenotype of tumor cells. In particular, their deregulated expression has been linked to the aberrant expression of oncogenes and tumor suppressor genes to promote tumorigenesis. This review aims at summarizing the role and functions of miRNAs involved in antitumor immune response and in the metastasis formation process in breast cancer. Additionally, miRNAs are promising targets for gene therapy as their modulation has the potential to support or inhibit specific mechanisms to negatively affect tumorigenesis. With this perspective, the most recent strategies developed for miRNA-based therapeutics are illustrated.
Collapse
|
44
|
Emergence of Circulating MicroRNAs in Breast Cancer as Diagnostic and Therapeutic Efficacy Biomarkers. Mol Diagn Ther 2020; 24:153-173. [DOI: 10.1007/s40291-020-00447-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Malagobadan S, Ho CS, Nagoor NH. MicroRNA-6744-5p promotes anoikis in breast cancer and directly targets NAT1 enzyme. Cancer Biol Med 2020; 17:101-111. [PMID: 32296579 PMCID: PMC7142838 DOI: 10.20892/j.issn.2095-3941.2019.0010] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Objective: Anoikis is apoptosis that is induced when cells detach from the extracellular matrix and neighboring cells. As anoikis serves as a regulatory barrier, cancer cells often acquire resistance towards anoikis during tumorigenesis to become metastatic. MicroRNAs (miRNAs) are short strand RNA molecules that regulate genes post-transcriptionally by binding to mRNAs and reducing the expression of its target genes. This study aimed to elucidate the role of a novel miRNA, miR-6744-5p, in regulating anoikis in breast cancer and identify its target gene. Methods: An anoikis resistant variant of the luminal A type breast cancer MCF-7 cell line (MCF-7-AR) was generated by selecting and amplifying surviving cells after repeated exposure to growth in suspension. MiRNA microarray analysis identified a list of dysregulated miRNAs from which miR-6744-5p was chosen for overexpression and knockdown studies in MCF-7. Additionally, the miRNA was also overexpressed in a triple-negative breast cancer cell line, MDA-MB-231, to evaluate its ability to impair the metastatic potential of breast cancer cells. Results: This study showed that overexpression and knockdown of miR-6744-5p in MCF-7 increased and decreased anoikis sensitivity, respectively. Similarly, overexpression of miR-6744-5p in MDA-MB-231 increased anoikis and also decreased tumor cell invasion in vitro and in vivo. Furthermore, NAT1 enzyme was identified and validated as the direct target of miR-6744-5p. Conclusions: This study has proven the ability of miR-6744-5p to increase anoikis sensitivity in both luminal A and triple negative breast cancer cell lines, highlighting its therapeutic potential in treating breast cancer.
Collapse
Affiliation(s)
- Sharan Malagobadan
- Institute of Biological Sciences (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Chai San Ho
- Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Noor Hasima Nagoor
- Institute of Biological Sciences (Genetics & Molecular Biology), Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- Center for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
46
|
Neophytou CM, Kyriakou TC, Papageorgis P. Mechanisms of Metastatic Tumor Dormancy and Implications for Cancer Therapy. Int J Mol Sci 2019; 20:ijms20246158. [PMID: 31817646 PMCID: PMC6940943 DOI: 10.3390/ijms20246158] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Metastasis, a multistep process during which tumor cells disseminate to secondary organs, represents the main cause of death for cancer patients. Metastatic dormancy is a late stage during cancer progression, following extravasation of cells at a secondary site, where the metastatic cells stop proliferating but survive in a quiescent state. When the microenvironmental conditions are favorable, they re-initiate proliferation and colonize, sometimes years after treatment of the primary tumor. This phenomenon represents a major clinical obstacle in cancer patient care. In this review, we describe the current knowledge regarding the genetic or epigenetic mechanisms that are activated by cancer cells that either sustain tumor dormancy or promote escape from this inactive state. In addition, we focus on the role of the microenvironment with emphasis on the effects of extracellular matrix proteins and in factors implicated in regulating dormancy during colonization to the lungs, brain, and bone. Finally, we describe the opportunities and efforts being made for the development of novel therapeutic strategies to combat metastatic cancer, by targeting the dormancy stage.
Collapse
Affiliation(s)
- Christiana M. Neophytou
- European University Research Centre, 1516 Nicosia, Cyprus;
- Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
| | | | - Panagiotis Papageorgis
- European University Research Centre, 1516 Nicosia, Cyprus;
- Department of Life Science, European University Cyprus, 1516 Nicosia, Cyprus;
- Correspondence:
| |
Collapse
|
47
|
Thyagarajan A, Tsai KY, Sahu RP. MicroRNA heterogeneity in melanoma progression. Semin Cancer Biol 2019; 59:208-220. [PMID: 31163254 PMCID: PMC6885122 DOI: 10.1016/j.semcancer.2019.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023]
Abstract
The altered expression of miRNAs has been linked with neocarcinogenesis or the development of human malignancies including melanoma. Of significance, multiple clinical studies have documented that distinct sets of microRNAs (miRNAs) could be utilized as prognostic biomarkers for cancer development or predict the outcomes of treatment responses. To that end, an in-depth validation of such differentially expressed miRNAs is necessary in diverse settings of cancer patients in order to devise novel approaches to control tumor growth and/or enhance the efficacy of clinically-relevant therapeutic options. Moreover, considering the heterogeneity and sophisticated regulation of miRNAs, the precise delineation of their cellular targets could also be explored to design personalized medicine. Given the significance of miRNAs in regulating several key cellular processes of tumor cells including cell cycle progression and apoptosis, we review the findings of such miRNAs implicated in melanoma tumorigenesis. Understanding the novel mechanistic insights of such miRNAs will be useful for developing diagnostic or prognostic biomarkers or devising future therapeutic intervention for malignant melanoma.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA
| | - Kenneth Y Tsai
- Departments of Anatomic Pathology & Tumor Biology at H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ravi P Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, USA.
| |
Collapse
|
48
|
Ritter A, Hirschfeld M, Berner K, Rücker G, Jäger M, Weiss D, Medl M, Nöthling C, Gassner S, Asberger J, Erbes T. Circulating non‑coding RNA‑biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int J Oncol 2019; 56:47-68. [PMID: 31789396 PMCID: PMC6910196 DOI: 10.3892/ijo.2019.4920] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Due to the positive association between neoadjuvant chemotherapy (NACT) and the promising early response rates of patients with triple negative breast cancer (TNBC), including probabilities of pathological complete response, NACT is increasingly used in TNBC management. Liquid biopsy-based biomarkers with the power to diagnose the early response to NACT may support established monitoring tools, which are to a certain extent imprecise and costly. Simple serum- or urine-based analyses of non-coding RNA (ncRNA) expression may allow for fast, minimally-invasive testing and timely adjustment of the therapy regimen. The present study investigated breast cancer-related ncRNAs [microRNA (miR)-7, -9, -15a, -17, -18a, -19b, -21, -30b, -222 and -320c, PIWI-interacting RNA-36743 and GlyCCC2] in triple positive BT-474 cells and three TNBC cell lines (BT-20, HS-578T and MDA-MB-231) treated with various chemotherapeutic agents using reverse transcription-quantitative PCR. Intracellular and secreted microvesicular ncRNA expression levels were analysed using a multivariable statistical regression analysis. Chemotherapy-driven effects were investigated by analysing cell cycle determinants at the mRNA and protein levels. Serum and urine specimens from 8 patients with TNBC were compared with 10 healthy females using two-sample t-tests. Samples from the patients with TNBC were compared at two time points. Chemotherapeutic treatments induced distinct changes in ncRNA expression in TNBC cell lines and the BT-474 cell line in intra- and extracellular compartments. Serum and urine-based ncRNA expression analysis was able to discriminate between patients with TNBC and controls. Time point comparisons in the urine samples of patients with TNBC revealed a general rise in the level of ncRNA. Serum data suggested a potential association between piR-36743, miR-17, -19b and -30b expression levels and an NACT-driven complete clinical response. The present study highlighted the potential of ncRNAs as liquid biopsy-based biomarkers in TNBC chemotherapy treatment. The ncRNAs tested in the present study have been previously investigated for their involvement in BC or TNBC chemotherapy responses; however, these previous studies were restricted to patient tissue or in vitro models. The data from the present study offer novel insight into ncRNA expression in liquid samples from patients with TNBC, and the study serves as an initial step in the evaluation of ncRNAs as diagnostic biomarkers in the monitoring of TNBC therapy.
Collapse
Affiliation(s)
- Andrea Ritter
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79104 Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Medl
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Sandra Gassner
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical Center‑University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
49
|
Feng X, Liu Y, Wan N. Plasma microRNA detection standardization test. J Clin Lab Anal 2019; 34:e23058. [PMID: 31617231 PMCID: PMC7031554 DOI: 10.1002/jcla.23058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) can be used for early diagnosis of myocardial infarction. However, due to a lack of standardized operating procedures, their value for clinical application is low. METHODS Detection of plasma miRNAs was optimized by analyzing factors influencing miRNA variance and myocardial infarction risk scores during analysis (extraction, reverse transcription, and real-time PCR) and pre-analysis (dietary status, anticoagulants, storage conditions, and hemolysis). RESULTS Regarding variable factors during analysis, the centrifugal column method was superior to Trizol LS reagent when extracting miRNA from plasma. Recovery rate was highest with plasma volumes of 200 and 300 µL. During analysis, the main source of miRNA detection inaccuracy was derived from RNA extraction (mainly organic extraction), and not reverse transcription or PCR. MiRNA variance could be reduced by use of an internal reference. During analysis, 95% of risk score variation fluctuated within a range of 6.267. The variable factors pre-analysis mainly involved dietary status, anticoagulant selection, and storage conditions. Hemolysis positively correlated with miRNA levels, but there was no significant change in risk score after internal reference calibration. CONCLUSION Preliminary standardization for miRNA detection provides a reference for clinical blood testing of miRNAs.
Collapse
Affiliation(s)
- Xiaomin Feng
- Dalian Medical University, Dalian, Liaoning, China
| | - Yuwei Liu
- Dalian Medical University, Dalian, Liaoning, China
| | - Nan Wan
- Department of Laboratory Medicine Science Center, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
50
|
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Common Solid Tumors: Focus on Lung, Breast, Prostate Cancers, and Osteosarcoma. J Clin Med 2019; 8:E1661. [PMID: 31614612 PMCID: PMC6833074 DOI: 10.3390/jcm8101661] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
An early cancer diagnosis is essential to treat and manage patients, but it is difficult to achieve this goal due to the still too low specificity and sensitivity of classical methods (imaging, actual biomarkers), together with the high invasiveness of tissue biopsies. The discovery of novel, reliable, and easily collectable cancer markers is a topic of interest, with human biofluids, especially blood, as important sources of minimal invasive biomarkers such as circulating microRNAs (miRNAs), the most promising. MiRNAs are small non-coding RNAs and known epigenetic modulators of gene expression, with specific roles in cancer development/progression, which are next to be implemented in the clinical routine as biomarkers for early diagnosis and the efficient monitoring of tumor progression and treatment response. Unfortunately, several issues regarding their validation process are still to be resolved. In this review, updated findings specifically focused on the clinical relevance of circulating miRNAs as prognostic and diagnostic biomarkers for the most prevalent cancer types (breast, lung, and prostate cancers in adults, and osteosarcoma in children) are described. In addition, deep analysis of pre-analytical, analytical, and post-analytical issues still affecting the circulation of miRNAs' validation process and routine implementation is included.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, 20132 Milano, Italy.
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Dept. of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, Gdańsk, ul. Kazimierza Górskiego 1, 80-336 Pomorskie, Poland.
| |
Collapse
|