1
|
Tan Y, Yang YG, Zhang X, Zhao L, Wang X, Liu W. Tumor cell-derived osteopontin promotes tumor fibrosis indirectly via tumor-associated macrophages. J Transl Med 2025; 23:432. [PMID: 40217301 PMCID: PMC11992893 DOI: 10.1186/s12967-025-06444-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND High fibrosis of the tumor microenvironment (TME) not only impedes the effective infiltration of T cells but also serves as a physical barrier to inhibit the penetration of chemotherapy drugs. Triple-negative breast cancer (TNBC) is characterized by significant infiltration of tumor-associated macrophages (TAMs) and high fibrosis. However, the mechanism of high fibrosis in such tumors is still under debate. METHODS We first investigated the correlation between tumor-derived osteopontin (OPN) and tumor fibrosis as well as TAM enrichment using a tumor model characterized by OPN genetic inactivation or overexpression. We further compared the effects of macrophage depletion on tumor fibrosis in mice bearing TNBC tumors (4T1WT or 4T1Spp1 - KO). To elucidate the mechanism by which TAMs promote tumor fibrosis, we evaluated their potential to recruit cancer-associated fibroblasts (CAFs) through in vitro migration assays and compared the production of transforming growth factor-beta 1 (TGFβ1) among different TAM subpopulations. RESULTS Our study revealed that OPN secretion by tumor cells correlates positively with both tumor fibrosis and TAM enrichment. Specifically, within the enriched TAM population, Ly6C+CD206- TAMs recruit CAFs via CCL5 secretion, while Ly6C-CD206high TAMs secrete TGFβ1 to activate CAFs. Blocking the tumor cell-derived OPN can effectively prevent tumor fibrosis. CONCLUSIONS This study shows that tumor-derived OPN primarily drives TAM enrichment in mouse cancer model, indirectly promoting tumor fibrosis through Ly6C+CD206-/low and Ly6C-CD206high TAMs. Our findings have potential application in preventing tumors from excessive fibrosis and enhancing the efficacy of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- Echocardiography Department, The First Hospital of Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Xiaoying Zhang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Xiaocong Wang
- Echocardiography Department, The First Hospital of Jilin University, Changchun, China.
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China.
| |
Collapse
|
2
|
De Palma FDE, Pol JG, Carbonnier V, Scuderi SA, Mannino D, Montégut L, Sauvat A, Perez-Lanzon M, Uribe-Carretero E, Guarracino M, Granata I, Calogero R, Del Monaco V, Montanaro D, Stoll G, Botti G, D'Aiuto M, Baldi A, D'Argenio V, Guigó R, Rezsohazy R, Kroemer G, Maiuri MC, Salvatore F. Epigenetic regulation of HOXA2 expression affects tumor progression and predicts breast cancer patient survival. Cell Death Differ 2025; 32:730-744. [PMID: 39833374 PMCID: PMC11982354 DOI: 10.1038/s41418-024-01430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/19/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Accumulating evidence suggests that genetic and epigenetic biomarkers hold potential for enhancing the early detection and monitoring of breast cancer (BC). Epigenetic alterations of the Homeobox A2 (HOXA2) gene have recently garnered significant attention in the clinical management of various malignancies. However, the precise role of HOXA2 in breast tumorigenesis has remained elusive. To address this point, we conducted high-throughput RNA sequencing and DNA methylation array studies on laser-microdissected human BC samples, paired with normal tissue samples. Additionally, we performed comprehensive in silico analyses using large public datasets: TCGA and METABRIC. The diagnostic performance of HOXA2 was calculated by means of receiver operator characteristic curves. Its prognostic significance was assessed through immunohistochemical studies and Kaplan-Meier Plotter database interrogation. Moreover, we explored the function of HOXA2 and its role in breast carcinogenesis through in silico, in vitro, and in vivo investigations. Our work revealed significant hypermethylation and downregulation of HOXA2 in human BC tissues. Low HOXA2 expression correlated with increased BC aggressiveness and unfavorable patient survival outcomes. Suppression of HOXA2 expression significantly heightened cell proliferation, migration, and invasion in BC cells, and promoted tumor growth in mice. Conversely, transgenic HOXA2 overexpression suppressed these cellular processes and promoted apoptosis of cancer cells. Interestingly, a strategy of pharmacological demethylation successfully restored HOXA2 expression in malignant cells, reducing their neoplastic characteristics. Bioinformatics analyses, corroborated by in vitro experimentations, unveiled a novel implication of HOXA2 in the lipid metabolism of BC. Specifically, depletion of HOXA2 leaded to a concomitantly decreased expression of PPARγ and its target CIDEC, a master regulator of lipid droplet (LD) accumulation, thereby resulting in reduced LD abundance in BC cells. In summary, our study identifies HOXA2 as a novel prognosis-relevant tumor suppressor in the mammary gland.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Jonathan G Pol
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Vincent Carbonnier
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Sarah Adriana Scuderi
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Léa Montégut
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Allan Sauvat
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Maria Perez-Lanzon
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Elisabet Uribe-Carretero
- Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Depto. Bioquimica y Biologia Molecular y Genetica, Facultad de Enfermeria y Terapia Ocupacional, Caceres, Spain
| | - Mario Guarracino
- University of Cassino and Southern Lazio, Cassino, Italy
- National Research University Higher School of Economics, Moscow, Russia
| | - Ilaria Granata
- National Research Council, Inst. for High-Performance Computing and Networking, Naples, Italy
| | - Raffaele Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | - Gautier Stoll
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Gerardo Botti
- Department of Senology, Istituto Nazionale Tumori-IRCCS Fondazione Pascale, Naples, Italy
| | - Massimiliano D'Aiuto
- Department of Senology, Istituto Nazionale Tumori-IRCCS Fondazione Pascale, Naples, Italy
| | - Alfonso Baldi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Valeria D'Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Rome, Italy
| | - Roderic Guigó
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Bioinformatics and Genomics, Centre for Genomic Regulation (CRG), Barcelona, Catalonia, Spain
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Guido Kroemer
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maria Chiara Maiuri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
- Team «Metabolism, Cancer & Immunity », Centre de Recherche des Cordeliers, INSERM UMRS1138, Sorbonne Université, Université de Paris, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy.
- Inter-University Center for multifactorial and multi genetic chronic human diseases, "Federico II"- Naples, Tor Vergata- Roma II and Chieti-Pescara Universities, Chieti-Pescara, Italy.
| |
Collapse
|
3
|
Liu G, Huang K, Lin B, Zhang R, Zhu Y, Dong X, Wu C, Zhu H, Lin J, Bao M, Li S, Zheng R, Jing F. IKZF1 promotes pyroptosis and prevents M2 macrophage polarization by inhibiting JAK2/STAT5 pathway in colon cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167690. [PMID: 39862997 DOI: 10.1016/j.bbadis.2025.167690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Pyroptosis and macrophage pro-inflammatory activation play an important role in hepatocellular carcinoma (HCC) progression. However, the specific regulatory mechanisms remain unclear. We identified pyroptosis-related differentially expressed genes (DEGs) based on the GSE4183 and GSE44861 datasets as well as EVenn database. Expression levels of key genes were detected by qRT-PCR. IKZF1 was overexpressed in colon cancer cells and tumor-bearing mice, and its functions were assessed by various cell biology assays in vitro and in vivo. To investigate the interactions between IKZF1 and macrophages, a co-culture system was constructed. The activator RO8191 or inhibitor ruxolitinib of the JAK/STAT pathway was employed to confirm whether IKZF1 inhibited colon cancer development by regulating JAK2/STAT5 pathway. Pyroptosis-related hub genes RBBP7, HSP90AB1, and RBBP4 were highly expressed, while IKZF1, NLRP1, and PYCARD were lowly expressed. These hub genes had good performance in distinguishing colon cancer from controls. Furthermore, overexpression of IKZF1 inhibited tumor growth and promoted pyroptosis. Overexpression of IKZF1 suppressed cell proliferation, metastasis, and inactivated JAK2/STAT5 signaling pathway in colon cancer cells. Furthermore, upregulation of IKZF1 promoted M1 macrophage polarization while inhibiting M2 macrophage polarization in vivo and in vitro by inhibiting the JAK2/STAT5 signaling pathway. This study identifies IKZF1 as a potential biomarker inactivating JAK2/STAT5 pathway for colon cancer.
Collapse
Affiliation(s)
- Guanglong Liu
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, China
| | - Kaihua Huang
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Bingheng Lin
- The First School of Clinical Medicine, Southern Medical University, China
| | - Renyi Zhang
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Yu Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Xiaoyu Dong
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Chaosong Wu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Huacong Zhu
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Jiabao Lin
- Department of Health Management, Nanfang Hospital, Southern Medical University, China
| | - Ming Bao
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Shenglong Li
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), China
| | - Fangyan Jing
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, China; Department of Gastrointestinal and Hernia Surgery, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
4
|
Jiang X, Wang J, Lin L, Du L, Ding Y, Zheng F, Xie H, Wang Y, Hu M, Liu B, Xu M, Zhai J, Wang X, Ye J, Cao W, Feng C, Feng J, Hou Z, Meng M, Qiu J, Li Q, Shi Y, Wang Y. Macrophages promote pre-metastatic niche formation of breast cancer through aryl hydrocarbon receptor activity. Signal Transduct Target Ther 2024; 9:352. [PMID: 39690159 DOI: 10.1038/s41392-024-02042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 10/18/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024] Open
Abstract
Macrophages that acquire an immunosuppressive phenotype play a crucial role in establishing the pre-metastatic niche (PMN), which is essential for facilitating breast cancer metastasis to distant organs. Our study showed that increased activity of the aryl hydrocarbon receptor (AHR) in lung macrophages plays a crucial role in establishing the immunosuppressive PMN in breast cancer. Specifically, AHR activation led to high expression of PD-L1 on macrophages by directly binding to the promoter of Pdl1. This upregulation of PD-L1 promoted the differentiation of regulatory T cells (Tregs) within the PMN, further enhancing immunosuppressive conditions. Mice with Ahr conditional deletion in macrophages had reduced lung metastasis of breast cancer. The elevated AHR levels in PMN macrophages were induced by GM-CSF, which was secreted by breast cancer cells. Mechanistically, the activated STAT5 signaling pathway induced by GM-CSF prevented AHR from being ubiquitinated, thereby sustaining its activity in macrophages. In breast cancer patients, the expression of AHR and PD-L1 was correlated with increased Treg cell infiltration, and higher levels of AHR were associated with a poor prognosis. These findings reveal that the crosstalk of breast cancer cells, lung macrophages, and Treg cells via the GM-CSF-STAT5-AHR-PD-L1 cascade modulates the lung pre-metastatic niche during breast cancer progression.
Collapse
Affiliation(s)
- Xu Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jiaqi Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liangyu Lin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Liming Du
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yayun Ding
- The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Fanjun Zheng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hongzhen Xie
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingyuan Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Benming Liu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Muhan Xu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingjie Zhai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuefeng Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Cao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chao Feng
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - Jingyi Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, China
| | - Mingyao Meng
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- The Third Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Osuala KO, Chalasani A, Aggarwal N, Ji K, Moin K. Paracrine Activation of STAT3 Drives GM-CSF Expression in Breast Carcinoma Cells, Generating a Symbiotic Signaling Network with Breast Carcinoma-Associated Fibroblasts. Cancers (Basel) 2024; 16:2910. [PMID: 39199680 PMCID: PMC11353178 DOI: 10.3390/cancers16162910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 09/01/2024] Open
Abstract
This study evaluated the paracrine signaling between breast carcinoma-associated fibroblasts (CAFs) and breast cancer (BCa) cells. Resolving cell-cell communication in the BCa tumor microenvironment (TME) will aid the development of new therapeutics. Here, we utilized our patented TAME (tissue architecture and microenvironment engineering) 3D culture microphysiological system, which is a suitable pathomimetic avatar for the study of the BCa TME. We cultured in 3D BCa cells and CAFs either alone or together in cocultures and found that when cocultured, CAFs enhanced the invasive characteristics of tumor cells, as shown by increased proliferation and spread of tumor cells into the surrounding matrix. Secretome analysis from 3D cultures revealed a relatively high secretion of IL-6 by CAFs. A marked increase in the secretion of granulocyte macrophage-colony stimulating factor (GM-CSF) when carcinoma cells and CAFs were in coculture was also observed. We theorized that the CAF-secreted IL-6 functions in a paracrine manner to induce GM-CSF expression and secretion from carcinoma cells. This was confirmed by evaluating the activation of STAT3 and gene expression of GM-CSF in carcinoma cells exposed to CAF-conditioned media (CAF-CM). In addition, the treatment of CAFs with BCa cell-CM yielded a brief upregulation of GM-CSF followed by a marked decrease, indicating a tightly regulated control of GM-CSF in CAFs. Secretion of IL-6 from CAFs drives the activation of STAT3 in BCa cells, which in turn drives the expression and secretion of GM-CSF. As a result, CAFs exposed to BCa cell-secreted GM-CSF upregulate inflammation-associated genes such as IL-6, IL-6R and IL-8, thereby forming a positive feedback loop. We propose that the tight regulation of GM-CSF in CAFs may be a novel regulatory pathway to target for disrupting the CAF:BCa cell symbiotic relationship. These data provide yet another piece of the cell-cell communication network governing the BCa TME.
Collapse
Affiliation(s)
- Kingsley O. Osuala
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Twelve Biosciences Research & Development, Kalamazoo, MI 49009, USA
| | - Anita Chalasani
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| | - Neha Aggarwal
- Department of Physiology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA;
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
- Department of Neurology, Henry Ford Health, Detroit, MI 48202, USA
| | - Kamiar Moin
- Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield, Detroit, MI 48201, USA; (A.C.); (K.J.)
| |
Collapse
|
6
|
Ren H, Shen X, Xie M, Guo X. Construction of a prognostic score model for breast cancer based on multi-omics analysis of study on bone metastasis. Transl Cancer Res 2024; 13:2419-2436. [PMID: 38881940 PMCID: PMC11170530 DOI: 10.21037/tcr-23-1881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/25/2024] [Indexed: 06/18/2024]
Abstract
Background Breast cancer (BRCA) is the most common type of cancer and the second leading cause of cancer-related death in women all over the world. Metastasis to bone is an indicator of poor prognosis in BRCA patients. This study aimed to develop a prognostic score model for predicting bone metastasis in patients with BRCA. Methods BRCA-related RNA sequencing datasets and corresponding clinical information were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Differentially expressed genes (DEGs) were screened using Limma package of R software. A risk score based predictive model was constructed based on the key genes identified through univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) Cox regression. The gene expression profiles in BRCA patients were analyzed by gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA). Random survival forest (RSF) analysis of BRCA patients with bone metastasis was conducted to identify the key DEGs. Results Based on DEG analysis, a total of 677 genes were identified as genes related to bone metastasis in BRCA. By univariate Cox regression and LASSO regression, 28 DEGs were identified as signature genes to develop the prognostic model. A risk score for each patient was created by incorporating the expression values of each specific gene and weighting them with the corresponding estimated regression coefficients. Patients were divided into a low-risk and a high-risk group based on the median risk score. Overall survival (OS) was significantly lower in the high-risk group. The receiver operating characteristic (ROC) curve and multi-omics analysis indicated that the model had high training/testing accuracy and a good clinical predictive value. We used extra data from GEO database to verify the robustness of the prognostic model, and the lower OS in high-risk group and area under the curve (AUC) value indicated the model had strong predictive efficacy for prognosis of BRCA. Conclusions A prognostic prediction model was constructed based on 28 key DEGs identified through multi-omics analysis of studies on bone metastasis. The model may provide a promising method for distinguishing the high-risk BRCA patients and help on decision making in addition to prognosis prediction for BRCA patients.
Collapse
Affiliation(s)
- Hailong Ren
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xing Shen
- Division of Spinal Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingyun Xie
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Xia Guo
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- National Health Commission (NHC) Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Sohrabi S, Alipour S, Ghahramanipour Z, Masoumi J, Baradaran B. STAT signaling pathways in immune cells and their associated mechanisms in cancer pathogenesis. BIOIMPACTS : BI 2024; 15:30030. [PMID: 39963570 PMCID: PMC11830145 DOI: 10.34172/bi.30030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 02/20/2025]
Abstract
Introduction Signal transducer and activator of transcriptions (STATs) factors as critical proteins in cell signaling regulate diverse biological processes such as differentiation and proliferation of cells. STATs have been shown to play distinct roles in modulating immune responses mediated by innate and adaptive immune cell subsets due to their significant roles in cytokine signaling. Methods In the current study, we review recent studies on the contribution of individual STAT proteins to cytokine signaling, development, and activity of diverse immune cells that constitute the whole immune system and help its performance against endogenous or exogenous agents with a particular focus on meaningful STAT factor in each of innate and adaptive immune cells' subsets to clarify their function in favor of the tumor or against it. Results Dysregulation of signaling pathways in the immune cells is associated with various immune disorders, such as the inability of immune system cells in the effective destruction of cancerous cells. Increase of knowledge about these pathways' functions is essential to understand how they can be effectively targeted to eliminate tumors. Conclusion The majority of immune cells use the Jak/STAT signaling pathway, which is one of the most important signaling pathways with a role in induction of proper immune responses. Since each of the STAT factors has a specific role in diverse immune cells' subsets, appropriate targeting of them can be a promising strategy for patients who suffer from immune system disorders; specifically it can be beneficial as an approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Sgariglia D, Carneiro FRG, Vidal de Carvalho LA, Pedreira CE, Carels N, da Silva FAB. Optimizing therapeutic targets for breast cancer using boolean network models. Comput Biol Chem 2024; 109:108022. [PMID: 38350182 DOI: 10.1016/j.compbiolchem.2024.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/18/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Studying gene regulatory networks associated with cancer provides valuable insights for therapeutic purposes, given that cancer is fundamentally a genetic disease. However, as the number of genes in the system increases, the complexity arising from the interconnections between network components grows exponentially. In this study, using Boolean logic to adjust the existing relationships between network components has facilitated simplifying the modeling process, enabling the generation of attractors that represent cell phenotypes based on breast cancer RNA-seq data. A key therapeutic objective is to guide cells, through targeted interventions, to transition from the current cancer attractor to a physiologically distinct attractor unrelated to cancer. To achieve this, we developed a computational method that identifies network nodes whose inhibition can facilitate the desired transition from one tumor attractor to another associated with apoptosis, leveraging transcriptomic data from cell lines. To validate the model, we utilized previously published in vitro experiments where the downregulation of specific proteins resulted in cell growth arrest and death of a breast cancer cell line. The method proposed in this manuscript combines diverse data sources, conducts structural network analysis, and incorporates relevant biological knowledge on apoptosis in cancer cells. This comprehensive approach aims to identify potential targets of significance for personalized medicine.
Collapse
Affiliation(s)
| | - Flavia Raquel Gonçalves Carneiro
- Center of Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, Brazil; Laboratório Interdisciplinar de Pesquisas Médicas Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil; Program of Immunology and Tumor Biology, Brazilian National Cancer Institute(INCA), Rio de Janeiro 20231050, Brazil
| | | | | | - Nicolas Carels
- Platform of Biological System Modeling, Center of Technological Development in Health (CDTS), FIOCRUZ, Rio de Janeiro, Brazil
| | | |
Collapse
|
9
|
Liu Y, Liu D, Liu Y, Fu B, Ji S, Wang R, Yan F, Wang H, Zhao D, Yang W, Wang J, Tang L. Comprehensive Proteomics Analysis Reveals Dynamic Phenotypes of Tumor-Associated Macrophages and Their Precursor Cells in Tumor Progression. J Proteome Res 2024; 23:822-833. [PMID: 38173118 DOI: 10.1021/acs.jproteome.3c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Tumor-associated macrophages (TAMs) are key regulators in tumor progression, but the precise role of bone marrow-derived monocytes (Mons) as TAM precursors and their dynamic phenotypes regulated by the tumor microenvironment (TME) remain unclear. Here, we developed an optimized microproteomics workflow to analyze low-cell-number mouse myeloid cells. We sorted TAMs and their corresponding Mons (1 × 105 per sample) from individual melanoma mouse models at both the early and late stages. We established the protein expression profiles for these cells by mass spectrometry. Subsequently, we analyzed the dynamics phenotypes of TAMs and identified a characteristic protein expression profile characterized by upregulated cholesterol metabolism and downregulated immune responses during tumor progression. Moreover, we found the downregulation of both STAT5 and PYCARD expression not only in late-stage TAMs but also in late-stage Mons, indicating a loss of the ability to induce inflammatory responses prior to Mons infiltration into TME. Taken together, our study provides valuable insights into the progression-dependent transitions between TAMs and their precursor cells, as well as the cross-organ communications of tumor and bone marrow.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Di Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yuchen Liu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Bin Fu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Shuhui Ji
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Ruixuan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fang Yan
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Huan Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Dianyuan Zhao
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Wenting Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jian Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Li Tang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| |
Collapse
|
10
|
Elfstrum AK, Bapat AS, Schwertfeger KL. Defining and targeting macrophage heterogeneity in the mammary gland and breast cancer. Cancer Med 2024; 13:e7053. [PMID: 38426622 PMCID: PMC10905685 DOI: 10.1002/cam4.7053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION Macrophages are innate immune cells that are associated with extensive phenotypic and functional plasticity and contribute to normal development, tissue homeostasis, and diseases such as cancer. In this review, we discuss the heterogeneity of tissue resident macrophages in the normal mammary gland and tumor-associated macrophages in breast cancer. Tissue resident macrophages are required for mammary gland development, where they have been implicated in promoting extracellular matrix remodeling, apoptotic clearance, and cellular crosstalk. In the context of cancer, tumor-associated macrophages are key drivers of growth and metastasis via their ability to promote matrix remodeling, angiogenesis, lymphangiogenesis, and immunosuppression. METHOD We identified and summarized studies in Pubmed that describe the phenotypic and functional heterogeneity of macrophages and the implications of targeting individual subsets, specifically in the context of mammary gland development and breast cancer. We also identified and summarized recent studies using single-cell RNA sequencing to identify and describe macrophage subsets in human breast cancer samples. RESULTS Advances in single-cell RNA sequencing technologies have yielded nuances in macrophage heterogeneity, with numerous macrophage subsets identified in both the normal mammary gland and breast cancer tissue. Macrophage subsets contribute to mammary gland development and breast cancer progression in differing ways, and emerging studies highlight a role for spatial localization in modulating their phenotype and function. CONCLUSION Understanding macrophage heterogeneity and the unique functions of each subset in both normal mammary gland development and breast cancer progression may lead to more promising targets for the treatment of breast cancer.
Collapse
Affiliation(s)
- Alexis K. Elfstrum
- Microbiology, Immunology, and Cancer Biology Graduate ProgramUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Aditi S. Bapat
- Molecular Pharmacology and Therapeutics Graduate ProgramUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Kathryn L. Schwertfeger
- Department of Laboratory Medicine and PathologyUniversity of MinnesotaMinneapolisMinnesotaUSA
- Masonic Cancer CenterUniversity of MinnesotaMinneapolisMinnesotaUSA
- Center for ImmunologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
11
|
Dahms P, Lyons TR. Toward Characterizing Lymphatic Vasculature in the Mammary Gland During Normal Development and Tumor-Associated Remodeling. J Mammary Gland Biol Neoplasia 2024; 29:1. [PMID: 38218743 PMCID: PMC10787674 DOI: 10.1007/s10911-023-09554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Lymphatic vasculature has been shown to promote metastatic spread of breast cancer. Lymphatic vasculature, which is made up of larger collecting vessels and smaller capillaries, has specialized cell junctions that facilitate cell intravasation. Normally, these junctions are designed to collect immune cells and other cellular components for immune surveillance by lymph nodes, but they are also utilized by cancer cells to facilitate metastasis. Although lymphatic development overall in the body has been well-characterized, there has been little focus on how the lymphatic network changes in the mammary gland during stages of remodeling such as pregnancy, lactation, and postpartum involution. In this review, we aim to define the currently known lymphangiogenic factors and lymphatic remodeling events during mammary gland morphogenesis. Furthermore, we juxtapose mammary gland pubertal development and postpartum involution to show similarities of pro-lymphangiogenic signaling as well as other molecular signals for epithelial cell survival that are critical in these morphogenic stages. The similar mechanisms include involvement of M2-polarized macrophages that contribute to matrix remodeling and vasculogenesis; signal transducer and activator of transcription (STAT) survival and proliferation signaling; and cyclooxygenase 2 (COX2)/Prostaglandin E2 (PGE2) signaling to promote ductal and lymphatic expansion. Investigation and characterization of lymphangiogenesis in the normal mammary gland can provide insight to targetable mechanisms for lymphangiogenesis and lymphatic spread of tumor cells in breast cancer.
Collapse
Affiliation(s)
- Petra Dahms
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA
| | - Traci R Lyons
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA.
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA.
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA.
| |
Collapse
|
12
|
Park Y, Chung C. Immune Evasion of G-CSF and GM-CSF in Lung Cancer. Tuberc Respir Dis (Seoul) 2024; 87:22-30. [PMID: 37726942 PMCID: PMC10758314 DOI: 10.4046/trd.2023.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Tumor immune evasion is a complex process that involves various mechanisms, such as antigen recognition restriction, immune system suppression, and T cell exhaustion. The tumor microenvironment contains various immune cells involved in immune evasion. Recent studies have demonstrated that granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage colony-stimulating factor (GM-CSF) induce immune evasion in lung cancer by modulating neutrophils and myeloid-derived suppressor cells. Here we describe the origin and function of G-CSF and GM-CSF, particularly their role in immune evasion in lung cancer. In addition, their effects on programmed death-ligand 1 expression and clinical implications are discussed.
Collapse
Affiliation(s)
- Yeonhee Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
13
|
Pu D, Yao Y, Zhou C, Liu R, Wang Z, Liu Y, Wang D, Wang B, Wang Y, Liu Z, Zhang Z, Feng B. FMT rescues mice from DSS-induced colitis in a STING-dependent manner. Gut Microbes 2024; 16:2397879. [PMID: 39324491 PMCID: PMC11441074 DOI: 10.1080/19490976.2024.2397879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/28/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024] Open
Abstract
Fecal microbiota transplantation (FMT) is currently a promising therapy for inflammatory bowel disease (IBD). However, clinical studies have shown that there is an obvious individual difference in the efficacy of FMT. Therefore, it is a pressing issue to identify the factors that influence the efficacy of FMT and find ways to screen the most suitable patients for this therapy. In this work, we targeted the stimulator of interferon genes (STING), a DNA-sensing protein that regulates host-defense. By comparing the differential efficacy of FMT in mice with different expression level of STING, it is revealed that FMT therapy provides treatment for DSS-induced colitis in a STING-dependent manner. Mechanistically, FMT exerts a regulatory effect on the differentiation of intestinal Th17 cells and macrophages, splenic Th1 and Th2 cells, as well as Th1 cells of the mesenteric lymph nodes via STING, down-regulating the colonic M1/M2 and splenic Th1/Th2 cell ratios, thereby improving the imbalanced immune homeostasis in the inflamed intestine. Meanwhile, based on the 16SrDNA sequencing of mice fecal samples, STING was found to facilitate the donor strain colonization in recipients' gut, mainly Lactobacillales, thereby reshaping the gut microbiota disturbed by colitis. Consequently, we proposed that STING, as a key target of FMT therapy, is potentially a biomarker for screening the most suitable individuals for FMT to optimize treatment regimens and enhance clinical benefit.
Collapse
Affiliation(s)
- Dan Pu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Yao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chuan Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruixian Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihong Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Binbin Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- National Center for International Research in Cell and Gene Therapy, Sino-British Research Centre for Molecular Oncology, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Zhanju Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, the Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhe Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Fan M, Wang K, Zhang Y, Ge Y, Lü Z, Li L. Radiogenomic analysis of cellular tumor-stroma heterogeneity as a prognostic predictor in breast cancer. J Transl Med 2023; 21:851. [PMID: 38007511 PMCID: PMC10675940 DOI: 10.1186/s12967-023-04748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND The tumor microenvironment and intercellular communication between solid tumors and the surrounding stroma play crucial roles in cancer initiation, progression, and prognosis. Radiomics provides clinically relevant information from radiological images; however, its biological implications in uncovering tumor pathophysiology driven by cellular heterogeneity between the tumor and stroma are largely unknown. We aimed to identify radiogenomic signatures of cellular tumor-stroma heterogeneity (TSH) to improve breast cancer management and prognosis analysis. METHODS This retrospective multicohort study included five datasets. Cell subpopulations were estimated using bulk gene expression data, and the relative difference in cell subpopulations between the tumor and stroma was used as a biomarker to categorize patients into good- and poor-survival groups. A radiogenomic signature-based model utilizing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was developed to target TSH, and its clinical significance in relation to survival outcomes was independently validated. RESULTS The final cohorts of 1330 women were included for cellular TSH biomarker identification (n = 112, mean age, 57.3 years ± 14.6) and validation (n = 886, mean age, 58.9 years ± 13.1), radiogenomic signature of TSH identification (n = 91, mean age, 55.5 years ± 11.4), and prognostic (n = 241) assessments. The cytotoxic lymphocyte biomarker differentiated patients into good- and poor-survival groups (p < 0.0001) and was independently validated (p = 0.014). The good survival group exhibited denser cell interconnections. The radiogenomic signature of TSH was identified and showed a positive association with overall survival (p = 0.038) and recurrence-free survival (p = 3 × 10-4). CONCLUSION Radiogenomic signatures provide insights into prognostic factors that reflect the imbalanced tumor-stroma environment, thereby presenting breast cancer-specific biological implications and prognostic significance.
Collapse
Affiliation(s)
- Ming Fan
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Kailang Wang
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - You Zhang
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Yuanyuan Ge
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Zhong Lü
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China.
| | - Lihua Li
- Institute of Intelligent Biomedicine, Hangzhou Dianzi University, Hangzhou, 310018, China.
| |
Collapse
|
15
|
Cunha A, Silva PMA, Sarmento B, Queirós O. Targeting Glucose Metabolism in Cancer Cells as an Approach to Overcoming Drug Resistance. Pharmaceutics 2023; 15:2610. [PMID: 38004589 PMCID: PMC10675572 DOI: 10.3390/pharmaceutics15112610] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The "Warburg effect" consists of a metabolic shift in energy production from oxidative phosphorylation to glycolysis. The continuous activation of glycolysis in cancer cells causes rapid energy production and an increase in lactate, leading to the acidification of the tumour microenvironment, chemo- and radioresistance, as well as poor patient survival. Nevertheless, the mitochondrial metabolism can be also involved in aggressive cancer characteristics. The metabolic differences between cancer and normal tissues can be considered the Achilles heel of cancer, offering a strategy for new therapies. One of the main causes of treatment resistance consists of the increased expression of efflux pumps, and multidrug resistance (MDR) proteins, which are able to export chemotherapeutics out of the cell. Cells expressing MDR proteins require ATP to mediate the efflux of their drug substrates. Thus, inhibition of the main energy-producing pathways in cancer cells, not only induces cancer cell death per se, but also overcomes multidrug resistance. Given that most anticancer drugs do not have the ability to distinguish normal cells from cancer cells, a number of drug delivery systems have been developed. These nanodrug delivery systems provide flexible and effective methods to overcome MDR by facilitating cellular uptake, increasing drug accumulation, reducing drug efflux, improving targeted drug delivery, co-administering synergistic agents, and increasing the half-life of drugs in circulation.
Collapse
Affiliation(s)
- Andrea Cunha
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- 1H—TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 3810-193 Gandra, Portugal
| | - Bruno Sarmento
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Odília Queirós
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences—CESPU (IUCS—CESPU), 4585-116 Gandra, Portugal; (A.C.); (P.M.A.S.); (B.S.)
| |
Collapse
|
16
|
Jia G, Yang Y, Ping J, Xu S, Liu L, Guo X, Tao R, Long J, Zheng W. Identification of target proteins for breast cancer genetic risk loci and blood risk biomarkers in a large study by integrating genomic and proteomic data. Int J Cancer 2023; 152:2314-2320. [PMID: 36779764 PMCID: PMC10079603 DOI: 10.1002/ijc.34472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/14/2023]
Abstract
Genome-wide association studies (GWAS) have identified around 200 loci associated with breast cancer risk. However, protein targets for these loci remain largely unknown. Identifying protein targets and biomarkers can improve the understanding of cancer biology and etiology and identify high-risk individuals for cancer prevention. In this study, we investigated genetically predicted levels of 1142 circulating proteins with breast cancer risk in 133 384 cases and 113 789 controls of European ancestry included in the Breast Cancer Association Consortium (BCAC). We identified 22 blood protein biomarkers associated with the risk of overall breast cancer at a false discovery rate (FDR) <0.05, including nine proteins encoded by genes located at least 500 kb away from previously reported risk variants for breast cancer. Analyses focusing on 124 encoding genes located at GWAS-identified breast cancer risk loci found 20 proteins associated with overall breast cancer risk and one protein associated with triple-negative breast cancer risk at FDR <0.05. Adjustment for the GWAS-identified risk variants significantly attenuated the association for 13 of these proteins, suggesting that these proteins may be the targets of these GWAS-identified risk loci. The identified proteins are involved in various biological processes, including glutathione conjugation, STAT5 signaling and NF-κB signaling pathways. Our study identified novel protein targets and risk biomarkers for breast cancer risk.
Collapse
Affiliation(s)
- Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Public Health Genomics, Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shuai Xu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lili Liu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Bapat AS, O'Connor CH, Schwertfeger KL. Targeting the NF-κB pathway enhances responsiveness of mammary tumors to JAK inhibitors. Sci Rep 2023; 13:5349. [PMID: 37005447 PMCID: PMC10067805 DOI: 10.1038/s41598-023-32321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/25/2023] [Indexed: 04/04/2023] Open
Abstract
Interactions between tumor cells and the tumor microenvironment are critical for tumor growth, progression, and response to therapy. Effective targeting of oncogenic signaling pathways in tumors requires an understanding of how these therapies impact both tumor cells and cells within the tumor microenvironment. One such pathway is the janus kinase (JAK)/signal transducer and activator or transcription (STAT) pathway, which is activated in both breast cancer cells and in tumor associated macrophages. This study demonstrates that exposure of macrophages to JAK inhibitors leads to activation of NF-κB signaling, which results in increased expression of genes known to be associated with therapeutic resistance. Furthermore, inhibition of the NF-κB pathway improves the ability of ruxolitinib to reduce mammary tumor growth in vivo. Thus, the impact of the tumor microenvironment is an important consideration in studying breast cancer and understanding such mechanisms of resistance is critical to development of effective targeted therapies.
Collapse
Affiliation(s)
- Aditi S Bapat
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA
| | - Christine H O'Connor
- University of Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota, 2231 6th St SE, Minneapolis, MN, 55455, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
18
|
Witschen PM, Elfstrum AK, Nelson AC, Schwertfeger KL. Characterization of Hyaluronan Localization in the Developing Mammary Gland and Mammary Tumors. J Mammary Gland Biol Neoplasia 2023; 28:1. [PMID: 36723776 PMCID: PMC9892096 DOI: 10.1007/s10911-023-09528-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/02/2023] Open
Abstract
The extracellular matrix (ECM) is biochemically and biomechanically important for the structure and function of the mammary gland, which undergoes vast structural changes throughout pubertal and reproductive development. Although hyaluronan (HA) is a ubiquitous glycosaminoglycan (GAG) of the mammary gland ECM, extensive characterization of HA deposition in the mammary gland is lacking. Understanding physiologic HA metabolism is critical as this tightly controlled system is often hijacked in cancer. In the current studies, we characterize HA regulation throughout mammary gland development to better understand subsequent dysregulation of HA in mammary tumors. Using immunofluorescence (IF) imaging, we demonstrate that organized HA-rich septa exist in the mammary gland stroma throughout puberty, pregnancy, and involution. Furthermore, we find heterogeneous HA deposition within two murine models of breast cancer. Using cell specific isolation techniques, we characterize expression of genes associated with HA binding, synthesis, and degradation within EpCAM + epithelial cells, CD90.2 + fibroblasts, and F4/80 + macrophages isolated from mammary glands and tumors. Most notably, we identify elevated levels of the hyaluronidases Hyal1 and Hyal2 in tumor-association macrophages (TAMs), suggesting a role for TAM-mediated turnover of HA in the tumor microenvironment (TME). Gene expression is supported functionally by in vitro experiments in which macrophages treated with tumor-cell conditioned media exhibit increased hyaluronidase activity. These findings link TAMs to the direct degradation of HA within the TME of mammary tumors, which has negative implications for patient survival.
Collapse
Affiliation(s)
- Patrice M Witschen
- Comparative and Molecular Biosciences Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Alexis K Elfstrum
- Microbiology, Immunology and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN, USA
| | - Andrew C Nelson
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Kathryn L Schwertfeger
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
19
|
Abu El-Makarem MA, Kamel MF, Mohamed AA, Ali HA, Mohamed MR, Mohamed AEDM, El-Said AM, Ameen MG, Hassnine AA, Hassan HA. Down-regulation of hepatic expression of GHR/STAT5/IGF-1 signaling pathway fosters development and aggressiveness of HCV-related hepatocellular carcinoma: Crosstalk with Snail-1 and type 2 transforming growth factor-beta receptor. PLoS One 2022; 17:e0277266. [PMID: 36374927 PMCID: PMC9662744 DOI: 10.1371/journal.pone.0277266] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background and aims So far, few clinical trials are available concerning the role of growth hormone receptor (GHR)/signal transducer and activator of transcription 5 (STAT5)/insulin like growth factor-1 (IGF-1) axis in hepatocarcinogenesis. The aim of this study was to evaluate the hepatic expression of GHR/STAT5/IGF-1 signaling pathway in hepatocellular carcinoma (HCC) patients and to correlate the results with the clinico-pathological features and disease outcome. The interaction between this signaling pathway and some inducers of epithelial-mesenchymal transition (EMT), namely Snail-1 and type 2 transforming growth factor-beta receptor (TGFBR2) was studied too. Material and methods A total of 40 patients with HCV-associated HCC were included in this study. They were compared to 40 patients with HCV-related cirrhosis without HCC, and 20 healthy controls. The hepatic expression of GHR, STAT5, IGF-1, Snail-1 and TGFBR2 proteins were assessed by immunohistochemistry. Results Compared with cirrhotic patients without HCC and healthy controls, cirrhotic patients with HCC had significantly lower hepatic expression of GHR, STAT5, and IGF-1proteins. They also displayed significantly lower hepatic expression of TGFBR2, but higher expression of Snail-1 versus the non-HCC cirrhotic patients and controls. Serum levels of alpha-fetoprotein (AFP) showed significant negative correlations with hepatic expression of GHR (r = -0.31; p = 0.029) and STAT5 (r = -0.29; p = 0.04). Hepatic expression of Snail-1 also showed negative correlations with GHR, STAT5, and IGF-1 expression (r = -0.55, p = 0.02; r = -0.472, p = 0.035, and r = -0.51, p = 0.009, respectively), whereas, hepatic expression of TGFBR2 was correlated positively with the expression of all these proteins (r = 0.47, p = 0.034; 0.49, p = 0.023, and r = 0.57, p<0.001, respectively). Moreover, we reported that decreased expression of GHR was significantly associated with serum AFP level>100 ng/ml (p = 0.048), increased tumor size (p = 0.02), vascular invasion (p = 0.002), and advanced pathological stage (p = 0.01). Similar significant associations were found between down-regulation of STAT5 expression and AFP level > 100 ng/ml (p = 0.006), vascular invasion (p = 0.009), and advanced tumor stage (p = 0.007). Also, attenuated expression of IGF-1 showed a significant association with vascular invasion (p < 0.001). Intriguingly, we detected that lower expression of GHR, STAT5 and IGF-1 were considered independent predictors for worse outcome in HCC. Conclusion Decreased expression of GHR/STAT5/IGF-1 signaling pathway may have a role in development, aggressiveness, and worse outcome of HCV-associated HCC irrespective of the liver functional status. Snail-1 and TGFBR2 as inducers of EMT may be key players. However, large prospective multicenter studies are needed to validate these results.
Collapse
Affiliation(s)
- Mona A. Abu El-Makarem
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
- * E-mail:
| | - Mariana F. Kamel
- Department of Pathology, School of Medicine, Minia University, Minia, Egypt
- Department of Pathology, Minia Oncology Center, Minia, Egypt
| | - Ahmed A. Mohamed
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Hisham A. Ali
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Mahmoud R. Mohamed
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | | | - Ahmed M. El-Said
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| | - Mahmoud G. Ameen
- Department of Pathology, South Egypt Cancer Institute, Assuit University, Assuit, Egypt
| | - Alshymaa A. Hassnine
- Department of Tropical Medicine and Gastroenterology, School of Medicine, Minia University, Minia, Egypt
| | - Hatem A. Hassan
- Department of Internal Medicine, School of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
20
|
Wong GL, Manore SG, Doheny DL, Lo HW. STAT family of transcription factors in breast cancer: Pathogenesis and therapeutic opportunities and challenges. Semin Cancer Biol 2022; 86:84-106. [PMID: 35995341 PMCID: PMC9714692 DOI: 10.1016/j.semcancer.2022.08.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer is the most commonly diagnosed cancer and second-leading cause of cancer deaths in women. Breast cancer stem cells (BCSCs) promote metastasis and therapeutic resistance contributing to tumor relapse. Through activating genes important for BCSCs, transcription factors contribute to breast cancer metastasis and therapeutic resistance, including the signal transducer and activator of transcription (STAT) family of transcription factors. The STAT family consists of six major isoforms, STAT1, STAT2, STAT3, STAT4, STAT5, and STAT6. Canonical STAT signaling is activated by the binding of an extracellular ligand to a cell-surface receptor followed by STAT phosphorylation, leading to STAT nuclear translocation and transactivation of target genes. It is important to note that STAT transcription factors exhibit diverse effects in breast cancer; some are either pro- or anti-tumorigenic while others maintain dual, context-dependent roles. Among the STAT transcription factors, STAT3 is the most widely studied STAT protein in breast cancer for its critical roles in promoting BCSCs, breast cancer cell proliferation, invasion, angiogenesis, metastasis, and immune evasion. Consequently, there have been substantial efforts in developing cancer therapeutics to target breast cancer with dysregulated STAT3 signaling. In this comprehensive review, we will summarize the diverse roles that each STAT family member plays in breast cancer pathobiology, as well as, the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators in the context of breast cancer treatment.
Collapse
Affiliation(s)
- Grace L Wong
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sara G Manore
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel L Doheny
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Hui-Wen Lo
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Breast Cancer Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
21
|
Crump LS, Kines KT, Richer JK, Lyons TR. Breast cancers co-opt normal mechanisms of tolerance to promote immune evasion and metastasis. Am J Physiol Cell Physiol 2022; 323:C1475-C1495. [PMID: 36189970 PMCID: PMC9662806 DOI: 10.1152/ajpcell.00189.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
Normal developmental processes, such as those seen during embryonic development and postpartum mammary gland involution, can be reactivated by cancer cells to promote immune suppression, tumor growth, and metastatic spread. In mammalian embryos, paternal-derived antigens are at risk of being recognized as foreign by the maternal immune system. Suppression of the maternal immune response toward the fetus, which is mediated in part by the trophoblast, is critical to ensure embryonic survival and development. The postpartum mammary microenvironment also exhibits immunosuppressive mechanisms accompanying the massive cell death and tissue remodeling that occurs during mammary gland involution. These normal immunosuppressive mechanisms are paralleled during malignant transformation, where tumors can develop neoantigens that may be recognized as foreign by the immune system. To circumvent this, tumors can dedifferentiate and co-opt immune-suppressive mechanisms normally utilized during fetal tolerance and postpartum mammary involution. In this review, we discuss those similarities and how they can inform our understanding of cancer progression and metastasis.
Collapse
Affiliation(s)
- Lyndsey S Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Kelsey T Kines
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jennifer K Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cancer Center, Aurora, Colorado
| |
Collapse
|
22
|
Chen JY, Xiao-Yun Tian, Wei SS, Yang YJ, Deng S, Jiao CJ, Wang CJ, Chu KD, Ma XQ, Xu W. Perspectives of herbs and their natural compounds, and herb formulas on treating diverse diseases through regulating complicated JAK/STAT signaling. Front Pharmacol 2022; 13:993862. [PMID: 36324680 PMCID: PMC9619051 DOI: 10.3389/fphar.2022.993862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
JAK/STAT signaling pathways are closely associated with multiple biological processes involved in cell proliferation, apoptosis, inflammation, differentiation, immune response, and epigenetics. Abnormal activation of the STAT pathway can contribute to disease progressions under various conditions. Moreover, tofacitinib and baricitinib as the JAK/STAT inhibitors have been recently approved by the FDA for rheumatology disease treatment. Therefore, influences on the STAT signaling pathway have potential and perspective approaches for diverse diseases. Chinese herbs in traditional Chinese medicine (TCM), which are widespread throughout China, are the gold resources of China and have been extensively used for treating multiple diseases for thousands of years. However, Chinese herbs and herb formulas are characterized by complicated components, resulting in various targets and pathways in treating diseases, which limits their approval and applications. With the development of chemistry and pharmacology, active ingredients of TCM and herbs and underlying mechanisms have been further identified and confirmed by pharmacists and chemists, which improved, to some extent, awkward limitations, approval, and applications regarding TCM and herbs. In this review, we summarized various herbs, herb formulas, natural compounds, and phytochemicals isolated from herbs that have the potential for regulating multiple biological processes via modulation of the JAK/STAT signaling pathway based on the published work. Our study will provide support for revealing TCM, their active compounds that treat diseases, and the underlying mechanism, further improving the rapid spread of TCM to the world.
Collapse
|
23
|
Zhou M, Zhang P, Da M, Yang R, Ma Y, Zhao J, Ma T, Xia J, Shen G, Chen Y, Chen D. A pan-cancer analysis of the expression of STAT family genes in tumors and their relationship to the tumor microenvironment. Front Oncol 2022; 12:925537. [PMID: 36176415 PMCID: PMC9513395 DOI: 10.3389/fonc.2022.925537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe signal transducer and activator of transcription (STAT) protein family, a group of seven members (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6), has been widely used to investigate numerous biological functions including cell proliferation, differentiation, apoptosis, and immune regulation. However, not much is known about the role of the STAT family genes in pan-cancer.MethodsTumor Immune Estimation Resource (TIMER), Sangerbox, cBioPortal, GSCALite, Xena Shiny, GeneMANIA, Gene Expression Profiling Interactive Analysis (GEPIA), and Metascape were used to analyze the relationship between STAT gene expression, clinical outcome, gene variation, methylation status, pathway activity, tumor immune infiltration, and microenvironment in different cancer types and screened drugs that could potentially influence STATs.ResultsThe Cancer Genome Atlas (TCGA) pan-cancer data showed that most STAT family genes were extensively changed in most tumors compared to the adjacent normal tissues. We also found that STAT gene expression could be used to predict patient survival in various cancers. The STAT gene family formed a network of interaction networks that was associated with several pathways. By mining the of Genomics Drug Sensitivity in Cancer (GDSC) database, we discovered a number of potential drugs that might target STAT regulators. Importantly, the close correlation between STATs and immunocell infiltration suggested the important role of dysregulation of STATs in tumor immune escape. Finally, the relation between STAT gene expression and the tumor microenvironment (TME) indicated that the higher expression of STAT regulators, the higher the degree of tumor stem cells.ConclusionConsidering these genomic alterations and clinical features of STAT family members across cancer types, it will be possible to change the relationship between STATs and tumorigenesis. It was beneficial to treat cancer by targeting these STAT regulators.
Collapse
Affiliation(s)
- Min Zhou
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Ping Zhang
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Mengting Da
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Rui Yang
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Yulian Ma
- Department of Obstetrics and Gynecology, Haidong No.2 People’s Hospital of Qinghai Province, Haidong, China
| | - Jiuda Zhao
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Tao Ma
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Jiazeng Xia
- Department of General Surgery and Translational Medicine Center, The Affiliated Wuxi No.2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Guoshuang Shen
- Breast Disease Diagnosis and Treatment Center, Affiliated Hospital of Qinghai University and Affiliated Cancer Hospital of Qinghai University, Xining, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| | - Yu Chen
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| | - Daozhen Chen
- Department of Breast Surgery, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Research Institute for Reproductive Health and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
- Department of Obstetrics and Gynecology, Haidong No.2 People’s Hospital of Qinghai Province, Haidong, China
- *Correspondence: Yu Chen, ; Guoshuang Shen, ; Daozhen Chen,
| |
Collapse
|
24
|
Strickland BA, Ansari SA, Dantoft W, Uhlenhaut NH. How to tame your genes: mechanisms of inflammatory gene repression by glucocorticoids. FEBS Lett 2022; 596:2596-2616. [PMID: 35612756 DOI: 10.1002/1873-3468.14409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 01/08/2023]
Abstract
Glucocorticoids (GCs) are widely used therapeutic agents to treat a broad range of inflammatory conditions. Their functional effects are elicited by binding to the glucocorticoid receptor (GR), which regulates transcription of distinct gene networks in response to ligand. However, the mechanisms governing various aspects of undesired side effects versus beneficial immunomodulation upon GR activation remain complex and incompletely understood. In this review, we discuss emerging models of inflammatory gene regulation by GR, highlighting GR's regulatory specificity conferred by context-dependent changes in chromatin architecture and transcription factor or co-regulator dynamics. GR controls both gene activation and repression, with the repression mechanism being central to favorable clinical outcomes. We describe current knowledge about 3D genome organization and its role in spatiotemporal transcriptional control by GR. Looking beyond, we summarize the evidence for dynamics in gene regulation by GR through cooperative convergence of epigenetic modifications, transcription factor crosstalk, molecular condensate formation and chromatin looping. Further characterizing these genomic events will reframe our understanding of mechanisms of transcriptional repression by GR.
Collapse
Affiliation(s)
- Benjamin A Strickland
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany
| | - Suhail A Ansari
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Widad Dantoft
- Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - N Henriette Uhlenhaut
- Metabolic Programming, Technische Universitaet Muenchen (TUM), School of Life Sciences Weihenstephan, ZIEL - Institute for Food and Health, Gregor-Mendel-Str. 2, 85354, Freising, Germany.,Institute for Diabetes and Endocrinology (IDE), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
25
|
He K, Liu X, Hoffman RD, Shi RZ, Lv GY, Gao JL. G-CSF/GM-CSF-induced hematopoietic dysregulation in the progression of solid tumors. FEBS Open Bio 2022; 12:1268-1285. [PMID: 35612789 PMCID: PMC9249339 DOI: 10.1002/2211-5463.13445] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022] Open
Abstract
There are two types of abnormal hematopoiesis in solid tumor occurrence and treatment: pathological hematopoiesis, and myelosuppression induced by radiotherapy and chemotherapy. In this review, we primarily focus on the abnormal pathological hematopoietic differentiation in cancer induced by tumor-released granulocyte colony stimulating factor (G-CSF) and granulocyte-macrophage colony stimulating factor (GM-CSF). As key factors in hematopoietic development, G-CSF/GM-CSF are well-known facilitators of myelopoiesis and mobilization of hematopoietic stem cells (HSCs). In addition, these two cytokines can also promote or inhibit tumors, dependent on tumor type. In multiple cancer types, hematopoiesis is greatly enhanced and abnormal lineage differentiation is induced by these two cytokines. Here, dysregulated hematopoiesis induced by G-CSF/GM-CSF in solid tumors and its mechanism are summarized, and the prognostic value of G-CSF/GM-CSF-associated dysregulated hematopoiesis for tumor metastasis is also briefly highlighted.
Collapse
Affiliation(s)
- Kai He
- The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Xi Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Robert D Hoffman
- Yo San University of Traditional Chinese Medicine, Los Angeles, CA, 90066, USA
| | - Rong-Zhen Shi
- Tangqi Branch of Traditional Chinese Medicine Hospital of Yuhang District, Hangzhou, Zhejiang, 311106, China
| | - Gui-Yuan Lv
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou, Zhejiang, 310053, China
| | - Jian-Li Gao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University Hangzhou, Zhejiang, 310053, China
| |
Collapse
|