1
|
Chen W, Xie Q, Fu J, Li S, Shi Y, Lu J, Zhang Y, Zhao Y, Ma R, Li B, Zhang B, Grierson D, Yu M, Fei Z, Chen K. Graph pangenome reveals the regulation of malate content in blood-fleshed peach by NAC transcription factors. Genome Biol 2025; 26:7. [PMID: 39789611 PMCID: PMC11721062 DOI: 10.1186/s13059-024-03470-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Fruit acidity and color are important quality attributes in peaches. Although there are some exceptions, blood-fleshed peaches typically have a sour taste. However, little is known about the genetic variations linking organic acid and color regulation in peaches. RESULTS Here, we report a peach graph-based pangenome constructed from sixteen individual genome assemblies, capturing abundant structural variations and 82.3 Mb of sequences absent in the reference genome. Pangenome analysis reveals a long terminal repeat retrotransposon insertion in the promoter of the NAC transcription factor (TF) PpBL in blood-fleshed peaches, which enhances PpBL expression. Genome-wide association study identifies a significant association between PpBL and malate content. Silencing PpBL in peach fruit and ectopic overexpression of PpBL in tomatoes confirm that PpBL is a positive regulator of malate accumulation. Furthermore, we demonstrate that PpBL works synergistically with another NAC TF, PpNAC1, to activate the transcription of the aluminum-activated malate transporter PpALMT4, leading to increased malate content. CONCLUSIONS These findings, along with previous research showing that PpBL and PpNAC1 also regulate anthocyanin accumulation, explain the red coloration and sour taste in blood-fleshed peach fruits.
Collapse
Affiliation(s)
- Wenbo Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Qi Xie
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jia Fu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shaojia Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Jiao Lu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yuanyuan Zhang
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yingjie Zhao
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Baijun Li
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bo Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
| | - Donald Grierson
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE125RD, UK
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China.
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, 14853, USA.
- USDA-ARS Robert W. Holley Center for Agriculture and Health, Ithaca, 14853, USA.
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Key Laboratory of Horticultural Crop Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Lei Y, Jiu S, Xu Y, Chen B, Dong X, Lv Z, Bernard A, Liu X, Wang L, Wang L, Wang J, Zhang Z, Cai Y, Zheng W, Zhang X, Li F, Li H, Liu C, Li M, Wang J, Zhu J, Peng L, Barreneche T, Yu F, Wang S, Dong Y, Elisabeth D, Duan S, Zhang C. Population sequencing of cherry accessions unravels the evolution of Cerasus species and the selection of genetic characteristics in edible cherries. MOLECULAR HORTICULTURE 2025; 5:6. [PMID: 39780235 PMCID: PMC11708008 DOI: 10.1186/s43897-024-00120-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025]
Abstract
Cerasus is a subgenus of Prunus in the family Rosaceae that is popular owing to its ornamental, edible, and medicinal properties. Understanding the evolution of the Cerasus subgenus and identifying selective trait loci in edible cherries are crucial for the improvement of cherry cultivars to meet producer and consumer demands. In this study, we performed a de novo assembly of a chromosome-scale genome for the sweet cherry (Prunus avium L.) cultivar 'Burlat', covering 297.55 Mb and consisting of eight chromosomes with 33,756 protein-coding genes. The resequencing and population structural analysis of 384 Cerasus representative accessions revealed that they could be divided into four groups (Group 1, Group 2, Group 3, and Group 4). We inferred that Group 1 was the oldest population and Groups 2, 3, and 4 were clades derived from it. In addition, we found selective sweeps for fruit flavor and improved stress resistance in different varieties of edible cherries (P. avium, P. cerasus, and P. pseudocerasus). Transcriptome analysis revealed significant differential expression of genes associated with key pathways, such as sucrose starch and sucrose metabolism, fructose and mannose metabolism, and the pentose phosphate pathway, between the leaves and fruits of P. avium. This study enhances the understanding of the evolutionary processes of the Cerasus subgenus and provides resources for functional genomics research and the improvement of edible cherries.
Collapse
Affiliation(s)
- Yahui Lei
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- College of Science, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Baozheng Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, P. R. China
| | - Xiao Dong
- College of Science, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Anthony Bernard
- UMR BFP, INRAE, Univ. Bordeaux, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiyuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhuo Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuliang Cai
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Wei Zheng
- Dalian Academy of Agricultural Sciences, Dalian, Liaoning, 116036, P. R. China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, P. R. China
| | - Fangdong Li
- Yantai Academy of Agricultural Sciences, Yantai, Shandong, 265500, P. R. China
| | - Hongwen Li
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Sichuan, 610066, P. R. China
| | - Congli Liu
- Zhengzhou Fruit Tree Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, P. R. China
| | - Ming Li
- Zhengzhou Fruit Tree Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, 450009, P. R. China
| | - Jing Wang
- Forestry and Fruit Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, P. R. China
| | - Jijun Zhu
- Shanghai Botanical Garden, Shanghai, 200231, P. R. China
| | - Lei Peng
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
| | - Teresa Barreneche
- UMR BFP, INRAE, Univ. Bordeaux, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France
| | - Fei Yu
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650201, P. R. China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yang Dong
- College of Science, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, Yunnan, P. R. China
| | - Dirlewanger Elisabeth
- UMR BFP, INRAE, Univ. Bordeaux, 71 Avenue Edouard Bourlaux, 33882, Villenave d'Ornon, France.
| | - Shengchang Duan
- College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, 650201, P. R. China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
3
|
Song B, Raza M, Zhang LJ, Xu BQ, Zhang P, Zhu XF. A new brown rot disease of plum caused by Mucor xinjiangensis sp. nov. and screening of its chemical control. Front Microbiol 2024; 15:1458456. [PMID: 39318429 PMCID: PMC11419995 DOI: 10.3389/fmicb.2024.1458456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
A novel species of Mucor was identified as the causal agent of a brown rot of Prunus domestica (European plum), widely grown in the south of Xinjiang, China. This disease first appears as red spots after the onset of the fruits. With favorable environmental conditions, fruit with infected spots turn brown, sag, expand, wrinkle, and harden, resulting in fruit falling. Fungal species were isolated from infected fruits. A phylogenetic analysis based on internal transcribed spacer (ITS) regions and the large subunit (LSU) of the nuclear ribosomal RNA (rRNA) gene regions strongly supported that these isolates made a distinct evolutionary lineage in Mucor (Mucoromycetes, Mucoraceae) that represents a new taxonomic species, herein named as Mucor xinjiangensis. Microscopic characters confirmed that these strains were morphologically distinct from known Mucor species. The pathogenicity of M. xinjiangensis was confirmed by attaching an agar disk containing mycelium on fruits and re-isolation of the pathogen from symptomatic tissues. Later, fourteen fungicides were selected to determine the inhibitory effect on the pathogen. Further, results showed that difenoconazole had the best effect on the pathogen and the strongest toxicity with the smallest half maximal effective concentration (EC50) value, followed by a compound fungicide composed of difenoconazole with azoxystrobin, mancozeb, prochloraz with iprodione, pyraclostrobin with tebuconazole, and trifloxystrobin with tebuconazole and ethhylicin. Present study provides the basis for the prevention and control of the novel plum disease and its pathogen.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Mubashar Raza
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Li-Juan Zhang
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
| | - Bing-Qiang Xu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Pan Zhang
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| | - Xiao-Feng Zhu
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Region, Urumqi, China
- Xinjiang Key Laboratory of Agricultural Biosafety, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Xinjiang Uyghur Autonomous Regio, Urumqi, China
| |
Collapse
|
4
|
Ezzat M, Zhang W, Amar M, Nishawy E, Zhao L, Belal M, Han Y, Liao L. Origins and Genetic Characteristics of Egyptian Peach. Int J Mol Sci 2024; 25:8497. [PMID: 39126065 PMCID: PMC11313342 DOI: 10.3390/ijms25158497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Peach (Prunus persica), a significant economic fruit tree in the Rosaceae family, is extensively cultivated in temperate and subtropical regions due to its abundant genetic diversity, robust adaptability, and high nutritional value. Originating from China over 4000 years ago, peaches were introduced to Persia through the Silk Road during the Han Dynasty and gradually spread to India, Greece, Rome, Egypt, Europe, and America. Currently grown in more than 80 countries worldwide, the expansion of peach cultivation in Egypt is mainly due to the development and utilization of peach varieties with low chilling requirements. These varieties exhibit unique phenotypic characteristics such as early maturity, reduced need for winter cold temperatures, low water requirements, and high economic value. In this study, a systematic analysis was conducted on the genetic characteristics and kinship relationships of peaches with low chilling requirements in Egypt. We conducted a comprehensive evolutionary and Identity-by-Descent (IBD) analysis on over 300 peach core germplasm resources, including Egyptian cultivars with low chilling requirements, to investigate their origin and genetic characteristics. The evolutionary analysis revealed that 'Bitter almond' is closely related to China's wild relative species Prunus tangutica Batal, while 'Early grand' shares one branch with Chinese ornamental peach cultivars, and 'Nemaguard' clusters with some ancient local varieties from China. The IBD analysis also indicated similar genetic backgrounds, suggesting a plausible origin from China. Similarly, the analysis suggested that 'Swelling' may have originated from the Czech Republic while 'Met ghamr' has connections to South Africa. 'Desert red', 'Early swelling', and 'Florida prince' are likely derived from Brazil. These findings provide valuable insights into the genetic characteristics of Egyptian peach cultivars. They offer a significant foundation for investigating the origin and spread of cultivated peaches worldwide and serve as a valuable genetic resource for breeding low chilling requirement cultivars, which is of considerable significance for the advancement of peach cultivation in Egypt.
Collapse
Affiliation(s)
- Mohamed Ezzat
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China; (M.E.); (W.Z.); (M.A.); (E.N.); (L.Z.); (M.B.)
- Plant Genome Laboratory, Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo 11753, Egypt
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weihan Zhang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China; (M.E.); (W.Z.); (M.A.); (E.N.); (L.Z.); (M.B.)
| | - Mohamed Amar
- Plant Genome Laboratory, Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo 11753, Egypt
| | - Elsayed Nishawy
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China; (M.E.); (W.Z.); (M.A.); (E.N.); (L.Z.); (M.B.)
- Plant Genome Laboratory, Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo 11753, Egypt
| | - Lei Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China; (M.E.); (W.Z.); (M.A.); (E.N.); (L.Z.); (M.B.)
| | - Mohammad Belal
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China; (M.E.); (W.Z.); (M.A.); (E.N.); (L.Z.); (M.B.)
- Plant Genome Laboratory, Department of Genetic Resources, Desert Research Center, El-Matareya, Cairo 11753, Egypt
| | - Yuepeng Han
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China; (M.E.); (W.Z.); (M.A.); (E.N.); (L.Z.); (M.B.)
| | - Liao Liao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden of Chinese Academy of Sciences, Wuhan 430074, China; (M.E.); (W.Z.); (M.A.); (E.N.); (L.Z.); (M.B.)
| |
Collapse
|
5
|
An Y, Ban Q, Liu L, Zhang F, Yu S, Jing T, Zhao S. PPGV: a comprehensive database of peach population genome variation. BMC PLANT BIOLOGY 2024; 24:701. [PMID: 39048957 PMCID: PMC11267775 DOI: 10.1186/s12870-024-05437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Peach tree is one of the most important fruit trees in the world, and it has been cultivated for more than 7,500 years. In recent years, the genome and population resequencing of peach trees have been published continuously, which has effectively promoted the research of peach tree genetics and breeding. In order to promote the further mining and utilization of these data, we integrated and constructed a comprehensive peach genome and variation database (PPGV, http://peachtree.work/home ). The PPGV contains 10 sets of published peach tree genome data, as well as genomic variation information for 1,378 peach tree samples (the resequencing data of 1,378 samples were aligned with the high-quality genomes of Lovell, CN14 and Chinesecling, respectively, for mutation detection). A variety of useful and flexible tools, such as BLAST, Gene ID Convert, KEGG/GO Enrichment, Primer Design and Gene function, were also specially designed for searching data and assisting in breeding.
Collapse
Affiliation(s)
- Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Qiuyan Ban
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Li Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Feng Zhang
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.
| | - Shiqi Zhao
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang, 316022, China.
| |
Collapse
|
6
|
Zhang Q, Zhang Y, Liu W, Liu N, Ma X, Lü C, Xu M, Liu S, Zhang Y. Re-sequencing and morphological data revealed the genetics of stone shell and kernel traits in apricot. FRONTIERS IN PLANT SCIENCE 2023; 14:1196754. [PMID: 37324711 PMCID: PMC10267739 DOI: 10.3389/fpls.2023.1196754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/26/2023] [Indexed: 06/17/2023]
Abstract
Kernel-using apricot (Prunus armeniaca L.) is an economically important fruit tree species in arid areas owing to its hardiness and cold and drought tolerance. However, little is known about its genetic background and trait inheritances. In the present study, we first evaluated the population structure of 339 apricot accessions and the genetic diversity of kernel-using apricots using whole genome re-sequencing. Second, the phenotypic data of 222 accessions were investigated for two consecutive seasons (2019 and 2020) for 19 traits, including kernel and stone shell traits and the pistil abortion rate of flowers. Heritability and correlation coefficient of traits were also estimated. The stone shell length (94.46%) showed the highest heritability, followed by the length/width ratio (92.01%) and length/thickness ratio (92.00%) of the stone shell, whereas breaking force of the nut (17.08%) exhibited a very low heritability. A genome-wide association study (GWAS) using general linear model and generalized linear mixed model revealed 122 quantitative trait loci (QTLs). The QTLs of the kernel and stone shell traits were unevenly assigned on the eight chromosomes. Out of the 1,614 candidate genes identified in the 13 consistently reliable QTLs found using the two GWAS methods and/or in the two seasons, 1,021 were annotated. The sweet kernel trait was assigned to chromosome 5 of the genome, similar to the almond, and a new locus was also mapped at 17.34-17.51 Mb on chromosome 3, including 20 candidate genes. The loci and genes identified here will be of significant use in molecular breeding efforts, and the candidate genes could play essential roles in exploring the mechanisms of genetic regulation.
Collapse
|
7
|
Li M, Li J, Nie P, Li G, Liu W, Gong Q, Dong X, Gao X, Chen W, Zhang A. A high-quality assembled genome of a representative peach landrace, 'Feichenghongli', and analysis of distinct late florescence and narrow leaf traits. BMC PLANT BIOLOGY 2023; 23:230. [PMID: 37120546 PMCID: PMC10148998 DOI: 10.1186/s12870-023-04242-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/22/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Peach (Prunus persica L. Batsch) is one of the most popular fruits worldwide. Although the reference genome of 'Lovell' peach has been released, the diversity of genome-level variations cannot be explored with one genome. To detect these variations, it is necessary to assemble more genomes. RESULTS We sequenced and de novo assembled the genome of 'Feichenghongli' (FCHL), a representative landrace with strict self-pollination, which maintained the homozygosity of the genome as much as possible. The chromosome-level genome of FCHL was 239.06 Mb in size with a contig N50 of 26.93 Mb and only 4 gaps at the scaffold level. The alignment of the FCHL genome with the reference 'Lovell' genome enabled the identification of 432535 SNPs, 101244 insertions and deletions, and 7299 structural variants. Gene family analysis showed that the expanded genes in FCHL were enriched in sesquiterpenoids and triterpenoid biosynthesis. RNA-seq analyses were carried out to investigate the two distinct traits of late florescence and narrow leaves. Two key genes, PpDAM4 and PpAGL31, were identified candidates for the control of flower bud dormancy, and an F-box gene, PpFBX92, was identified as a good candidate gene in the regulation of leaf size. CONCLUSIONS The assembled high-quality genome could deepen our understanding of variations among diverse genomes and provide valuable information for identifying functional genes and improving the molecular breeding process.
Collapse
Affiliation(s)
- Miao Li
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Jian Li
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Peixian Nie
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Guixiang Li
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Wei Liu
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Qingtao Gong
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Xiaomin Dong
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Xiaolan Gao
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| | - Wenyu Chen
- Feicheng peach Industry Development Center, Feicheng City, 271600 Shandong Province China
| | - Anning Zhang
- Shandong Institute of Pomology, Taian City, 271000 Shandong Province China
| |
Collapse
|
8
|
Jiang X, Liu K, Peng H, Fang J, Zhang A, Han Y, Zhang X. Comparative network analysis reveals the dynamics of organic acid diversity during fruit ripening in peach (Prunus persica L. Batsch). BMC PLANT BIOLOGY 2023; 23:16. [PMID: 36617558 PMCID: PMC9827700 DOI: 10.1186/s12870-023-04037-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Organic acids are important components that determine the fruit flavor of peach (Prunus persica L. Batsch). However, the dynamics of organic acid diversity during fruit ripening and the key genes that modulate the organic acids metabolism remain largely unknown in this kind of fruit tree which yield ranks sixth in the world. RESULTS In this study, we used 3D transcriptome data containing three dimensions of information, namely time, phenotype and gene expression, from 5 different varieties of peach to construct gene co-expression networks throughout fruit ripening of peach. With the network inferred, the time-ordered network comparative analysis was performed to select high-acid specific gene co-expression network and then clarify the regulatory factors controlling organic acid accumulation. As a result, network modules related to organic acid synthesis and metabolism under high-acid and low-acid comparison conditions were identified for our following research. In addition, we obtained 20 candidate genes as regulatory factors related to organic acid metabolism in peach. CONCLUSIONS The study provides new insights into the dynamics of organic acid accumulation during fruit ripening, complements the results of classical co-expression network analysis and establishes a foundation for key genes discovery from time-series multiple species transcriptome data.
Collapse
Affiliation(s)
- Xiaohan Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kangchen Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huixiang Peng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Fang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
- Center of Economic Botany, Core Botanical Gardens, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
9
|
Ariyoshi C, Sant’ana GC, Felicio MS, Sera GH, Nogueira LM, Rodrigues LMR, Ferreira RV, da Silva BSR, de Resende MLV, Destéfano SAL, Domingues DS, Pereira LFP. Genome-wide association study for resistance to Pseudomonas syringae pv. garcae in Coffea arabica. FRONTIERS IN PLANT SCIENCE 2022; 13:989847. [PMID: 36330243 PMCID: PMC9624508 DOI: 10.3389/fpls.2022.989847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Bacteria halo blight (BHB), a coffee plant disease caused by Pseudomonas syringae pv. garcae, has been gaining importance in producing mountain regions and mild temperatures areas as well as in coffee nurseries. Most Coffea arabica cultivars are susceptible to this disease. In contrast, a great source of genetic diversity and resistance to BHB are found in C. arabica Ethiopian accessions. Aiming to identify quantitative trait nucleotides (QTNs) associated with resistance to BHB and the influence of these genomic regions during the domestication of C. arabica, we conducted an analysis of population structure and a Genome-Wide Association Study (GWAS). For this, we used genotyping by sequencing (GBS) and phenotyping for resistance to BHB of a panel with 120 C. arabica Ethiopian accessions from a historical FAO collection, 11 C. arabica cultivars, and the BA-10 genotype. Population structure analysis based on single-nucleotide polymorphisms (SNPs) markers showed that the 132 accessions are divided into 3 clusters: most wild Ethiopian accessions, domesticated Ethiopian accessions, and cultivars. GWAS, using the single-locus model MLM and the multi-locus models mrMLM, FASTmrMLM, FASTmrEMMA, and ISIS EM-BLASSO, identified 11 QTNs associated with resistance to BHB. Among these QTNs, the four with the highest values of association for resistance to BHB are linked to g000 (Chr_0_434_435) and g010741 genes, which are predicted to encode a serine/threonine-kinase protein and a nucleotide binding site leucine-rich repeat (NBS-LRR), respectively. These genes displayed a similar transcriptional downregulation profile in a C. arabica susceptible cultivar and in a C. arabica cultivar with quantitative resistance, when infected with P. syringae pv. garcae. However, peaks of upregulation were observed in a C. arabica cultivar with qualitative resistance, for both genes. Our results provide SNPs that have potential for application in Marker Assisted Selection (MAS) and expand our understanding about the complex genetic control of the resistance to BHB in C. arabica. In addition, the findings contribute to increasing understanding of the C. arabica domestication history.
Collapse
Affiliation(s)
- Caroline Ariyoshi
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | | | - Mariane Silva Felicio
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
- Programa de pós-graduação em Ciências Biológicas (Genética), Universidade Estadual Paulista “Júlio de Mesquita Filho“ (UNESP), Instituto de Biociências, Campus de Botucatu, Botucatu, Brazil
| | - Gustavo Hiroshi Sera
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | - Livia Maria Nogueira
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | | | - Rafaelle Vecchia Ferreira
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | - Bruna Silvestre Rodrigues da Silva
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
| | | | | | - Douglas Silva Domingues
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo (USP), Piracicaba, Brazil
| | - Luiz Filipe Protasio Pereira
- Programa de pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Londrina (UEL), Centro de Ciâncias Biológicas, Londrina, Brazil
- Área de Melhoramento Genético e Propagação Vegetal, Instituto de Desenvolvimento Rural do Paraná (IDR-Paraná), Londrina, Brazil
- Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA-Café), Brasília, Brazil
| |
Collapse
|
10
|
Belal MA, Ezzat M, Zhang Y, Xu Z, Cao Y, Han Y. Integrative Analysis of the DICER-like (DCL) Genes From Peach (Prunus persica): A Critical Role in Response to Drought Stress. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.923166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
DICER-likes (DCLs) proteins are the core component for non-coding RNA (ncRNA) biogenesis, playing essential roles in some biological processes. The DCL family has been characterized in model plants, such as Arabidopsis, rice, and poplar. However, the evolutionary aspect and the expression mechanism under drought stress were scarce and have never been reported and characterized in one of the most important worldwide cultivated fruit trees, peach (Prunus persica). Eight DCLs genes in the Prunus persica genome were detected, in addition to 51 DCLs in the other seven Rosaceae genomes. The phylogenetic analysis with Arabidopsis thaliana and RTL1 gene as outgroups suggested that DCL members are divided into four clades: DCL1, DCL2, DCL3, and DCL4 with several gene gain/loss events of DCL gene copies through the evolutionary tract of the Rosacea family. The number of homologous DCL copies within each clade, along with the chromosomal location indicated gene duplication event of the DCL2 gene occurred once for the subfamily Amygdaloideae and twice for Pyrus communis and Prunus dulics and trice for the P. persica on Chromosome number 7 genes. Another duplication event was found for the DCL3 gene that occurred once for all the eight Rosaceae species with no match in A. thaliana. The DCL genetic similarity and activity was evaluated using BLASTp and previously published RNA-seq data among different tissues and over different time points of peach trees exposed to drought conditions. Finally, the expression pattern of PrupeDCLs in response to drought stress was identified, and two of these members, Prupe.7G047900 and Prupe.6G363600, were found as main candidate genes for response to drought stress. Our data presented here provide useful information for a better understanding of the molecular evolution of DCL genes in Rosaceae genomes, and the function of DCLs in P. persica.
Collapse
|
11
|
Cao K, Wang B, Fang W, Zhu G, Chen C, Wang X, Li Y, Wu J, Tang T, Fei Z, Luo J, Wang L. Combined nature and human selections reshaped peach fruit metabolome. Genome Biol 2022; 23:146. [PMID: 35788225 PMCID: PMC9254577 DOI: 10.1186/s13059-022-02719-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/25/2022] [Indexed: 11/20/2022] Open
Abstract
Background Plant metabolites reshaped by nature and human beings are crucial for both their lives and human health. However, which metabolites respond most strongly to selection pressure at different evolutionary stages and what roles they undertake on perennial fruit crops such as peach remain unclear. Results Here, we report 18,052 significant locus-trait associations, 12,691 expression-metabolite correlations, and 294,676 expression quantitative trait loci (eQTLs) for peach. Our results indicate that amino acids accumulated in landraces may be involved in the environmental adaptation of peaches by responding to low temperature and drought. Moreover, the contents of flavonoids, the major nutrients in fruits, have kept decreasing accompanied by the reduced bitter flavor during both domestication and improvement stages. However, citric acid, under the selection of breeders’ and consumers’ preference for flavor, shows significantly different levels between eastern and western varieties. This correlates with differences in activity against cancer cells in vitro in fruit from these two regions. Based on the identified key genes regulating flavonoid and acid contents, we propose that more precise and targeted breeding technologies should be designed to improve peach varieties with rich functional contents because of the linkage of genes related to bitterness and acid taste, antioxidant and potential anti-cancer activity that are all located at the top of chromosome 5. Conclusions This study provides powerful data for future improvement of peach flavor, nutrition, and resistance in future and expands our understanding of the effects of natural and artificial selection on metabolites. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02719-6.
Collapse
Affiliation(s)
- Ke Cao
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Bin Wang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Weichao Fang
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Gengrui Zhu
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Changwen Chen
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xinwei Wang
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yong Li
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jinlong Wu
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tang Tang
- Wuhan Metware Biotechnology Co., Ltd., Wuhan, China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA.,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jie Luo
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China. .,College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China.
| | - Lirong Wang
- The Key Laboratory of Genetic Resource Evaluation and Application of Horticultural Crops (Fruit), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China. .,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
12
|
Cirilli M, Rossini L, Chiozzotto R, Baccichet I, Florio FE, Mazzaglia A, Turco S, Bassi D, Gattolin S. Less is more: natural variation disrupting a miR172 gene at the di locus underlies the recessive double-flower trait in peach (P. persica L. Batsch). BMC PLANT BIOLOGY 2022; 22:318. [PMID: 35786350 PMCID: PMC9252053 DOI: 10.1186/s12870-022-03691-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/07/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND With the domestication of ornamental plants, artificial selective pressure favored the propagation of mutations affecting flower shape, and double-flower varieties are now readily available for many species. In peach two distinct loci control the double-flower phenotype: the dominant Di2 locus, regulated by the deletion of the binding site for miR172 in the euAP2 PETALOSA gene Prupe.6G242400, and the recessive di locus, of which the underlying factor is still unknown. RESULTS Based on its genomic location a candidate gene approach was used to identify genetic variants in a diverse panel of ornamental peach accessions and uncovered three independent mutations in Prupe.2G237700, the gene encoding the transcript for microRNA miR172d: a ~5.0 Kb LTR transposable element and a ~1.2 Kb insertion both positioned upstream of the sequence encoding the pre-miR172d within the transcribed region of Prupe.2G237700, and a ~9.5 Kb deletion encompassing the whole gene sequence. qRT-PCR analysis confirmed that expression of pre-miR172d was abolished in di/di genotypes homozygous for the three variants. CONCLUSIONS Collectively, PETALOSA and the mutations in micro-RNA miR172d identified in this work provide a comprehensive collection of the genetic determinants at the base of the double-flower trait in the peach germplasms.
Collapse
Affiliation(s)
- Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy.
| | - Laura Rossini
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | - Remo Chiozzotto
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | - Irina Baccichet
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | - Francesco Elia Florio
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | | | - Silvia Turco
- DAFNE Department - University of Tuscia, 01100, Viterbo, Italy
| | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | - Stefano Gattolin
- CNR - National Research Council of Italy, Institute of Agricultural Biology and Biotechnology (IBBA), 20133, Milan, Italy.
| |
Collapse
|
13
|
Cao K, Peng Z, Zhao X, Li Y, Liu K, Arus P, Fang W, Chen C, Wang X, Wu J, Fei Z, Wang L. Chromosome-level genome assemblies of four wild peach species provide insights into genome evolution and genetic basis of stress resistance. BMC Biol 2022; 20:139. [PMID: 35698132 PMCID: PMC9195245 DOI: 10.1186/s12915-022-01342-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 05/30/2022] [Indexed: 12/25/2022] Open
Abstract
Background Peach (Prunus persica) is an economically important stone fruit crop in Rosaceae and widely cultivated in temperate and subtropical regions, emerging as an excellent material to study the interaction between plant and environment. During its genus, there are four wild species of peach, all living in harsh environments. For example, one of the wild species, P. mira, originates from the Qinghai-Tibet Plateau (QTP) and exhibits strong cold/ultraviolet ray environmental adaptations. Although remarkable progresses in the gene discovery of fruit quality-related traits in peach using previous assembled genome were obtained, genomic basis of the response of these wild species to different geographical environments remains unclear. Results To uncover key genes regulating adaptability in different species and analyze the role of genetic variations in resistance formation, we performed de novo genome assembling of four wild relatives of peach (P. persica), P. mira, P. davidiana, P. kansuensis, and P. ferganensis and resequenced 175 peach varieties. The phylogenetic tree showed that the divergence time of P. mira and other wild relatives of peach was 11.5 million years ago, which was consistent with the drastic crustal movement of QTP. Abundant genetic variations were identified in four wild species when compared to P. persica, and the results showed that plant-pathogen interaction pathways were enriched in genes containing small insertions and deletions and copy number variations in all four wild relatives of peach. Then, the data were used to identify new genes and variations regulating resistance. For example, presence/absence variations which result from a hybridization event that occurred between P. mira and P. dulcis enhanced the resistance of their putative hybrid, P. davidiana. Using bulked segregant analysis, we located the nematode resistance locus of P. kansuensis in chromosome 2. Within the mapping region, a deletion in the promoter of one NBS-LRR gene was found to involve the resistance by regulating gene expression. Furthermore, combined with RNA-seq and selective sweeps analysis, we proposed that a deletion in the promoter of one CBF gene was essential for high-altitude adaptation of P. mira through increasing its resistance to low temperature. Conclusions In general, the reference genomes assembled in the study facilitate our understanding of resistance mechanism of perennial fruit crops, and provide valuable resources for future breeding and improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01342-y.
Collapse
Affiliation(s)
- Ke Cao
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| | - Zhen Peng
- Novogene Bioinformatics Institute, Beijing, People's Republic of China
| | - Xing Zhao
- Novogene Bioinformatics Institute, Beijing, People's Republic of China
| | - Yong Li
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Kuozhan Liu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Pere Arus
- IRTA, Centre de Recerca en Agrigenòmica, CSIC-IRTA-UAB-UB, Campus UAB - Edifici CRAG, Cerdanyola del Vallès (Bellaterra), Barcelona, Spain
| | - Weichao Fang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Changwen Chen
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Xinwei Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Jinlong Wu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
| | - Lirong Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology), Ministry of Agriculture, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China. .,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, People's Republic of China.
| |
Collapse
|
14
|
Lian X, Zhang H, Jiang C, Gao F, Yan L, Zheng X, Cheng J, Wang W, Wang X, Ye X, Li J, Zhang L, Li Z, Tan B, Feng J. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 34919780 PMCID: PMC9055816 DOI: 10.1111/pbi.v20.5 10.1111/pbi.13767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.
Collapse
Affiliation(s)
- Xiaodong Lian
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Haipeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Chao Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Fan Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Liu Yan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xiaobei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Langlang Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Zhiqian Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| |
Collapse
|
15
|
Lian X, Zhang H, Jiang C, Gao F, Yan L, Zheng X, Cheng J, Wang W, Wang X, Ye X, Li J, Zhang L, Li Z, Tan B, Feng J. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:886-902. [PMID: 34919780 PMCID: PMC9055816 DOI: 10.1111/pbi.13767] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 05/16/2023]
Abstract
Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.
Collapse
Affiliation(s)
- Xiaodong Lian
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Haipeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Chao Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Fan Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Liu Yan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xiaobei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Langlang Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Zhiqian Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| |
Collapse
|
16
|
Molecular Characterization of Prunus Cultivars from Romania by Microsatellite Markers. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In Romania, Prunus species have great economic and social importance. With the introduction of new cultivars arises the need to preserve and characterize the local Prunus germplasm. Thus, a set of 24 polymorphic SSRs were selected for the overall characterization, including 10 peach, 11 apricot and 5 nectarine cultivars. The average number of alleles per locus (Na = 1.958), in addition to overall observed (Ho = 0.299) and expected heterozygosity (He = 0.286) were lower or comparable to those reported in similar studies, probably explained by the smaller number of analyzed cultivars restricted to a smaller geographic area. Among 26 genotypes a total of 101 alleles were identified, of which 46 alleles were in peach, 55 in apricot and 40 in nectarine, respectively. Six alleles from six loci (CPPCT-030, Pchgms-003, Pchgms-004, Pchgms-010, UDP97-401, UDP98-405) were common to all taxonomic groups. The most informative loci were BPPCT-025, Pchgms-021 and UDP96-001 in peach; BPPCT-025, BPPCT-001 and UDP96-001 in nectarine; and BPPCT-002, BPPCT-025, Pchgms-004, Pchgms-020 and Pchgms-021 in apricot. Clustering and genetic similarity analysis indicated that the degree of interspecific divergence in peach and nectarine cultivars was less than that in peach and apricot. These results will be useful to prevent confusion between cultivars, to improve breeding strategies and to benefit the management of Prunus cultivars bred in Romania.
Collapse
|
17
|
Wang Q, Cao K, Cheng L, Li Y, Guo J, Yang X, Wang J, Khan IA, Zhu G, Fang W, Chen C, Wang X, Wu J, Xu Q, Wang L. Multi-omics approaches identify a key gene, PpTST1, for organic acid accumulation in peach. HORTICULTURE RESEARCH 2022; 9:uhac026. [PMID: 35184194 PMCID: PMC9171119 DOI: 10.1093/hr/uhac026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Organic acid content in fruit is an important determinant of peach organoleptic quality, which undergoes considerable variations during development and maturation. However, its molecular mechanism remains largely unclear. In this study, an integrative approach of genome-wide association studies and comparative transcriptome analysis were applied to identify candidate genes involved in organic acid accumulation in peach. A key gene PpTST1, encoding tonoplast sugar transporter, was identified and the genotype of PpTST1 with a single-base transversion (G1584T) in the third exon which leads to a single amino acid substitution (Q528H) was associated with low level of organic acid content in peach. Overexpression of PpTST1His resulted in reduced organic acid content along with increased sugar content both in peach and tomato fruits, suggesting its dual function in sugar accumulation and organic acid content reduction. Two V-type proton ATPases interact with PpTST1 in yeast two-hybridization assay. In addition, the G1584T transversion appeared and gradually accumulated during domestication and improvement, which indicated that PpTST1 was under selection. The identification and characterization of PpTST1 would facilitate the improvement of peach fruit quality.
Collapse
Affiliation(s)
- Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xuanwen Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Irshad Ahmad Khan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Xu
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
18
|
Hu G, Feng J, Xiang X, Wang J, Salojärvi J, Liu C, Wu Z, Zhang J, Liang X, Jiang Z, Liu W, Ou L, Li J, Fan G, Mai Y, Chen C, Zhang X, Zheng J, Zhang Y, Peng H, Yao L, Wai CM, Luo X, Fu J, Tang H, Lan T, Lai B, Sun J, Wei Y, Li H, Chen J, Huang X, Yan Q, Liu X, McHale LK, Rolling W, Guyot R, Sankoff D, Zheng C, Albert VA, Ming R, Chen H, Xia R, Li J. Two divergent haplotypes from a highly heterozygous lychee genome suggest independent domestication events for early and late-maturing cultivars. Nat Genet 2022; 54:73-83. [PMID: 34980919 PMCID: PMC8755541 DOI: 10.1038/s41588-021-00971-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2021] [Indexed: 01/25/2023]
Abstract
Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar ‘Feizixiao’ was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair of CONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops. Two divergent haplotypes from a highly heterozygous lychee genome of the cultivar ‘Feizixiao’ and resequencing of 72 lychee accessions provide insights into the genome evolution and domestication history of lychee.
Collapse
Affiliation(s)
- Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Junting Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xu Xiang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Jiabao Wang
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Jarkko Salojärvi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chengming Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhenxian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Zide Jiang
- Guangdong Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Wei Liu
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Liangxi Ou
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Jiawei Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | | | - Yingxiao Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiakun Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hongxiang Peng
- Horticultural Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xinping Luo
- Institute of Tropical and Subtropical Cash Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Jiaxin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Haibao Tang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianying Lan
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA
| | - Biao Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jinhua Sun
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Yongzan Wei
- Key Laboratory for Tropical Fruit Biology of Ministry of Agriculture and Rural Affair, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agriculture Sciences, Zhanjiang, China
| | - Huanling Li
- Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Environment and Plant Protection Institute, Chinese Academy of Tropical Agriculture Sciences, Haikou, China
| | - Jiezhen Chen
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xuming Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qian Yan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Leah K McHale
- Department of Horticulture and Crop Sciences and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | - William Rolling
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA
| | | | - David Sankoff
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Chunfang Zheng
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, Ontario, Canada
| | - Victor A Albert
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,Department of Biological Sciences, University at Buffalo, Buffalo, NY, USA.
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Houbin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Rui Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Jianguo Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
19
|
Li J, Zhang M, Li X, Khan A, Kumar S, Allan AC, Lin-Wang K, Espley RV, Wang C, Wang R, Xue C, Yao G, Qin M, Sun M, Tegtmeier R, Liu H, Wei W, Ming M, Zhang S, Zhao K, Song B, Ni J, An J, Korban SS, Wu J. Pear genetics: Recent advances, new prospects, and a roadmap for the future. HORTICULTURE RESEARCH 2022; 9:uhab040. [PMID: 35031796 PMCID: PMC8778596 DOI: 10.1093/hr/uhab040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".
Collapse
Affiliation(s)
- Jiaming Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Awais Khan
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Satish Kumar
- Hawke’s Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Andrew Charles Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Richard Victor Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Mengfan Qin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Tegtmeier
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Hainan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weilin Wei
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Ming
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kejiao Zhao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangping Ni
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Schuyler S Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Tan Q, Li S, Zhang Y, Chen M, Wen B, Jiang S, Chen X, Fu X, Li D, Wu H, Wang Y, Xiao W, Li L. Chromosome-level genome assemblies of five Prunus species and genome-wide association studies for key agronomic traits in peach. HORTICULTURE RESEARCH 2021; 8:213. [PMID: 34593767 PMCID: PMC8484544 DOI: 10.1038/s41438-021-00648-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/18/2021] [Accepted: 06/13/2021] [Indexed: 05/09/2023]
Abstract
Prunus species include many important perennial fruit crops, such as peach, plum, apricot, and related wild species. Here, we report de novo genome assemblies for five species, including the cultivated species peach (Prunus persica), plum (Prunus salicina), and apricot (Prunus armeniaca), and the wild peach species Tibetan peach (Prunus mira) and Chinese wild peach (Prunus davidiana). The genomes ranged from 240 to 276 Mb in size, with contig N50 values of 2.27-8.30 Mb and 25,333-27,826 protein-coding gene models. As the phylogenetic tree shows, plum diverged from its common ancestor with peach, wild peach species, and apricot ~7 million years ago (MYA). We analyzed whole-genome resequencing data of 417 peach accessions, called 3,749,618 high-quality SNPs, 577,154 small indels, 31,800 deletions, duplications, and inversions, and 32,338 insertions, and performed a structural variant-based genome-wide association study (GWAS) of key agricultural traits. From our GWAS data, we identified a locus associated with a fruit shape corresponding to the OVATE transcription factor, where a large inversion event correlates with higher OVATE expression in flat-shaped accessions. Furthermore, a GWAS revealed a NAC transcription factor associated with fruit developmental timing that is linked to a tandem repeat variant and elevated NAC expression in early-ripening accessions. We also identified a locus encoding microRNA172d, where insertion of a transposable element into its promoter was found in double-flower accessions. Thus, our efforts have suggested roles for OVATE, a NAC transcription factor, and microRNA172d in fruit shape, fruit development period, and floral morphology, respectively, that can be connected to traits in other crops, thereby demonstrating the importance of parallel evolution in the diversification of several commercially important domesticated species. In general, these genomic resources will facilitate functional genomics, evolutionary research, and agronomic improvement of these five and other Prunus species. We believe that structural variant-based GWASs can also be used in other plants, animal species, and humans and be combined with deep sequencing GWASs to precisely identify candidate genes and genetic architecture components.
Collapse
Affiliation(s)
- Qiuping Tan
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Sen Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Yuzheng Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Min Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, People's Republic of China
| | - Binbin Wen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Shan Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Xiude Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Xiling Fu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Dongmei Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China
| | - Hongyu Wu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- College of Forestry, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Yong Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China
| | - Wei Xiao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China.
| | - Ling Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, People's Republic of China.
- Shandong Collaborative Innovation Center for Fruit & Vegetable Production with High Quality and Efficiency, Tai'an, 271018, People's Republic of China.
| |
Collapse
|
21
|
Zhang Q, Zhang D, Yu K, Ji J, Liu N, Zhang Y, Xu M, Zhang YJ, Ma X, Liu S, Sun WH, Yu X, Hu W, Lan SR, Liu ZJ, Liu W. Frequent germplasm exchanges drive the high genetic diversity of Chinese-cultivated common apricot germplasm. HORTICULTURE RESEARCH 2021; 8:215. [PMID: 34593777 PMCID: PMC8484454 DOI: 10.1038/s41438-021-00650-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/08/2021] [Accepted: 06/25/2021] [Indexed: 05/22/2023]
Abstract
The genetic diversity of germplasm is critical for exploring genetic and phenotypic resources and has important implications for crop-breeding sustainability and improvement. However, little is known about the factors that shape and maintain genetic diversity. Here, we assembled a high-quality chromosome-level reference of the Chinese common apricot 'Yinxiangbai', and we resequenced 180 apricot accessions that cover four major ecogeographical groups in China and other accessions from occidental countries. We concluded that Chinese-cultivated common apricot germplasms possessed much higher genetic diversity than those cultivated in Western countries. We also detected seven migration events among different apricot groups, where 27% of the genome was identified as being introgressed. Remarkably, we demonstrated that these introgressed regions drove the current high level of germplasm diversity in Chinese-cultivated common apricots by introducing different genes related to distinct phenotypes from different cultivated groups. Our results highlight the consideration that introgressed regions may provide an important reservoir of genetic resources that can be used to sustain modern breeding programs.
Collapse
Affiliation(s)
- Qiuping Zhang
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Diyang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, 518210, China
| | - Jingjing Ji
- BGI Institute of Applied Agriculture, BGI-Agro, Shenzhen, 518210, China
| | - Ning Liu
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Yuping Zhang
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Ming Xu
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Yu-Jun Zhang
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Xiaoxue Ma
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Shuo Liu
- Liaoning Institute of Pomology, Yingkou, 115009, China
| | - Wei-Hong Sun
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Yu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenqi Hu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Si-Ren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhong-Jian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Vegetable and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, 325005, China.
| | - Weisheng Liu
- Liaoning Institute of Pomology, Yingkou, 115009, China.
| |
Collapse
|
22
|
Lu L, Chen H, Wang X, Zhao Y, Yao X, Xiong B, Deng Y, Zhao D. Genome-level diversification of eight ancient tea populations in the Guizhou and Yunnan regions identifies candidate genes for core agronomic traits. HORTICULTURE RESEARCH 2021; 8:190. [PMID: 34376642 PMCID: PMC8355299 DOI: 10.1038/s41438-021-00617-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 05/18/2023]
Abstract
The ancient tea plant, as a precious natural resource and source of tea plant genetic diversity, is of great value for studying the evolutionary mechanism, diversification, and domestication of plants. The overall genetic diversity among ancient tea plants and the genetic changes that occurred during natural selection remain poorly understood. Here, we report the genome resequencing of eight different groups consisting of 120 ancient tea plants: six groups from Guizhou Province and two groups from Yunnan Province. Based on the 8,082,370 identified high-quality SNPs, we constructed phylogenetic relationships, assessed population structure, and performed genome-wide association studies (GWAS). Our phylogenetic analysis showed that the 120 ancient tea plants were mainly clustered into three groups and five single branches, which is consistent with the results of principal component analysis (PCA). Ancient tea plants were further divided into seven subpopulations based on genetic structure analysis. Moreover, it was found that the variation in ancient tea plants was not reduced by pressure from the external natural environment or artificial breeding (nonsynonymous/synonymous = 1.05). By integrating GWAS, selection signals, and gene function prediction, four candidate genes were significantly associated with three leaf traits, and two candidate genes were significantly associated with plant type. These candidate genes can be used for further functional characterization and genetic improvement of tea plants.
Collapse
Affiliation(s)
- Litang Lu
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Life Sciences and The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Hufang Chen
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Life Sciences and The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaojing Wang
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yichen Zhao
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Life Sciences and The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xinzhuan Yao
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Biao Xiong
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yanli Deng
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Degang Zhao
- College of Life Sciences and The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guizhou University, Guiyang, 550025, People's Republic of China.
- Guizhou Academy of Agricultural Sciences, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
23
|
Aballay MM, Aguirre NC, Filippi CV, Valentini GH, Sánchez G. Fine-tuning the performance of ddRAD-seq in the peach genome. Sci Rep 2021; 11:6298. [PMID: 33737671 PMCID: PMC7973760 DOI: 10.1038/s41598-021-85815-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/05/2021] [Indexed: 11/14/2022] Open
Abstract
The advance of Next Generation Sequencing (NGS) technologies allows high-throughput genotyping at a reasonable cost, although, in the case of peach, this technology has been scarcely developed. To date, only a standard Genotyping by Sequencing approach (GBS), based on a single restriction with ApeKI to reduce genome complexity, has been applied in peach. In this work, we assessed the performance of the double-digest RADseq approach (ddRADseq), by testing 6 double restrictions with the restriction profile generated with ApeKI. The enzyme pair PstI/MboI retained the highest number of loci in concordance with the in silico analysis. Under this condition, the analysis of a diverse germplasm collection (191 peach genotypes) yielded 200,759,000 paired-end (2 × 250 bp) reads that allowed the identification of 113,411 SNP, 13,661 InDel and 2133 SSR. We take advantage of a wide sample set to describe technical scope of the platform. The novel platform presented here represents a useful tool for genomic-based breeding for peach.
Collapse
Affiliation(s)
- Maximiliano Martín Aballay
- Laboratorio de Biotecnología, Estación Experimental Agropecuaria (EEA) San Pedro, INTA, 2930, San Pedro, Argentina
| | - Natalia Cristina Aguirre
- Instituto de Agrobiotecnología y Biología Molecular-IABiMo-INTA-CONICET, Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, 1686, Hurlingham, Argentina
| | - Carla Valeria Filippi
- Instituto de Agrobiotecnología y Biología Molecular-IABiMo-INTA-CONICET, Instituto de Biotecnología, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, INTA, 1686, Hurlingham, Argentina
| | - Gabriel Hugo Valentini
- Laboratorio de Biotecnología, Estación Experimental Agropecuaria (EEA) San Pedro, INTA, 2930, San Pedro, Argentina
| | - Gerardo Sánchez
- Laboratorio de Biotecnología, Estación Experimental Agropecuaria (EEA) San Pedro, INTA, 2930, San Pedro, Argentina.
| |
Collapse
|
24
|
Zhang A, Zhou H, Jiang X, Han Y, Zhang X. The Draft Genome of a Flat Peach ( Prunus persica L. cv. '124 Pan') Provides Insights into Its Good Fruit Flavor Traits. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10030538. [PMID: 33809190 PMCID: PMC7998450 DOI: 10.3390/plants10030538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 05/28/2023]
Abstract
The flat peach has become more and more popular worldwide for its fruit quality with relatively low acidity, high sugar content and rich flavor. However, the draft genome assembly of flat peach is still unavailable and the genetic basis for its fruit flavor remains unclear. In this study, the draft genome of a flat peach cultivar '124 Pan' was assembled by using a hybrid assembly algorithm. The final assembly resulted in a total size of 206 Mb with a N50 of 26.3 Mb containing eight chromosomes and seven scaffolds. Genome annotation revealed that a total of 25,233 protein-coding genes were predicted with comparable gene abundance among the sequenced peach species. The phylogenetic tree and divergence times inferred from 572 single copy genes of 13 plant species confirmed that Prunus ferganensis was the ancestor of the domesticated peach. By comparing with the genomes of Prunus persica (Lovell) and Prunus ferganensis, the expansion of genes encoding enzymes involved in terpene biosynthesis was found, which might contribute to the good fruit flavor traits of '124 Pan'. The flat peach draft genome assembly obtained in this study will provide a valuable genomic resource for peach improvement and molecular breeding.
Collapse
Affiliation(s)
- Aidi Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hui Zhou
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaohan Jiang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuepeng Han
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiujun Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430000, China; (A.Z.); (H.Z.); (X.J.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
25
|
Li Y, Cao K, Li N, Zhu G, Fang W, Chen C, Wang X, Guo J, Wang Q, Ding T, Wang J, Guan L, Wang J, Liu K, Guo W, Arús P, Huang S, Fei Z, Wang L. Genomic analyses provide insights into peach local adaptation and responses to climate change. Genome Res 2021; 31:592-606. [PMID: 33687945 PMCID: PMC8015852 DOI: 10.1101/gr.261032.120] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023]
Abstract
The environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates. A total of 2092 selective sweeps that underlie local adaptation to both mild and extreme climates were identified, including 339 sweeps conferring genomic pattern of adaptation to high altitudes. Using genome-wide environmental association studies (GWEAS), a total of 2755 genomic loci strongly associated with 51 specific environmental variables were detected. The molecular mechanism underlying adaptive evolution of high drought, strong UVB, cold hardiness, sugar content, flesh color, and bloom date were revealed. Finally, based on 30 yr of observation, a candidate gene associated with bloom date advance, representing peach responses to global warming, was identified. Collectively, our study provides insights into molecular bases of how environments have shaped peach genomes by natural selection and adds candidate genes for future studies on evolutionary genetics, adaptation to climate changes, and breeding.
Collapse
Affiliation(s)
- Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Nan Li
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qi Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiao Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Junxiu Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Kuozhan Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenwu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Pere Arús
- IRTA-Centre de Recerca en Agrigenòmica (CSIC-IRTA-UAB-UB), Barcelona 08193, Spain
| | - Sanwen Huang
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA.,U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China.,National Horticulture Germplasm Resources Center, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
26
|
Guo M, Zhang Z, Li S, Lian Q, Fu P, He Y, Qiao J, Xu K, Liu L, Wu M, Du Z, Li S, Wang J, Shao P, Yu Q, Xu G, Li D, Wang Y, Tian S, Zhao J, Feng X, Li R, Jiang W, Zhao X. Genomic analyses of diverse wild and cultivated accessions provide insights into the evolutionary history of jujube. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:517-531. [PMID: 32946650 PMCID: PMC7955879 DOI: 10.1111/pbi.13480] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 05/07/2023]
Abstract
The Chinese jujube (Ziziphus jujuba Mill.), a member of the Rhamnaceae family, is an important perennial fruit tree crop of substantial economic, ecological and nutritional value, and is also used as a traditional herbal medicine. Here, we report the resequencing of 493 jujube accessions, including 202 wild and 291 cultivated accessions at >16× depth. Our population genomic analyses revealed that the Shanxi-Shaanxi area of China was jujube's primary domestication centre and that jujube was then disseminated into East China before finally extending into South China. Divergence events analysis indicated that Ziziphus acidojujuba and Ziziphus jujuba diverged around 2.7 Mya, suggesting the interesting possibility that a long pre-domestication period may have occurred prior to human intervention. Using the large genetic polymorphism data set, we identified a 15-bp tandem insertion in the promoter of the jujube ortholog of the POLLEN DEFECTIVE IN GUIDANCE 1 (POD1) gene, which was strongly associated with seed-setting rate. Integrating genome-wide association study (GWAS), transcriptome data, expression analysis and transgenic validation in tomato, we identified a DA3/UBIQUITIN-SPECIFIC PROTEASE 14 (UBP14) ortholog, which negatively regulate fruit weight in jujube. We also identified candidate genes, which have likely influenced the selection of fruit sweetness and crispness texture traits among fresh and dry jujubes. Our study not only illuminates the genetic basis of jujube evolution and domestication and provides a deep and rich genomic resource to facilitate both crop improvement and hypothesis-driven basic research, but also identifies multiple agriculturally important genes for this unique perennial tree fruit species.
Collapse
Affiliation(s)
- Mingxin Guo
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | | | - Shipeng Li
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | - Qun Lian
- Genome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Pengcheng Fu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Yali He
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Jinxin Qiao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Keke Xu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Linpei Liu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Miaoyan Wu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Zheran Du
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Sunan Li
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Junjie Wang
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Peiyin Shao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Qiang Yu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Gan Xu
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
| | - Dengke Li
- Pomology InstituteShanxi Academy of Agricultural SciencesTaiguChina
| | - Yongkang Wang
- Pomology InstituteShanxi Academy of Agricultural SciencesTaiguChina
| | - Shan Tian
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| | - Jing Zhao
- Novogene Bioinformatics InstituteBeijingChina
| | - Xue Feng
- Novogene Bioinformatics InstituteBeijingChina
| | - Ruiqiang Li
- Novogene Bioinformatics InstituteBeijingChina
| | | | - Xusheng Zhao
- College of Life SciencesLuoyang Normal UniversityLuoyangChina
- Jujube Research CenterLuoyang Normal UniversityLuoyangChina
| |
Collapse
|
27
|
Dar MS, Dholakia BB, Kulkarni AP, Oak PS, Shanmugam D, Gupta VS, Giri AP. Influence of domestication on specialized metabolic pathways in fruit crops. PLANTA 2021; 253:61. [PMID: 33538903 DOI: 10.1007/s00425-020-03554-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 12/23/2020] [Indexed: 05/08/2023]
Abstract
During the process of plant domestication, the selection and traditional breeding for desired characters such as flavor, juiciness and nutritional value of fruits, probably have resulted in gain or loss of specialized metabolites contributing to these traits. Their appearance in fruits is likely due to the acquisition of novel and specialized metabolic pathways and their regulation, driven by systematic molecular evolutionary events facilitated by traditional breeding. Plants change their armory of specialized metabolism to adapt and survive in diverse ecosystems. This may occur through molecular evolutionary events, such as single nucleotide polymorphism, gene duplication and transposition, leading to convergent or divergent evolution of biosynthetic pathways producing such specialized metabolites. Breeding and selection for improved specific and desired traits (fruit size, color, taste, flavor, etc.) in fruit crops through conventional breeding approaches may further alter content and profile of specialized metabolites. Biosynthetic routes of these metabolites have been studied in various plants. Here, we explore the influence of plant domestication and breeding processes on the selection of biosynthetic pathways of favorable specialized metabolites in fruit crops. An orderly clustered arrangement of genes associated with their production is observed in many fruit crops. We further analyzed selection-based acquisition of specialized metabolic pathways comparing first the metabolic profiles and genes involved in their biosynthesis, followed by the genomic organization of such genes between wild and domesticated horticultural crops. Domestication of crop plants favored the acquisition and retention of metabolic pathways that enhanced the fruit value while eliminated those which produced toxic or unfavorable metabolites. Interestingly, unintentional reorganization of complex metabolic pathways by selection and traditional breeding processes has endowed us with flavorful, juicy and nutritionally rich fruits.
Collapse
Affiliation(s)
- M Saleem Dar
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Bhushan B Dholakia
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
| | - Abhijeet P Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, MS, 411007, India
| | - Pranjali S Oak
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Dhanasekaran Shanmugam
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Ashok P Giri
- Plant Molecular Biology Unit, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, MS, 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
28
|
Wang L, Jiang X, Zhao L, Wang F, Liu Y, Zhou H, He H, Han Y. A candidate PpRPH gene of the D locus controlling fruit acidity in peach. PLANT MOLECULAR BIOLOGY 2021; 105:321-332. [PMID: 33128723 DOI: 10.1007/s11103-020-01089-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
A candidate gene, designate PpRPH, in the D locus was identified to control fruit acidity in peach. Fruit acidity has a strong impact on organoleptic quality of fruit. Peach fruit acidity is controlled by a large-effect D locus on chromosome 5. In this study, the D locus was mapped to a 509-kb interval, with two markers, 5dC720 and 5C1019, co-segregating with the non-acid/acid trait of peach fruit. Within this interval, a candidate gene encoding a putative small protein, designated PpRPH, showed a consistency between gene expression and fruit acidity, with up- and down-regulation in non-acidic and acidic fruits, respectively. Transient ectopic expression of PpRPH in tobacco leaves caused an increase of pH by approximately 40% compared to the control transformed with empty vector. Whereas, the concentrations of citrate and malate decreased significantly by 22% and 37%, respectively, with respect to the empty vector control. All these results suggest that PpRPH is a strong candidate gene of the D locus. These findings contribute to our overall understanding of the complex mechanism underlying fruit acidity in peach as well as that in other fruit crops.
Collapse
Affiliation(s)
- Lu Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Xiaohan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Li Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Furong Wang
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Hui Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Huaping He
- Institute of Fruit Tree and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430209, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China.
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
29
|
Preliminary Identification of Key Genes Controlling Peach Pollen Fertility Using Genome-Wide Association Study. PLANTS 2021; 10:plants10020242. [PMID: 33513678 PMCID: PMC7911534 DOI: 10.3390/plants10020242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022]
Abstract
Previous genetic mapping helped detect a ~7.52 Mb putative genomic region for the pollen fertility trait on peach Chromosome 06 (Chr.06), which was too long for candidate gene characterization. In this study, using the whole-genome re-sequencing data of 201 peach accessions, we performed a genome-wide association study to identify key genes related to peach pollen fertility trait. The significant association peak was detected at Chr.06: 2,116,368 bp, which was in accordance with the previous genetic mapping results, but displayed largely improved precision, allowing for the identification of nine candidate genes. Among these candidates, gene PpABCG26, encoding an ATP-binding cassette G (ABCG) transporter and harboring the most significantly associated SNP (Single Nucleotide Polymorphism) marker in its coding region, was hypothesized to control peach pollen fertility/sterility based on the results of gene function comparison, gene relative expression, and nucleotide sequence analysis. The obtained results will help us to understand the genetic basis of peach pollen fertility trait, and to discover applicable markers for pre-selection in peach.
Collapse
|
30
|
Nilo-Poyanco R, Moraga C, Benedetto G, Orellana A, Almeida AM. Shotgun proteomics of peach fruit reveals major metabolic pathways associated to ripening. BMC Genomics 2021; 22:17. [PMID: 33413072 PMCID: PMC7788829 DOI: 10.1186/s12864-020-07299-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Fruit ripening in Prunus persica melting varieties involves several physiological changes that have a direct impact on the fruit organoleptic quality and storage potential. By studying the proteomic differences between the mesocarp of mature and ripe fruit, it would be possible to highlight critical molecular processes involved in the fruit ripening. RESULTS To accomplish this goal, the proteome from mature and ripe fruit was assessed from the variety O'Henry through shotgun proteomics using 1D-gel (PAGE-SDS) as fractionation method followed by LC/MS-MS analysis. Data from the 131,435 spectra could be matched to 2740 proteins, using the peach genome reference v1. After data pre-treatment, 1663 proteins could be used for comparison with datasets assessed using transcriptomic approaches and for quantitative protein accumulation analysis. Close to 26% of the genes that code for the proteins assessed displayed higher expression at ripe fruit compared to other fruit developmental stages, based on published transcriptomic data. Differential accumulation analysis between mature and ripe fruit revealed that 15% of the proteins identified were modulated by the ripening process, with glycogen and isocitrate metabolism, and protein localization overrepresented in mature fruit, as well as cell wall modification in ripe fruit. Potential biomarkers for the ripening process, due to their differential accumulation and gene expression pattern, included a pectin methylesterase inhibitor, a gibbellerin 2-beta-dioxygenase, an omega-6 fatty acid desaturase, a homeobox-leucine zipper protein and an ACC oxidase. Transcription factors enriched in NAC and Myb protein domains would target preferentially the genes encoding proteins more abundant in mature and ripe fruit, respectively. CONCLUSIONS Shotgun proteomics is an unbiased approach to get deeper into the proteome allowing to detect differences in protein abundance between samples. This technique provided a resolution so that individual gene products could be identified. Many proteins likely involved in cell wall and sugar metabolism, aroma and color, change their abundance during the transition from mature to ripe fruit.
Collapse
Affiliation(s)
- Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile
| | - Carol Moraga
- Université Claude Bernard Lyon 1, 69622, Villeurbanne, France
- Inria Grenoble Rhône-Alpes, 38334, Montbonnot, France
| | - Gianfranco Benedetto
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
| | - Ariel Orellana
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, República 330, Santiago, Chile
- Center for Genome Regulation, Blanco Encalada, 2085, Santiago, Chile
| | - Andrea Miyasaka Almeida
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
- Escuela de Agronomía, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide, 5750, Huechuraba, Chile.
| |
Collapse
|
31
|
Zhou H, Ma R, Gao L, Zhang J, Zhang A, Zhang X, Ren F, Zhang W, Liao L, Yang Q, Xu S, Otieno Ogutu C, Zhao J, Yu M, Jiang Q, Korban SS, Han Y. A 1.7-Mb chromosomal inversion downstream of a PpOFP1 gene is responsible for flat fruit shape in peach. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:192-205. [PMID: 32722872 PMCID: PMC7769229 DOI: 10.1111/pbi.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/16/2020] [Indexed: 05/06/2023]
Abstract
Flat peaches have become popular worldwide due to their novelty and convenience. The peach flat fruit trait is genetically controlled by a single gene at the S locus, but its genetic basis remains unclear. Here, we report a 1.7-Mb chromosomal inversion downstream of a candidate gene encoding OVATE Family Protein, designated PpOFP1, as the causal mutation for the peach flat fruit trait. Genotyping of 727 peach cultivars revealed an occurrence of this large inversion in flat peaches, but absent in round peaches. Ectopic overexpression of PpOFP1 resulted in oval-shaped leaves and shortened siliques in Arabidopsis, suggesting its role in repressing cell elongation. Transcriptional activation of PpOFP1 by the chromosomal inversion may repress vertical elongation in flat-shaped fruits at early stages of development, resulting in the flat fruit shape. Moreover, PpOFP1 can interact with fruit elongation activator PpTRM17, suggesting a regulatory network controlling fruit shape in peach. Additionally, screening of peach wild relatives revealed an exclusive presence of the chromosomal inversion in P. ferganensis, supporting that this species is the ancestor of the domesticated peach. This study provides new insights into mechanisms underlying fruit shape evolution and molecular tools for genetic improvement of fruit shape trait in peach breeding programmes.
Collapse
Affiliation(s)
- Hui Zhou
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural CropsInstitute of HorticultureAnhui Academy of Agricultural SciencesHefeiChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Ruijuan Ma
- Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingChina
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Boyce Thompson Institute for Plant ResearchCornell UniversityIthacaNYUSA
| | - Jinyun Zhang
- Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural CropsInstitute of HorticultureAnhui Academy of Agricultural SciencesHefeiChina
| | - Aidi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Xiujun Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Fei Ren
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei ProvinceCollege of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
| | - Qiurui Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
| | - Shengli Xu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
| | - Collins Otieno Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Jianbo Zhao
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Mingliang Yu
- Institute of HorticultureJiangsu Academy of Agricultural SciencesNanjingChina
| | - Quan Jiang
- Institute of Forestry and PomologyBeijing Academy of Agriculture and Forestry SciencesBeijingChina
| | - Schuyler S. Korban
- Department of Natural Resources and Environmental SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical GardenThe Innovative Academy of Seed DesignChinese Academy of SciencesWuhanChina
- Center of Economic BotanyCore Botanical GardensChinese Academy of SciencesWuhanChina
- Sino‐African Joint Research CenterChinese Academy of SciencesWuhanChina
| |
Collapse
|
32
|
Guo J, Cao K, Deng C, Li Y, Zhu G, Fang W, Chen C, Wang X, Wu J, Guan L, Wu S, Guo W, Yao JL, Fei Z, Wang L. An integrated peach genome structural variation map uncovers genes associated with fruit traits. Genome Biol 2020; 21:258. [PMID: 33023652 PMCID: PMC7539501 DOI: 10.1186/s13059-020-02169-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome structural variations (SVs) have been associated with key traits in a wide range of agronomically important species; however, SV profiles of peach and their functional impacts remain largely unexplored. RESULTS Here, we present an integrated map of 202,273 SVs from 336 peach genomes. A substantial number of SVs have been selected during peach domestication and improvement, which together affect 2268 genes. Genome-wide association studies of 26 agronomic traits using these SVs identify a number of candidate causal variants. A 9-bp insertion in Prupe.4G186800, which encodes a NAC transcription factor, is shown to be associated with early fruit maturity, and a 487-bp deletion in the promoter of PpMYB10.1 is associated with flesh color around the stone. In addition, a 1.67 Mb inversion is highly associated with fruit shape, and a gene adjacent to the inversion breakpoint, PpOFP1, regulates flat shape formation. CONCLUSIONS The integrated peach SV map and the identified candidate genes and variants represent valuable resources for future genomic research and breeding in peach.
Collapse
Affiliation(s)
- Jian Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ke Cao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Yong Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gengrui Zhu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Weichao Fang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Changwen Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xinwei Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jinlong Wu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Liping Guan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Shan Wu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA
| | - Wenwu Guo
- College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand.
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, USA.
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, USA.
| | - Lirong Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
| |
Collapse
|
33
|
Amar MH. ycf1-ndhF genes, the most promising plastid genomic barcode, sheds light on phylogeny at low taxonomic levels in Prunus persica. J Genet Eng Biotechnol 2020; 18:42. [PMID: 32797323 PMCID: PMC7427673 DOI: 10.1186/s43141-020-00057-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022]
Abstract
Background Chloroplast genome sequencing is becoming a valuable process for developing several DNA barcodes. At present, plastid DNA barcode for systematics and evolution in flowering plant rely heavily on the use of non-coding genes. The present study was performed to verify the novelty and suitability of the two hotspot barcode plastid coding gene ycf1 and ndhF, to estimate the rate of molecular evolution in the Prunus genus at low taxonomic levels. Results Here, 25 chloroplast genomes of Prunus genus were selected for sequences annotation to search for the highly variable coding DNA barcode regions. Among them, 5 genera were of our own data, including the ornamental, cultivated, and wild haplotype, while 20 genera have been downloaded from the GenBank database. The results indicated that the two hotspot plastid gene ycf1 and ndhF were the most variable regions within the coding genes in Prunus with an average of 3268 to 3416 bp in length, which have been predicted to have the highest nucleotide diversity, with the overall transition/transversion bias (R = 1.06). The ycf1-ndhF structural domains showed a positive trend evident in structure variation among the 25 specimens tested, due to the variant overlap’s gene annotation and insertion or deletion with a broad trend of the full form of IGS sequence. As a result, the principal component analysis (PCA) and the ML tree data drew an accurate monophyletic annotations cluster in Prunus species, offering unambiguous identification without overlapping groups between peach, almond, and cherry. Conclusion To this end, we put forward the domain of the two-locus ycf1-ndhF genes as the most promising coding plastid DNA barcode in P. persica at low taxonomic levels. We believe that the discovering of further variable loci with high evolutionary rates is extremely useful and potential uses as a DNA barcode in P. persica for further phylogeny study and species identification.
Collapse
Affiliation(s)
- Mohamed Hamdy Amar
- Egyptian Deserts Gene Bank, Desert Research Center, B.O.P, Cairo, 11753, Egypt.
| |
Collapse
|
34
|
Zhang TT, Zhang NY, Li W, Zhou XJ, Pei XY, Liu YG, Ren ZY, He KL, Zhang WS, Zhou KH, Zhang F, Ma XF, Yang DG, Li ZH. Genetic structure, gene flow pattern, and association analysis of superior germplasm resources in domesticated upland cotton ( Gossypium hirsutum L.). PLANT DIVERSITY 2020; 42:189-197. [PMID: 32695952 PMCID: PMC7361167 DOI: 10.1016/j.pld.2020.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
Gene flow patterns and the genetic structure of domesticated crops like cotton are not well understood. Furthermore, marker-assisted breeding of cotton has lagged far behind that of other major crops because the loci associated with cotton traits such as fiber yield and quality have scarcely been identified. In this study, we used 19 microsatellites to first determine the population genetic structure and patterns of gene flow of superior germplasm resources in upland cotton. We then used association analysis to identify which markers were associated with 15 agronomic traits (including ten yield and five fiber quality traits). The results showed that the upland cotton accessions have low levels of genetic diversity (polymorphism information content = 0.427), although extensive gene flow occurred among different ecological and geographic regions. Bayesian clustering analysis indicated that the cotton resources used in this study did not belong to obvious geographic populations, which may be the consequence of a single source of domestication followed by frequent genetic introgression mediated by human transference. A total of 82 maker-trait associations were examined in association analysis and the related ratios for phenotypic variations ranged from 3.04% to 47.14%. Interestingly, nine SSR markers were detected in more than one environmental condition. In addition, 14 SSR markers were co-associated with two or more different traits. It was noteworthy that NAU4860 and NAU5077 markers detected at least in two environments were simultaneously associated with three fiber quality traits (uniformity index, specific breaking strength and micronaire value). In conclusion, these findings provide new insights into the population structure and genetic exchange pattern of cultivated cotton accessions. The quantitative trait loci of domesticated cotton identified will also be very useful for improvement of yield and fiber quality of cotton in molecular breeding programs.
Collapse
Affiliation(s)
- Ting-Ting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Na-Yao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao-Jian Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiao-Yu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yan-Gai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhong-Ying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Kun-Lun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wen-Sheng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Ke-Hai Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiong-Feng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Dai-Gang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhong-Hu Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
| |
Collapse
|
35
|
Bourguiba H, Scotti I, Sauvage C, Zhebentyayeva T, Ledbetter C, Krška B, Remay A, D’Onofrio C, Iketani H, Christen D, Krichen L, Trifi-Farah N, Liu W, Roch G, Audergon JM. Genetic Structure of a Worldwide Germplasm Collection of Prunus armeniaca L. Reveals Three Major Diffusion Routes for Varieties Coming From the Species' Center of Origin. FRONTIERS IN PLANT SCIENCE 2020; 11:638. [PMID: 32523597 PMCID: PMC7261834 DOI: 10.3389/fpls.2020.00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/24/2020] [Indexed: 05/22/2023]
Abstract
The characterization of the largest worldwide representative data set of apricot (Prunus armeniaca L.) germplasm was performed using molecular markers. Genetic diversity and structure of the cultivated apricot genetic resources were analyzed to decipher the history of diffusion of this species around the world. A common set of 25 microsatellite markers was used for genotyping a total of 890 apricot accessions in different collections from the center of origin to the more recent regions of apricot culture. Using a Bayesian model-based clustering approach, the apricot genotypes can be structured into five different genetic clusters (FST = 0.174), correlated with the geographical regions of origin of the accessions. Accessions from China and Central Asia were clustered together and exhibited the highest levels of diversity, confirming an origin in this region. A loss of genetic diversity was observed from the center of origin to both western and eastern zones of recent apricot culture. Altogether, our results revealed that apricot spread from China and Central Asia, defined as the center of origin, following three major diffusion routes with a decreasing gradient of genetic variation in each geographical group. The identification of specific alleles outside the center of origin confirmed the existence of different secondary apricot diversification centers. The present work provides more understanding of the worldwide history of apricot species diffusion as well as the field of conservation of the available genetic resources. Data have been used to define an apricot core collection based on molecular marker diversity which will be useful for further identification of genomic regions associated with commercially important horticultural traits through genome-wide association studies to sustain apricot breeding programs.
Collapse
Affiliation(s)
- Hedia Bourguiba
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Ivan Scotti
- INRA Centre PACA, UR 629 URFM, Avignon, France
| | | | - Tetyana Zhebentyayeva
- Schatz Center for Tree Molecular Genetics, The Pennsylvania State University, University Park, PA, United States
| | - Craig Ledbetter
- San Joaquin Valley Agricultural Sciences Center, Crop Diseases, Pests & Genetics, Parlier, CA, United States
| | - Boris Krška
- Department of Fruit Growing, Faculty of Horticulture, Mendel University, Lednice, Czechia
| | | | - Claudio D’Onofrio
- Dipartimento di Scienze Agrarie, Alimentari e Agro-Ambientali, Università di Pisa, Pisa, Italy
| | - Hiroyuki Iketani
- National Agriculture and Food Research Organization (NARO) Institute of Fruit Tree Science, Tsukuba, Japan
| | - Danilo Christen
- Département Fédéral de L’économie DFE, Station de Recherche Agroscope Changins-Wädenswil ACW, Centre de Recherche Conthey, Conthey, Switzerland
| | - Lamia Krichen
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Neila Trifi-Farah
- LR99ES12, Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
| | - Weisheng Liu
- Liaoning Institute of Pomology, Yingkou City, China
| | - Guillaume Roch
- INRA Centre PACA, UR 1052 GAFL, Montfavet, France
- CEP Innovation, Lyon, France
| | | |
Collapse
|
36
|
Xanthopoulou A, Manioudaki M, Bazakos C, Kissoudis C, Farsakoglou AM, Karagiannis E, Michailidis M, Polychroniadou C, Zambounis A, Kazantzis K, Tsaftaris A, Madesis P, Aravanopoulos F, Molassiotis A, Ganopoulos I. Whole genome re-sequencing of sweet cherry ( Prunus avium L.) yields insights into genomic diversity of a fruit species. HORTICULTURE RESEARCH 2020; 7:60. [PMID: 32377351 PMCID: PMC7193578 DOI: 10.1038/s41438-020-0281-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 02/18/2020] [Indexed: 05/30/2023]
Abstract
Sweet cherries, Prunus avium L. (Rosaceae), are gaining importance due to their perenniallity and nutritional attributes beneficial for human health. Interestingly, sweet cherry cultivars exhibit a wide range of phenotypic diversity in important agronomic traits, such as flowering time and defense reactions against pathogens. In this study, whole-genome resequencing (WGRS) was employed to characterize genetic variation, population structure and allelic variants in a panel of 20 sweet cherry and one wild cherry genotypes, embodying the majority of cultivated Greek germplasm and a representative of a local wild cherry elite phenotype. The 21 genotypes were sequenced in an average depth of coverage of 33.91×. and effective mapping depth, to the genomic reference sequence of 'Satonishiki' cultivar, between 22.21× to 36.62×. Discriminant analysis of principal components (DAPC) with SNPs revealed two clusters of genotypes. There was a rapid linkage disequilibrium decay, as the majority of SNP pairs with r2 in near complete disequilibrium (>0.8) were found at physical distances less than 10 kb. Functional analysis of the variants showed that the genomic ratio of non-synonymous/synonymous (dN/dS) changes was 1.78. The higher dN frequency in the Greek cohort of sweet cherry could be the result of artificial selection pressure imposed by breeding, in combination with the vegetative propagation of domesticated cultivars through grafting. The majority of SNPs with high impact (e.g., stop codon gaining, frameshift), were identified in genes involved in flowering time, dormancy and defense reactions against pathogens, providing promising resources for future breeding programs. Our study has established the foundation for further large scale characterization of sweet cherry germplasm, enabling breeders to incorporate diverse germplasm and allelic variants to fine tune flowering and maturity time and disease resistance in sweet cherry cultivars.
Collapse
Affiliation(s)
- Aliki Xanthopoulou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Manioudaki
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Thermi, Thessaloniki, 570001 Greece
| | | | - Anna-Maria Farsakoglou
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Chrysanthi Polychroniadou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonios Zambounis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Department of Deciduous Fruit Growing, Naoussa, 59035 Greece
| | - Konstantinos Kazantzis
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Department of Deciduous Fruit Growing, Naoussa, 59035 Greece
| | | | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, Thermi, Thessaloniki, 570 01 Greece
| | - Filippos Aravanopoulos
- Laboratory of Forest Genetics & Tree Breeding, Faculty of Agriculture, Forestry & Environmental Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DEMETER. Thermi, Thessaloniki, 570001 Greece
| |
Collapse
|
37
|
Genome-wide DNA polymorphisms in four Actinidia arguta genotypes based on whole-genome re-sequencing. PLoS One 2020; 15:e0219884. [PMID: 32275655 PMCID: PMC7147731 DOI: 10.1371/journal.pone.0219884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/11/2019] [Indexed: 12/05/2022] Open
Abstract
Among the genus Actinidia, Actinidia arguta possesses the strongest cold resistance and produces fresh fruit with an intense flavor. To investigate genomic variation that may contribute to variation in phenotypic traits, we performed whole-genome re-sequencing of four A. arguta genotypes originating from different regions in China and identified the polymorphisms using InDel markers. In total, 4,710,650, 4,787,750, 4,646,026, and 4,590,616 SNPs and 1,481,002, 1,534,198, 1,471,304, and 1,425,393 InDels were detected in the ‘Ruby-3’, ‘Yongfeng male’, ‘Kuilv male’, and ‘Hongbei male’ genomes, respectively, compared with the reference genome sequence of cv ‘Hongyang’. A subset of 120 InDels were selected for re-sequencing validation. Additionally, genes related to non-synonymous SNPs and InDels in coding domain sequences were screened for functional analysis. The analysis of GO and KEGG showed that genes involved in cellular responses to water deprivation, sucrose transport, decreased oxygen levels and plant hormone signal transduction were significantly enriched in A. arguta. The results of this study provide insight into the genomic variation of kiwifruit and can inform future research on molecular breeding to improve cold resistance in kiwifruit.
Collapse
|
38
|
Peng B, Yu M, Zhang B, Xu J, Ma R. Differences in PpAAT1 Activity in High- and Low-Aroma Peach Varieties Affect γ-Decalactone Production. PLANT PHYSIOLOGY 2020; 182:2065-2080. [PMID: 32001520 PMCID: PMC7140946 DOI: 10.1104/pp.19.00964] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/13/2020] [Indexed: 05/25/2023]
Abstract
Aroma contributes to the unique flavors of fruits and is important for fruit quality evaluation. Among the many volatiles in peach (Prunus persica) fruits, γ-decalactone has the greatest contribution to the characteristic peach aroma. Some peach cultivars have γ-decalactone contents that are too low to detect. Comparison of the transcriptomes and metabolomes of a high-aroma cultivar, Fenghuayulu, and a low-aroma cultivar, Achutao, suggested that amino acid substitutions in ALCOHOL ACYLTRANSFERASE (PpAAT1) are responsible for the undetectable levels of γ-decalactone in cv Achutao fruit. Modeling and molecular docking analysis of PpAAT1 indicated that the substituted residues might determine substrate recognition or act as control channels to the active site. In vitro enzyme assays on PpAAT1 heterologously expressed and purified from Escherichia coli and in vivo assays using transient PpAAT1 expression in Nicotiana benthamiana or the oleaginous yeast Yarrowia lipolytica indicated that PpAAT1 from high-aroma cultivars was more efficient than PpAAT1 from low-aroma cultivars in catalyzing the conversion of 4-hydroxydecanoyl-coenzyme A into γ-decalactone. Examination of loss-of-function mutations of PpAAT1 generated by CRISPR/Cas9 in cv Fenghuayulu showed that fruits with PpAAT1 mutations had significantly lower γ-decalactone contents. Expression of the version of PpAAT1 from cv Fenghuayulu in cv Achutao restored γ-decalactone levels to those measured in 'Fenghuayulu', confirming the specific contribution of PpAAT1 to the formation of this key aroma compound. These results show how the biosynthesis of the peach aroma compound γ-decalactone is compromised in some low-aroma cultivars and illustrate the physiological role of PpAAT1 in plant lactone biosynthesis.
Collapse
Affiliation(s)
- Bin Peng
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, People's Republic of China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, People's Republic of China
| | - Binbin Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, People's Republic of China
| | - Jianlan Xu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, People's Republic of China
| | - Ruijuan Ma
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, People's Republic of China
| |
Collapse
|
39
|
Pei MS, Cao SH, Wu L, Wang GM, Xie ZH, Gu C, Zhang SL. Comparative transcriptome analyses of fruit development among pears, peaches, and strawberries provide new insights into single sigmoid patterns. BMC PLANT BIOLOGY 2020; 20:108. [PMID: 32143560 PMCID: PMC7060524 DOI: 10.1186/s12870-020-2317-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/27/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Pear fruit exhibit a single sigmoid pattern during development, while peach and strawberry fruits exhibit a double sigmoid pattern. However, little is known about the differences between these two patterns. RESULTS In this study, fruit weights were measured and paraffin sections were made from fruitlet to maturated pear, peach, and strawberry samples. Results revealed that both single and double sigmoid patterns resulted from cell expansion, but not cell division. Comparative transcriptome analyses were conducted among pear, peach, and strawberry fruits at five fruit enlargement stages. Comparing the genes involved in these intervals among peaches and strawberries, 836 genes were found to be associated with all three fruit enlargement stages in pears (Model I). Of these genes, 25 were located within the quantitative trait locus (QTL) regions related to fruit weight and 90 were involved in cell development. Moreover, 649 genes were associated with the middle enlargement stage, but not early or late enlargement in pears (Model II). Additionally, 22 genes were located within the QTL regions related to fruit weight and 63 were involved in cell development. Lastly, dual-luciferase assays revealed that the screened bHLH transcription factors induced the expression of cell expansion-related genes, suggesting that the two models explain the single sigmoid pattern. CONCLUSIONS Single sigmoid patterns are coordinately mediated by Models I and II, thus, a potential gene regulation network for the single sigmoid pattern was proposed. These results enhance our understanding of the molecular regulation of fruit size in Rosaceae.
Collapse
Affiliation(s)
- Mao-Song Pei
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Su-Hao Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Lei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Guo-Ming Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Zhi-Hua Xie
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| | - Shao-Ling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
40
|
Li Y, Zhu FL, Zheng XW, Hu ML, Dong C, Diao Y, Wang YW, Xie KQ, Hu ZL. Comparative population genomics reveals genetic divergence and selection in lotus, Nelumbo nucifera. BMC Genomics 2020; 21:146. [PMID: 32046648 PMCID: PMC7014656 DOI: 10.1186/s12864-019-6376-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 12/08/2019] [Indexed: 12/26/2022] Open
Abstract
Background Lotus (Nelumbo nucifera) is an aquatic plant with important agronomic, horticulture, art and religion values. It was the basal eudicot species occupying a critical phylogenetic position in flowering plants. After the domestication for thousands of years, lotus has differentiated into three cultivated types -flower lotus, seed lotus and rhizome lotus. Although the phenotypic and genetic differentiations based on molecular markers have been reported, the variation on whole-genome level among the different lotus types is still ambiguous. Results In order to reveal the evolution and domestication characteristics of lotus, a total of 69 lotus accessions were selected, including 45 cultivated accessions, 22 wild sacred lotus accessions, and 2 wild American lotus accessions. With Illumina technology, the genomes of these lotus accessions were resequenced to > 13× raw data coverage. On the basis of these genomic data, 25 million single-nucleotide polymorphisms (SNPs) were identified in lotus. Population analysis showed that the rhizome and seed lotus were monophyletic and genetically homogeneous, whereas the flower lotus was biphyletic and genetically heterogeneous. Using population SNP data, we identified 1214 selected regions in seed lotus, 95 in rhizome lotus, and 37 in flower lotus. Some of the genes in these regions contributed to the essential domestication traits of lotus. The selected genes of seed lotus mainly affected lotus seed weight, size and nutritional quality. While the selected genes were responsible for insect resistance, antibacterial immunity and freezing and heat stress resistance in flower lotus, and improved the size of rhizome in rhizome lotus, respectively. Conclusions The genome differentiation and a set of domestication genes were identified from three types of cultivated lotus- flower lotus, seed lotus and rhizome lotus, respectively. Among cultivated lotus, flower lotus showed the greatest variation. The domestication genes may show agronomic importance via enhancing insect resistance, improving seed weight and size, or regulating lotus rhizome size. The domestication history of lotus enhances our knowledge of perennial aquatic crop evolution, and the obtained dataset provides a basis for future genomics-enabled breeding.
Collapse
Affiliation(s)
- Ye Li
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Feng-Lin Zhu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xing-Wen Zheng
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,Guangchang Research School of White Lotus, Guangchang, 344900, People's Republic of China
| | - Man-Li Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chen Dong
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ying Diao
- College of Landscape Architecture and Life Science / Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402160, People's Republic of China
| | - You-Wei Wang
- Institute of Traditional Chinese Medicine and Natural Products, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ke-Qiang Xie
- Guangchang Research School of White Lotus, Guangchang, 344900, People's Republic of China.
| | - Zhong-Li Hu
- State Key Laboratory of Hybrid Rice, Lotus Engineering Research Center of Hubei Province, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
41
|
Miao L, Yang S, Zhang K, He J, Wu C, Ren Y, Gai J, Li Y. Natural variation and selection in GmSWEET39 affect soybean seed oil content. THE NEW PHYTOLOGIST 2020; 225:1651-1666. [PMID: 31596499 PMCID: PMC7496907 DOI: 10.1111/nph.16250] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 10/02/2019] [Indexed: 05/03/2023]
Abstract
Soybean (Glycine max) is a major contributor to the world oilseed production. Its seed oil content has been increased through soybean domestication and improvement. However, the genes underlying the selection are largely unknown. The present contribution analyzed the expression patterns of genes in the seed oil quantitative trait loci with strong selective sweep signals, then used association, functional study and population genetics to reveal a sucrose efflux transporter gene, GmSWEET39, controlling soybean seed oil content and under selection. GmSWEET39 is highly expressed in soybean seeds and encodes a plasma membrane-localized protein. Its expression level is positively correlated with soybean seed oil content. The variation in its promoter and coding sequence leads to different natural alleles of this gene. The GmSWEET39 allelic effects on total oil content were confirmed in the seeds of soybean recombinant inbred lines, transgenic Arabidopsis, and transgenic soybean hairy roots. The frequencies of its superior alleles increased from wild soybean to cultivated soybean, and are much higher in released soybean cultivars. The findings herein suggest that the sequence variation in GmSWEET39 affects its relative expression and oil content in soybean seeds, and GmSWEET39 has been selected to increase seed oil content during soybean domestication and improvement.
Collapse
Affiliation(s)
- Long Miao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| | - Songnan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| | - Kai Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| | - Jianbo He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| | - Chunhua Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| | - Yanhua Ren
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| | - Junyi Gai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| | - Yan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean ImprovementKey Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)Jiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
42
|
Diaz-Garcia L, Covarrubias-Pazaran G, Johnson-Cicalese J, Vorsa N, Zalapa J. Genotyping-by-Sequencing Identifies Historical Breeding Stages of the Recently Domesticated American Cranberry. FRONTIERS IN PLANT SCIENCE 2020; 11:607770. [PMID: 33391320 PMCID: PMC7772218 DOI: 10.3389/fpls.2020.607770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/20/2020] [Indexed: 05/05/2023]
Abstract
The cranberry (Vaccinium macrocarpon Ait.) is a North American fruit crop domesticated less than 200 years ago. The USDA began the first cranberry breeding program in response to false-blossom disease in 1929, but after the first generation of cultivars were released in the 1950s, the program was discontinued. Decades later, renewed efforts for breeding cranberry cultivars at Rutgers University and the University of Wisconsin yielded the first modern cultivars in the 2000's. Phenotypic data suggests that current cultivars have changed significantly in terms of fruiting habits compared to original selections from endemic populations. However, due to the few breeding and selection cycles and short domestication period of the crop, it is unclear how much cultivated germplasm differs genetically from wild selections. Moreover, the extent to which selection for agricultural superior traits has shaped the genetic and phenotypic variation of cranberry remains mostly obscure. Here, a historical collection composed of 362 accessions, spanning wild germplasm, first-, second-, and third-generation selection cycles was studied to provide a window into the breeding and domestication history of cranberry. Genome-wide sequence variation of more than 20,000 loci showed directional selection across the stages of cranberry domestication and breeding. Diversity analysis and population structure revealed a partially defined progressive bottleneck when transitioning from early domestication stages to current cranberry forms. Additionally, breeding cycles correlated with phenotypic variation for yield-related traits and anthocyanin accumulation, but not for other fruit metabolites. Particularly, average fruit weight, yield, and anthocyanin content, which were common target traits during early selection attempts, increased dramatically in second- and third-generation cycle cultivars, whereas other fruit quality traits such as Brix and acids showed comparable variation among all breeding stages. Genome-wide association mapping in this diversity panel allowed us to identify marker-trait associations for average fruit weight and fruit rot, which are two traits of great agronomic relevance today and could be further exploited to accelerate cranberry genetic improvement. This study constitutes the first genome-wide analysis of cranberry genetic diversity, which explored how the recurrent use of wild germplasm and first-generation selections into cultivar development have shaped the evolutionary history of this crop species.
Collapse
Affiliation(s)
- Luis Diaz-Garcia
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Aguascalientes, Mexico
- *Correspondence: Luis Diaz-Garcia, ;
| | | | - Jennifer Johnson-Cicalese
- Marucci Center for Blueberry and Cranberry Research and Extension Center, Rutgers University, Chatsworth, NJ, United States
| | - Nicholi Vorsa
- Marucci Center for Blueberry and Cranberry Research and Extension Center, Rutgers University, Chatsworth, NJ, United States
- Department of Plant Science, Rutgers University, New Brunswick, NJ, United States
- Nicholi Vorsa,
| | - Juan Zalapa
- Department of Horticulture, University of Wisconsin, Madison, WI, United States
- USDA-ARS, Vegetable Crops Research Unit, University of Wisconsin, Madison, WI, United States
- Juan Zalapa, ;
| |
Collapse
|
43
|
Detection and application of genome-wide variations in peach for association and genetic relationship analysis. BMC Genet 2019; 20:101. [PMID: 31888445 PMCID: PMC6937647 DOI: 10.1186/s12863-019-0799-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 12/05/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Peach (Prunus persica L.) is a diploid species and model plant of the Rosaceae family. In the past decade, significant progress has been made in peach genetic research via DNA markers, but the number of these markers remains limited. RESULTS In this study, we performed a genome-wide DNA markers detection based on sequencing data of six distantly related peach accessions. A total of 650,693~1,053,547 single nucleotide polymorphisms (SNPs), 114,227~178,968 small insertion/deletions (InDels), 8386~12,298 structure variants (SVs), 2111~2581 copy number variants (CNVs) and 229,357~346,940 simple sequence repeats (SSRs) were detected and annotated. To demonstrate the application of DNA markers, 944 SNPs were filtered for association study of fruit ripening time and 15 highly polymorphic SSRs were selected to analyze the genetic relationship among 221 accessions. CONCLUSIONS The results showed that the use of high-throughput sequencing to develop DNA markers is fast and effective. Comprehensive identification of DNA markers, including SVs and SSRs, would be of benefit to genetic diversity evaluation, genetic mapping, and molecular breeding of peach.
Collapse
|
44
|
Cao K, Li Y, Deng CH, Gardiner SE, Zhu G, Fang W, Chen C, Wang X, Wang L. Comparative population genomics identified genomic regions and candidate genes associated with fruit domestication traits in peach. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1954-1970. [PMID: 30950186 PMCID: PMC6737019 DOI: 10.1111/pbi.13112] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/08/2019] [Accepted: 03/24/2019] [Indexed: 05/21/2023]
Abstract
Crop evolution is a long-term process involving selection by natural evolutionary forces and anthropogenic influences; however, the genetic mechanisms underlying the domestication and improvement of fruit crops have not been well studied to date. Here, we performed a population structure analysis in peach (Prunus persica) based on the genome-wide resequencing of 418 accessions and confirmed the presence of an obvious domestication event during evolution. We identified 132 and 106 selective sweeps associated with domestication and improvement, respectively. Analysis of their tissue-specific expression patterns indicated that the up-regulation of selection genes during domestication occurred mostly in fruit and seeds as opposed to other organs. However, during the improvement stage, more up-regulated selection genes were identified in leaves and seeds than in the other organs. Genome-wide association studies (GWAS) using 4.24 million single nucleotide polymorphisms (SNPs) revealed 171 loci associated with 26 fruit domestication traits. Among these loci, three candidate genes were highly associated with fruit weight and the sorbitol and catechin content in fruit. We demonstrated that as the allele frequency of the SNPs associated with high polyphenol composition decreased during peach evolution, alleles associated with high sugar content increased significantly. This indicates that there is genetic potential for the breeding of more nutritious fruit with enhanced bioactive polyphenols without disturbing a harmonious sugar and acid balance by crossing with wild species. This study also describes the development of the genomic resources necessary for evolutionary research in peach and provides the large-scale characterization of key agronomic traits in this crop species.
Collapse
Affiliation(s)
- Ke Cao
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology)Ministry of AgricultureZhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Yong Li
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology)Ministry of AgricultureZhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Cecilia H. Deng
- The New Zealand Institute for Plant & Food Research Limited (PFR)Mount Albert Research CentreAucklandNew Zealand
| | - Susan E. Gardiner
- The New Zealand Institute for Plant & Food Research Limited (PFR)Palmerston North Research CentrePalmerston NorthNew Zealand
| | - Gengrui Zhu
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology)Ministry of AgricultureZhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Weichao Fang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology)Ministry of AgricultureZhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Changwen Chen
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology)Ministry of AgricultureZhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Xinwei Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology)Ministry of AgricultureZhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| | - Lirong Wang
- The Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Fruit Tree Breeding Technology)Ministry of AgricultureZhengzhou Fruit Research InstituteChinese Academy of Agricultural SciencesZhengzhouChina
| |
Collapse
|
45
|
Roch L, Dai Z, Gomès E, Bernillon S, Wang J, Gibon Y, Moing A. Fruit Salad in the Lab: Comparing Botanical Species to Help Deciphering Fruit Primary Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:836. [PMID: 31354750 PMCID: PMC6632546 DOI: 10.3389/fpls.2019.00836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 06/12/2019] [Indexed: 05/08/2023]
Abstract
Although fleshy fruit species are economically important worldwide and crucial for human nutrition, the regulation of their fruit metabolism remains to be described finely. Fruit species differ in the origin of the tissue constituting the flesh, duration of fruit development, coordination of ripening changes (climacteric vs. non-climacteric type) and biochemical composition at ripeness is linked to sweetness and acidity. The main constituents of mature fruit result from different strategies of carbon transport and metabolism. Thus, the timing and nature of phloem loading and unloading can largely differ from one species to another. Furthermore, accumulations and transformations of major soluble sugars, organic acids, amino acids, starch and cell walls are very variable among fruit species. Comparing fruit species therefore appears as a valuable way to get a better understanding of metabolism. On the one hand, the comparison of results of studies about species of different botanical families allows pointing the drivers of sugar or organic acid accumulation but this kind of comparison is often hampered by heterogeneous analysis approaches applied in each study and incomplete dataset. On the other hand, cross-species studies remain rare but have brought new insights into key aspects of primary metabolism regulation. In addition, new tools for multi-species comparisons are currently emerging, including meta-analyses or re-use of shared metabolic or genomic data, and comparative metabolic flux or process-based modeling. All these approaches contribute to the identification of the metabolic factors that influence fruit growth and quality, in order to adjust their levels with breeding or cultural practices, with respect to improving fruit traits.
Collapse
Affiliation(s)
- Léa Roch
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
| | - Zhanwu Dai
- UMR 1287 EGFV, INRA, Bordeaux Sciences Agro, Université de Bordeaux, Bordeaux, France
| | - Eric Gomès
- UMR 1287 EGFV, INRA, Bordeaux Sciences Agro, Université de Bordeaux, Bordeaux, France
| | - Stéphane Bernillon
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| | - Jiaojiao Wang
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
| | - Yves Gibon
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| | - Annick Moing
- UMR1332 Biologie du Fruit et Pathologie, Centre INRA de Bordeaux, INRA, Université de Bordeaux, Bordeaux, France
- Plateforme Métabolome Bordeaux, CGFB, MetaboHUB-PHENOME, IBVM, Centre INRA de Bordeaux, Bordeaux, France
| |
Collapse
|
46
|
Identification of Potential Metabolites Mediating Bird's Selective Feeding on Prunus mira Flowers. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1395480. [PMID: 31341887 PMCID: PMC6612375 DOI: 10.1155/2019/1395480] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/04/2019] [Indexed: 01/18/2023]
Abstract
In peach orchards, birds severely damage flowers during blossom season, decreasing the fruit yield potential. However, the wild peach species Prunus mira shows intraspecific variations of bird damage, indicating that some of the wild trees have developed strategies to avert bird foraging. Motivated by this observation, we formulated the present study to identify the potential flower metabolites mediating the bird's selective feeding behavior in P. mira flowers. The birds' preferred (FG) and avoided (BFT) flowers were collected from wild P. mira trees at three different locations, and their metabolite contents were detected, quantified, and compared. The widely-targeted metabolomics approach was employed to detect a diverse set of 603 compounds, predominantly, organic acids, amino acid derivatives, nucleotide and its derivatives, and flavones. By quantitatively comparing the metabolite contents between FG and BFT, three candidate metabolites, including Eriodictiol 6-C-hexoside 8-C-hexoside-O-hexoside, Luteolin O-hexosyl-O-hexosyl-O-hexoside, and Salvianolic acid A, were differentially accumulated and showed the same pattern across the three sampling locations. Distinctly, Salvianolic acid A was abundantly accumulated in FG but absent in BFT, implying that it may be the potential metabolite attracting birds in some P. mira flowers. Overall, this study sheds light on the diversity of the floral metabolome in P. mira and suggests that the bird's selective feeding behavior may be mediated by variations in floral metabolite contents.
Collapse
|
47
|
Tan Q, Liu X, Gao H, Xiao W, Chen X, Fu X, Li L, Li D, Gao D. Comparison Between Flat and Round Peaches, Genomic Evidences of Heterozygosity Events. FRONTIERS IN PLANT SCIENCE 2019; 10:592. [PMID: 31164893 PMCID: PMC6535965 DOI: 10.3389/fpls.2019.00592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Bud sports occur in many plant species, including fruit trees. Although they are correlated with genetic variance in somatic cells, the mechanisms responsible for bud sports are mostly unknown. In this study, a peach bud sport whose fruit shape was transformed to round from flat was identified by next generation sequencing (NGS), and we provide evidence that a long loss of heterozygosity (LOH) event may be responsible for this alteration in fruit shape. Moreover, compared to the reference genome, we identified 237,476 high quality single nucleotide polymorphisms (SNPs) in the wild-type and bud sport genomes. Using this SNP set, a long LOH event was identified at the distal end of scaffold Pp06 of the bud sport genome. Haplotypes from 155 additional peach accessions were phased, suggesting that the homozygous distal end of scaffold Pp06 of the bud sport was likely derived from only one haplotype of the wild-type flat peach. A genome-wide association study (GWAS) of 127 peach accessions was conducted to associate a SNP found at 26,924,482 bp of scaffold Pp06 to differences in fruit shape. All accessions with round-shaped fruit were found to have an A/A genotype, while those with A/T, or T/T genotypes had flat-shaped fruits. Finally, we also found that 236 peach accessions and 141 Prunus species with round-type fruit were found to have an A/A genotype at this SNP, while 22 flat peach accessions had an A/T genotype. Taken together, our results suggest that genes flanking this A/T polymorphism, and haplotyped carrying the T allele may determine flat fruit shape in this population. Furthermore, the LOH event resulting in the loss of the haplotype carrying the T allele may therefore be responsible for fruit shape alteration in wild-type flat peach.
Collapse
Affiliation(s)
- Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Xiao Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Hongru Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| | - Dongsheng Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Fruit Innovation of Modern Agricultural Industry Technology System in Shandong Province, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
48
|
Li X, Liu L, Ming M, Hu H, Zhang M, Fan J, Song B, Zhang S, Wu J. Comparative Transcriptomic Analysis Provides Insight into the Domestication and Improvement of Pear ( P. pyrifolia) Fruit. PLANT PHYSIOLOGY 2019; 180:435-452. [PMID: 30867332 PMCID: PMC6501086 DOI: 10.1104/pp.18.01322] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/03/2019] [Indexed: 05/18/2023]
Abstract
Knowledge of the genetic changes that occurred during the domestication and improvement of perennial trees at the RNA level is limited. Here, we used RNA sequencing analysis to compare representative sets of wild, landrace, and improved accessions of pear (Pyrus pyrifolia) to gain insight into the genetic changes associated with domestication and improvement. A close population relationship and similar nucleotide diversity was observed between the wild and landrace groups, whereas the improved group had substantially reduced nucleotide diversity. A total of 11.13 Mb of genome sequence was identified as bearing the signature of selective sweeps that occurred during pear domestication, whereas a distinct and smaller set of genomic regions (4.04 Mb) was identified as being associated with subsequent improvement efforts. The expression diversity of selected genes exhibited a 20.89% reduction from the wild group to the landrace group, but a 23.13% recovery was observed from the landrace to the improved group, showing a distinctly different pattern with variation of sequence diversity. Module-trait association analysis identified 16 distinct coexpression modules, six of which were highly associated with important fruit traits. The candidate trait-linked differentially expressed genes associated with stone cell formation, fruit size, and sugar content were identified in the selected regions, and many of these could also be mapped to the previously reported quantitative trait loci. Thus, our study reveals the specific pattern of domestication and improvement of perennial trees at the transcriptome level, and provides valuable genetic sources of fruit traits that could contribute to pear breeding and improvement.
Collapse
Affiliation(s)
- Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lun Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Ming
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongju Hu
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, Hubei 430064, China
| | - Mingyue Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Fan
- Research Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, Hubei 430064, China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
49
|
Aranzana MJ, Decroocq V, Dirlewanger E, Eduardo I, Gao ZS, Gasic K, Iezzoni A, Jung S, Peace C, Prieto H, Tao R, Verde I, Abbott AG, Arús P. Prunus genetics and applications after de novo genome sequencing: achievements and prospects. HORTICULTURE RESEARCH 2019; 6:58. [PMID: 30962943 PMCID: PMC6450939 DOI: 10.1038/s41438-019-0140-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/04/2023]
Abstract
Prior to the availability of whole-genome sequences, our understanding of the structural and functional aspects of Prunus tree genomes was limited mostly to molecular genetic mapping of important traits and development of EST resources. With public release of the peach genome and others that followed, significant advances in our knowledge of Prunus genomes and the genetic underpinnings of important traits ensued. In this review, we highlight key achievements in Prunus genetics and breeding driven by the availability of these whole-genome sequences. Within the structural and evolutionary contexts, we summarize: (1) the current status of Prunus whole-genome sequences; (2) preliminary and ongoing work on the sequence structure and diversity of the genomes; (3) the analyses of Prunus genome evolution driven by natural and man-made selection; and (4) provide insight into haploblocking genomes as a means to define genome-scale patterns of evolution that can be leveraged for trait selection in pedigree-based Prunus tree breeding programs worldwide. Functionally, we summarize recent and ongoing work that leverages whole-genome sequences to identify and characterize genes controlling 22 agronomically important Prunus traits. These include phenology, fruit quality, allergens, disease resistance, tree architecture, and self-incompatibility. Translationally, we explore the application of sequence-based marker-assisted breeding technologies and other sequence-guided biotechnological approaches for Prunus crop improvement. Finally, we present the current status of publically available Prunus genomics and genetics data housed mainly in the Genome Database for Rosaceae (GDR) and its updated functionalities for future bioinformatics-based Prunus genetics and genomics inquiry.
Collapse
Affiliation(s)
- Maria José Aranzana
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Véronique Decroocq
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Elisabeth Dirlewanger
- UMR 1332 BFP, INRA, University of Bordeaux, A3C and Virology Teams, 33882 Villenave-d’Ornon Cedex, France
| | - Iban Eduardo
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| | - Zhong Shan Gao
- Allergy Research Center, Zhejiang University, 310058 Hangzhou, China
| | | | - Amy Iezzoni
- Department of Horticulture, Michigan State University, 1066 Bogue Street, East Lansing, MI 48824-1325 USA
| | - Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Cameron Peace
- Department of Horticulture, Washington State University, Pullman, WA 99164-6414 USA
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, Instituto de Investigaciones Agropecuarias, Santa Rosa, 11610 La Pintana, Santiago Chile
| | - Ryutaro Tao
- Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502 Japan
| | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) – Centro di ricerca Olivicoltura, Frutticoltura e Agrumicoltura (CREA-OFA), Rome, Italy
| | - Albert G. Abbott
- University of Kentucky, 106 T. P. Cooper Hall, Lexington, KY 40546-0073 USA
| | - Pere Arús
- IRTA, Centre de Recerca en Agrigenòmica CSIC-IRTA-UAB-UB, Campus UAB, Edifici CRAG, Cerdanyola del Vallès (Bellaterra), 08193 Barcelona, Spain
| |
Collapse
|
50
|
Du J, Lv Y, Xiong J, Ge C, Iqbal S, Qiao Y. Identifying Genome-Wide Sequence Variations and Candidate Genes Implicated in Self-Incompatibility by Resequencing Fragaria viridis. Int J Mol Sci 2019; 20:E1039. [PMID: 30818833 PMCID: PMC6429439 DOI: 10.3390/ijms20051039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/16/2019] [Accepted: 02/22/2019] [Indexed: 12/01/2022] Open
Abstract
It is clear that the incompatibility system in Fragaria is gametophytic, however, the genetic mechanism behind this remains elusive. Eleven second-generation lines of Fragaria viridis with different compatibility were obtained by manual self-pollination, which can be displayed directly by the level of fruit-set rate. We sequenced two second-generation selfing lines with large differences in fruit-set rate: Ls-S₂-53 as a self-incompatible sequencing sample, and Ls-S₂-76 as a strong self-compatible sequencing sample. Fragaria vesca was used as a completely self-compatible reference sample, and the genome-wide variations were identified and subsequently annotated. The distribution of polymorphisms is similar on each chromosome between the two sequencing samples, however, the distribution regions and the number of homozygous variations are inconsistent. Expression pattern analysis showed that six candidate genes were significantly associated with self-incompatibility. Using F. vesca as a reference, we focused our attention on the gene FIP2-like (FH protein interacting protein), associated with actin cytoskeleton formation, as the resulting proteins in Ls-S₂-53 and Ls-S₂-76 have each lost a number of different amino acids. Suppression of FIP2-like to some extent inhibits germination of pollen grains and growth of pollen tubes by reducing F-actin of the pollen tube tips. Our results suggest that the differential distribution of homozygous variations affects F. viridis fruit-set rate and that the fully encoded FIP2-like can function normally to promote F-actin formation, while the new FIP2-like proteins with shortened amino acid sequences have influenced the (in)compatibility of two selfing lines of F. viridis.
Collapse
Affiliation(s)
- Jianke Du
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yan Lv
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Jinsong Xiong
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Chunfeng Ge
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, Jiangsu, China.
| | - Shahid Iqbal
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Yushan Qiao
- Laboratory of Fruit Biotechnology, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|