1
|
Shadrina M, Kalay Ö, Demirkaya-Budak S, LeDuc CA, Chung WK, Turgut D, Budak G, Arslan E, Semenyuk V, Davis-Dusenbery B, Seidman CE, Yost HJ, Jain A, Gelb BD. Efficient identification of de novo mutations in family trios: a consensus-based informatic approach. Life Sci Alliance 2025; 8:e202403039. [PMID: 40155050 PMCID: PMC11953573 DOI: 10.26508/lsa.202403039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/01/2025] Open
Abstract
Accurate identification of de novo variants (DNVs) remains challenging despite advances in sequencing technologies, often requiring ad hoc filters and manual inspection. Here, we explored a purely informatic, consensus-based approach for identifying DNVs in proband-parent trios using short-read genome sequencing data. We evaluated variant calls generated by three sequence analysis pipelines-GATK HaplotypeCaller, DeepTrio, and Velsera GRAF-and examined the assumption that a requirement of consensus can serve as an effective filter for high-quality DNVs. Comparison with a highly accurate DNV set, validated previously by manual inspection and Sanger sequencing, demonstrated that consensus filtering, followed by a force-calling procedure, effectively removed false-positive calls, achieving 98.0-99.4% precision. At the same time, sensitivity of the workflow based on the previously established DNVs reached 99.4%. Validation in the HG002-3-4 Genome-in-a-Bottle trio confirmed its robustness, with precision reaching 99.2% and sensitivity up to 96.6%. We believe that this consensus approach can be widely implemented as an automated bioinformatics workflow suitable for large-scale analyses without the need for manual intervention, especially when very high precision is valued over sensitivity.
Collapse
Affiliation(s)
- Mariya Shadrina
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | | | | | - Charles A LeDuc
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | - Christine E Seidman
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - H Joseph Yost
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | | | - Bruce D Gelb
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
2
|
Fridman H, Khazeeva G, Levy-Lahad E, Gilissen C, Brunner HG. Reproductive and cognitive phenotypes in carriers of recessive pathogenic variants. Nat Hum Behav 2025:10.1038/s41562-025-02204-7. [PMID: 40374730 DOI: 10.1038/s41562-025-02204-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/03/2025] [Indexed: 05/18/2025]
Abstract
The genetic landscape of human Mendelian diseases is shaped by mutation and selection. Although selection on heterozygotes is well-established in autosomal-dominant disorders, convincing evidence for selection in carriers of pathogenic variants associated with recessive conditions is limited. Here, we studied heterozygous pathogenic variants in 1,929 genes, which cause recessive diseases when bi-allelic, in n = 378,751 unrelated European individuals from the UK Biobank. We find evidence suggesting fitness effects in heterozygous carriers for recessive genes, especially for variants in constrained genes across a broad range of diseases. Our data suggest reproductive effects at the population level, and hence natural selection, for autosomal-recessive disease variants. Further, variants in genes that underlie intellectual disability are associated with lower educational attainment in carriers, and we observe an altered genetic landscape, characterized by a threefold reduction in the calculated frequency of bi-allelic intellectual disability in the population relative to other recessive disorders.
Collapse
Affiliation(s)
- Hila Fridman
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
- The Fuld Family Medical Genetics Institute; The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gelana Khazeeva
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ephrat Levy-Lahad
- The Fuld Family Medical Genetics Institute; The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christian Gilissen
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Han G Brunner
- Department of Human Genetics and Donders Center for Neuroscience, Radboud University Medical Center, Nijmegen, the Netherlands.
- Department of Clinical Genetics, GROW-School for Oncology and Developmental Biology and MHENS School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands.
| |
Collapse
|
3
|
Eisfeldt J, Ek M, Nordenskjöld M, Lindstrand A. Toward clinical long-read genome sequencing for rare diseases. Nat Genet 2025:10.1038/s41588-025-02160-y. [PMID: 40335760 DOI: 10.1038/s41588-025-02160-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/11/2025] [Indexed: 05/09/2025]
Abstract
Genetic diagnostics is driven by technological advances, forming a tight interface between research, clinic and industry, which enables rapid implementation of new technologies. Short-read genome and exome sequencing, the current state of the art in clinical genetics, can detect a broad spectrum of genetic variants across the genome. However, despite these advancements, more than half of individuals with rare diseases remain undiagnosed after genomic investigations. Long-read whole-genome sequencing (LR-WGS) is a promising technology that identifies previously difficult-to-detect variants while also enabling phasing and methylation analysis and has the potential of generating complete personal assemblies. To pave the way for clinical use of LR-WGS, the clinical genomic community must establish standardized protocols and quality parameters while also developing innovative tools for data analysis and interpretation. In this Perspective, we explore the key challenges and benefits in integrating LR-WGS into routine clinical diagnostics.
Collapse
Affiliation(s)
- Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, Solna, Sweden
| | - Marlene Ek
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Milhaven M, Garg A, Versoza CJ, Pfeifer SP. Quantifying the effects of computational filter criteria on the accurate identification of de novo mutations at varying levels of sequencing coverage. Heredity (Edinb) 2025; 134:273-279. [PMID: 40082647 PMCID: PMC12056167 DOI: 10.1038/s41437-025-00754-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025] Open
Abstract
The rate of spontaneous (de novo) germline mutation is a key parameter in evolutionary biology, impacting genetic diversity and contributing to the evolution of populations and species. Mutation rates themselves evolve over time but the mechanisms underlying the mutation rate variation observed across the Tree of Life remain largely to be elucidated. In recent years, whole genome sequencing has enabled the estimation of mutation rates for several organisms. However, due to a lack of community standards, many previous studies differ both empirically - most notably, in the depth of sequencing used to reliably identify de novo mutations - and computationally - utilizing different computational pipelines to detect germline mutations as well as different analysis strategies to mitigate technical artifacts - rendering comparisons between studies challenging. Using a pedigree of Western chimpanzees as an illustrative example, we here quantify the effects of commonly utilized quality metrics to reliably identify de novo mutations at different levels of sequencing coverage. We demonstrate that datasets with a mean depth of ≤ 30X are ill-suited for the detection of de novo mutations due to high false positive rates that can only be partially mitigated by computational filter criteria. In contrast, higher coverage datasets enable a comprehensive identification of de novo mutations at low false positive rates, with minimal benefits beyond a sequencing coverage of 60X, suggesting that future work should favor breadth (by sequencing additional individuals) over depth. Importantly, the simulation and analysis framework described here provides conceptual guidelines that will allow researchers to take study design and species-specific resources into account when determining computational filtering strategies for their organism of interest.
Collapse
Affiliation(s)
- Mark Milhaven
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85281, USA
| | - Aman Garg
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
| | - Cyril J Versoza
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85281, USA
| | - Susanne P Pfeifer
- School of Life Sciences, Arizona State University, Tempe, AZ, 85281, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
5
|
Lee AJ, Kanwal S, Awasthi M, Choi BO, Chung KW. De novo somatic mosaicisms of INF2 and TRPV4 in patients with Charcot-Marie-Tooth disease. Genes Genomics 2025:10.1007/s13258-025-01643-w. [PMID: 40257654 DOI: 10.1007/s13258-025-01643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND Somatic mosaicism is caused by a postzygotic de novo mutation. It is a very rare genetic event, and mosaic cases have been reported only very limitedly among Korean patients with peripheral neuropathies, including Charcot-Marie-Tooth disease (CMT) so far. OBJECTIVE This study was performed to identify and characterize somatic mosaicism in Korean families with CMT. METHODS Genetic causes were identified by whole exome sequencing (WES) and a subsequent filtering process of the variants. The level of mosaicism for the de novo somatic mutations was determined by counting altered sequences from approximately 100 colonies/mutation and the ratio of altered sequences per total reads at the mutation site using the WES data. RESULTS We observed two cases of somatic mosaicism in different families with CMT: p.Cys104Tyr in INF2 (male with CMT1) and p.Ser729Arg in TRPV4 (female with CMT2). The approximate levels of mosaicism were determined to be 24% and 30% in the blood, respectively. A man with the INF2 mutation showed very mild symptoms, while a woman with the TRPV4 mutation showed severe clinical phenotypes. The INF2 mutation is specifically considered a case of gonadal mosaicism. In addition, we confirmed that the p.Cys104Tyr in INF2 is associated with the CMT1 phenotype without focal segmental glomerulosclerosis (FSGS). CONCLUSION This study may be the first or second report for the INF2 and TRPV4 mosaicism. The degrees of the phenotypic severity for the mosaic mutations probably depend on the mutation sites and the levels of mosaicism in the affected tissues. This study suggests that somatic mosaicism may contribute to inter- or intra-familial phenotypic heterogeneity.
Collapse
Affiliation(s)
- Ah Jin Lee
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehak-ro, Gongju, 32588, Korea
| | - Sumaira Kanwal
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Manisha Awasthi
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehak-ro, Gongju, 32588, Korea
| | - Byung-Ok Choi
- Department of Neurology, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
- Cell & Gene Therapy Institute, Samsung Medical Center, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Korea.
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, 56 Gongjudaehak-ro, Gongju, 32588, Korea.
| |
Collapse
|
6
|
Poquérusse J, Whitford W, Taylor J, Gregersen N, Love DR, Tsang B, Drake KM, Snell RG, Lehnert K, Jacobsen JC. Germline mosaicism in TCF20-associated neurodevelopmental disorders: a case study and literature review. J Hum Genet 2025; 70:215-222. [PMID: 40011607 PMCID: PMC11882450 DOI: 10.1038/s10038-025-01323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025]
Abstract
Autosomal dominant variants in transcription factor 20 (TCF20) can result in TCF20-associated neurodevelopmental disorder (TAND), a condition characterized by developmental delay and intellectual disability, autism, dysmorphisms, dystonia, and variable other neurological features. To date, a total of 91 individuals with TAND have been reported; ~67% of cases arose de novo, while ~10% were inherited, and, intriguingly, ~8% were either confirmed or suspected to have arisen via germline mosaicism. Here, we describe two siblings with a developmental condition characterized by intellectual disability, autism, a circadian rhythm sleep disorder, and attention deficit hyperactivity disorder (ADHD) caused by a novel heterozygous single nucleotide deletion in the TCF20 gene, NM_001378418.1:c.4737del; NP_001365347.1:p.Lys1579Asnfs*36 (GRCh38/hg38). The variant was not detected in DNA extracted from peripheral blood in either parent by Sanger sequencing of PCR-generated amplicons, or by deep sequencing of PCR amplicons using MiSeq and MinION. However, droplet digital PCR (ddPCR) of DNA derived from early morning urine detected the variation in 3.2% of the father's urothelial cells, confirming germline mosaicism. This report is only the second to confirm with physical evidence TCF20 germline mosaicism and discusses germline mosaicism as a likely under-detected mode of inheritance in neurodevelopmental conditions.
Collapse
Affiliation(s)
- Jessie Poquérusse
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Whitney Whitford
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Juliet Taylor
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland, New Zealand
| | - Nerine Gregersen
- Genetic Health Service New Zealand, Auckland City Hospital, Auckland, New Zealand
| | - Donald R Love
- Diagnostic Genetics, LabPLUS, Auckland City Hospital, Auckland, New Zealand
- Genetic Pathology, Sidra Medicine, Doha, Qatar
| | - Bobby Tsang
- Pediatrics and Newborn Services, Waitakere Hospital, Auckland, New Zealand
| | - Kylie M Drake
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Russell G Snell
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Klaus Lehnert
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Jessie C Jacobsen
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
7
|
Ryu J, Kim Y, Ju YS. A more elaborate genetic clock for clonal species. Trends Genet 2025; 41:268-270. [PMID: 39603922 DOI: 10.1016/j.tig.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024]
Abstract
The genetic clock is a well-established tool used in evolutionary biology for estimating divergence times between species, individuals, or cells based on DNA sequence changes. Yu et al. have revisited the clock to make it applicable to clonal multicellular organisms that expand through asexual reproduction mechanisms, enabling more comprehensive evolutionary tracking.
Collapse
Affiliation(s)
- Jinhee Ryu
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeonjin Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Young Seok Ju
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea; Inocras Inc., San Diego, CA92121, USA.
| |
Collapse
|
8
|
Wei S, Lattin MT, Morgan S, DiBianco L, Chen J, Galloway S, Karipcin S, Wapner R, Landau C, Forman EJ, Chung WK, Williams Z. Development of a Clinically Applicable High-Resolution Assay for Sperm Mosaicism. J Mol Diagn 2025:S1525-1578(25)00078-9. [PMID: 40158886 DOI: 10.1016/j.jmoldx.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/25/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Sperm mosaicism, the presence of a pathogenic variant in a subset of sperm, is an important cause of heritable genetic disease. However, clinical testing for sperm mosaicism outside research has been limited by the lack of Clinical Laboratory Improvement Amendments (CLIA)-validated results deliverable to patients. We developed the Sensitive Assay for Mosaicism (SAM), a two-phase method for sperm mosaicism detection. In phase 1, sperm DNA undergoes deep sequencing using next-generation sequencing or nanopore-based sequencing with unique molecular identifiers (UMIs) to improve accuracy. In phase 2, PCR primers specific to UMI sequences generate amplicons for CLIA-validated Sanger sequencing, providing patient-ready results. SAM's performance was characterized and tested on semen samples from 14 participants, each with a prior offspring with a de novo pathogenic variant. SAM demonstrated a detection limit of approximately 0.005%. The UMI strategy improved sequencing accuracy on next-generation sequencing and nanopore platforms from 99.9% to >99.999%, and from 93% to >99.99%, respectively. Sperm mosaicism was identified in two tested cases: FAM111A (5.51%) and FGFR3 (0.0129%), with FGFR3 exhibiting selfish mutation validated in unrelated individuals showing varying mosaicism levels. SAM provides sensitive detection of low-level sperm mosaicism with CLIA-validated results for patients, enabling recurrence risk assessment and guiding risk mitigation strategies such as in vitro fertilization with preimplantation genetic testing for monogenic disease, sperm donation, and prenatal diagnosis.
Collapse
Affiliation(s)
- Shan Wei
- Columbia University Fertility Center, New York, New York
| | | | | | - Leah DiBianco
- Columbia University Fertility Center, New York, New York
| | - Jocelyn Chen
- Columbia University Fertility Center, New York, New York
| | - Stephanie Galloway
- Columbia University Fertility Center, New York, New York; Division of Women's Genetics, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | - Sinem Karipcin
- Columbia University Fertility Center, New York, New York
| | - Ronald Wapner
- Division of Women's Genetics, Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, New York
| | | | - Eric J Forman
- Columbia University Fertility Center, New York, New York
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Zev Williams
- Columbia University Fertility Center, New York, New York.
| |
Collapse
|
9
|
Abdallah SB, Olfson E, Cappi C, Greenspun S, Zai G, Rosário MC, Willsey AJ, Shavitt RG, Miguel EC, Kennedy JL, Richter MA, Fernandez TV. Characterizing Rare DNA Copy-Number Variants in Pediatric Obsessive-Compulsive Disorder. J Am Acad Child Adolesc Psychiatry 2025:S0890-8567(25)00160-1. [PMID: 40122455 DOI: 10.1016/j.jaac.2025.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
OBJECTIVE Pediatric obsessive-compulsive disorder (OCD) is a common neuropsychiatric disorder in which genetic factors play an important role. Recent studies have demonstrated an enrichment of rare de novo DNA single-nucleotide variants in persons with OCD compared to controls, and larger studies have examined copy-number variants (CNVs) using microarray data. Our study examines rare de novo CNVs using whole-exome sequencing (WES) data to provide additional insight into genetic factors and biological processes underlying OCD. METHOD We detected CNVs using whole-exome DNA sequencing (WES) data from 183 OCD trio families (unaffected parents and children with OCD) and 771 control families to test the hypothesis that rare de novo CNVs are enriched in persons with OCD compared to controls. Our primary analysis used the eXome-Hidden Markov Model (XHMM) to identify CNVs in silico. We performed burden analyses comparing persons with OCD vs controls and downstream biological systems analyses of CNVs in probands with OCD. We then used a second algorithm (GATK-gCNV) to confirm our primary analysis. RESULTS Our findings demonstrate a higher rate of rare de novo CNVs detected by WES in persons with OCD (0.07 CNVs per proband) compared to controls (0.005) (corrected rate ratio = 11.7 95% CI = 3.6-50.0, p = 4.00×10-6). We confirmed this enrichment using GATK-gCNV. The majority of these rare de novo CNVs in persons with OCD are predicted to be pathogenic or likely pathogenic, and an examination of genes disrupted by rare de novo CNVs in persons with OCD finds enrichment of several Gene Ontology sets. CONCLUSION This study shows for the first time an enrichment of rare de novo CNVs detected by WES in OCD, complementing previous, larger CNV studies and providing additional insight into genetic factors underlying OCD risk.
Collapse
Affiliation(s)
| | - Emily Olfson
- Yale University School of Medicine, New Haven, Connecticut
| | - Carolina Cappi
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Gwyneth Zai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - A Jeremy Willsey
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California
| | - Roseli G Shavitt
- Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Margaret A Richter
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Frederick W. Thompson Anxiety Disorders Centre, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Zare E, Hosseini ES, Azad FS, Javid A, Javazm RR, Abessi P, Montazeri F, Hoseini SM. Replicative senescence in amniotic fluid-derived mesenchymal stem cells and its impact on their immunomodulatory properties. Histochem Cell Biol 2025; 163:34. [PMID: 40042688 DOI: 10.1007/s00418-025-02364-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2025] [Indexed: 05/13/2025]
Abstract
The expansion of mesenchymal stem cells (MSCs) for clinical applications is often limited by replicative senescence, a growth arrest induced by various stresses during in vitro culture, yet its impact on the immunomodulatory properties of MSCs remains unclear. This study derived MSCs from the amniotic fluid (AF-MSCs) of seven first-trimester pregnancies, characterized them through flow cytometry, and evaluated their osteogenic differentiation potential before expanding the cells to compare immunoregulatory gene expression in proliferative and senescent states. Additionally, an assessment of the adipogenic differentiation potential of AF-MSCs from three samples was conducted following their recovery from approximately 9 months of cryopreservation, with results showing that these recovered cells retain the capacity for adipogenic differentiation. Molecular analysis revealed no significant differences in the expression of key immunoregulatory genes, such as TGFβ, IL-10, IDO, and VCAM-1, between proliferative and senescent cells, although senescent cells showed downregulation of FASL and upregulation of IL-6, COX1, and HLA-G. Markers of cell proliferation, including FOXM1 and B-MYB, were significantly downregulated in senescent cells, confirming the progression of replicative senescence. Despite expectations, the results indicated that some immunomodulatory markers remained stable or were even enhanced in senescent AF-MSCs. These findings highlight the resilience of AF-MSC immunomodulatory properties during prolonged in vitro expansion, supporting their potential for therapeutic applications despite the challenges posed by replicative senescence.
Collapse
Affiliation(s)
- Elham Zare
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Elham Sadat Hosseini
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Faezeh Sadat Azad
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Amane Javid
- Department of Biological Sciences, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Reza Rafiei Javazm
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Panteha Abessi
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Seyed Mehdi Hoseini
- Hematology and Oncology Research Center, Non-Communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
11
|
Hochberg A, Amoura L, Zhang XY, Zhang L, Dahan MH, Ao A. The correlation between blastocyst morphological parameters and chromosomal euploidy, aneuploidy and other chromosomal abnormalities following pre-implantation genetic testing-a single center retrospective study. Arch Gynecol Obstet 2025; 311:827-839. [PMID: 39878851 PMCID: PMC11920296 DOI: 10.1007/s00404-025-07968-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/19/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE To examine the association between blastocyst morphology and chromosomal status utilizing pre-implantation genetic testing for aneuploidy (PGT-A). METHODS A single-center retrospective cohort study including 169 in-vitro fertilization cycles that underwent PGT-A using Next Generation Sequencing (2017-2022). Blastocysts were morphologically scored based on Gardner and Schoolcraft's criteria. Chromosomal analysis results included: euploid; aneuploid (single or double); segmental; mosaic; and complex (≥ 3 chromosome abnormalities). We examined associations between morphological parameters and chromosomal statuses of biopsied embryos utilizing multivariate logistic regression. RESULTS Overall, 855 blastocysts underwent PGT-A (PGT-A alone: N = 804; unaffected PGT for monogenic disease (PGT-M) embryos along with PGT-A: N = 51). Of these, 826 were successfully analyzed, with 321 euploid embryos (38.86%). Various morphological parameters (embryo quality, inner cell mass (ICM), trophectoderm (TE), and expansion stage) were more frequent within the double (n = 72, 8.72%), complex (n = 97, 11.74%), mosaic (n = 139, 16.83%), and segmental aneuploidy (n = 28, 3.39%) groups, with similar associations between different morphological parameters and single aneuploidy (n = 169, 20.46%). Utilizing multivariate logistic regression, higher expansion, embryo quality, and TE and ICM grades, were associated with increased odds of euploidy (versus non-euploidy). Higher expansion was a positive predictor of single versus double aneuploidy (aOR 2.94, 95% CI 1.52-5.56, p = 0.001); and higher ICM grade was a positive predictor of single versus complex aneuploidy (aOR 2.86, 95% CI 1.15-7.12, p = 0.024). No morphological parameter was found to be associated with single versus mosaic aneuploidy. CONCLUSION Various morphological parameters are associated with euploidy and different aneuploidy statuses of pre-implantation blastocysts. These findings may aid in the selection of the assumed best chromosomally structured blastocyst for transfer when PGT-A is not performed.
Collapse
Affiliation(s)
- Alyssa Hochberg
- Department of Obstetrics and Gynecology, McGill University, 845 Rue Sherbrooke, O, Montreal, QC, 3HA 0G4, Canada.
- The Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Liliane Amoura
- Department of Obstetrics and Gynecology, McGill University, 845 Rue Sherbrooke, O, Montreal, QC, 3HA 0G4, Canada
| | - Xiao Yun Zhang
- Department of Obstetrics and Gynecology, McGill University, 845 Rue Sherbrooke, O, Montreal, QC, 3HA 0G4, Canada
| | - Li Zhang
- Department of Obstetrics and Gynecology, McGill University, 845 Rue Sherbrooke, O, Montreal, QC, 3HA 0G4, Canada
| | - Michael H Dahan
- Department of Obstetrics and Gynecology, McGill University, 845 Rue Sherbrooke, O, Montreal, QC, 3HA 0G4, Canada
| | - Asangla Ao
- Department of Obstetrics and Gynecology, McGill University, 845 Rue Sherbrooke, O, Montreal, QC, 3HA 0G4, Canada
| |
Collapse
|
12
|
Hoang TT, Scheurer ME, Lupo PJ. Overview of the etiology of childhood cancer and future directions. Curr Opin Pediatr 2025; 37:59-66. [PMID: 39699102 DOI: 10.1097/mop.0000000000001419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
PURPOSE OF REVIEW We provide an overview of the etiology of childhood cancer, the state of the literature, and highlight some opportunities for future research, including technological advancements that could be applied to etiologic studies of childhood cancer to accelerate our understanding. RECENT FINDINGS Risk factors of childhood cancer were summarized based on demographics and perinatal factors, environmental risk factors, and genetic risk factors. Overall, demographics and perinatal factors are the most well studied in relation to childhood cancer. While environmental risk factors have been implicated, more work is needed to pinpoint specific exposures, identify window(s) of susceptibility, and understand mechanisms. With genome-wide association studies (GWAS), genetic risk factors of eight childhood cancers have emerged, and opportunities remain to conduct GWAS for other cancer types and determine whether risk variants are inherited or de novo. Technological advancements that can shed light into the susceptibility of childhood cancer include metabolomics, using primary teeth as an exposure matrix, and long-read sequencing. SUMMARY The development of childhood cancer remains largely not well understood. Collaboration to increase sample size to conduct analyses by histology and/or molecular subtype and application of novel technologies will accelerate our understanding of childhood cancer.
Collapse
Affiliation(s)
- Thanh T Hoang
- Department of Pediatrics, Division of Hematology-Oncology
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Michael E Scheurer
- Department of Pediatrics, Division of Hematology-Oncology
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology-Oncology
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine
- Texas Children's Cancer and Hematology Center, Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
13
|
Chen M, Shen MC, Chang SP, Ma GC, Lee DJ, Yan A. Noninversion Variants in Sporadic Hemophilia A Originate Mostly from Females. Int J Mol Sci 2025; 26:891. [PMID: 39940661 PMCID: PMC11816929 DOI: 10.3390/ijms26030891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
F8 gene inversion variants originate in male germ cells during spermatogenesis. Our recent study revealed that de novo variants (DNVs) caused F8 noninversion variants (NIVs) in sporadic hemophilia A (HA). Here, we conducted a direct clinical determination of sex differences in the origin of sporadic HA-NIV according to the data of two new HA-NIV families, as well as of the families demonstrated in the previous study. Of the 126 registered families with HA, 23 were eligible for inclusion. We conducted a linkage analysis with F8 gene markers and an amplification refractory mutation system-quantitative polymerase chain reaction to confirm the origin of the sporadic NIVs (~0% mutant cells) or the presence of a mosaic variant, requiring further confirmation of the origin in the parent. Two sporadic DNV events were determined. One event occurred in grandparents, consisting of five maternal grandmothers and seven maternal grandfathers, who were the origins; their respective daughters became carrier mothers who gave birth to probands. The other event included 11 mothers, who were the origins exclusively; their respective sons became probands. In this study, we found that sporadic HA-NIVs originate mostly from females (16 out of 23). Our study contributes to a better understanding of the genetic pathogenesis of HA.
Collapse
Affiliation(s)
- Ming Chen
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Ching Shen
- Hemophilia Treatment and Thrombosis Center, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Shun-Ping Chang
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Gwo-Chin Ma
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Dong-Jay Lee
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Adeline Yan
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| |
Collapse
|
14
|
Dehghanbanadaki H, Jimbo M, Fendereski K, Kunisaki J, Horns JJ, Ramsay JM, Gross KX, Pastuszak AW, Hotaling JM. Transgenerational effects of paternal exposures: the role of germline de novo mutations. Andrology 2025; 13:101-118. [PMID: 38396220 DOI: 10.1111/andr.13609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/02/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Germline de novo mutations (DNMs) refer to spontaneous mutations arising during gametogenesis, resulting in genetic changes within germ cells that are subsequently transmitted to the next generation. While the impact of maternal exposures on germline DNMs has been extensively studied, more recent studies have begun to highlight the increasing importance of the effects of paternal factors. In this review, we have summarized the existing literature on how various exposures experienced by fathers affect the germline DNM burden in their spermatozoa, as well as their consequences for semen analysis parameters, pregnancy outcomes, and offspring health. A growing body of literature supports the conclusion that advanced paternal age (APA) correlates with a higher germline DNM rate in offspring. Furthermore, lifestyle choices, environmental toxins, assisted reproductive techniques (ART), and chemotherapy are associated with the accumulation of paternal DNMs in spermatozoa, with deleterious consequences for pregnancy outcomes and offspring health. Ultimately, our review highlights the clear importance of the germline DNM mode of inheritance, and the current understanding of how this is affected by various paternal factors. In addition, we explore conflicting reports or gaps of knowledge that should be addressed in future research.
Collapse
Affiliation(s)
- Hojat Dehghanbanadaki
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Masaya Jimbo
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kiarad Fendereski
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Jason Kunisaki
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Joshua J Horns
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Joemy M Ramsay
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Kelli X Gross
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - Alexander W Pastuszak
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| | - James M Hotaling
- Division of Urology, Department of Surgery, University of Utah Health, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
de Moraes FCA, Moretti NR, Sano VKT, Ngan CWT, Burbano RMR. Genomic mosaicism in colorectal cancer and polyposis syndromes: a systematic review and meta-analysis. Int J Colorectal Dis 2024; 39:201. [PMID: 39674994 DOI: 10.1007/s00384-024-04776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) and polypoid syndromes are significant public health concerns, with somatic mosaicism playing a crucial role in their genetic diversity. This study aimed to investigate the prevalence and impact of somatic mosaicism in these conditions. METHODS A search was conducted using PubMed, Scopus, and Web of Sciences to identify studies evaluating mosaicism in patients with CRC or polyposis syndromes. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to determine prevalence rates. Statistical analyses were performed using R software 4.3. RESULTS A total of 27 studies, encompassing 2272 patients, were included in the analysis. Of these, 108 patients exhibited somatic mosaicism, resulting in an overall prevalence of 8.79% (95% CI 5.1 to 14.70%, I2 = 85; p < 0.01). Subgroup analyses revealed a significantly higher prevalence of mosaicism in patients with APC mutations (OR 13.43%, 95% CI 6.36 to 26.18%, I2 = 87; p < 0.01). Additionally, mosaicism in MLH1 and MSH2 genes was observed at rates of 2.75% (95% CI 1.20 to 6.18%) and 9.69% (95% CI 2.98 to 27.24%), respectively. CONCLUSIONS Our findings support the growing recognition of mosaicism as a critical factor in CRC susceptibility and underscore the importance of incorporating mosaicism screening into routine genetic testing for at-risk patients.
Collapse
|
16
|
Santos JL, Miranda JP, Lagos CF, Cortés VA. Case Report: Concurrent de novo pathogenic variants in the LMNA gene as a cause of sporadic partial lipodystrophy. Front Genet 2024; 15:1468878. [PMID: 39669119 PMCID: PMC11634843 DOI: 10.3389/fgene.2024.1468878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024] Open
Abstract
Introduction Inherited lipodystrophies are a group of rare diseases defined by severe reduction in adipose tissue mass and classified as generalized or partial. We report a non-familial (sporadic) case of partial lipodystrophy caused by a novel genetic mechanism involving closely linked de novo pathogenic variants in the LMNA gene. Methods A female adult with partial lipodystrophy and her parents were evaluated for gene variants across the exome under different mendelian inheritance models (autosomal dominant, recessive, compound heterozygous, and X-linked) to find pathogenic variants. Body composition was assessed via dual-energy X-ray absorptiometry (DXA). Results The patient showed absence of adipose tissue in the limbs; preservation of adiposity in the face, neck, and trunk; muscular hypertrophy, hypertriglyceridemia and insulin resistance. DXA revealed a fat mass of 15.4%, with android-to-gynoid ratio, trunk/limb, and trunk/leg ratios exceeding the published upper limits of 90% reference intervals. Two heterozygous missense de novo pathogenic variants in cis within the LMNA gene were found in the proband: p.Y481H and p.K486N (NP_733821.1). These variants have functional effects and were reported in inherited Emery-Dreifuss muscular dystrophy 2 (p.Y481H) and familial partial lipodystrophy type 2 (p.K486N). Molecular modeling analyses provided additional insights into the protein instability conferred by these variants in the lamin A/C Ig-like domain. Conclusion In a case of sporadic partial lipodystrophy, we describe two concurrent de novo pathogenic variants within the same gene (LMNA) as a novel pathogenic mechanism. This finding expands the genetic and phenotypic spectrum of partial lipodystrophy and laminopathy syndromes.
Collapse
Affiliation(s)
- José L. Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Health Sciences, Institute for Sustainability and Food Chain Innovation (IS-FOOD), Public University of Navarre, Pamplona, Spain
| | - José Patricio Miranda
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Bupa Lab, Part of Bupa Chile, Santiago, Chile
| | - Carlos F. Lagos
- Chemical Biology and Drug Discovery Laboratory, Escuela de Química y Farmacia, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Centro Ciencia and Vida, Fundación Ciencia and Vida, Santiago, Chile
| | - Víctor A. Cortés
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Shojaeisaadi H, Schoenrock A, Meier MJ, Williams A, Norris JM, Palmer ND, Yauk CL, Marchetti F. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Commun Biol 2024; 7:1451. [PMID: 39506086 PMCID: PMC11541588 DOI: 10.1038/s42003-024-07140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Whole-genome sequencing studies of parent-offspring trios have provided valuable insights into the potential impact of de novo mutations (DNMs) on human health and disease. However, the molecular mechanisms that drive DNMs are unclear. Studies with multi-child families can provide important insight into the causes of inter-family variability in DNM rates but they are highly limited. We characterized 2479 de novo single nucleotide variants (SNVs) in 13 multi-child families of Mexican-American ethnicity. We observed a strong paternal age effect on validated de novo SNVs with extensive inter-family variability in the yearly rate of increase. Children of older fathers showed more C > T transitions at CpG sites than children from younger fathers. Validated SNVs were examined against one cancer (COSMIC) and two non-cancer (human germline and CRISPR-Cas 9 knockout of human DNA repair genes) mutational signature databases. These analyses suggest that inaccurate DNA mismatch repair during repair initiation and excision processes, along with DNA damage and replication errors, are major sources of human germline de novo SNVs. Our findings provide important information for understanding the potential sources of human germline de novo SNVs and the critical role of DNA mismatch repair in their genesis.
Collapse
Affiliation(s)
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Research Computing Services, Carleton University, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
18
|
Axelsson J, LeBlanc D, Shojaeisaadi H, Meier MJ, Fitzgerald DM, Nachmanson D, Carlson J, Golubeva A, Higgins J, Smith T, Lo FY, Pilsner R, Williams A, Salk J, Marchetti F, Yauk C. Frequency and spectrum of mutations in human sperm measured using duplex sequencing correlate with trio-based de novo mutation analyses. Sci Rep 2024; 14:23134. [PMID: 39379474 PMCID: PMC11461794 DOI: 10.1038/s41598-024-73587-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024] Open
Abstract
De novo mutations (DNMs) are drivers of genetic disorders. However, the study of DNMs is hampered by technological limitations preventing accurate quantification of ultra-rare mutations. Duplex Sequencing (DS) theoretically has < 1 error/billion base-pairs (bp). To determine the DS utility to quantify and characterize DNMs, we analyzed DNA from blood and spermatozoa from six healthy, 18-year-old Swedish men using the TwinStrand DS mutagenesis panel (48 kb spanning 20 genic and intergenic loci). The mean single nucleotide variant mutation frequency (MF) was 1.2 × 10- 7 per bp in blood and 2.5 × 10- 8 per bp in sperm, with the most common base substitution being C > T. Blood MF and substitution spectrum were similar to those reported in blood cells with an orthogonal method. The sperm MF was in the same order of magnitude and had a strikingly similar spectrum to DNMs from publicly available whole genome sequencing data from human pedigrees (1.2 × 10- 8 per bp). DS revealed much larger numbers of insertions and deletions in sperm over blood, driven by an abundance of putative extra-chromosomal circular DNAs. The study indicates the strong potential of DS to characterize human DNMs to inform factors that contribute to disease susceptibility and heritable genetic risks.
Collapse
Affiliation(s)
- Jonatan Axelsson
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
- Reproductive Medicine Centre, Skåne University Hospital, Malmö, Sweden.
- Department of Translational Medicine, Lund University, Malmö, Sweden.
- Department of Laboratory Medicine, Lund University, Lund, Sweden.
| | - Danielle LeBlanc
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | | | | | | | | | | | - Fang Yin Lo
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Richard Pilsner
- Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI, USA
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Jesse Salk
- TwinStrand Biosciences, Inc., Seattle, WA, USA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
19
|
Liang X, Yang S, Wang D, Knief U. Characterization and distribution of de novo mutations in the zebra finch. Commun Biol 2024; 7:1243. [PMID: 39358581 PMCID: PMC11447093 DOI: 10.1038/s42003-024-06945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Germline de novo mutations (DNMs) provide the raw material for evolution. The DNM rate varies considerably between species, sexes and chromosomes. Here, we identify DNMs in the zebra finch (Taeniopygia guttata) across 16 parent-offspring trios using two genome assemblies of different quality. Using an independent genotyping assay, we validate 82% of the 150 candidate DNMs. DNM rates are consistent between both assemblies, with estimates of 6.14 × 10-9 and 6.36 × 10-9 per site per generation. We observe a strong paternal bias in DNM rates (male-to-female ratio ɑ ≈ 4), but this bias is in transition mutations only, leading to a transition-to-transversion ratio of 3.18 and 3.57. Finally, we find that DNMs tend to be randomly distributed across chromosomes, not associated with recombination hotspots or genic regions. However, the sex chromosome chrZ shows a roughly fourfold increased DNM rate compared to autosomes, which is more than the expected increase due to chrZ spending two-thirds of its time in males. Overall, our results further enhance our understanding of DNMs in passerine songbirds.
Collapse
Affiliation(s)
- Xixi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuai Yang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daiping Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Ulrich Knief
- Evolutionary Biology & Ecology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Pande S, Majethia P, Nair K, Rao LP, Mascarenhas S, Kaur N, do Rosario MC, Neethukrishna K, Chaurasia A, Hunakunti B, Jadhav N, Xavier S, Kumar J, Bhat V, Bhavani GS, Narayanan DL, Yatheesha BL, Patil SJ, Nampoothiri S, Kamath N, Aroor S, Bhat Y R, Lewis LE, Sharma S, Bajaj S, Sankhyan N, Siddiqui S, Nayak SS, Bielas S, Girisha KM, Shukla A. De novo variants underlying monogenic syndromes with intellectual disability in a neurodevelopmental cohort from India. Eur J Hum Genet 2024; 32:1291-1298. [PMID: 38114583 PMCID: PMC7616498 DOI: 10.1038/s41431-023-01513-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023] Open
Abstract
The contribution of de novo variants as a cause of intellectual disability (ID) is well established in several cohorts reported from the developed world. However, the genetic landscape as well as the appropriate testing strategies for identification of de novo variants of these disorders remain largely unknown in low-and middle-income countries like India. In this study, we delineate the clinical and genotypic spectrum of 54 families (55 individuals) with syndromic ID harboring rare de novo variants. We also emphasize on the effectiveness of singleton exome sequencing as a valuable tool for diagnosing these disorders in resource limited settings. Overall, 46 distinct disorders were identified encompassing 46 genes with 51 single-nucleotide variants and/or indels and two copy-number variants. Pathogenic variants were identified in CREBBP, TSC2, KMT2D, MECP2, IDS, NIPBL, NSD1, RIT1, SOX10, BRWD3, FOXG1, BCL11A, KDM6B, KDM5C, SETD5, QRICH1, DCX, SMARCD1, ASXL1, ASXL3, AKT3, FBN2, TCF12, WASF1, BRAF, SMARCA4, SMARCA2, TUBG1, KMT2A, CTNNB1, DLG4, MEIS2, GATAD2B, FBXW7, ANKRD11, ARID1B, DYNC1H1, HIVEP2, NEXMIF, ZBTB18, SETD1B, DYRK1A, SRCAP, CASK, L1CAM, and KRAS. Twenty-four of these monogenic disorders have not been previously reported in the Indian population. Notably, 39 out of 53 (74%) disease-causing variants are novel. These variants were identified in the genes mainly encoding transcriptional and chromatin regulators, serine threonine kinases, lysosomal enzymes, molecular motors, synaptic proteins, neuronal migration machinery, adhesion molecules, structural proteins and signaling molecules.
Collapse
Affiliation(s)
- Shruti Pande
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Lakshmi Priya Rao
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kausthubham Neethukrishna
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ankur Chaurasia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Bhagesh Hunakunti
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Nalesh Jadhav
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sruthy Xavier
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Jeevan Kumar
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Gandham SriLakshmi Bhavani
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - B L Yatheesha
- Dheemahi Child Neurology and Development Center, Shivamogga, India
| | - Siddaramappa J Patil
- Division of Medical Genetics, Mazumdar Shaw Medical Center, Narayana Hrudayalaya Hospitals, Bangalore, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shrikiran Aroor
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ramesh Bhat Y
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leslie E Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | | | - Naveen Sankhyan
- Pediatric Neurology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Secunderabad, Hyderabad, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States of America
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Suma Genomics Private Limited, Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
21
|
Dai H, Ketkar S, Tan T, Atkinson EG, Burrage L, Worley KC, Christopher B, Lyons MA, Assassi S, Mayes MD, Lee B. Exploring the complexity of systemic sclerosis etiology by trio whole genome sequencing. Hum Mol Genet 2024; 33:1643-1647. [PMID: 38970828 PMCID: PMC11413644 DOI: 10.1093/hmg/ddae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous rare autoimmune fibrosing disorder affecting connective tissue. The etiology of systemic sclerosis is largely unknown and many genes have been suggested as susceptibility loci of modest impact by genome-wide association study (GWAS). Multiple factors can contribute to the pathological process of the disease, which makes it more difficult to identify possible disease-causing genetic alterations. In this study, we have applied whole genome sequencing (WGS) in 101 indexed family trios, supplemented with transcriptome sequencing on cultured fibroblast cells of four patients and five family controls where available. Single nucleotide variants (SNVs) and copy number variants (CNVs) were examined, with emphasis on de novo variants. We also performed enrichment test for rare variants in candidate genes previously proposed in association with systemic sclerosis. We identified 42 exonic and 34 ncRNA de novo SNV changes in 101 trios, from a total of over 6000 de novo variants genome wide. We observed higher than expected de novo variants in PRKXP1 gene. We also observed such phenomenon along with increased expression in patient group in NEK7 gene. Additionally, we also observed significant enrichment of rare variants in candidate genes in the patient cohort, further supporting the complexity/multi-factorial etiology of systemic sclerosis. Our findings identify new candidate genes including PRKXP1 and NEK7 for future studies in SSc. We observed rare variant enrichment in candidate genes previously proposed in association with SSc, which suggest more efforts should be pursued to further investigate possible pathogenetic mechanisms associated with those candidate genes.
Collapse
Affiliation(s)
- Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
- Molecular Division, Baylor Genetics, 2450 Holcombe Blvd, Houston 77021, United States
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Taotao Tan
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Elizabeth G Atkinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Lindsay Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
- Department of Genetics, Texas Children’s Hospital, 6620 Main St, Houston 77030, United States
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Brian Christopher
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
| | - Marka A Lyons
- Division of Rheumatology, University of Texas Health Science Center, 7000 Fannin St, Houston 77030, United States
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center, 7000 Fannin St, Houston 77030, United States
| | - Maureen D Mayes
- Division of Rheumatology, University of Texas Health Science Center, 7000 Fannin St, Houston 77030, United States
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston 77030, United States
- Department of Genetics, Texas Children’s Hospital, 6620 Main St, Houston 77030, United States
| |
Collapse
|
22
|
Lee Y, Gu S, Al-Hashimi HM. Insights into the A-C Mismatch Conformational Ensemble in Duplex DNA and its Role in Genetic Processes through a Structure-based Review. J Mol Biol 2024; 436:168710. [PMID: 39009073 PMCID: PMC12034297 DOI: 10.1016/j.jmb.2024.168710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024]
Abstract
Knowing the conformational ensembles formed by mismatches is crucial for understanding how they are generated and repaired and how they contribute to genomic instability. Here, we review structural and energetic studies of the A-C mismatch in duplex DNA and use the information to identify critical conformational states in its ensemble and their significance in genetic processes. In the 1970s, Topal and Fresco proposed the A-C wobble stabilized by two hydrogen bonds, one requiring protonation of adenine-N1. Subsequent NMR and X-ray crystallography studies showed that the protonated A-C wobble was in dynamic equilibrium with a neutral inverted wobble. The mismatch was shown to destabilize duplex DNA in a sequence- and pH-dependent manner by 2.4-3.8 kcal/mol and to have an apparent pKa ranging between 7.2 and 7.7. The A-C mismatch conformational repertoire expanded as structures were determined for damaged and protein-bound DNA. These structures included Watson-Crick-like conformations forming through tautomerization of the bases that drive replication errors, the reverse wobble forming through rotation of the entire nucleotide proposed to increase the fidelity of DNA replication, and the Hoogsteen base-pair forming through the flipping of the adenine base which explained the unusual specificity of DNA polymerases that bypass DNA damage. Thus, the A-C mismatch ensemble encompasses various conformational states that can be selectively stabilized in response to environmental changes such as pH shifts, intermolecular interactions, and chemical modifications, and these adaptations facilitate critical biological processes. This review also highlights the utility of existing 3D structures to build ensemble models for nucleic acid motifs.
Collapse
Affiliation(s)
- Yeongjoon Lee
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America
| | - Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, United States of America
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, United States of America.
| |
Collapse
|
23
|
do Nascimento RRNR, Quaio CRDC, Chung CH, de Moraes Vasconcelos D, Sztajnbok FR, Rosa Neto NS, Perazzio SF. Principles of clinical genetics for rheumatologists: clinical indications and interpretation of broad-based genetic testing. Adv Rheumatol 2024; 64:59. [PMID: 39143637 DOI: 10.1186/s42358-024-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in DNA sequencing technologies, especially next-generation sequencing (NGS), which is the basis for whole-exome sequencing (WES) and whole-genome sequencing (WGS), have profoundly transformed immune-mediated rheumatic disease diagnosis. Recently, substantial cost reductions have facilitated access to these diagnostic tools, expanded the capacity of molecular diagnostics and enabled the pursuit of precision medicine in rheumatology. Understanding the fundamental principles of genetics and diversity in genetic variant classification is a crucial milestone in rheumatology. However, despite the growing availability of DNA sequencing platforms, a significant number of autoinflammatory diseases (AIDs), neuromuscular disorders, hereditary collagen diseases, and monogenic bone diseases remain unsolved, and variants of uncertain significance (VUS) pose a formidable challenge to addressing these unmet needs in the coming decades. This article aims to provide an overview of the clinical indications and interpretation of comprehensive genetic testing in the medical field, addressing the related complexities and implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandro Félix Perazzio
- Disciplina de Reumatologia, Universidade Federal de Sao Paulo, Escola Paulista de Medicina, Rua Otonis, 863, Sao Paulo, SP, 04025-002, Brazil.
- Fleury Medicina e Saude, Sao Paulo, Brazil.
- Universidade de Sao Paulo Faculdade de Medicina (USP FM), Sao Paulo, Brazil.
| |
Collapse
|
24
|
Nezamuldeen L, Jafri MS. Boolean Modeling of Biological Network Applied to Protein-Protein Interaction Network of Autism Patients. BIOLOGY 2024; 13:606. [PMID: 39194544 DOI: 10.3390/biology13080606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024]
Abstract
Cellular molecules interact with one another in a structured manner, defining a regulatory network topology that describes cellular mechanisms. Genetic mutations alter these networks' pathways, generating complex disorders such as autism spectrum disorder (ASD). Boolean models have assisted in understanding biological system dynamics since Kauffman's 1969 discovery, and various analytical tools for regulatory networks have been developed. This study examined the protein-protein interaction network created in our previous publication of four ASD patients using the SPIDDOR R package, a Boolean model-based method. The aim is to examine how patients' genetic variations in INTS6L, USP9X, RSK4, FGF5, FLNA, SUMF1, and IDS affect mTOR and Wnt cell signaling convergence. The Boolean network analysis revealed abnormal activation levels of essential proteins such as β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD. These proteins affect gene expression, translation, cell adhesion, shape, and migration. Patients 1 and 2 showed consistent patterns of increased β-catenin activity and decreased MTORC1, RPS6, and eIF4E activity. However, patient 2 had an independent decrease in Cadherin and SMAD activity due to the FLNA mutation. Patients 3 and 4 have an abnormal activation of the mTOR pathway, which includes the MTORC1, RPS6, and eIF4E genes. The shared mTOR pathway behavior in these patients is explained by a shared mutation in two closely related proteins (SUMF1 and IDS). Diverse activities in β-catenin, MTORC1, RPS6, eIF4E, Cadherin, and SMAD contributed to the reported phenotype in these individuals. Furthermore, it unveiled the potential therapeutic options that could be suggested to these individuals.
Collapse
Affiliation(s)
- Leena Nezamuldeen
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Burt CH. Polygenic Indices (a.k.a. Polygenic Scores) in Social Science: A Guide for Interpretation and Evaluation. SOCIOLOGICAL METHODOLOGY 2024; 54:300-350. [PMID: 39091537 PMCID: PMC11293310 DOI: 10.1177/00811750241236482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Polygenic indices (PGI)-the new recommended label for polygenic scores (PGS) in social science-are genetic summary scales often used to represent an individual's liability for a disease, trait, or behavior based on the additive effects of measured genetic variants. Enthusiasm for linking genetic data with social outcomes and the inclusion of premade PGIs in social science datasets have facilitated increased uptake of PGIs in social science research-a trend that will likely continue. Yet, most social scientists lack the expertise to interpret and evaluate PGIs in social science research. Here, we provide a primer on PGIs for social scientists focusing on key concepts, unique statistical genetic considerations, and best practices in calculation, estimation, reporting, and interpretation. We summarize our recommended best practices as a checklist to aid social scientists in evaluating and interpreting studies with PGIs. We conclude by discussing the similarities between PGIs and standard social science scales and unique interpretative considerations.
Collapse
|
26
|
Yücel Z, Yüksel EB, Koç A. Imagawa-Matsumoto Syndrome: The First Case From Turkey. Noro Psikiyatr Ars 2024; 67:289-292. [PMID: 39258127 PMCID: PMC11382558 DOI: 10.29399/npa.28400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/23/2023] [Indexed: 09/12/2024] Open
Abstract
Imagawa-Matsumoto syndrome (IMMAS; MIM #618786) is an autosomal dominant syndrome characterized by overgrowth, dysmorphic features, musculoskeletal abnormalities, developmental delay, and intellectual disability. The first case was reported in 2017 and has subsequently been diagnosed in only another 12 patients. We also present the first IMMAS patient from Turkey. A 19-year-old female was admitted to the neurology outpatient clinic due to a behavioral disorder and intellectual disability. Her physical examination revealed macrocephaly and dysmorphic features like a round face, broad forehead, hypertelorism, and variable skeletal anomalies such as flat feet, clinodactyly, and macrocephaly. Cranial magnetic resonance imaging (MRI) showed agenesis of the corpus callosum and polymicrogyria. Chromosomal analysis results were consistent with a normal constitutional female karyotype and microarray analysis showed a de novo 1.5-MB size deletion on the long arm of chromosome 17; band q11.2 encompassing the Polycomb Repressive Complex 2 Subunit (SUZ12 gene, MIM *606245). This report will contribute to the limited information in the literature.
Collapse
Affiliation(s)
- Zeliha Yücel
- Karamanoglu Mehmetbey University Karaman Education and Research Hospital, Department of Neurology, Karaman, Turkey
| | - Emine Berrin Yüksel
- Karamanoglu Mehmetbey University, School of Medicine, Department of Medical Genetics, Karaman, Turkey
| | - Altuğ Koç
- GENTAN Genetic Diseases Evaluation Center, İzmir, Turkey
| |
Collapse
|
27
|
Buitrago-Rodríguez MY, Rangel N, Vega-Valderrama JD, Pulido-Medellín M, Rondón-Lagos M. Unraveling chromosomal and genotoxic damage in individuals occupationally exposed to coal from underground mining. Front Genet 2024; 15:1422938. [PMID: 39027885 PMCID: PMC11254797 DOI: 10.3389/fgene.2024.1422938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Purpose Coal mining is a vital sector in Colombia, contributing significantly to the nation's economy and the development of its regions. However, despite its importance, it has led to a gradual decline in the health of mine workers and nearby residents. While the adverse health effects of open-pit coal mining on exposed individuals have been well-documented in Colombia and globally, studies investigating genetic damage in underground coal miners are lacking. Methods The aim of our study was to evaluate chromosomal and genotoxic damage, in peripheral blood samples from a group of underground coal miners and residents of areas exposed to coal, in the town of Samacá, Boyacá-Colombia, and in a group of unexposed individuals by using banding and molecular cytogenetic techniques, as well as cytokinesis block micronucleus assays. Results Our results suggest that occupational exposure to coal induces chromosomal and genotoxic damage in somatic cells of underground coal miners. Chromosomal and genotoxic damage is an important step in carcinogenesis and the development of many other diseases. Our findings provide valuable insights into the effects of coal dust exposure on chromosomal integrity and genetic stability. Conclusion Our pilot study suggests that occupational exposure to coal induces chromosomal damage in underground coal miners, highlighting the importance of validating these findings with a larger sample size. Our results highlight the need to implement prevention and protection measures, as well as educational programs for underground coal miners. Characterizing and estimating exposure risks are extremely important for the safety of people exposed occupationally and environmentally to coal and its derivatives.
Collapse
Affiliation(s)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan D. Vega-Valderrama
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Martín Pulido-Medellín
- Grupo de Investigación en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
28
|
Nussinov R, Yavuz BR, Demirel HC, Arici MK, Jang H, Tuncbag N. Review: Cancer and neurodevelopmental disorders: multi-scale reasoning and computational guide. Front Cell Dev Biol 2024; 12:1376639. [PMID: 39015651 PMCID: PMC11249571 DOI: 10.3389/fcell.2024.1376639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
The connection and causality between cancer and neurodevelopmental disorders have been puzzling. How can the same cellular pathways, proteins, and mutations lead to pathologies with vastly different clinical presentations? And why do individuals with neurodevelopmental disorders, such as autism and schizophrenia, face higher chances of cancer emerging throughout their lifetime? Our broad review emphasizes the multi-scale aspect of this type of reasoning. As these examples demonstrate, rather than focusing on a specific organ system or disease, we aim at the new understanding that can be gained. Within this framework, our review calls attention to computational strategies which can be powerful in discovering connections, causalities, predicting clinical outcomes, and are vital for drug discovery. Thus, rather than centering on the clinical features, we draw on the rapidly increasing data on the molecular level, including mutations, isoforms, three-dimensional structures, and expression levels of the respective disease-associated genes. Their integrated analysis, together with chromatin states, can delineate how, despite being connected, neurodevelopmental disorders and cancer differ, and how the same mutations can lead to different clinical symptoms. Here, we seek to uncover the emerging connection between cancer, including pediatric tumors, and neurodevelopmental disorders, and the tantalizing questions that this connection raises.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
| | | | - M. Kaan Arici
- Graduate School of Informatics, Middle East Technical University, Ankara, Türkiye
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, United States
| | - Nurcan Tuncbag
- Department of Chemical and Biological Engineering, Koc University, Istanbul, Türkiye
- School of Medicine, Koc University, Istanbul, Türkiye
- Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
29
|
Kramer M, Goodwin S, Wappel R, Borio M, Offit K, Feldman DR, Stadler ZK, McCombie WR. Exploring the genetic and epigenetic underpinnings of early-onset cancers: Variant prioritization for long read whole genome sequencing from family cancer pedigrees. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601096. [PMID: 39005350 PMCID: PMC11244929 DOI: 10.1101/2024.06.27.601096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Despite significant advances in our understanding of genetic cancer susceptibility, known inherited cancer predisposition syndromes explain at most 20% of early-onset cancers. As early-onset cancer prevalence continues to increase, the need to assess previously inaccessible areas of the human genome, harnessing a trio or quad family-based architecture for variant filtration, may reveal further insights into cancer susceptibility. To assess a broader spectrum of variation than can be ascertained by multi-gene panel sequencing, or even whole genome sequencing with short reads, we employed long read whole genome sequencing using an Oxford Nanopore Technology (ONT) PromethION of 3 families containing an early-onset cancer proband using a trio or quad family architecture. Analysis included 2 early-onset colorectal cancer family trios and one quad consisting of two siblings with testicular cancer, all with unaffected parents. Structural variants (SVs), epigenetic profiles and single nucleotide variants (SNVs) were determined for each individual, and a filtering strategy was employed to refine and prioritize candidate variants based on the family architecture. The family architecture enabled us to focus on inapposite variants while filtering variants shared with the unaffected parents, significantly decreasing background variation that can hamper identification of potentially disease causing differences. Candidate d e novo and compound heterozygous variants were identified in this way. Gene expression, in matched neoplastic and pre-neoplastic lesions, was assessed for one trio. Our study demonstrates the feasibility of a streamlined analysis of genomic variants from long read ONT whole genome sequencing and a way to prioritize key variants for further evaluation of pathogenicity, while revealing what may be missing from panel based analyses.
Collapse
|
30
|
Plavskin Y, de Biase MS, Ziv N, Janská L, Zhu YO, Hall DW, Schwarz RF, Tranchina D, Siegal ML. Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects. PLoS Biol 2024; 22:e3002698. [PMID: 38950062 PMCID: PMC11244821 DOI: 10.1371/journal.pbio.3002698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/12/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of 2 common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (approximately 0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.
Collapse
Affiliation(s)
- Yevgeniy Plavskin
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Maria Stella de Biase
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Biology, Berlin, Germany
| | - Naomi Ziv
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Libuše Janská
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| | - Yuan O. Zhu
- Department of Genetics, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - David W. Hall
- Department of Genetics, University of Georgia, Athens, Georgia, United States of America
| | - Roland F. Schwarz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Institute for Computational Cancer Biology, Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Berlin Institute for the Foundations of Learning and Data (BIFOLD), Berlin, Germany
| | - Daniel Tranchina
- Department of Biology, New York University, New York, New York, United States of America
- Courant Math Institute, New York University, New York, New York, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
- Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
31
|
Kaneko S, Okada Y. Revalidation of DNA Fragmentation Analyses for Human Sperm-Measurement Principles, Comparative Standards, Calibration Curve, Required Sensitivity, and Eligibility Criteria for Test Sperm. BIOLOGY 2024; 13:484. [PMID: 39056679 PMCID: PMC11274034 DOI: 10.3390/biology13070484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
(1) Background: Double-strand breaks (DSBs) in a single nucleus are usually measured using the sperm chromatin structure assay (SCSA), sperm chromatin dispersion (SCD) test, and comet assay (CA). Mono-dimensional single-cell pulsed-field gel electrophoresis (1D-SCPFGE) and angle-modulated two- dimensional single-cell pulsed-field gel electrophoresis (2D-SCPFGE) were developed to observe DNA fragmentation in separated motile sperm. (2) Methods: Comparative standards, calibration curves, required sensitivity levels, and eligibility criteria for test sperm were set up to validate the measurement principles of these tests. (3) Results: The conventional methods overlooked the interference of nucleoproteins in their measurements. In-gel proteolysis improves the measurement accuracies of 1D- and 2D-SCPFGE. Naked DNA is suitable for comparative standards and test specimens. Moreover, several dysfunctions that might induce DNA damage are observed in the separated motile sperm. Overall, the discussion highlights the need to revisit the conventional univariable analyses based on the SCSA, SCD test, and CA. (4) Conclusions: Human infertility is a complex syndrome, and the aim of quality control in intracytoplasmic sperm injection is to identify the underlying dysfunctions remaining in the separated motile sperm that render them ineligible for injection. Multivariable analyses with special consideration to confounding factors are necessary in future cohort studies.
Collapse
Affiliation(s)
- Satoru Kaneko
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan;
- Sperm-Semen-Epididymis-Testis (SSET) Clinic, 1-5 Kanda-Iwamoto, Chiyoda, Tokyo 101-0033, Japan
| | - Yuki Okada
- Laboratory of Pathology and Development, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-0032, Japan;
| |
Collapse
|
32
|
Parsons BL, Beal MA, Dearfield KL, Douglas GR, Gi M, Gollapudi BB, Heflich RH, Horibata K, Kenyon M, Long AS, Lovell DP, Lynch AM, Myers MB, Pfuhler S, Vespa A, Zeller A, Johnson GE, White PA. Severity of effect considerations regarding the use of mutation as a toxicological endpoint for risk assessment: A report from the 8th International Workshop on Genotoxicity Testing (IWGT). ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024. [PMID: 38828778 DOI: 10.1002/em.22599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Exposure levels without appreciable human health risk may be determined by dividing a point of departure on a dose-response curve (e.g., benchmark dose) by a composite adjustment factor (AF). An "effect severity" AF (ESAF) is employed in some regulatory contexts. An ESAF of 10 may be incorporated in the derivation of a health-based guidance value (HBGV) when a "severe" toxicological endpoint, such as teratogenicity, irreversible reproductive effects, neurotoxicity, or cancer was observed in the reference study. Although mutation data have been used historically for hazard identification, this endpoint is suitable for quantitative dose-response modeling and risk assessment. As part of the 8th International Workshops on Genotoxicity Testing, a sub-group of the Quantitative Analysis Work Group (WG) explored how the concept of effect severity could be applied to mutation. To approach this question, the WG reviewed the prevailing regulatory guidance on how an ESAF is incorporated into risk assessments, evaluated current knowledge of associations between germline or somatic mutation and severe disease risk, and mined available data on the fraction of human germline mutations expected to cause severe disease. Based on this review and given that mutations are irreversible and some cause severe human disease, in regulatory settings where an ESAF is used, a majority of the WG recommends applying an ESAF value between 2 and 10 when deriving a HBGV from mutation data. This recommendation may need to be revisited in the future if direct measurement of disease-causing mutations by error-corrected next generation sequencing clarifies selection of ESAF values.
Collapse
Affiliation(s)
- Barbara L Parsons
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Marc A Beal
- Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kerry L Dearfield
- U.S. Environmental Protection Agency and U.S. Department of Agriculture, Washington, DC, USA
| | - George R Douglas
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Min Gi
- Department of Environmental Risk Assessment, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | | | - Robert H Heflich
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Michelle Kenyon
- Portfolio and Regulatory Strategy, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Alexandra S Long
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - David P Lovell
- Population Health Research Institute, St George's Medical School, University of London, London, UK
| | | | - Meagan B Myers
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | | | - Alisa Vespa
- Pharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| | - George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
33
|
Gorlov IP, Gorlova OY, Tsavachidis S, Amos CI. Strength of selection in lung tumors correlates with clinical features better than tumor mutation burden. Sci Rep 2024; 14:12732. [PMID: 38831004 PMCID: PMC11148192 DOI: 10.1038/s41598-024-63468-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
Single nucleotide substitutions are the most common type of somatic mutations in cancer genome. The goal of this study was to use publicly available somatic mutation data to quantify negative and positive selection in individual lung tumors and test how strength of directional and absolute selection is associated with clinical features. The analysis found a significant variation in strength of selection (both negative and positive) among tumors, with median selection tending to be negative even though tumors with strong positive selection also exist. Strength of selection estimated as the density of missense mutations relative to the density of silent mutations showed only a weak correlation with tumor mutation burden. In the "all histology together" analysis we found that absolute strength of selection was strongly correlated with all clinically relevant features analyzed. In histology-stratified analysis selection was strongest in small cell lung cancer. Selection in adenocarcinoma was somewhat higher compared to squamous cell carcinoma. The study suggests that somatic mutation- based quantifying of directional and absolute selection in individual tumors can be a useful biomarker of tumor aggressiveness.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA.
| | - Olga Y Gorlova
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Spyridon Tsavachidis
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, One Baylor Plaza, Mailstop: BCM451, Houston, TX, 77030, USA
| |
Collapse
|
34
|
Plavskin Y, de Biase MS, Ziv N, Janská L, Zhu YO, Hall DW, Schwarz RF, Tranchina D, Siegal ML. Spontaneous single-nucleotide substitutions and microsatellite mutations have distinct distributions of fitness effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.04.547687. [PMID: 37461506 PMCID: PMC10349969 DOI: 10.1101/2023.07.04.547687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The fitness effects of new mutations determine key properties of evolutionary processes. Beneficial mutations drive evolution, yet selection is also shaped by the frequency of small-effect deleterious mutations, whose combined effect can burden otherwise adaptive lineages and alter evolutionary trajectories and outcomes in clonally evolving organisms such as viruses, microbes, and tumors. The small effect sizes of these important mutations have made accurate measurements of their rates difficult. In microbes, assessing the effect of mutations on growth can be especially instructive, as this complex phenotype is closely linked to fitness in clonally evolving organisms. Here, we perform high-throughput time-lapse microscopy on cells from mutation-accumulation strains to precisely infer the distribution of mutational effects on growth rate in the budding yeast, Saccharomyces cerevisiae. We show that mutational effects on growth rate are overwhelmingly negative, highly skewed towards very small effect sizes, and frequent enough to suggest that deleterious hitchhikers may impose a significant burden on evolving lineages. By using lines that accumulated mutations in either wild-type or slippage repair-defective backgrounds, we further disentangle the effects of two common types of mutations, single-nucleotide substitutions and simple sequence repeat indels, and show that they have distinct effects on yeast growth rate. Although the average effect of a simple sequence repeat mutation is very small (~0.3%), many do alter growth rate, implying that this class of frequent mutations has an important evolutionary impact.
Collapse
|
35
|
Azevedo L, Amaro AP, Niza-Ribeiro J, Lopes-Marques M. Naturally occurring genetic diseases caused by de novo variants in domestic animals. Anim Genet 2024; 55:319-327. [PMID: 38323510 DOI: 10.1111/age.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/08/2024]
Abstract
With the advent of next-generation sequencing, an increasing number of cases of de novo variants in domestic animals have been reported in scientific literature primarily associated with clinically severe phenotypes. The emergence of new variants at each generation is a crucial aspect in understanding the pathology of early-onset diseases in animals and can provide valuable insights into similar diseases in humans. With the aim of collecting deleterious de novo variants in domestic animals, we searched the scientific literature and compiled reports on 42 de novo variants in 31 genes in domestic animals. No clear disease-associated phenotype has been established in humans for three of these genes (NUMB, ANKRD28 and KCNG1). For the remaining 28 genes, a strong similarity between animal and human phenotypes was recognized from available information in OMIM and OMIA, revealing the importance of comparative studies and supporting the use of domestic animals as natural models for human diseases, in line with the One Health approach.
Collapse
Affiliation(s)
- Luísa Azevedo
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Andreia P Amaro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - João Niza-Ribeiro
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
- Population Studies Department, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- EPIUnit-Epidemiology Research Unit, ISPUP-Institute of Public Health of the University of Porto, Porto, Portugal
| | - Mónica Lopes-Marques
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
36
|
Bai T, Shen Y, Yang Y, Dai S, Liu H. Maternal CHD7 gonosomal mosaicism in a fetus with CHARGE syndrome. Am J Med Genet A 2024; 194:e63491. [PMID: 38057991 DOI: 10.1002/ajmg.a.63491] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
Parental mosaicism is important in families with de novo mutations. Herein, we report a case of fetal CHARGE syndrome (CS) with a CHD7 variant inherited from maternal CHD7 gonosomal mosaicism. The variant was detected through trio-based whole-exome sequencing and Sanger sequencing. High-depth whole-exome sequencing was performed for the identification of parental mosaicism. A novel heterozygous CHD7 nonsense mutation (c.5794G>T/ p.E1932*) was detected in the tissue from the aborted fetus. The parents were wild-type, indicating that the mutation was a de novo variant. The mutation was suspected to be the cause of the fetal CS. However, high-depth whole-exome sequencing revealed maternal gonosomal mosaicism at a variant allele frequency of 3.2%-23.3%. The variant was identified in various tissues (peripheral blood, hair follicles, buccal epithelia, and pharyngeal epithelia) from the asymptomatic mother. We confirmed maternal CHD7 gonosomal mosaicism as a genetic cause of fetal CS. Our results emphasize the importance of clinical analysis in accurately determining the parents' status in detecting the CHD7 de novo variant in fetal CS, as this analysis has vital implications for evaluating the recurrence risk for genetic counseling.
Collapse
Affiliation(s)
- Ting Bai
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Joint Laboratory of Reproductive Medicine (SCU-CUHK), Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yanting Yang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Hongqian Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Inagaki N, Okano T, Kobayashi M, Fujii M, Yazaki Y, Takei Y, Kosuge H, Suzuki S, Hayashi T, Kuroda M, Satomi K. Pediatric hypertrophic cardiomyopathy caused by a novel TNNI3 variant. Hum Genome Var 2024; 11:14. [PMID: 38548731 PMCID: PMC10978967 DOI: 10.1038/s41439-024-00272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
TNNI3 is a gene that causes hypertrophic cardiomyopathy (HCM). A 14-year-old girl who was diagnosed with nonobstructive HCM presented with cardiopulmonary arrest due to ventricular fibrillation. Genetic testing revealed a novel de novo heterozygous missense variant in TNNI3, NM_000363.5:c.583A>T (p.Ile195Phe), which was determined to be the pathogenic variant. The patient exhibited progressive myocardial fibrosis, left ventricular remodeling, and life-threatening arrhythmias. Genetic testing within families is useful for risk stratification in pediatric HCM patients.
Collapse
Affiliation(s)
- Natsuko Inagaki
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan.
- Department of Clinical Genetics Center, Tokyo Medical University, Tokyo, Japan.
| | - Tomoya Okano
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | | | - Masatsune Fujii
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Yoshinao Yazaki
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Yasuyoshi Takei
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Hisanori Kosuge
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo, Japan
| | - Takeharu Hayashi
- Department of Physiology, Tokai University School of Medicine, Isehara, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Tokyo, Japan
| | - Kazuhiro Satomi
- Department of Cardiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
38
|
Li R, Ernst J. Identifying associations of de novo noncoding variants with autism through integration of gene expression, sequence and sex information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585624. [PMID: 38562739 PMCID: PMC10983996 DOI: 10.1101/2024.03.20.585624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Whole-genome sequencing (WGS) data is facilitating genome-wide identification of rare noncoding variants, while elucidating their roles in disease remains challenging. Towards this end, we first revisit a reported significant brain-related association signal of autism spectrum disorder (ASD) detected from de novo noncoding variants attributed to deep-learning and show that local GC content can capture similar association signals. We further show that the association signal appears driven by variants from male proband-female sibling pairs that are upstream of assigned genes. We then develop Expression Neighborhood Sequence Association Study (ENSAS), which utilizes gene expression correlations and sequence information, to more systematically identify phenotype-associated variant sets. Applying ENSAS to the same set of de novo variants, we identify gene expression-based neighborhoods showing significant ASD association signal, enriched for synapse-related gene ontology terms. For these top neighborhoods, we also identify chromatin states annotations of variants that are predictive of the proband-sibling local GC content differences. Our work provides new insights into associations of non-coding de novo mutations in ASD and presents an analytical framework applicable to other phenotypes.
Collapse
Affiliation(s)
- Runjia Li
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at University of California, Los Angeles, CA, USA
- Computer Science Department, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Shadrina M, Kalay Ö, Demirkaya-Budak S, LeDuc CA, Chung WK, Turgut D, Budak G, Arslan E, Semenyuk V, Davis-Dusenbery B, Seidman CE, Yost HJ, Jain A, Gelb BD. Automated Identification of Germline de novo Mutations in Family Trios: A Consensus-Based Informatic Approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584100. [PMID: 38559260 PMCID: PMC10979888 DOI: 10.1101/2024.03.08.584100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Accurate identification of germline de novo variants (DNVs) remains a challenging problem despite rapid advances in sequencing technologies as well as methods for the analysis of the data they generate, with putative solutions often involving ad hoc filters and visual inspection of identified variants. Here, we present a purely informatic method for the identification of DNVs by analyzing short-read genome sequencing data from proband-parent trios. Our method evaluates variant calls generated by three genome sequence analysis pipelines utilizing different algorithms-GATK HaplotypeCaller, DeepTrio and Velsera GRAF-exploring the assumption that a requirement of consensus can serve as an effective filter for high-quality DNVs. We assessed the efficacy of our method by testing DNVs identified using a previously established, highly accurate classification procedure that partially relied on manual inspection and used Sanger sequencing to validate a DNV subset comprising less confident calls. The results show that our method is highly precise and that applying a force-calling procedure to putative variants further removes false-positive calls, increasing precision of the workflow to 99.6%. Our method also identified novel DNVs, 87% of which were validated, indicating it offers a higher recall rate without compromising accuracy. We have implemented this method as an automated bioinformatics workflow suitable for large-scale analyses without need for manual intervention.
Collapse
Affiliation(s)
- Mariya Shadrina
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
| | - Özem Kalay
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | | | - Charles A. LeDuc
- Department of Pediatrics, Columbia University, New York, NY, USA
| | - Wendy K. Chung
- Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Deniz Turgut
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | - Gungor Budak
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | - Elif Arslan
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | | | | | - Christine E. Seidman
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - H. Joseph Yost
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| | - Amit Jain
- Velsera Inc, 529 Main St, Suite 6610, Charlestown, MA, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and the Department of Genetics and Genomic Sciences, Icahn School of Medicine, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
40
|
Mankan AK, Mankan N, de Las Heras B, Ramkissoon SH, Bodriagova O, Vidal L, Grande E, Saini KS. Bladder Cancer, Loss of Y Chromosome, and New Opportunities for Immunotherapy. Adv Ther 2024; 41:885-890. [PMID: 38198042 DOI: 10.1007/s12325-023-02758-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
Immune checkpoint inhibitors (ICI) have emerged as an important therapeutic approach for patients with cancers including bladder cancer (BC). This commentary describes a recent study that demonstrated that the loss of Y chromosome (LOY) and/or loss of specific genes on Y chromosome confers an aggressive phenotype to BC because of T cell dysfunction resulting in CD8+T cell exhaustion. Loss of expression of Y chromosome genes KDM5D and UTY was similarly associated with an unfavorable prognosis in patients with BC as these genes were partially responsible for the impaired anti-tumor immunity in LOY tumors. From a clinical perspective, the study showed that tumors with LOY may be susceptible to treatment with ICIs.
Collapse
Affiliation(s)
- Arun K Mankan
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA.
| | | | | | - Shakti H Ramkissoon
- Labcorp Oncology, Durham, NC, USA
- Wake Forest Comprehensive Cancer Center and Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Laura Vidal
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA
| | | | - Kamal S Saini
- Fortrea Inc., 8, Moore Drive, Durham, NC, 27709, USA.
- Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
41
|
Guan J, Wu X, Zhang J, Li J, Wang H, Wang Q. Global research landscape on the contribution of de novo mutations to human genetic diseases over the past 20 years: bibliometric analysis. J Neurogenet 2024; 38:9-18. [PMID: 38647210 DOI: 10.1080/01677063.2024.2335171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
As the contribution of de novo mutations (DNMs) to human genetic diseases has been gradually uncovered, analyzing the global research landscape over the past 20 years is essential. Because of the large and rapidly increasing number of publications in this field, understanding the current landscape of the contribution of DNMs in the human genome to genetic diseases remains a challenge. Bibliometric analysis provides an approach for visualizing these studies using information in published records in a specific field. This study aimed to illustrate the current global research status and explore trends in the field of DNMs underlying genetic diseases. Bibliometric analyses were performed using the Bibliometrix Package based on the R language version 4.1.3 and CiteSpace version 6.1.R2 software for publications from 2000 to 2021 indexed under the Web of Science Core Collection (WoSCC) about DNMs underlying genetic diseases on 17 September 2022. We identified 3435 records, which were published in 731 journals by 26,538 authors from 6052 institutes in 66 countries. There was an upward trend in the number of publications since 2013. The USA, China, and Germany contributed the majority of the records included. The University of Washington, Columbia University, and Baylor College of Medicine were the top-producing institutions. Evan E Eichler of the University of Washington, Stephan J Sanders of the Yale University School of Medicine, and Ingrid E Scheffer of the University of Melbourne were the most high-ranked authors. Keyword co-occurrence analysis suggested that DNMs in neurodevelopmental disorders and intellectual disabilities were research hotspots and trends. In conclusion, our data show that DNMs have a significant effect on human genetic diseases, with a noticeable increase in annual publications over the last 5 years. Furthermore, potential hotspots are shifting toward understanding the causative role and clinical interpretation of newly identified or low-frequency DNMs observed in patients.
Collapse
Affiliation(s)
- Jing Guan
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Xiaonan Wu
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Jiao Zhang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Jin Li
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Hongyang Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| | - Qiuju Wang
- Senior Department of Otolaryngology-Head & Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- State Key Laboratory of Hearing and Balance Science, Beijing, PR China
| |
Collapse
|
42
|
Strafella C, Colantoni L, Megalizzi D, Trastulli G, Piorgo EP, Primiano G, Sancricca C, Ricci G, Siciliano G, Caltagirone C, Filosto M, Tasca G, Ricci E, Cascella R, Giardina E. Characterization of D4Z4 alleles and assessment of de novo cases in Facioscapulohumeral dystrophy (FSHD) in a cohort of Italian families. Clin Genet 2024; 105:335-339. [PMID: 38041579 DOI: 10.1111/cge.14466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease, although 10%-30% of cases are sporadic. However, this percentage may include truly de novo patients (carrying a reduced D4Z4 allele that is not present in either of the parents) and patients with apparently sporadic disease resulting from mosaicism, non-penetrance, or complex genetic situations in either patients or parents. In this study, we characterized the D4Z4 Reduced Alleles (DRA) and evaluated the frequency of truly de novo cases in FSHD1 in a cohort of DNA samples received consecutively for FSHD-diagnostic from 100 Italian families. The D4Z4 testing revealed that 60 families reported a DRA compatible with FSHD1 (1-10 RU). The DRA co-segregated with the disease in most cases. Five families with truly de novo cases were identified, suggesting that this condition may be slightly lower (8%) than previously reported. In addition, D4Z4 characterization in the investigated families showed 4% of mosaic cases and 2% with translocations. This study further highlighted the importance of performing family studies for clarifying apparently sporadic FSHD cases, with significant implications for genetic counseling, diagnosis, clinical management, and procreative choices for patients and families.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Guido Primiano
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Cristina Sancricca
- Neurofisiopathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Massimiliano Filosto
- Department of Clinical and Experimental Sciences, University of Brescia, NeMO-Brescia Clinical Center for Neuromuscular Diseases, Brescia, Italy
| | - Giorgio Tasca
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle Upon Tyne, UK
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedicine and Prevention, Medical Genetics Laboratory, Tor Vergata University, Rome, Italy
| |
Collapse
|
43
|
Lopes-Marques M, Mort M, Carneiro J, Azevedo A, Amaro AP, Cooper DN, Azevedo L. Meta-analysis of 46,000 germline de novo mutations linked to human inherited disease. Hum Genomics 2024; 18:20. [PMID: 38395944 PMCID: PMC10885371 DOI: 10.1186/s40246-024-00587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND De novo mutations (DNMs) are variants that occur anew in the offspring of noncarrier parents. They are not inherited from either parent but rather result from endogenous mutational processes involving errors of DNA repair/replication. These spontaneous errors play a significant role in the causation of genetic disorders, and their importance in the context of molecular diagnostic medicine has become steadily more apparent as more DNMs have been reported in the literature. In this study, we examined 46,489 disease-associated DNMs annotated by the Human Gene Mutation Database (HGMD) to ascertain their distribution across gene and disease categories. RESULTS Most disease-associated DNMs reported to date are found to be associated with developmental and psychiatric disorders, a reflection of the focus of sequencing efforts over the last decade. Of the 13,277 human genes in which DNMs have so far been found, the top-10 genes with the highest proportions of DNM relative to gene size were H3-3 A, DDX3X, CSNK2B, PURA, ZC4H2, STXBP1, SCN1A, SATB2, H3-3B and TUBA1A. The distribution of CADD and REVEL scores for both disease-associated DNMs and those mutations not reported to be de novo revealed a trend towards higher deleteriousness for DNMs, consistent with the likely lower selection pressure impacting them. This contrasts with the non-DNMs, which are presumed to have been subject to continuous negative selection over multiple generations. CONCLUSION This meta-analysis provides important information on the occurrence and distribution of disease-associated DNMs in association with heritable disease and should make a significant contribution to our understanding of this major type of mutation.
Collapse
Affiliation(s)
- Mónica Lopes-Marques
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Matthew Mort
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - João Carneiro
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - António Azevedo
- CHUdSA-Centro Hospitalar Universitário de Santo António, Porto, Portugal
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - Andreia P Amaro
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, UK
| | - Luísa Azevedo
- UMIB-Unit for Multidisciplinary Research in Biomedicine, ICBAS - School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal.
- ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
44
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
45
|
Chen M, Shen MC, Chang SP, Ma GC, Lee DJ, Yan A. De Novo Noninversion Variants Implicated in Sporadic Hemophilia A: A Variant Origin and Timing Study. Int J Mol Sci 2024; 25:1763. [PMID: 38339041 PMCID: PMC10855912 DOI: 10.3390/ijms25031763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Sporadic hemophilia A (HA) enables the persistence of HA in the population. F8 gene inversion originates mainly in male germ cells during meiosis. To date, no studies have shown the origin and timing of HA sporadic noninversion variants (NIVs); herein, we assume that HA-sporadic NIVs are generated as a de novo variant. Of the 125 registered families with HA, 22 were eligible for inclusion. We conducted a linkage analysis using F8 gene markers and amplification refractory mutation system-quantitative polymerase chain reaction to confirm the origin of the sporadic NIVs (~0% mutant cells) or the presence of a mosaic variant, which requires further confirmation of the origin in the parent. Nine mothers, four maternal grandmothers, and six maternal grandfathers were confirmed to be the origin of sporadic NIVs, which most likely occurred in the zygote within the first few cell divisions and in single sperm cells, respectively. Three mothers had mosaic variants, which most likely occurred early in postzygotic embryogenesis. All maternal grandparents were free from sporadic NIV. In conclusion, F8 NIVs in sporadic HA were found to be caused primarily by de novo variants. Our studies are essential for understanding the genetic pathogenesis of HA and improving current genetic counseling.
Collapse
Affiliation(s)
- Ming Chen
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
- Department of Obstetrics and Gynecology, Changhua Christian Hospital, Changhua 500, Taiwan
- Department of Medical Genetics National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Ching Shen
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Hemophilia Treatment and Thrombosis Center, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Shun-Ping Chang
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Gwo-Chin Ma
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Dong-Jay Lee
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| | - Adeline Yan
- Department of Genomic Medicine, Changhua Christian Hospital, Changhua 500, Taiwan; (M.C.); (S.-P.C.); (G.-C.M.); (D.-J.L.); (A.Y.)
| |
Collapse
|
46
|
Brignola C, Volorio S, De Vecchi G, Zaffaroni D, Dall’Olio V, Mariette F, Sardella D, Capra F, Signoroni S, Rausa E, Vitellaro M, Pensotti V, Ricci MT. De novo germline pathogenic variant in Lynch Syndrome: A rare event or the tip of the iceberg? TUMORI JOURNAL 2024; 110:69-73. [PMID: 37691472 PMCID: PMC10851626 DOI: 10.1177/03008916231197113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
Lynch Syndrome is an autosomal dominant cancer predisposition syndrome caused by germline pathogenic variants or epimutation in one of the DNA mismatch repair genes. De novo pathogenic variants in mismatch repair genes have been described as a rare event in Lynch Syndrome (1-5%), although the prevalence of de novo pathogenic variants in Lynch Syndrome is probably underestimated. The de novo pathogenic variant was identified in a 26-year-old woman diagnosed with an adenocarcinoma of the caecum with mismatch repair protein deficiency at immunohistochemistry and a synchronous neuroendocrine tumor of the appendix with normal expression of mismatch repair proteins. DNA testing revealed deletion of exon 6 of the MLH1 gene. It appeared to be a de novo event, as the deletion was not detected in the patient's parents. The presence of a mosaicism in the patient was excluded and haplotype analysis demonstrated the paternal origin of the chromosome harboring the deletion. The de novo deletion probably originated either from a very early postzygotic or a single prezygotic mutational event, or from a gonadal mosaicism. In conclusion, the identification of de novo pathogenic variants is crucial to allow proper genetic counseling and appropriate management of the patient's family.
Collapse
Affiliation(s)
- Clorinda Brignola
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sara Volorio
- Cancer Genetics Test Laboratory, Cogentech s.r.l. Società Benefit a Socio Unico, Milan, Italy
| | - Giovanna De Vecchi
- Cancer Genetics Test Laboratory, Cogentech s.r.l. Società Benefit a Socio Unico, Milan, Italy
| | - Daniela Zaffaroni
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valentina Dall’Olio
- Cancer Genetics Test Laboratory, Cogentech s.r.l. Società Benefit a Socio Unico, Milan, Italy
| | - Frederique Mariette
- Cancer Genetics Test Laboratory, Cogentech s.r.l. Società Benefit a Socio Unico, Milan, Italy
| | - Domenico Sardella
- Cancer Genetics Test Laboratory, Cogentech s.r.l. Società Benefit a Socio Unico, Milan, Italy
| | - Fabio Capra
- Cancer Genetics Test Laboratory, Cogentech s.r.l. Società Benefit a Socio Unico, Milan, Italy
| | - Stefano Signoroni
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Emanuele Rausa
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Vitellaro
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Pensotti
- Cancer Genetics Test Laboratory, Cogentech s.r.l. Società Benefit a Socio Unico, Milan, Italy
| | - Maria Teresa Ricci
- Unit of Hereditary Digestive Tract Tumors, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
47
|
Arango-Ibañez JP, Parra-Lara LG, Zambrano ÁR, Rodríguez-Rojas LX. Li-Fraumeni syndrome presenting with de novo TP53 mutation, severe phenotype and advanced paternal age: a case report. Hered Cancer Clin Pract 2024; 22:1. [PMID: 38238849 PMCID: PMC10797758 DOI: 10.1186/s13053-023-00272-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) is an autosomal dominant hereditary cancer syndrome caused by pathogenic variants in the gene TP53. This gene codes for the P53 protein, a crucial player in genomic stability, which functions as a tumor suppressor gene. Individuals with LFS frequently develop multiple primary tumors at a young age, such as soft tissue sarcomas, breast cancer, and brain tumors. CASE PRESENTATION A 38 years-old female with a history of femur osteosarcoma, ductal carcinoma of the breast, high-grade breast sarcoma, pleomorphic sarcoma of the left upper limb, infiltrating lobular carcinoma of the breast, gastric adenocarcinoma, leiomyosarcoma of the right upper limb, and high-grade pleomorphic renal sarcoma. Complete molecular sequencing of the TP53 gene showed c.586 C > T (p.R196X) in exon 6, which is a nonsense mutation that produces a shorter and malfunctioning P53. Family history includes advanced father's age at the time of conception (75 years), which has been associated with an increased risk of de novo germline mutations. The patient had seven paternal half-siblings with no cancer history. The patient received multiple treatments including surgery, systemic therapy, and radiotherapy, but died at the age of 38. CONCLUSIONS Advanced paternal age is a risk factor to consider when hereditary cancer syndrome is suspected. Early detection of hereditary cancer syndromes and their multi-disciplinary surveillance and treatment is important to improve clinical outcomes for these patients. Further investigation of the relationship between the pathogenic variant of TP53 and its phenotype may guide the stratification of surveillance and treatment.
Collapse
Affiliation(s)
- Juan Pablo Arango-Ibañez
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
- Centro de Investigaciones Clínicas (CIC), Fundación Valle del Lili, Cali, Colombia
| | - Luis Gabriel Parra-Lara
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
- Centro de Investigaciones Clínicas (CIC), Fundación Valle del Lili, Cali, Colombia
| | - Ángela R Zambrano
- Servicio de Hematología & Oncología Clínica, Departamento de Medicina Interna, Fundación Valle del Lili, Cali, Colombia
| | - Lisa Ximena Rodríguez-Rojas
- Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia.
- Servicio de Genética, Fundación Valle del Lili, Cra. 98 #18-49, Cali, Valle del Cauca, 760032, Colombia.
| |
Collapse
|
48
|
Hosseini Nami A, Kabiri M, Zafarghandi Motlagh F, Shirzadeh T, Bagherian H, Zeinali R, Karimi A, Zeinali S. Identification and in silico structural analysis for the first de novo mutation in the cystic fibrosis transmembrane conductance regulator protein in Iran: case report and developmental insight using microsatellite markers. Ther Adv Respir Dis 2024; 18:17534666241253990. [PMID: 38904297 PMCID: PMC11193346 DOI: 10.1177/17534666241253990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 06/22/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by the inheritance of two mutant cystic fibrosis transmembrane conductance regulator (CFTR) alleles, one from each parent. Autosomal recessive disorders are rarely associated with germline mutations or mosaicism. Here, we propose a case of paternal germline mutation causing CF. The subject also had an identifiable maternal mutant allele. We identified the compound heterozygous variants in the proband through Sanger sequencing, and in silico studies predicted functional effects on the protein. Also, short tandem repeat markers revealed the de novo nature of the mutation. The maternal mutation in the CFTR gene was c.1000C > T. The de novo mutation was c.178G > A, p.Glu60Lys. This mutation is located in the lasso motif of the CFTR protein and, according to in silico structural analysis, disrupts the interaction of the lasso motif and R-domain, thus influencing protein function. This first reported case of de novo mutation in Asia has notable implications for molecular diagnostics, genetic counseling, and understanding the genetic etiology of recessive disorders in the Iranian population.
Collapse
Affiliation(s)
- Amin Hosseini Nami
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Tina Shirzadeh
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Hamideh Bagherian
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
| | - Razie Zeinali
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), Tehran, Iran
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Ali Karimi
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Sirous Zeinali
- Dr. Zeinali’s Medical Genetics Lab, Kawsar Human Genetics Research Center (KHGRC), No. 41, Irna St., Valiasr St., Tehran, Iran
| |
Collapse
|
49
|
Harraz OF, Delpire E. Recent insights into channelopathies. Physiol Rev 2024; 104:23-31. [PMID: 37561136 DOI: 10.1152/physrev.00022.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023] Open
Affiliation(s)
- Osama F Harraz
- Department of Pharmacology, Larner College of Medicine, Vermont Center for Cardiovascular and Brain Health, University of Vermont, Burlington, Vermont, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical School, Nashville, Tennessee, United States
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical School, Nashville, Tennessee, United States
| |
Collapse
|
50
|
Obiorah IE, Upadhyaya KD, Calvo KR. Germline Predisposition to Myeloid Neoplasms: Diagnostic Concepts and Classifications. Clin Lab Med 2023; 43:615-638. [PMID: 37865507 DOI: 10.1016/j.cll.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
Molecular and sequencing advances have led to substantial breakthroughs in the discovery of new genes and inherited mutations associated with increased risk of developing myeloid malignancies. Many of the same germline mutated genes are also drivers of malignancy in sporadic cancer. Recognition of myeloid malignancy associated with germline mutations is essential for proper therapy, disease surveillance, informing related donor selection for hematopoietic stem cell transplantation, and genetic counseling of the patient and affected family members. Some germline mutations are associated with syndromic features that precede the development of malignancy; however, penetrance may be highly variable leading to masking of the syndromic phenotype and/or inherited etiology.
Collapse
Affiliation(s)
- Ifeyinwa E Obiorah
- Department of Pathology, Division of Hematopathology, University of Virginia Health, Charlottesville, VA, USA
| | - Kalpana D Upadhyaya
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Katherine R Calvo
- Hematology Section, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA; Myeloid Malignancies Program, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|