1
|
Castroverde CDM, Kuan C, Kim JH. Plant immune resilience to a changing climate: molecular insights and biotechnological roadmaps. Genome 2025; 68:1-13. [PMID: 39499908 DOI: 10.1139/gen-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Successful resistance to disease-causing pathogens is underpinned by properly regulated immune signalling and defence responses in plants. The plant immune system is controlled at multiple levels of gene and protein regulation-from chromatin-associated epigenetic processes to protein post-translational modifications. Optimal fine-tuning of plant immune signalling and responses is important to prevent plant disease development, which is being exacerbated by a globally changing climate. In this review, we focus on how changing climatic factors mechanistically intercept plant immunity at different levels of regulation (chromatin, transcriptional, post-transcriptional, translational, and post-translational). We specifically highlight recent studies that have provided molecular insights into critically important climate-sensitive nodes and mechanisms of the plant immune system. We then propose several potential future directions to build climate-resilient plant disease resistance using cutting-edge biotechnology. Overall, this conceptual understanding and promising biotechnological advances provide a foundational platform towards novel approaches to engineer plant immune resilience.
Collapse
Affiliation(s)
| | - Chi Kuan
- Howard Hughes Medical Institute, Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jong Hum Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
2
|
Soni KK, Gurjar K, Ranjan A, Sinha S, Srivastava M, Verma V. Post-translational modifications control the signal at the crossroads of plant-pathogen interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6957-6979. [PMID: 39177255 DOI: 10.1093/jxb/erae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
The co-evolution of plants and pathogens has enabled them to 'outsmart' each other by promoting their own defence responses and suppressing those of the other. While plants are reliant on their sophisticated immune signalling pathways, pathogens make use of effector proteins to achieve the objective. This entails rapid regulation of underlying molecular mechanisms for prompt induction of associated signalling events in both plants as well as pathogens. The past decade has witnessed the emergence of post-translational modification (PTM) of proteins as a key a factor in modulating cellular responses. The ability of PTMs to expand the functional diversity of the proteome and induce rapid changes at the appropriate time enables them to play crucial roles in the regulation of plant-pathogen interactions. Therefore, this review will delve into the intricate interplay of five major PTMs involved in plant defence and pathogen countermeasures. We discuss how plants employ PTMs to fortify their immune networks, and how pathogen effectors utilize/target host modification systems to gain entry into plants and cause disease. We also emphasize the need for identification of novel PTMs and propose the use of PTM pathways as potential targets for genome editing approaches.
Collapse
Affiliation(s)
- Kamlesh Kumar Soni
- Department of Biotechnology, AKS University, Satna, Madhya Pradesh-485001, India
| | - Kishan Gurjar
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Aastha Ranjan
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Shashank Sinha
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
| | - Moumita Srivastava
- Plant Biotechnology and Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Thiruvananthapuram, Kerala-695014, India
| | - Vivek Verma
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Kishangarh, Ajmer, Rajasthan-305817, India
- Plant Biotechnology Department, Gujarat Biotechnology University, Near Gujarat International Finance Tec City, Gandhinagar, Gujarat-382355, India
| |
Collapse
|
3
|
Wei C, Wang C, Zhang X, Huang W, Xing M, Han C, Lei C, Zhang Y, Zhang X, Cheng K, Zhang X. Histone deacetylase GhHDA5 negatively regulates Verticillium wilt resistance in cotton. PLANT PHYSIOLOGY 2024; 196:2918-2935. [PMID: 39276362 DOI: 10.1093/plphys/kiae490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024]
Abstract
Verticillium wilt (VW) caused by Verticillium dahliae (V. dahliae) is one of the most destructive diseases in cotton (Gossypium spp.). Histone acetylation plays critical roles in plant development and adaptive responses to biotic and abiotic stresses. However, the relevance of histone acetylation in cotton VW resistance remains largely unclear. Here, we identified histone deacetylase 5 (GhHDA5) from upland cotton (Gossypium hirsutum L.), as a negative regulator of VW resistance. GhHDA5 expression was responsive to V. dahliae infection. Silencing GhHDA5 in upland cotton led to improved resistance to V. dahliae, while heterologous expression of GhHDA5 in Arabidopsis (Arabidopsis thaliana) compromised V. dahliae tolerance. GhHDA5 repressed the expression of several lignin biosynthesis-related genes, such as 4-coumarate:CoA ligase gene Gh4CL3 and ferulate 5-hydroxylase gene GhF5H, through reducing the acetylation level of histone H3 lysine 9 and 14 (H3K9K14ac) at their promoter regions, thereby resulting in an increased deposition of lignin, especially S monomers, in the GhHDA5-silenced cotton plants. The silencing of GhF5H impaired cotton VW tolerance. Additionally, the silencing of GhHDA5 also promoted the production of reactive oxygen species (ROS), elevated the expression of several pathogenesis-related genes (PRs), and altered the content and signaling of the phytohormones salicylic acid (SA), jasmonic acid (JA), and strigolactones (SLs) after V. dahliae infection. Taken together, our findings suggest that GhHDA5 negatively regulates cotton VW resistance through modulating disease-induced lignification and the ROS- and phytohormone-mediated defense response.
Collapse
Affiliation(s)
- Chunyan Wei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chaofan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Weiyi Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Minghui Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chunyan Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Cangbao Lei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Youpeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiangyu Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
4
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
5
|
An J, Brik Chaouche R, Pereyra-Bistraín LI, Zalzalé H, Wang Q, Huang Y, He X, Dias Lopes C, Antunez-Sanchez J, Bergounioux C, Boulogne C, Dupas C, Gillet C, Pérez-Pérez JM, Mathieu O, Bouché N, Fragkostefanakis S, Zhang Y, Zheng S, Crespi M, Mahfouz MM, Ariel F, Gutierrez-Marcos J, Raynaud C, Latrasse D, Benhamed M. An atlas of the tomato epigenome reveals that KRYPTONITE shapes TAD-like boundaries through the control of H3K9ac distribution. Proc Natl Acad Sci U S A 2024; 121:e2400737121. [PMID: 38968127 PMCID: PMC11252963 DOI: 10.1073/pnas.2400737121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
In recent years, the exploration of genome three-dimensional (3D) conformation has yielded profound insights into the regulation of gene expression and cellular functions in both animals and plants. While animals exhibit a characteristic genome topology defined by topologically associating domains (TADs), plants display similar features with a more diverse conformation across species. Employing advanced high-throughput sequencing and microscopy techniques, we investigated the landscape of 26 histone modifications and RNA polymerase II distribution in tomato (Solanum lycopersicum). Our study unveiled a rich and nuanced epigenetic landscape, shedding light on distinct chromatin states associated with heterochromatin formation and gene silencing. Moreover, we elucidated the intricate interplay between these chromatin states and the overall topology of the genome. Employing a genetic approach, we delved into the role of the histone modification H3K9ac in genome topology. Notably, our investigation revealed that the ectopic deposition of this chromatin mark triggered a reorganization of the 3D chromatin structure, defining different TAD-like borders. Our work emphasizes the critical role of H3K9ac in shaping the topology of the tomato genome, providing valuable insights into the epigenetic landscape of this agriculturally significant crop species.
Collapse
Affiliation(s)
- Jing An
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Rim Brik Chaouche
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Leonardo I. Pereyra-Bistraín
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
| | - Hugo Zalzalé
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
| | - Qingyi Wang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Xiaoning He
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Chloé Dias Lopes
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | | | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Claire Boulogne
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Cynthia Dupas
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | - Cynthia Gillet
- Imagerie-Gif, Electron Microscopy Facility, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette91198, France
| | | | - Olivier Mathieu
- Institute of Genetics Reproduction and Development (iGReD), Université Clermont Auvergne, CNRS, Inserm, Clermont-FerrandF-63000, France
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles78000, France
| | | | - Yijing Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai200438, China
| | - Shaojian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou310058, China
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal23955-6900, Saudi Arabia
| | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, SantaFe 3000, Argentina
| | | | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay91405, France
- Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-YvetteF-91190, France
- Institut Universitaire de France, Orsay, Gif-sur-Yvette91190, France
| |
Collapse
|
6
|
Hou J, Xiao H, Yao P, Ma X, Shi Q, Yang J, Hou H, Li L. Unveiling the mechanism of broad-spectrum blast resistance in rice: The collaborative role of transcription factor OsGRAS30 and histone deacetylase OsHDAC1. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1740-1756. [PMID: 38294722 PMCID: PMC11123394 DOI: 10.1111/pbi.14299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/15/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Rice blast, caused by Magnaporthe oryzae, significantly impacts grain yield, necessitating the identification of broad-spectrum resistance genes and their functional mechanisms for disease-resistant crop breeding. Here, we report that rice with knockdown OsHDAC1 gene expression displays enhanced broad-spectrum blast resistance without effects on plant height and tiller numbers compared to wild-type rice, while rice overexpressing OsHDAC1 is more susceptible to M. oryzae. We identify a novel blast resistance transcription factor, OsGRAS30, which genetically acts upstream of OsHDAC1 and interacts with OsHDAC1 to suppress its enzymatic activity. This inhibition increases the histone H3K27ac level, thereby boosting broad-spectrum blast resistance. Integrating genome-wide mapping of OsHDAC1 and H3K27ac targets with RNA sequencing analysis unveils how OsHDAC1 mediates the expression of OsSSI2, OsF3H, OsRLR1 and OsRGA5 to regulate blast resistance. Our findings reveal that the OsGRAS30-OsHDAC1 module is critical to rice blast control. Therefore, targeting either OsHDAC1 or OsGRAS30 offers a promising approach for enhancing crop blast resistance.
Collapse
Affiliation(s)
- Jiaqi Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Huangzhuo Xiao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Xiaoci Ma
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Qipeng Shi
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Jin Yang
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Haoli Hou
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| | - Lijia Li
- State Key Laboratory of Hybrid Rice, College of Life SciencesWuhan UniversityWuhanChina
| |
Collapse
|
7
|
Liu X, Cheng W, Yao P, Ren K, Wang Y, Sun Y, Hou X, Lu L, Chen X. Conserved serine phosphorylation regulates histone deacetylase activity in Arabidopsis and humans. PLANT PHYSIOLOGY 2024; 194:2017-2021. [PMID: 37966963 DOI: 10.1093/plphys/kiad587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/02/2023] [Indexed: 11/17/2023]
Abstract
Conserved serine phosphorylation regulates histone deacetylase activity in Arabidopsis and humans
Collapse
Affiliation(s)
- Xiaojing Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Weijia Cheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Peng Yao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Kexin Ren
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yu Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Yingnan Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xin Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Li Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
8
|
Bajpai SK, Nisha, Pandita S, Bahadur A, Verma PC. Recent advancements in the role of histone acetylation dynamics to improve stress responses in plants. Mol Biol Rep 2024; 51:413. [PMID: 38472555 DOI: 10.1007/s11033-024-09300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
In eukaryotes, transcriptional regulation is determined by the DNA sequence and is facilitated through sophisticated and complex chromatin alterations and histone remodelling. Recent research has shown that the histone acetylation dynamic, an intermittent and reversible substitution, constitutes a prerequisite for chromatin modification. These changes in chromatin structure modulate genome-wide and specific changes in response to external and internal cues like cell differentiation, development, growth, light temperature, and biotic stresses. Histone acetylation dynamics also control the cell cycle. HATs and HDACs play a critical role in gene expression modulation during plant growth and response to environmental circumstances. It has been well established that HATs and HDACs interact with various distinct transcription factors and chromatin-remodelling proteins (CRPs) involved in the transcriptional regulation of several developmental processes. This review explores recent research on histone acyltransferases and histone deacetylases, mainly focusing on their involvement in plant biotic stress responses. Moreover, we also emphasized the research gaps that must be filled to fully understand the complete function of histone acetylation dynamics during biotic stress responses in plants. A thorough understanding of histone acetylation will make it possible to enhance tolerance against various kinds of stress and decrease yield losses in many crops.
Collapse
Affiliation(s)
- Sanjay Kumar Bajpai
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Nisha
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shivali Pandita
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Anand Bahadur
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Praveen C Verma
- Molecular Biology & Biotechnology Division, CSIR-National Botanical Research Institute, (Council of Scientific and Industrial Research) Rana Pratap Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
9
|
Singh K, Sharma D, Bhagat PK, Tayyeba S, Noryang S, Sinha AK. Phosphorylation of AGO1a by MAP kinases is required for miRNA mediated resistance against Xanthomonas oryzae pv. oryzae infection in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111967. [PMID: 38154578 DOI: 10.1016/j.plantsci.2023.111967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/15/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
Bacterial leaf blight is a devastating disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which causes severe crop loss in rice. The molecular mechanism that initiates defense against such pathogens remains unexplored. Reports have suggested crucial role of several miRNAs in regulating immune responses in plants. Argonaute (AGO) proteins have been implicated in imparting immunity against pathogens by using small RNAs as guide molecules. Here, we show that phosphorylation of rice AGO1a by MAP kinases is required for miRNA expression regulation during Xoo infection. AGO1a is induced in response to pathogen infection and is under the control of SA signaling pathway. The pathogen responsive MAP kinases MPK3, MPK4 and MPK6, interact with AGO1a in planta and can phosphorylate the protein in vitro. Overexpression of AGO1a extends disease resistance against Xoo in rice and leads to a higher accumulation of miRNAs. Conversely, overexpression of a non phosphorylatable mutant protein aggravates disease susceptibility and remarkably suppresses the miRNA expression levels. At a molecular level, phosphorylation of AGO1a by MAP kinase is required for increased accumulation of miRNAs during pathogen challenge. Taken together, the data suggests that OsAGO1a is a direct phosphorylation target of MAP kinases and this phosphorylation is crucial for its role in imparting disease resistance.
Collapse
Affiliation(s)
- Kirti Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepika Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prakash Kumar Bhagat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Sumaira Tayyeba
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA
| | - Stanzin Noryang
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; Biochemistry Department, Elizer Joldan Memorial College, UT Ladakh 194101, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
10
|
Julian R, Patrick RM, Li Y. Organ-specific characteristics govern the relationship between histone code dynamics and transcriptional reprogramming during nitrogen response in tomato. Commun Biol 2023; 6:1225. [PMID: 38044380 PMCID: PMC10694154 DOI: 10.1038/s42003-023-05601-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/17/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental stimuli trigger rapid transcriptional reprogramming of gene networks. These responses occur in the context of the local chromatin landscape, but the contribution of organ-specific dynamic chromatin modifications in responses to external signals remains largely unexplored. We treated tomato seedlings with a supply of nitrate and measured the genome-wide changes of four histone marks, the permissive marks H3K27ac, H3K4me3, and H3K36me3 and repressive mark H3K27me3, in shoots and roots separately, as well as H3K9me2 in shoots. Dynamic and organ-specific histone acetylation and methylation were observed at functionally relevant gene loci. Integration of transcriptomic and epigenomic datasets generated from the same organ revealed largely syngenetic relations between changes in transcript levels and histone modifications, with the exception of H3K27me3 in shoots, where an increased level of this repressive mark is observed at genes activated by nitrate. Application of a machine learning approach revealed organ-specific rules regarding the importance of individual histone marks, as H3K36me3 is the most successful mark in predicting gene regulation events in shoots, while H3K4me3 is the strongest individual predictor in roots. Our integrated study substantiates a view that during plant environmental responses, the relationships between histone code dynamics and gene regulation are highly dependent on organ-specific contexts.
Collapse
Affiliation(s)
- Russell Julian
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ryan M Patrick
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA
| | - Ying Li
- Department of Horticulture & Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
11
|
Xie SS, Duan CG. Epigenetic regulation of plant immunity: from chromatin codes to plant disease resistance. ABIOTECH 2023; 4:124-139. [PMID: 37581024 PMCID: PMC10423193 DOI: 10.1007/s42994-023-00101-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 08/16/2023]
Abstract
Facing a deteriorating natural environment and an increasing serious food crisis, bioengineering-based breeding is increasing in importance. To defend against pathogen infection, plants have evolved multiple defense mechanisms, including pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI). A complex regulatory network acts downstream of these PTI and ETI pathways, including hormone signal transduction and transcriptional reprogramming. In recent years, increasing lines of evidence show that epigenetic factors act, as key regulators involved in the transcriptional reprogramming, to modulate plant immune responses. Here, we summarize current progress on the regulatory mechanism of DNA methylation and histone modifications in plant defense responses. In addition, we also discuss the application of epigenetic mechanism-based resistance strategies in plant disease breeding.
Collapse
Affiliation(s)
- Si-Si Xie
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
12
|
Han Y, Haouel A, Georgii E, Priego-Cubero S, Wurm CJ, Hemmler D, Schmitt-Kopplin P, Becker C, Durner J, Lindermayr C. Histone Deacetylases HD2A and HD2B Undergo Feedback Regulation by ABA and Modulate Drought Tolerance via Mediating ABA-Induced Transcriptional Repression. Genes (Basel) 2023; 14:1199. [PMID: 37372378 DOI: 10.3390/genes14061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylation catalyzed by histone deacetylase plays a critical role in gene silencing and subsequently controls many important biological processes. It was reported that the expression of the plant-specific histone deacetylase subfamily HD2s is repressed by ABA in Arabidopsis. However, little is known about the molecular relationship between HD2A/HD2B and ABA during the vegetative phase. Here, we describe that the hd2ahd2b mutant shows hypersensitivity to exogenous ABA during the germination and post-germination period. Additionally, transcriptome analyses revealed that the transcription of ABA-responsive genes was reprogrammed and the global H4K5ac level is specifically up-regulated in hd2ahd2b plants. ChIP-Seq and ChIP-qPCR results further verified that both HD2A and HD2B could directly and specifically bind to certain ABA-responsive genes. As a consequence, Arabidopsis hd2ahd2b plants displayed enhanced drought resistance in comparison to WT, which is consistent with increased ROS content, reduced stomatal aperture, and up-regulated drought-resistance-related genes. Moreover, HD2A and HD2B repressed ABA biosynthesis via the deacetylation of H4K5ac at NCED9. Taken together, our results indicate that HD2A and HD2B partly function through ABA signaling and act as negative regulators during the drought resistance response via the regulation of ABA biosynthesis and response genes.
Collapse
Affiliation(s)
- Yongtao Han
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Amira Haouel
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | | | - Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Daniel Hemmler
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | | | - Claude Becker
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
13
|
Yang F, Sun Y, Du X, Chu Z, Zhong X, Chen X. Plant-specific histone deacetylases associate with ARGONAUTE4 to promote heterochromatin stabilization and plant heat tolerance. THE NEW PHYTOLOGIST 2023; 238:252-269. [PMID: 36631970 DOI: 10.1111/nph.18729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
High temperature causes devasting effects on many aspects of plant cells and thus enhancing plant heat tolerance is critical for crop production. Emerging studies have revealed the important roles of chromatin modifications in heat stress responses. However, how chromatin is regulated during heat stress remains unclear. We show that heat stress results in heterochromatin disruption coupled with histone hyperacetylation and DNA hypomethylation. Two plant-specific histone deacetylases HD2B and HD2C could promote DNA methylation and relieve the heat-induced heterochromatin decondensation. We noted that most DNA methylation regulated by HD2B and HD2C is lost upon heat stress. HD2B- and HD2C-regulated histone acetylation and DNA methylation are dispensable for heterochromatin maintenance under normal conditions, but critical for heterochromatin stabilization under heat stress. We further showed that HD2B and HD2C promoted DNA methylation through associating with ARGONAUTE4 in nucleoli and Cajal bodies, and facilitating its nuclear accumulation. Thus, HD2B and HD2C act both canonically and noncanonically to stabilize heterochromatin under heat stress. This study not only reveals a novel plant-specific crosstalk between histone deacetylases and key factor of DNA methylation pathway, but also uncovers their new roles in chromatic regulation of plant heat tolerance.
Collapse
Affiliation(s)
- Fangfang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Yingnan Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xiaoxuan Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xuehua Zhong
- Department of Biology, Washington University, St Louis, MO, 63130, USA
| | - Xiangsong Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei, 430072, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| |
Collapse
|
14
|
HSFA1a modulates plant heat stress responses and alters the 3D chromatin organization of enhancer-promoter interactions. Nat Commun 2023; 14:469. [PMID: 36709329 PMCID: PMC9884265 DOI: 10.1038/s41467-023-36227-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 01/19/2023] [Indexed: 01/30/2023] Open
Abstract
The complex and dynamic three-dimensional organization of chromatin within the nucleus makes understanding the control of gene expression challenging, but also opens up possible ways to epigenetically modulate gene expression. Because plants are sessile, they evolved sophisticated ways to rapidly modulate gene expression in response to environmental stress, that are thought to be coordinated by changes in chromatin conformation to mediate specific cellular and physiological responses. However, to what extent and how stress induces dynamic changes in chromatin reorganization remains poorly understood. Here, we comprehensively investigated genome-wide chromatin changes associated with transcriptional reprogramming response to heat stress in tomato. Our data show that heat stress induces rapid changes in chromatin architecture, leading to the transient formation of promoter-enhancer contacts, likely driving the expression of heat-stress responsive genes. Furthermore, we demonstrate that chromatin spatial reorganization requires HSFA1a, a transcription factor (TF) essential for heat stress tolerance in tomato. In light of our findings, we propose that TFs play a key role in controlling dynamic transcriptional responses through 3D reconfiguration of promoter-enhancer contacts.
Collapse
|
15
|
Kang H, Fan T, Wu J, Zhu Y, Shen WH. Histone modification and chromatin remodeling in plant response to pathogens. FRONTIERS IN PLANT SCIENCE 2022; 13:986940. [PMID: 36262654 PMCID: PMC9574397 DOI: 10.3389/fpls.2022.986940] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
As sessile organisms, plants are constantly exposed to changing environments frequently under diverse stresses. Invasion by pathogens, including virus, bacterial and fungal infections, can severely impede plant growth and development, causing important yield loss and thus challenging food/feed security worldwide. During evolution, plants have adapted complex systems, including coordinated global gene expression networks, to defend against pathogen attacks. In recent years, growing evidences indicate that pathogen infections can trigger local and global epigenetic changes that reprogram the transcription of plant defense genes, which in turn helps plants to fight against pathogens. Here, we summarize up plant defense pathways and epigenetic mechanisms and we review in depth current knowledge's about histone modifications and chromatin-remodeling factors found in the epigenetic regulation of plant response to biotic stresses. It is anticipated that epigenetic mechanisms may be explorable in the design of tools to generate stress-resistant plant varieties.
Collapse
Affiliation(s)
- Huijia Kang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| | - Tianyi Fan
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiabing Wu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Hui Shen
- Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Liao CJ, Hailemariam S, Sharon A, Mengiste T. Pathogenic strategies and immune mechanisms to necrotrophs: Differences and similarities to biotrophs and hemibiotrophs. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102291. [PMID: 36063637 DOI: 10.1016/j.pbi.2022.102291] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pathogenesis in plant diseases is complex comprising diverse pathogen virulence and plant immune mechanisms. These pathogens cause damaging plant diseases by deploying specialized and generic virulence strategies that are countered by intricate resistance mechanisms. The significant challenges that necrotrophs pose to crop production are predicted to increase with climate change. Immunity to biotrophs and hemibiotrophs is dominated by intracellular receptors that recognize specific effectors and activate resistance. These mechanisms play only minor roles in resistance to necrotrophs. Pathogen- or host-derived conserved pattern molecules trigger immune responses that broadly contribute to plant immunity. However, certain pathogen or host-derived immune elicitors are enriched by the virulence activities of necrotrophs. Different plant hormones modulate systemic resistance and cell death that have differential impacts on resistance to pathogens of different lifestyles. Knowledge of mechanisms that contribute to resistance to necrotrophs has expanded. Besides toxins and cell wall degrading enzymes that dominate the pathogenesis of necrotrophs, other effectors with subtle contributions are being identified.
Collapse
Affiliation(s)
- Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Amir Sharon
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA.
| |
Collapse
|
17
|
Ma M, Wang W, Fei Y, Cheng HY, Song B, Zhou Z, Zhao Y, Zhang X, Li L, Chen S, Wang J, Liang X, Zhou JM. A surface-receptor-coupled G protein regulates plant immunity through nuclear protein kinases. Cell Host Microbe 2022; 30:1602-1614.e5. [DOI: 10.1016/j.chom.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/17/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
|
18
|
Bennett M, Piya S, Baum TJ, Hewezi T. miR778 mediates gene expression, histone modification, and DNA methylation during cyst nematode parasitism. PLANT PHYSIOLOGY 2022; 189:2432-2453. [PMID: 35579365 PMCID: PMC9342967 DOI: 10.1093/plphys/kiac228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Despite the known critical regulatory functions of microRNAs, histone modifications, and DNA methylation in reprograming plant epigenomes in response to pathogen infection, the molecular mechanisms underlying the tight coordination of these components remain poorly understood. Here, we show how Arabidopsis (Arabidopsis thaliana) miR778 coordinately modulates the root transcriptome, histone methylation, and DNA methylation via post-transcriptional regulation of the H3K9 methyltransferases SU(var)3-9 homolog 5 (SUVH5) and SUVH6 upon infection by the beet cyst nematode Heterodera schachtii. miR778 post-transcriptionally silences SUVH5 and SUVH6 upon nematode infection. Manipulation of the expression of miR778 and its two target genes significantly altered plant susceptibility to H. schachtii. RNA-seq analysis revealed a key role of SUVH5 and SUVH6 in reprograming the transcriptome of Arabidopsis roots upon H. schachtii infection. In addition, chromatin immunoprecipitation (ChIP)-seq analysis established SUVH5 and SUVH6 as the main enzymes mediating H3K9me2 deposition in Arabidopsis roots in response to nematode infection. ChIP-seq analysis also showed that these methyltransferases possess distinct DNA binding preferences in that they are targeting transposable elements under noninfected conditions and protein-coding genes in infected plants. Further analyses indicated that H3K9me2 deposition directed by SUVH5 and SUVH6 contributes to gene expression changes both in roots and in nematode feeding sites and preferentially associates with CG DNA methylation. Together, our results uncovered multi-layered epigenetic regulatory mechanisms coordinated by miR778 during Arabidopsis-H. schachtii interactions.
Collapse
Affiliation(s)
- Morgan Bennett
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
19
|
Lv S, Yang Y, Yu G, Peng L, Zheng S, Singh SK, Vílchez JI, Kaushal R, Zi H, Yi D, Wang Y, Luo S, Wu X, Zuo Z, Huang W, Liu R, Du J, Macho AP, Tang K, Zhang H. Dysfunction of histone demethylase IBM1 in Arabidopsis causes autoimmunity and reshapes the root microbiome. THE ISME JOURNAL 2022; 16:2513-2524. [PMID: 35908110 PMCID: PMC9561531 DOI: 10.1038/s41396-022-01297-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022]
Abstract
Root microbiota is important for plant growth and fitness. Little is known about whether and how the assembly of root microbiota may be controlled by epigenetic regulation, which is crucial for gene transcription and genome stability. Here we show that dysfunction of the histone demethylase IBM1 (INCREASE IN BONSAI METHYLATION 1) in Arabidopsis thaliana substantially reshaped the root microbiota, with the majority of the significant amplicon sequence variants (ASVs) being decreased. Transcriptome analyses of plants grown in soil and in sterile growth medium jointly disclosed salicylic acid (SA)-mediated autoimmunity and production of the defense metabolite camalexin in the ibm1 mutants. Analyses of genome-wide histone modifications and DNA methylation highlighted epigenetic modifications permissive for transcription at several important defense regulators. Consistently, ibm1 mutants showed increased resistance to the pathogen Pseudomonas syringae DC3000 with stronger immune responses. In addition, ibm1 showed substantially impaired plant growth promotion in response to beneficial bacteria; the impairment was partially mimicked by exogenous application of SA to wild-type plants, and by a null mutation of AGP19 that is important for cell expansion and that is repressed with DNA hypermethylation in ibm1. IBM1-dependent epigenetic regulation imposes strong and broad impacts on plant-microbe interactions and thereby shapes the assembly of root microbiota.
Collapse
|
20
|
Zhang Y, Tang M, Huang M, Xie J, Cheng J, Fu Y, Jiang D, Yu X, Li B. Dynamic enhancer transcription associates with reprogramming of immune genes during pattern triggered immunity in Arabidopsis. BMC Biol 2022; 20:165. [PMID: 35864475 PMCID: PMC9301868 DOI: 10.1186/s12915-022-01362-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 06/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enhancers are cis-regulatory elements present in eukaryote genomes, which constitute indispensable determinants of gene regulation by governing the spatiotemporal and quantitative expression dynamics of target genes, and are involved in multiple life processes, for instance during development and disease states. The importance of enhancer activity has additionally been highlighted for immune responses in animals and plants; however, the dynamics of enhancer activities and molecular functions in plant innate immunity are largely unknown. Here, we investigated the involvement of distal enhancers in early innate immunity in Arabidopsis thaliana. RESULTS A group of putative distal enhancers producing low-abundance transcripts either unidirectionally or bidirectionally are identified. We show that enhancer transcripts are dynamically modulated in plant immunity triggered by microbe-associated molecular patterns and are strongly correlated with open chromatin, low levels of methylated DNA, and increases in RNA polymerase II targeting and acetylated histone marks. Dynamic enhancer transcription is correlated with target early immune gene expression patterns. Cis motifs that are bound by immune-related transcription factors, such as WRKYs and SARD1, are highly enriched within upregulated enhancers. Moreover, a subset of core pattern-induced enhancers are upregulated by multiple patterns from diverse pathogens. The expression dynamics of putative immunity-related enhancers and the importance of WRKY binding motifs for enhancer function were also validated. CONCLUSIONS Our study demonstrates the general occurrence of enhancer transcription in plants and provides novel information on the distal regulatory landscape during early plant innate immunity, providing new insights into immune gene regulation and ultimately improving the mechanistic understanding of the plant immune system.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Meng Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Mengling Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yanping Fu
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, Hubei, China.
| |
Collapse
|
21
|
Villagómez-Aranda AL, Feregrino-Pérez AA, García-Ortega LF, González-Chavira MM, Torres-Pacheco I, Guevara-González RG. Activating stress memory: eustressors as potential tools for plant breeding. PLANT CELL REPORTS 2022; 41:1481-1498. [PMID: 35305133 PMCID: PMC8933762 DOI: 10.1007/s00299-022-02858-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/26/2022] [Indexed: 05/08/2023]
Abstract
Plants are continuously exposed to stress conditions, such that they have developed sophisticated and elegant survival strategies, which are reflected in their phenotypic plasticity, priming capacity, and memory acquisition. Epigenetic mechanisms play a critical role in modulating gene expression and stress responses, allowing malleability, reversibility, stability, and heritability of favourable phenotypes to enhance plant performance. Considering the urgency to improve our agricultural system because of going impacting climate change, potential and sustainable strategies rely on the controlled use of eustressors, enhancing desired characteristics and yield and shaping stress tolerance in crops. However, for plant breeding purposes is necessary to focus on the use of eustressors capable of establishing stable epigenetic marks to generate a transgenerational memory to stimulate a priming state in plants to face the changing environment.
Collapse
Affiliation(s)
- A L Villagómez-Aranda
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - A A Feregrino-Pérez
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - L F García-Ortega
- Laboratory of Learning and Research in Biological Computing, Centre for Research and Advanced Studies, National Polytechnic Institute (CINVESTAV), Irapuato, Guanajuato, Mexico
| | - M M González-Chavira
- Molecular Markers Laboratory, Bajío Experimental Field, National Institute for Forestry, Agriculture and Livestock Research (INIFAP), Celaya-San Miguel de Allende, Celaya, Guanajuato, Mexico
| | - I Torres-Pacheco
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico
| | - R G Guevara-González
- Biosystems Engineering Group. Engineering Faculty, Amazcala Campus, Autonomous University of Querétaro, Highway Chichimequillas s/n Km 1, Amazcala, El Marques, Querétaro, Mexico.
| |
Collapse
|
22
|
Mostafa S, Wang Y, Zeng W, Jin B. Plant Responses to Herbivory, Wounding, and Infection. Int J Mol Sci 2022; 23:ijms23137031. [PMID: 35806046 PMCID: PMC9266417 DOI: 10.3390/ijms23137031] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 12/26/2022] Open
Abstract
Plants have various self-defense mechanisms against biotic attacks, involving both physical and chemical barriers. Physical barriers include spines, trichomes, and cuticle layers, whereas chemical barriers include secondary metabolites (SMs) and volatile organic compounds (VOCs). Complex interactions between plants and herbivores occur. Plant responses to insect herbivory begin with the perception of physical stimuli, chemical compounds (orally secreted by insects and herbivore-induced VOCs) during feeding. Plant cell membranes then generate ion fluxes that create differences in plasma membrane potential (Vm), which provokes the initiation of signal transduction, the activation of various hormones (e.g., jasmonic acid, salicylic acid, and ethylene), and the release of VOCs and SMs. This review of recent studies of plant–herbivore–infection interactions focuses on early and late plant responses, including physical barriers, signal transduction, SM production as well as epigenetic regulation, and phytohormone responses.
Collapse
|
23
|
Heilmann M, Heilmann I. Regulators regulated: Different layers of control for plasma membrane phosphoinositides in plants. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102218. [PMID: 35504191 DOI: 10.1016/j.pbi.2022.102218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/09/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The membranes of plant cells serve diverse physiological roles, which are defined largely by the localized and dynamic recruitment of proteins. Signaling lipids, such as phosphoinositides, can aid protein recruitment to the plasma membrane via specific recognition of their head groups and influence vesicular trafficking, cytoskeletal dynamics and other processes, with ramifications for plant tissue architecture and development. Phosphoinositide abundance is dynamically regulated. Recent advances indicate various levels of control during development or upon environmental triggers, including transcriptional or posttranslational regulation of enzymes balancing biogenesis and degradation, or the nano-organization of membranes into self-organizing physiologically distinct microenvironments. As patterns of interlinked mechanisms emerge, the horizons of what we do not understand become more and more defined.
Collapse
Affiliation(s)
- Mareike Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany
| | - Ingo Heilmann
- Department of Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120 Halle (Saale), Germany.
| |
Collapse
|
24
|
ROS homeostasis mediated by MPK4 and SUMM2 determines synergid cell death. Nat Commun 2022; 13:1746. [PMID: 35365652 PMCID: PMC8976062 DOI: 10.1038/s41467-022-29373-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022] Open
Abstract
Sexual plant reproduction depends on the attraction of sperm-cell delivering pollen tubes (PT) by two synergids, followed by their programmed cell death (PCD) in Arabidopsis. Disruption of the mitogen-activated protein kinase 4 (MPK4) by pathogenic effectors activates the resistance protein (R) SUMM2-mediated immunity and cell death. Here we show that synergid preservation and reactive oxygen species (ROS) homeostasis are intimately linked and maintained by MPK4. In mpk4, ROS levels are increased and synergids prematurely undergo PCD before PT-reception. However, ROS scavengers and the disruption of SUMM2, in mpk4, restore ROS homeostasis, synergid maintenance and PT perception, demonstrating that the guardian of MPK4, SUMM2, triggers synergid-PCD. In mpk4/summ2, PTs show a feronia-like overgrowth phenotype. Our results show that immunity-associated PCD and synergid cell death during plant reproduction are regulated by MPK4 underscoring an underlying molecular mechanism for the suppression of plant reproduction during systemic R-mediated immunity. Synergid cells undergo programmed cell death following pollen tube reception and successful fertilization. Here the authors show that premature synergid cell death is prevented by the mitogen activated protein kinase MPK4 and the R protein SUMM2 which maintain ROS homeostasis in Arabidopsis.
Collapse
|
25
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
26
|
Sun T, Zhang Y. MAP kinase cascades in plant development and immune signaling. EMBO Rep 2022; 23:e53817. [PMID: 35041234 PMCID: PMC8811656 DOI: 10.15252/embr.202153817] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/26/2021] [Accepted: 01/01/2022] [Indexed: 02/05/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are important signaling modules regulating diverse biological processes. During the past 20 years, much progress has been made on the functions of MAPK cascades in plants. This review summarizes the roles of MAPKs, known MAPK substrates, and our current understanding of MAPK cascades in plant development and innate immunity. In addition, recent findings on the molecular links connecting surface receptors to MAPK cascades and the mechanisms underlying MAPK signaling specificity are also discussed.
Collapse
Affiliation(s)
- Tongjun Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Yuelin Zhang
- Department of BotanyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
27
|
Ageeva-Kieferle A, Georgii E, Winkler B, Ghirardo A, Albert A, Hüther P, Mengel A, Becker C, Schnitzler JP, Durner J, Lindermayr C. Nitric oxide coordinates growth, development, and stress response via histone modification and gene expression. PLANT PHYSIOLOGY 2021; 187:336-360. [PMID: 34003928 PMCID: PMC8418403 DOI: 10.1093/plphys/kiab222] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/18/2021] [Indexed: 05/02/2023]
Abstract
Nitric oxide (NO) is a signaling molecule with multiple regulatory functions in plant physiology and stress response. In addition to direct effects on transcriptional machinery, NO executes its signaling function via epigenetic mechanisms. We report that light intensity-dependent changes in NO correspond to changes in global histone acetylation (H3, H3K9, and H3K9/K14) in Arabidopsis (Arabidopsis thaliana) wild-type leaves, and that this relationship depends on S-nitrosoglutathione reductase and histone deacetylase 6 (HDA6). The activity of HDA6 was sensitive to NO, demonstrating that NO participates in regulation of histone acetylation. Chromatin immunoprecipitation sequencing and RNA-seq analyses revealed that NO participates in the metabolic switch from growth and development to stress response. This coordinating function of NO might be particularly important in plant ability to adapt to a changing environment, and is therefore a promising foundation for mitigating the negative effects of climate change on plant productivity.
Collapse
Affiliation(s)
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Barbro Winkler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Andreas Albert
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Patrick Hüther
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
| | - Alexander Mengel
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna 1030, Austria
- Faculty of Biology, Ludwig-Maximilians-University Munich, LMU Biocenter, Martinsried 82152, Germany
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, Freising 85354, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg 85764, Germany
- Author for communication:
| |
Collapse
|
28
|
Li S, Lyu S, Liu Y, Luo M, Shi S, Deng S. Cauliflower mosaic virus P6 Dysfunctions Histone Deacetylase HD2C to Promote Virus Infection. Cells 2021; 10:2278. [PMID: 34571927 PMCID: PMC8464784 DOI: 10.3390/cells10092278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.
Collapse
Affiliation(s)
- Shun Li
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
| | - Yujuan Liu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- National Engineering Research Center of Navel Orange, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
29
|
Tahir MS, Tian L. HD2-type histone deacetylases: unique regulators of plant development and stress responses. PLANT CELL REPORTS 2021; 40:1603-1615. [PMID: 34041586 DOI: 10.1007/s00299-021-02688-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 06/12/2023]
Abstract
Plants have developed sophisticated and complex epigenetic regulation-based mechanisms to maintain stable growth and development under diverse environmental conditions. Histone deacetylases (HDACs) are important epigenetic regulators in eukaryotes that are involved in the deacetylation of lysine residues of histone H3 and H4 proteins. Plants have developed a unique HDAC family, HD2, in addition to the RPD3 and Sir2 families, which are also present in other eukaryotes. HD2s are well conserved plant-specific HDACs, which were first identified as nucleolar phosphoproteins in maize. The HD2 family plays important roles not only in fundamental developmental processes, including seed germination, root and leaf development, floral transition, and seed development but also in regulating plant responses to biotic and abiotic stresses. Some of the HD2 members coordinate with each other to function. The HD2 family proteins also show functional association with RPD3-type HDACs and other transcription factors as a part of repression complexes in gene regulatory networks involved in environmental stress responses. This review aims to analyse and summarise recent research progress in the HD2 family, and to describe their role in plant growth and development and in response to different environmental stresses.
Collapse
Affiliation(s)
- Muhammad Sufyan Tahir
- Department of Biology, University of Western Ontario, London, ON, Canada.
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| | - Lining Tian
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
30
|
Kumar J, Ramlal A, Kumar K, Rani A, Mishra V. Signaling Pathways and Downstream Effectors of Host Innate Immunity in Plants. Int J Mol Sci 2021; 22:ijms22169022. [PMID: 34445728 PMCID: PMC8396522 DOI: 10.3390/ijms22169022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022] Open
Abstract
Phytopathogens, such as biotrophs, hemibiotrophs and necrotrophs, pose serious stress on the development of their host plants, compromising their yields. Plants are in constant interaction with such phytopathogens and hence are vulnerable to their attack. In order to counter these attacks, plants need to develop immunity against them. Consequently, plants have developed strategies of recognizing and countering pathogenesis through pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). Pathogen perception and surveillance is mediated through receptor proteins that trigger signal transduction, initiated in the cytoplasm or at the plasma membrane (PM) surfaces. Plant hosts possess microbe-associated molecular patterns (P/MAMPs), which trigger a complex set of mechanisms through the pattern recognition receptors (PRRs) and resistance (R) genes. These interactions lead to the stimulation of cytoplasmic kinases by many phosphorylating proteins that may also be transcription factors. Furthermore, phytohormones, such as salicylic acid, jasmonic acid and ethylene, are also effective in triggering defense responses. Closure of stomata, limiting the transfer of nutrients through apoplast and symplastic movements, production of antimicrobial compounds, programmed cell death (PCD) are some of the primary defense-related mechanisms. The current article highlights the molecular processes involved in plant innate immunity (PII) and discusses the most recent and plausible scientific interventions that could be useful in augmenting PII.
Collapse
Affiliation(s)
- Jitendra Kumar
- Bangalore Bioinnovation Centre, Life Sciences Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Ayyagari Ramlal
- Division of Genetics, Indian Agricultural Research Institute (IARI), Pusa Campus, New Delhi 110012, India;
| | - Kamal Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110066, India;
| | - Anita Rani
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
| | - Vachaspati Mishra
- Department of Botany, Dyal Singh College, University of Delhi, Delhi 110003, India;
- Correspondence:
| |
Collapse
|
31
|
Wang J, Liu C, Chen Y, Zhao Y, Ma Z. Protein acetylation and deacetylation in plant-pathogen interactions. Environ Microbiol 2021; 23:4841-4855. [PMID: 34398483 DOI: 10.1111/1462-2920.15725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Protein acetylation and deacetylation catalysed by lysine acetyltransferases (KATs) and deacetylases (KDACs), respectively, are major mechanisms regulating various cellular processes. During the fight between microbial pathogens and host plants, both apply a set of measures, including acetylation interference, to strengthen themselves while suppressing the other. In this review, we first summarize KATs and KDACs in plants and their pathogens. Next, we introduce diverse acetylation and deacetylation mechanisms affecting protein functions, including the regulation of enzyme activity and specificity, protein-protein or protein-DNA interactions, subcellular localization and protein stability. We then focus on the current understanding of acetylation and deacetylation in plant-pathogen interactions. Additionally, we also discuss potential acetylation-related approaches for controlling plant diseases.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
32
|
Huang Y, Sicar S, Ramirez-Prado JS, Manza-Mianza D, Antunez-Sanchez J, Brik-Chaouche R, Rodriguez-Granados NY, An J, Bergounioux C, Mahfouz MM, Hirt H, Crespi M, Concia L, Barneche F, Amiard S, Probst AV, Gutierrez-Marcos J, Ariel F, Raynaud C, Latrasse D, Benhamed M. Polycomb-dependent differential chromatin compartmentalization determines gene coregulation in Arabidopsis. Genome Res 2021; 31:1230-1244. [PMID: 34083408 PMCID: PMC8256866 DOI: 10.1101/gr.273771.120] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 05/20/2021] [Indexed: 11/24/2022]
Abstract
In animals, distant H3K27me3-marked Polycomb targets can establish physical interactions forming repressive chromatin hubs. In plants, growing evidence suggests that H3K27me3 acts directly or indirectly to regulate chromatin interactions, although how this histone modification modulates 3D chromatin architecture remains elusive. To decipher the impact of the dynamic deposition of H3K27me3 on the Arabidopsis thaliana nuclear interactome, we combined genetics, transcriptomics, and several 3D epigenomic approaches. By analyzing mutants defective for histone H3K27 methylation or demethylation, we uncovered the crucial role of this chromatin mark in short- and previously unnoticed long-range chromatin loop formation. We found that a reduction in H3K27me3 levels led to a decrease in the interactions within Polycomb-associated repressive domains. Regions with lower H3K27me3 levels in the H3K27 methyltransferase clf mutant established new interactions with regions marked with H3K9ac, a histone modification associated with active transcription, indicating that a reduction in H3K27me3 levels induces a global reconfiguration of chromatin architecture. Altogether, our results reveal that the 3D genome organization is tightly linked to reversible histone modifications that govern chromatin interactions. Consequently, nuclear organization dynamics shapes the transcriptional reprogramming during plant development and places H3K27me3 as a key feature in the coregulation of distant genes.
Collapse
Affiliation(s)
- Ying Huang
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Sanchari Sicar
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Juan S Ramirez-Prado
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Deborah Manza-Mianza
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | | | - Rim Brik-Chaouche
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Natalia Y Rodriguez-Granados
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Jing An
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Catherine Bergounioux
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Heribert Hirt
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Martin Crespi
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Lorenzo Concia
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ENS, CNRS UMR8197, INSERM U1024, PSL Research University, 75005, Paris, France
| | - Fredy Barneche
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), ENS, CNRS UMR8197, INSERM U1024, PSL Research University, 75005, Paris, France
| | - Simon Amiard
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | - Aline V Probst
- GReD, Université Clermont Auvergne, CNRS, INSERM, BP 38, 63001, Clermont-Ferrand, France
| | | | - Federico Ariel
- Instituto de Agrobiotecnología del Litoral, CONICET, Universidad Nacional del Litoral, 3000, Santa Fe, Argentina
| | - Cécile Raynaud
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - David Latrasse
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
| | - Moussa Benhamed
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91405, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), F-75006 Paris, France
- Institut Universitaire de France (IUF)
| |
Collapse
|
33
|
Ramos-Cruz D, Troyee AN, Becker C. Epigenetics in plant organismic interactions. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:102060. [PMID: 34087759 DOI: 10.1016/j.pbi.2021.102060] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/18/2021] [Accepted: 04/27/2021] [Indexed: 05/26/2023]
Abstract
Plants are hubs of organismic interactions. They constantly engage in beneficial or competitive interactions with fungi, oomycetes, bacteria, insects, nematodes, and other plants. To adjust the molecular processes necessary for the establishment and maintenance of beneficial interactions and for the defense against pathogens and herbivores, plants have evolved intricate regulatory mechanisms. Besides the canonical plant immune system that acts as the primary defense, epigenetic mechanisms have started to emerge as another regulatory entity and as a target of pathogens trying to overcome the plant's defenses. In this review, we highlight recent advances in understanding the contribution of various epigenetic components and of epigenetic diversity to plant-organismic interactions.
Collapse
Affiliation(s)
- Daniela Ramos-Cruz
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - A Niloya Troyee
- Department of Evolutionary Ecology, Doñana Biological Station, CSIC, 41092 Sevilla, Spain
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria; Genetics, Faculty of Biology, Ludwig Maximilians University Munich, 82152 Martinsried, Germany.
| |
Collapse
|
34
|
Kumar V, Thakur JK, Prasad M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol Life Sci 2021; 78:4467-4486. [PMID: 33638653 PMCID: PMC11072255 DOI: 10.1007/s00018-021-03794-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Crop productivity is directly dependent on the growth and development of plants and their adaptation during different environmental stresses. Histone acetylation is an epigenetic modification that regulates numerous genes essential for various biological processes, including development and stress responses. Here, we have mainly discussed the impact of histone acetylation dynamics on vegetative growth, flower development, fruit ripening, biotic and abiotic stress responses. Besides, we have also emphasized the information gaps which are obligatory to be examined for understanding the complete role of histone acetylation dynamics in plants. A comprehensive knowledge about the histone acetylation dynamics will ultimately help to improve stress resistance and reduce yield losses in different crops due to climate changes.
Collapse
Affiliation(s)
- Verandra Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Thakur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
35
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
36
|
Lin L, Wu J, Jiang M, Wang Y. Plant Mitogen-Activated Protein Kinase Cascades in Environmental Stresses. Int J Mol Sci 2021; 22:ijms22041543. [PMID: 33546499 PMCID: PMC7913722 DOI: 10.3390/ijms22041543] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 12/17/2022] Open
Abstract
Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| | - Mingyi Jiang
- College of Life Sciences and National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225000, China;
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225000, China
- Correspondence: (J.W.); (Y.W.)
| |
Collapse
|
37
|
Zhi P, Chang C. Exploiting Epigenetic Variations for Crop Disease Resistance Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:692328. [PMID: 34149790 PMCID: PMC8212930 DOI: 10.3389/fpls.2021.692328] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 05/07/2023]
Abstract
Pathogen infections seriously threaten plant health and global crop production. Epigenetic processes such as DNA methylation, histone post-translational modifications, chromatin assembly and remodeling play important roles in transcriptional regulation of plant defense responses and could provide a new direction to drive breeding strategies for crop disease resistance improvement. Although past decades have seen unprecedented proceedings in understanding the epigenetic mechanism of plant defense response, most of these advances were derived from studies in model plants like Arabidopsis. In this review, we highlighted the recent epigenetic studies on crop-pathogen interactions and discussed the potentials, challenges, and strategies in exploiting epigenetic variations for crop disease resistance improvement.
Collapse
|
38
|
Fang Y, Gu Y, Li L, Zhu L, Qian J, Zhao C, Xu L, Wei W, Du Y, Yuan N, Zhang S, Yuan Y, Xu Y, Jiang C, Wang J. Loss of Atg7 causes chaotic nucleosome assembly of mouse bone marrow CD11b +Ly6G - myeloid cells. Aging (Albany NY) 2020; 12:25673-25683. [PMID: 33232280 PMCID: PMC7803583 DOI: 10.18632/aging.104176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/15/2020] [Indexed: 12/13/2022]
Abstract
Atg7, a critical component of autophagy machinery, is essential for counteracting hematopoietic aging. However, the non-autophagic role of Atg7 on hematopoietic cells remains fundamentally unclear. In this study, we found that loss of Atg7, but not Atg5, another autophagy-essential gene, in the hematopoietic system reduces CD11b myeloid cellularity including CD11b+Ly6G+ and CD11b+Ly6G- populations in mouse bone marrow. Surprisingly, Atg7 deletion causes abnormally accumulated histone H3.1 to be overwhelmingly trapped in the cytoplasm in the CD11b+Ly6G-, but not the CD11b+Ly6G+ compartment. RNA profiling revealed extensively chaotic expression of the genes required in nucleosome assembly. Functional assays further indicated upregulated aging markers in the CD11b+Ly6G- population. Therefore, our study suggests that Atg7 is essential for maintaining proper nucleosome assembly and limiting aging in the bone marrow CD11b+Ly6G- population.
Collapse
Affiliation(s)
- Yixuan Fang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co. Ltd., Suzhou 215124, China.,State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University School of Medicine, Suzhou 215123, China
| | - Yue Gu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lei Li
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Lingjiang Zhu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiawei Qian
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China
| | - Chen Zhao
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Li Xu
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Wen Wei
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yanhua Du
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Na Yuan
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co. Ltd., Suzhou 215124, China.,State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University School of Medicine, Suzhou 215123, China
| | - Suping Zhang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co. Ltd., Suzhou 215124, China.,State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University School of Medicine, Suzhou 215123, China
| | - Ye Yuan
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Osteoporosis Institute of Soochow University, Suzhou 215004, China
| | - Youjia Xu
- Department of Orthopaedics, the Second Affiliated Hospital of Soochow University, Osteoporosis Institute of Soochow University, Suzhou 215004, China
| | - Cizhong Jiang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, the School of Life Sciences and Technology, Shanghai Key Laboratory of Signaling and Disease Research, Tongji University, Shanghai 200092, China
| | - Jianrong Wang
- Hematology Center of Cyrus Tang Medical Institute, Soochow University School of Medicine, Suzhou 215123, China.,National Clinical Research Center for Hematologic Diseases, Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Department of Hematopoietic Engineering, Susky Life SciTech (Suzhou) Co. Ltd., Suzhou 215124, China.,State Key Laboratory of Radiation Medicine and Radioprotection, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
39
|
Chen CY, Tu YT, Hsu JC, Hung HC, Liu TC, Lee YH, Chou CC, Cheng YS, Wu K. Structure of Arabidopsis HISTONE DEACETYLASE15. PLANT PHYSIOLOGY 2020; 184:1585-1600. [PMID: 32878973 PMCID: PMC7608165 DOI: 10.1104/pp.20.00604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/21/2020] [Indexed: 05/24/2023]
Abstract
Mammalian histone deacetylases (HDACs) undergo phosphorylation to regulate their localization, activity, and function. However, little is known about the regulation of plant HDAC function and activity by phosphorylation. Here, we report the crystal structure of the Reduced Potassium Dependency3/Histone Deacetylase1 (RPD3/HDA1) type class II histone deacetylase HDA15 in Arabidopsis (Arabidopsis thaliana). The histone deacetylase domain of HDA15 (HDA15HD) assembles as tetrameric forms with each monomer composed of 12 α-helices and 9 β-sheets. The L1 loop and β2 sheet of HDA15HD are the essential interfaces for the tetramer formation. The N-terminal zinc finger domain enhances HDA15HD dimerization and increases its enzymatic activity. Furthermore, HDA15 can also be phosphorylated at Ser-448 and Ser-452 in etiolated seedlings. The HDA15 phosphorylation status determines its subnuclear localization and oligomerization. Phosphomimetics of HDA15 partially disrupt its oligomerization and cause loss of enzymatic activity and translocation from the nucleolus into nucleoplasm. Together, these data indicate that phosphorylation plays a critical role in regulating the structure and function of HDA15.
Collapse
Affiliation(s)
- Chia-Yang Chen
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsung Tu
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Jhe-Cheng Hsu
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Heng-Chen Hung
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Ting-Chun Liu
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsuan Lee
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Chi Chou
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Sheng Cheng
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
- Department of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei 10617, Taiwan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
40
|
Nasim Z, Fahim M, Gawarecka K, Susila H, Jin S, Youn G, Ahn JH. Role of AT1G72910, AT1G72940, and ADR1-LIKE 2 in Plant Immunity under Nonsense-Mediated mRNA Decay-Compromised Conditions at Low Temperatures. Int J Mol Sci 2020; 21:E7986. [PMID: 33121126 PMCID: PMC7663611 DOI: 10.3390/ijms21217986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 01/26/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) removes aberrant transcripts to avoid the accumulation of truncated proteins. NMD regulates nucleotide-binding, leucine-rich repeat (NLR) genes to prevent autoimmunity; however, the function of a large number of NLRs still remains poorly understood. Here, we show that three NLR genes (AT1G72910, AT1G72940, and ADR1-LIKE 2) are important for NMD-mediated regulation of defense signaling at lower temperatures. At 16 °C, the NMD-compromised up-frameshift protein1 (upf1) upf3 mutants showed growth arrest that can be rescued by the artificial miRNA-mediated knockdown of the three NLR genes. mRNA levels of these NLRs are induced by Pseudomonas syringae inoculation and exogenous SA treatment. Mutations in AT1G72910, AT1G72940, and ADR1-LIKE 2 genes resulted in increased susceptibility to Pseudomonas syringae, whereas their overexpression resulted in severely stunted growth, which was dependent on basal disease resistance genes. The NMD-deficient upf1 upf3 mutants accumulated higher levels of NMD signature-containing transcripts from these NLR genes at 16 °C. Furthermore, mRNA degradation kinetics showed that these NMD signature-containing transcripts were more stable in upf1 upf3 mutants. Based on these findings, we propose that AT1G72910, AT1G72940, and ADR1-LIKE 2 are directly regulated by NMD in a temperature-dependent manner and play an important role in modulating plant immunity at lower temperatures.
Collapse
Affiliation(s)
- Zeeshan Nasim
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Muhammad Fahim
- Centre for Omic Sciences, Islamia College University, Peshawar 25120, Pakistan;
| | - Katarzyna Gawarecka
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Hendry Susila
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Suhyun Jin
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Geummin Youn
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| | - Ji Hoon Ahn
- Department of Life Sciences, Korea University, Seoul 02841, Korea; (Z.N.); (K.G.); (H.S.); (S.J.); (G.Y.)
| |
Collapse
|
41
|
Kim S, Piquerez SJM, Ramirez-Prado JS, Mastorakis E, Veluchamy A, Latrasse D, Manza-Mianza D, Brik-Chaouche R, Huang Y, Rodriguez-Granados NY, Concia L, Blein T, Citerne S, Bendahmane A, Bergounioux C, Crespi M, Mahfouz MM, Raynaud C, Hirt H, Ntoukakis V, Benhamed M. GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5' and 3' ends of its target genes. Nucleic Acids Res 2020; 48:5953-5966. [PMID: 32396165 PMCID: PMC7293002 DOI: 10.1093/nar/gkaa369] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 01/01/2023] Open
Abstract
The modification of histones by acetyl groups has a key role in the regulation of chromatin structure and transcription. The Arabidopsis thaliana histone acetyltransferase GCN5 regulates histone modifications as part of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) transcriptional coactivator complex. GCN5 was previously shown to acetylate lysine 14 of histone 3 (H3K14ac) in the promoter regions of its target genes even though GCN5 binding did not systematically correlate with gene activation. Here, we explored the mechanism through which GCN5 controls transcription. First, we fine-mapped its GCN5 binding sites genome-wide and then used several global methodologies (ATAC-seq, ChIP-seq and RNA-seq) to assess the effect of GCN5 loss-of-function on the expression and epigenetic regulation of its target genes. These analyses provided evidence that GCN5 has a dual role in the regulation of H3K14ac levels in their 5′ and 3′ ends of its target genes. While the gcn5 mutation led to a genome-wide decrease of H3K14ac in the 5′ end of the GCN5 down-regulated targets, it also led to an increase of H3K14ac in the 3′ ends of GCN5 up-regulated targets. Furthermore, genome-wide changes in H3K14ac levels in the gcn5 mutant correlated with changes in H3K9ac at both 5′ and 3′ ends, providing evidence for a molecular link between the depositions of these two histone modifications. To understand the biological relevance of these regulations, we showed that GCN5 participates in the responses to biotic stress by repressing salicylic acid (SA) accumulation and SA-mediated immunity, highlighting the role of this protein in the regulation of the crosstalk between diverse developmental and stress-responsive physiological programs. Hence, our results demonstrate that GCN5, through the modulation of H3K14ac levels on its targets, controls the balance between biotic and abiotic stress responses and is a master regulator of plant-environmental interactions.
Collapse
Affiliation(s)
- Soonkap Kim
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sophie J M Piquerez
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.,School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Juan S Ramirez-Prado
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Emmanouil Mastorakis
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Deborah Manza-Mianza
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Rim Brik-Chaouche
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Ying Huang
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Natalia Y Rodriguez-Granados
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Lorenzo Concia
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Thomas Blein
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles 78000, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Magdy M Mahfouz
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Heribert Hirt
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vardis Ntoukakis
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR 9213/UMR1403, CNRS, INRA, Université Paris-Sud, Université d'Evry, Université Paris-Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.,Institut Universitaire de France (IUF)
| |
Collapse
|
42
|
Huang J, Wu Z, Zhang X. Short-Term Mild Temperature-Stress-Induced Alterations in the C. elegans Phosphoproteome. Int J Mol Sci 2020; 21:ijms21176409. [PMID: 32899194 PMCID: PMC7504583 DOI: 10.3390/ijms21176409] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Exposure to mild early-life stresses can slow down aging, and protein phosphorylation might be an essential regulator in this process. However, the mechanisms of phosphorylation-based signaling networks during mild early-life stress remain elusive. Herein, we systematically analyzed the phosphoproteomes of Caenorhabditis elegans, which were treated with three mild temperatures (15 °C, 20 °C, and 25 °C) in two different short-term groups (10 min and 60 min). By utilizing an iTRAQ-based quantitative phosphoproteomic approach, 18,187 phosphosites from 3330 phosphoproteins were detected in this study. Volcano plots illustrated that the phosphorylation abundance of 374 proteins and 347 proteins, were significantly changed at 15 °C and 25 °C, respectively. Gene ontology, KEGG pathway and protein-protein interaction network analyses revealed that these phosphoproteins were primarily associated with metabolism, translation, development, and lifespan determination. A motif analysis of kinase substrates suggested that MAPK, CK, and CAMK were most likely involved in the adaption processes. Moreover, 16 and 14 aging-regulated proteins were found to undergo phosphorylation modifications under the mild stresses of 15 °C and 25 °C, respectively, indicating that these proteins might be important for maintaining long-term health. Further lifespan experiments confirmed that the candidate phosphoproteins, e.g., EGL-27 and XNP-1 modulated longevity at 15 °C, 20 °C, and 25 °C, and they showed increased tolerance to thermal and oxidative stresses. In conclusion, our findings offered data that supports understanding of the phosphorylation mechanisms involved in mild early-life stresses in C. elegans. Data are available via ProteomeXchange with identifier PXD021081.
Collapse
Affiliation(s)
- Jichang Huang
- Correspondence: (J.H.); (X.Z.); Tel.: +86-021-3124-6575 (X.Z.)
| | | | - Xumin Zhang
- Correspondence: (J.H.); (X.Z.); Tel.: +86-021-3124-6575 (X.Z.)
| |
Collapse
|
43
|
Pecinka A, Chevalier C, Colas I, Kalantidis K, Varotto S, Krugman T, Michailidis C, Vallés MP, Muñoz A, Pradillo M. Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5205-5222. [PMID: 31626285 DOI: 10.1093/jxb/erz457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Genetic information in the cell nucleus controls organismal development and responses to the environment, and finally ensures its own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organization of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to genome size, ploidy, and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organization and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits.
Collapse
Affiliation(s)
- Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Agricultural and Biotechnological Research, Olomouc, Czech Republic
| | | | - Isabelle Colas
- James Hutton Institute, Cell and Molecular Science, Pr Waugh's Lab, Invergowrie, Dundee, UK
| | - Kriton Kalantidis
- Department of Biology, University of Crete, and Institute of Molecular Biology Biotechnology, FoRTH, Heraklion, Greece
| | - Serena Varotto
- Department of Agronomy Animal Food Natural Resources and Environment (DAFNAE) University of Padova, Agripolis viale dell'Università, Legnaro (PD), Italy
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Christos Michailidis
- Institute of Experimental Botany, Czech Acad Sci, Praha 6 - Lysolaje, Czech Republic
| | - María-Pilar Vallés
- Department of Genetics and Plant Breeding, Estación Experimental Aula Dei (EEAD), Spanish National Research Council (CSIC), Zaragoza, Spain
| | - Aitor Muñoz
- Department of Plant Molecular Genetics, National Center of Biotechnology/Superior Council of Scientific Research, Autónoma University of Madrid, Madrid, Spain
| | - Mónica Pradillo
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
44
|
Jiang J, Ding AB, Liu F, Zhong X. Linking signaling pathways to histone acetylation dynamics in plants. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5179-5190. [PMID: 32333777 PMCID: PMC7475247 DOI: 10.1093/jxb/eraa202] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/22/2020] [Indexed: 05/04/2023]
Abstract
As sessile organisms, plants face versatile environmental challenges and require proper responses at multiple levels for survival. Epigenetic modification of DNA and histones is a conserved gene-regulatory mechanism and plays critical roles in diverse aspects of biological processes, ranging from genome defense and imprinting to development and physiology. In recent years, emerging studies have revealed the interplay between signaling transduction pathways, epigenetic modifications, and chromatin cascades. Specifically, histone acetylation and deacetylation dictate plant responses to environmental cues by modulating chromatin dynamics to regulate downstream gene expression as signaling outputs. In this review, we summarize current understandings of the link between plant signaling pathways and epigenetic modifications with a focus on histone acetylation and deacetylation.
Collapse
Affiliation(s)
- Jianjun Jiang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Adeline B Ding
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, Jiangsu, China
- Correspondence: or
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Correspondence: or
| |
Collapse
|
45
|
Leng X, Thomas Q, Rasmussen SH, Marquardt S. A G(enomic)P(ositioning)S(ystem) for Plant RNAPII Transcription. TRENDS IN PLANT SCIENCE 2020; 25:744-764. [PMID: 32673579 DOI: 10.1016/j.tplants.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/24/2020] [Accepted: 03/10/2020] [Indexed: 06/11/2023]
Abstract
Post-translational modifications (PTMs) of histone residues shape the landscape of gene expression by modulating the dynamic process of RNA polymerase II (RNAPII) transcription. The contribution of particular histone modifications to the definition of distinct RNAPII transcription stages remains poorly characterized in plants. Chromatin immunoprecipitation combined with next-generation sequencing (ChIP-seq) resolves the genomic distribution of histone modifications. Here, we review histone PTM ChIP-seq data in Arabidopsis thaliana and find support for a Genomic Positioning System (GPS) that guides RNAPII transcription. We review the roles of histone PTM 'readers', 'writers', and 'erasers', with a focus on the regulation of gene expression and biological functions in plants. The distinct functions of RNAPII transcription during the plant transcription cycle may rely, in part, on the characteristic histone PTM profiles that distinguish transcription stages.
Collapse
Affiliation(s)
- Xueyuan Leng
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Quentin Thomas
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Simon Horskjær Rasmussen
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark
| | - Sebastian Marquardt
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Bülowsvej 34, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
46
|
Bukhat S, Imran A, Javaid S, Shahid M, Majeed A, Naqqash T. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiol Res 2020; 238:126486. [PMID: 32464574 DOI: 10.1016/j.micres.2020.126486] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/20/2020] [Accepted: 03/28/2020] [Indexed: 02/01/2023]
Abstract
Agricultural manipulation of potentially beneficial rhizosphere microbes is increasing rapidly due to their multi-functional plant-protective and growth related benefits. Plant growth promoting rhizobacteria (PGPR) are mostly non-pathogenic microbes which exert direct benefits on plants while there are rhizosphere bacteria which indirectly help plant by ameliorating the biotic and/or abiotic stress or induction of defense response in plant. Regulation of these direct or indirect effect takes place via highly specialized communication system induced at multiple levels of interaction i.e., inter-species, intra-species, and inter-kingdom. Studies have provided insights into the functioning of signaling molecules involved in communication and induction of defense responses. Activation of host immune responses upon bacterial infection or rhizobacteria perception requires comprehensive and precise gene expression reprogramming and communication between hosts and microbes. Majority of studies have focused on signaling of host pattern recognition receptors (PRR) and nod-like receptor (NLR) and microbial effector proteins under mining the role of other components such as mitogen activated protein kinase (MAPK), microRNA, histone deacytylases. The later ones are important regulators of gene expression reprogramming in plant immune responses, pathogen virulence and communications in plant-microbe interactions. During the past decade, inoculation of PGPR has emerged as potential strategy to induce biotic and abiotic stress tolerance in plants; hence, it is imperative to expose the basis of these interactions. This review discusses microbes and plants derived signaling molecules for their communication, regulatory and signaling networks of PGPR and their different products that are involved in inducing resistance and tolerance in plants against environmental stresses and the effect of defense signaling on root microbiome. We expect that it will lead to the development and exploitation of beneficial microbes as source of crop biofertilizers in climate changing scenario enabling more sustainable agriculture.
Collapse
Affiliation(s)
- Sherien Bukhat
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| | - Asma Imran
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Shaista Javaid
- Institute of Molecular Biology and Biotechnology, University of Lahore Main Campus, Defense road, Lahore, Pakistan.
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad 38000, Pakistan.
| | - Afshan Majeed
- Department of Soil and Environmental Sciences, The University of Poonch, Rawalakot, Azad Jammu and Kashmir, Pakistan.
| | - Tahir Naqqash
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, 60800 Multan, Pakistan.
| |
Collapse
|
47
|
Histone Deacetylase TaHDT701 Functions in TaHDA6-TaHOS15 Complex to Regulate Wheat Defense Responses to Blumeria graminis f.sp. tritici. Int J Mol Sci 2020; 21:ijms21072640. [PMID: 32290114 PMCID: PMC7178159 DOI: 10.3390/ijms21072640] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
Powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt) leads to severe economic losses in bread wheat (Triticum aestivum L.). To date, only a few epigenetic modulators have been revealed to regulate wheat powdery mildew resistance. In this study, the histone deacetylase 2 (HD2) type histone deacetylase TaHDT701 was identified as a negative regulator of wheat defense responses to Bgt. Using multiple approaches, we demonstrated that TaHDT701 associates with the RPD3 type histone deacetylase TaHDA6 and the WD40-repeat protein TaHOS15 to constitute a histone deacetylase complex, in which TaHDT701 could stabilize the TaHDA6-TaHOS15 association. Furthermore, knockdown of TaHDT701, TaHDA6, and TaHOS15 resulted in enhanced wheat powdery mildew resistance, suggesting that the TaHDT701-TaHDA6-TaHOS15 histone deacetylase complex negatively regulates wheat defense responses to Bgt. Moreover, chromatin immunoprecipitation assays revealed that TaHDT701 could function in concert with TaHOS15 to recruit TaHDA6 to the promoters of defense-related genes such as TaPR1, TaPR2, TaPR5, and TaWRKY45. In addition, silencing of TaHDT701, TaHDA6, and TaHOS15 resulted in the up-regulation of TaPR1, TaPR2, TaPR5, and TaWRKY45 accompanied with increased histone acetylation and methylation, as well as reduced nucleosome occupancy, at their promoters, suggesting that the TaHDT701-TaHDA6-TaHOS15 histone deacetylase complex suppresses wheat powdery mildew resistance by modulating chromatin state at defense-related genes.
Collapse
|
48
|
Yang L, Chen X, Wang Z, Sun Q, Hong A, Zhang A, Zhong X, Hua J. HOS15 and HDA9 negatively regulate immunity through histone deacetylation of intracellular immune receptor NLR genes in Arabidopsis. THE NEW PHYTOLOGIST 2020; 226:507-522. [PMID: 31854111 PMCID: PMC7080574 DOI: 10.1111/nph.16380] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/08/2019] [Indexed: 05/08/2023]
Abstract
Plant immune responses need to be tightly controlled for growth-defense balance. The mechanism underlying this tight control is not fully understood. Here we identify epigenetic regulation of nucleotide-binding leucine rich repeat or Nod-Like Receptor (NLR) genes as an important mechanism for immune responses. Through a sensitized genetic screen and molecular studies, we identified and characterized HOS15 and its associated protein HDA9 as negative regulators of immunity and NLR gene expression. The loss-of-function of HOS15 or HDA9 confers enhanced resistance to pathogen infection accompanied with increased expression of one-third of the 207 NLR genes in Arabidopsis thaliana. HOS15 and HDA9 are physically associated with some of these NLR genes and repress their expression likely through reducing the acetylation of H3K9 at these loci. In addition, these NLR genes are repressed by HOS15 under both pathogenic and nonpathogenic conditions but by HDA9 only under infection condition. Together, this study uncovers a previously uncharacterized histone deacetylase complex in plant immunity and highlights the importance of epigenetic regulation of NLR genes in modulating growth-defense balance.
Collapse
Affiliation(s)
- Leiyun Yang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, USA
| | - Xiangsong Chen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, 53706, USA
| | - Zhixue Wang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, USA
| | - Qi Sun
- Cornell Computational Biology Service Unit, Cornell University, Ithaca, 14853, USA
| | - Anna Hong
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, USA
| | - Aiqin Zhang
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, USA
| | - Xuehua Zhong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, 53706, USA
- For correspondence: Jian Hua: Tel (+1) 607-255-5554;; Xuehua Zhong: Tel (+1) 608-316-4421;
| | - Jian Hua
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, 14853, USA
- For correspondence: Jian Hua: Tel (+1) 607-255-5554;; Xuehua Zhong: Tel (+1) 608-316-4421;
| |
Collapse
|
49
|
Tabassum N, Eschen-Lippold L, Athmer B, Baruah M, Brode M, Maldonado-Bonilla LD, Hoehenwarter W, Hause G, Scheel D, Lee J. Phosphorylation-dependent control of an RNA granule-localized protein that fine-tunes defence gene expression at a post-transcriptional level. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1023-1039. [PMID: 31628867 DOI: 10.1111/tpj.14573] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2019] [Accepted: 10/03/2019] [Indexed: 05/12/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades are key signalling modules of plant defence responses to pathogen-associated molecular patterns [PAMPs; e.g. the bacterial peptide flagellin (flg22)]. Tandem zinc finger protein 9 (TZF9) is a RNA-binding protein that is phosphorylated by two PAMP-responsive MAPKs, MPK3 and MPK6. We mapped the major phosphosites in TZF9 and showed their importance for controlling in vitro RNA-binding activity, in vivo flg22-induced rapid disappearance of TZF9-labelled processing body-like structures and TZF9 protein turnover. Microarray analysis showed a strong discordance between transcriptome (total mRNA) and translatome (polysome-associated mRNA) in the tzf9 mutant, with more mRNAs associated with ribosomes in the absence of TZF9. This suggests that TZF9 may sequester and inhibit the translation of subsets of mRNAs. Fittingly, TZF9 physically interacts with poly(A)-binding protein 2 (PAB2), a hallmark constituent of stress granules - sites for stress-induced translational stalling/arrest. TZF9 even promotes the assembly of stress granules in the absence of stress. Hence, MAPKs may control defence gene expression post-transcriptionally through release from translation arrest within TZF9-PAB2-containing RNA granules or by perturbing the function of PAB2 in translation control (e.g. in the mRNA closed-loop model of translation).
Collapse
Affiliation(s)
- Naheed Tabassum
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | | | - Benedikt Athmer
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | - Manaswita Baruah
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | - Martina Brode
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | | | | | - Gerd Hause
- Biocenter, Martin Luther University Halle-Wittenberg, Weinbergweg 22, D-06120, Halle/Saale, Germany
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| | - Justin Lee
- Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle/Saale, D-06120, Germany
| |
Collapse
|
50
|
Kong L, Liu Y, Wang X, Chang C. Insight into the Role of Epigenetic Processes in Abiotic and Biotic Stress Response in Wheat and Barley. Int J Mol Sci 2020; 21:ijms21041480. [PMID: 32098241 PMCID: PMC7073019 DOI: 10.3390/ijms21041480] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
Environmental stresses such as salinity, drought, heat, freezing, heavy metal and even pathogen infections seriously threaten the growth and yield of important cereal crops including wheat and barley. There is growing evidence indicating that plants employ sophisticated epigenetic mechanisms to fine-tune their responses to environmental stresses. Here, we provide an overview of recent developments in understanding the epigenetic processes and elements—such as DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs—involved in plant responses to abiotic and biotic stresses in wheat and barley. Potentials of exploiting epigenetic variation for the improvement of wheat and barley are discussed.
Collapse
Affiliation(s)
- Lingyao Kong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Yanna Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaoyu Wang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (L.K.); (Y.L.); (X.W.)
- Correspondence: ; Tel.: +86-532-85953227
| |
Collapse
|