1
|
Grewal S, Yang CY, Krasheninnikova K, Collins J, Wood JMD, Ashling S, Scholefield D, Kaithakottil GG, Swarbreck D, Yao E, Sen TZ, King IP, King J. Chromosome-level haplotype-resolved genome assembly of bread wheat's wild relative Aegilops mutica. Sci Data 2025; 12:438. [PMID: 40082453 PMCID: PMC11906796 DOI: 10.1038/s41597-025-04737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Bread wheat (Triticum aestivum) is a vital staple crop, with an urgent need for increased production to help feed the world's growing population. Aegilops mutica (2n = 2x = 14; T genome) is a diploid wild relative of wheat carrying valuable agronomic traits resulting in its extensive exploitation for wheat improvement. This paper reports a chromosome-scale, haplotype-resolved genome assembly of Ae. mutica using HiFi reads and Omni-C data. The final lengths for the curated genomes were ~4.65 Gb (haplotype 1) and 4.56 Gb (haplotype 2), featuring a contig N50 of ~4.35 Mb and ~4.60 Mb, respectively. Genome annotation predicted 96,723 gene models and repeats. In summary, the genome assembly of Ae. mutica provides a valuable resource for the wheat breeding community, facilitating faster and more efficient pre-breeding of wheat to enhance food security.
Collapse
Affiliation(s)
- Surbhi Grewal
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Cai-Yun Yang
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - Joanna Collins
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Jonathan M D Wood
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Stephen Ashling
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eric Yao
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Taner Z Sen
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
| | - Ian P King
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Julie King
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
2
|
Medhi U, Chaliha C, Singh A, Nath BK, Kalita E. Third generation sequencing transforming plant genome research: Current trends and challenges. Gene 2025; 940:149187. [PMID: 39724994 DOI: 10.1016/j.gene.2024.149187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
In recent years, third-generation sequencing (TGS) technologies have transformed genomics and transcriptomics research, providing novel opportunities for significant discoveries. The long-read sequencing platforms, with their unique advantages over next-generation sequencing (NGS), including a definitive protocol, reduced operational time, and real-time sequencing, possess the potential to transform plant genomics. TGS optimizes and enhances the efficiency of data analysis by removing the necessity for time-consuming assembly tools. The current review examines the development and application of bioinformatics tools for data analysis and annotation, driven by the rapid advancement of TGS platforms like Oxford Nanopore Technologies and Pacific Biosciences. Transcriptome analysis utilizing TGS has been extensively employed to elucidate complex plant transcriptomes and genomes, particularly those characterized by high frequencies of duplicated genomes and repetitive sequences. As a result, current methodologies that allow for generating transcriptomes and comprehensive whole-genome sequences of complex plant genomes employing tailored hybrid sequencing techniques that integrate NGS and TGS technologies have been emphasized herein. This paper, thus, articulates a vision for a future in which TGS effectively addresses the challenges faced in plant research, offering a comprehensive understanding of its advantages, applications, limitations, and promising prospects.
Collapse
Affiliation(s)
- Upasana Medhi
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| | - Chayanika Chaliha
- School of Natural Resource Management, College of Post Graduate Studies in Agricultural Sciences-CAU Imphal, Umiam, Meghalaya, 793104, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Bikash K Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, 784028, India
| | - Eeshan Kalita
- Department of Molecular Biology and Biotechnology, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| |
Collapse
|
3
|
Li X, Wu X, Zhu Y, Li X, Meng Z, Wei N, Xiang M, Yang D, Zhu T. Chromosome-level genome assembly and annotation of largemouth bronze gudgeon (Coreius guichenoti). Sci Data 2025; 12:76. [PMID: 39814798 PMCID: PMC11735790 DOI: 10.1038/s41597-025-04416-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Coreius guichenoti, mainly distributed in upstream regions of the Yangtze River China, is currently on the brink of extinction and listed as national secondary protected animal. In this study, we aimed to obtain the chromosome-level genome of C. guichenoti using PacBio and Hi-C techniques. According to the PacBio sequencing, C. guichenoti genome was successfully assembled to 1100.1 Mb size, with a Contig N50 size of 25.0 Mb, and containing 731.0 Mb of repeats. Hi-C sequencing data was utilized for chromosome assembly and 25 chromosome sequences were ultimately yielded, with a total length of 1076.8 Mb. Moreover, a total of 22,506 protein-coding genes were predicted with average intron length of 2293 bp. Evolutionary analysis and divergence time prediction revealed that C. guichenoti was closely related to C. heterodon and they phylogenetically diverged from common ancestor ~20.7 million years ago (Mya), following the separation of Cyprinidae at 28.3 Mya. In the future, the utilization of comparative genomics research is important in elucidating the molecular mechanisms of Ichthyophthirius disease and ensuring the conservation of biological resources.
Collapse
Affiliation(s)
- Xuemei Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xingbing Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yongjiu Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Xiaoli Li
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Zihao Meng
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Nian Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Miao Xiang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Deguo Yang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Tingbing Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
4
|
Mihali CV, Mizeranschi AE, Ilie DE, Cziszter LT, Neamț RI, Anton AȘ, Mathe E, Pecsenye B, Bota VB, Turcuș V. Genomic Variability Survey in Ilex aquifolium L., with Reference to Four Insular Populations from Eastern Europe. Int J Mol Sci 2024; 25:13593. [PMID: 39769356 PMCID: PMC11677755 DOI: 10.3390/ijms252413593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Cosmopolitan in the western areas of Europe as well as on other continents, the Ilex genus is interesting for its genetic, phenotypic, and biogeographic variabilities. Its insular/local distribution, according to existing data on the periphery of the central and southern European areas, represents a suitable case study with reference to the adaptive plasticity or acclimatization of the Ilex aquifolium L. species to new climatic conditions. The aim of the present study was to analyze the genetic variability at the genome level in four insular populations of Ilex aquifolium L., i.e., in three spontaneous populations from Romania (RO), Serbia (SR), and Bulgaria (BG) and a cultivated population from Hungary (HU). According to the obtained results, the most genetically similar populations among the four considered in this study were those from SR and RO. Genetic variation overlapped genes that were generally associated with metabolic regulation/transport factors, water, and abiotic stress factors. The analysis of single-nucleotide polymorphisms (SNPs) at the levels of the chloroplast and mitochondrion, from the point of view of their distributions at the gene level, identified two clusters: one that includes the native populations (BG, SR, and RO) and a second one including the cultured population from HU.
Collapse
Affiliation(s)
- Ciprian Valentin Mihali
- Research and Development Station for Bovine Arad, 310059 Arad, Romania; (A.E.M.); (D.E.I.); (R.I.N.); (A.Ș.A.)
- Faculty of Medicine, “Vasile Goldiș” Western University from Arad, 310025 Arad, Romania; (E.M.); (V.B.B.); (V.T.)
| | - Alexandru Eugeniu Mizeranschi
- Research and Development Station for Bovine Arad, 310059 Arad, Romania; (A.E.M.); (D.E.I.); (R.I.N.); (A.Ș.A.)
- Institute for Advanced Environmental Research, West University of Timisoara, 300086 Timisoara, Romania
| | - Daniela Elena Ilie
- Research and Development Station for Bovine Arad, 310059 Arad, Romania; (A.E.M.); (D.E.I.); (R.I.N.); (A.Ș.A.)
| | - Ludovic-Toma Cziszter
- Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, 300645 Timișoara, Romania;
| | - Radu Ionel Neamț
- Research and Development Station for Bovine Arad, 310059 Arad, Romania; (A.E.M.); (D.E.I.); (R.I.N.); (A.Ș.A.)
| | - Andreea Ștefania Anton
- Research and Development Station for Bovine Arad, 310059 Arad, Romania; (A.E.M.); (D.E.I.); (R.I.N.); (A.Ș.A.)
| | - Endre Mathe
- Faculty of Medicine, “Vasile Goldiș” Western University from Arad, 310025 Arad, Romania; (E.M.); (V.B.B.); (V.T.)
- Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary
| | - Bence Pecsenye
- Institute of Nutrition Science, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - Viviane Beatrice Bota
- Faculty of Medicine, “Vasile Goldiș” Western University from Arad, 310025 Arad, Romania; (E.M.); (V.B.B.); (V.T.)
- Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, 700505 Iași, Romania
- Centre for Mountain Economy (CE-MONT), National Institute for Economic Research “Costin C. Kirițescu”, Romanian Academy, 725700 Suceava, Romania
| | - Violeta Turcuș
- Faculty of Medicine, “Vasile Goldiș” Western University from Arad, 310025 Arad, Romania; (E.M.); (V.B.B.); (V.T.)
- Centre for Mountain Economy (CE-MONT), National Institute for Economic Research “Costin C. Kirițescu”, Romanian Academy, 725700 Suceava, Romania
| |
Collapse
|
5
|
Rey E, Abrouk M, Dufau I, Rodde N, Saber N, Cizkova J, Fiene G, Stanschewski C, Jarvis DE, Jellen EN, Maughan PJ, von Baer I, Troukhan M, Kravchuk M, Hribova E, Cauet S, Krattinger SG, Tester M. Genome assembly of a diversity panel of Chenopodium quinoa. Sci Data 2024; 11:1366. [PMID: 39695301 PMCID: PMC11655568 DOI: 10.1038/s41597-024-04200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Quinoa (Chenopodium quinoa) is an important crop for the future challenges of food and nutrient security. Deep characterization of quinoa diversity is needed to support the agronomic improvement and adaptation of quinoa as its worldwide cultivation expands. In this study, we report the construction of chromosome-scale genome assemblies of eight quinoa accessions covering the range of phenotypic and genetic diversity of both lowland and highland quinoas. The assemblies were produced from a combination of PacBio HiFi reads and Bionano Saphyr optical maps, with total assembly sizes averaging 1.28 Gb with a mean N50 of 71.1 Mb. Between 43,733 and 48,564 gene models were predicted for the eight new quinoa genomes, and on average, 66% of each quinoa genome was classified as repetitive sequences. Alignment between the eight genome assemblies allowed the identification of structural rearrangements including inversions, translocations, and duplications. These eight novel quinoa genome assemblies provide a resource for association genetics, comparative genomics, and pan-genome analyses for the discovery of genetic components and variations underlying agriculturally important traits.
Collapse
Affiliation(s)
- Elodie Rey
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia.
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Isabelle Dufau
- INRAE, CNRGV French Plant Genomic Resource Center, F-31320, Castanet Tolosan, France
| | - Nathalie Rodde
- INRAE, CNRGV French Plant Genomic Resource Center, F-31320, Castanet Tolosan, France
| | - Noha Saber
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Jana Cizkova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ-77900, Olomouc, Czech Republic
| | - Gabriele Fiene
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Clara Stanschewski
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - David E Jarvis
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, UT, 84602, USA
| | - Eric N Jellen
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, UT, 84602, USA
| | - Peter J Maughan
- Brigham Young University, Department of Plant and Wildlife Sciences, College of Life Sciences, Provo, UT, 84602, USA
| | | | | | | | - Eva Hribova
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Šlechtitelů 31, CZ-77900, Olomouc, Czech Republic
| | - Stephane Cauet
- INRAE, CNRGV French Plant Genomic Resource Center, F-31320, Castanet Tolosan, France
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia
| | - Mark Tester
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, KAUST, Thuwal, Saudi Arabia.
| |
Collapse
|
6
|
Grabowski PP, Dang P, Jenkins JJ, Sreedasyam A, Webber J, Lamb M, Zhang Q, Sanz-Saez A, Feng Y, Bunting V, Talag J, Clevenger J, Ozias-Akins P, Holbrook CC, Chu Y, Grimwood J, Schmutz J, Chen C, Lovell JT. Relics of interspecific hybridization retained in the genome of a drought-adapted peanut cultivar. G3 (BETHESDA, MD.) 2024; 14:jkae208. [PMID: 39217411 PMCID: PMC11540320 DOI: 10.1093/g3journal/jkae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Peanut (Arachis hypogaea L.) is a globally important oil and food crop frequently grown in arid, semi-arid, or dryland environments. Improving drought tolerance is a key goal for peanut crop improvement efforts. Here, we present the genome assembly and gene model annotation for "Line8," a peanut genotype bred from drought-tolerant cultivars. Our assembly and annotation are the most contiguous and complete peanut genome resources currently available. The high contiguity of the Line8 assembly allowed us to explore structural variation both between peanut genotypes and subgenomes. We detect several large inversions between Line8 and other peanut genome assemblies, and there is a trend for the inversions between more genetically diverged genotypes to have higher gene content. We also relate patterns of subgenome exchange to structural variation between Line8 homeologous chromosomes. Unexpectedly, we discover that Line8 harbors an introgression from A.cardenasii, a diploid peanut relative and important donor of disease resistance alleles to peanut breeding populations. The fully resolved sequences of both haplotypes in this introgression provide the first in situ characterization of A.cardenasii candidate alleles that can be leveraged for future targeted improvement efforts. The completeness of our genome will support peanut biotechnology and broader research into the evolution of hybridization and polyploidy.
Collapse
Affiliation(s)
- Paul P Grabowski
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Phat Dang
- National Peanut Research Laboratory, USDA-ARS, 1011 Forrester Dr SE, Dawson, GA 39842, USA
| | - Jerry J Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Avinash Sreedasyam
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Jenell Webber
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Marshall Lamb
- National Peanut Research Laboratory, USDA-ARS, 1011 Forrester Dr SE, Dawson, GA 39842, USA
| | - Qiong Zhang
- Department of Crop, Soil and Environmental Sciences, Auburn University College of Agriculture, 107 Comer Hall, Auburn, AL 36849, USA
| | - Alvaro Sanz-Saez
- Department of Crop, Soil and Environmental Sciences, Auburn University College of Agriculture, 107 Comer Hall, Auburn, AL 36849, USA
| | - Yucheng Feng
- Department of Crop, Soil and Environmental Sciences, Auburn University College of Agriculture, 107 Comer Hall, Auburn, AL 36849, USA
| | - Victoria Bunting
- Arizona Genomics Institute, University of Arizona, 1657 E. Helen St., Tucson, AZ 85721, USA
| | - Jayson Talag
- Arizona Genomics Institute, University of Arizona, 1657 E. Helen St., Tucson, AZ 85721, USA
| | - Josh Clevenger
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Peggy Ozias-Akins
- Department of Horticulture and Institute for Plant Breeding, Genetics & Genomics, University of Georgia, College of Agricultural and Environmental Sciences, 2360 Rainwater Road, Tifton, GA 31793-5766, USA
| | - C Corley Holbrook
- Crop Genetics and Breeding Research Unit, USDA-ARS, 115 Coastal Way, P.O. Box 748, Tifton, GA 31793, USA
| | - Ye Chu
- Department of Horticulture and Institute for Plant Breeding, Genetics & Genomics, University of Georgia, College of Agricultural and Environmental Sciences, 2360 Rainwater Road, Tifton, GA 31793-5766, USA
| | - Jane Grimwood
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratories, Mail Stop: 91R183, Berkeley, CA 94720, USA
| | - Charles Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University College of Agriculture, 107 Comer Hall, Auburn, AL 36849, USA
| | - John T Lovell
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL 35806, USA
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratories, Mail Stop: 91R183, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Hoang NV, Walden N, Caracciolo L, Luoni SB, Retta M, Li R, Wolters FC, Woldu T, Becker FFM, Verbaarschot P, Harbinson J, Driever SM, Struik PC, van Amerongen H, de Ridder D, Aarts MGM, Schranz ME. Expanding the Triangle of U: Comparative analysis of the Hirschfeldia incana genome provides insights into chromosomal evolution, phylogenomics and high photosynthesis-related traits. ANNALS OF BOTANY 2024:mcae179. [PMID: 39446469 DOI: 10.1093/aob/mcae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND AIMS The Brassiceae tribe encompasses many economically important crops and exhibits high intraspecific and interspecific phenotypic variation. After a shared whole-genome triplication (WGT) event (Br-α, ~15.9 million years ago), differential lineage diversification and genomic changes contributed to an array of divergence in morphology, biochemistry, and physiology underlying photosynthesis-related traits. Here, the C3 species Hirschfeldia incana is studied as it displays high photosynthetic rates under high-light conditions. Our aim was to elucidate the evolution that gave rise to the genome of H. incana and its high-photosynthesis traits. METHODS We reconstructed a chromosome-level genome assembly for H. incana (Nijmegen, v2.0) using nanopore and chromosome conformation capture (Hi-C) technologies, with 409Mb in size and an N50 of 52Mb (a 10× improvement over the previously published scaffold-level v1.0 assembly). The updated assembly and annotation was subsequently employed to investigate the WGT history of H. incana in a comparative phylogenomic framework from the Brassiceae ancestral genomic blocks and related diploidized crops. KEY RESULTS Hirschfeldia incana (x=7) shares extensive genome collinearity with Raphanus sativus (x=9). These two species share some commonalities with Brassica rapa and B. oleracea (A genome, x=10 and C genome, x=9, respectively) and other similarities with B. nigra (B genome, x=8). Phylogenetic analysis revealed that H. incana and R. sativus form a monophyletic clade in between the Brassica A/C and B genomes. We postulate that H. incana and R. sativus genomes are results of hybridization or introgression of the Brassica A/C and B genome types. Our results might explain the discrepancy observed in published studies regarding phylogenetic placement of H. incana and R. sativus in relation to the "Triangle of U" species. Expression analysis of WGT retained gene copies revealed sub-genome expression divergence, likely due to neo- or sub-functionalization. Finally, we highlighted genes associated with physio-biochemical-anatomical adaptive changes observed in H. incana which likely facilitate its high-photosynthesis traits under high light. CONCLUSIONS The improved H. incana genome assembly, annotation and results presented in this work will be a valuable resource for future research to unravel the genetic basis of its ability to maintain a high photosynthetic efficiency in high-light conditions and thereby improve photosynthesis for enhanced agricultural production.
Collapse
Affiliation(s)
- Nam V Hoang
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Nora Walden
- Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Sofia Bengoa Luoni
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Moges Retta
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Run Li
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Felicia C Wolters
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Tina Woldu
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University and Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Dick de Ridder
- Bioinformatics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, Varshney RK. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 2024; 56:1788-1799. [PMID: 39048791 DOI: 10.1038/s41588-024-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.
Collapse
Affiliation(s)
- Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Manuel Spannagl
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xun Xu
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
9
|
Cavalet-Giorsa E, González-Muñoz A, Athiyannan N, Holden S, Salhi A, Gardener C, Quiroz-Chávez J, Rustamova SM, Elkot AF, Patpour M, Rasheed A, Mao L, Lagudah ES, Periyannan SK, Sharon A, Himmelbach A, Reif JC, Knauft M, Mascher M, Stein N, Chayut N, Ghosh S, Perovic D, Putra A, Perera AB, Hu CY, Yu G, Ahmed HI, Laquai KD, Rivera LF, Chen R, Wang Y, Gao X, Liu S, Raupp WJ, Olson EL, Lee JY, Chhuneja P, Kaur S, Zhang P, Park RF, Ding Y, Liu DC, Li W, Nasyrova FY, Dvorak J, Abbasi M, Li M, Kumar N, Meyer WB, Boshoff WHP, Steffenson BJ, Matny O, Sharma PK, Tiwari VK, Grewal S, Pozniak CJ, Chawla HS, Ens J, Dunning LT, Kolmer JA, Lazo GR, Xu SS, Gu YQ, Xu X, Uauy C, Abrouk M, Bougouffa S, Brar GS, Wulff BBH, Krattinger SG. Origin and evolution of the bread wheat D genome. Nature 2024; 633:848-855. [PMID: 39143210 PMCID: PMC11424481 DOI: 10.1038/s41586-024-07808-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/10/2024] [Indexed: 08/16/2024]
Abstract
Bread wheat (Triticum aestivum) is a globally dominant crop and major source of calories and proteins for the human diet. Compared with its wild ancestors, modern bread wheat shows lower genetic diversity, caused by polyploidisation, domestication and breeding bottlenecks1,2. Wild wheat relatives represent genetic reservoirs, and harbour diversity and beneficial alleles that have not been incorporated into bread wheat. Here we establish and analyse extensive genome resources for Tausch's goatgrass (Aegilops tauschii), the donor of the bread wheat D genome. Our analysis of 46 Ae. tauschii genomes enabled us to clone a disease resistance gene and perform haplotype analysis across a complex disease resistance locus, allowing us to discern alleles from paralogous gene copies. We also reveal the complex genetic composition and history of the bread wheat D genome, which involves contributions from genetically and geographically discrete Ae. tauschii subpopulations. Together, our results reveal the complex history of the bread wheat D genome and demonstrate the potential of wild relatives in crop improvement.
Collapse
Affiliation(s)
- Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea González-Muñoz
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Samuel Holden
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Adil Salhi
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Catherine Gardener
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | - Samira M Rustamova
- Institute of Molecular Biology and Biotechnologies, Ministry of Science and Education of the Republic of Azerbaijan, Baku, Azerbaijan
| | - Ahmed Fawzy Elkot
- Wheat Research Department, Field Crops Research Institute, Agricultural Research Center (ARC), Giza, Egypt
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- International Maize and Wheat Improvement Centre (CIMMYT), c/o CAAS, Beijing, China
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, New South Wales, Australia
| | - Sambasivam K Periyannan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, New South Wales, Australia
- Centre for Crop Health School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, Australia
| | - Amir Sharon
- Institute for Cereal Crops Improvement, School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Manuela Knauft
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Noam Chayut
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Sreya Ghosh
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Dragan Perovic
- Julius Kuehn-Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Quedlinburg, Germany
| | - Alexander Putra
- Bioscience Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ana B Perera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chia-Yi Hu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Guotai Yu
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hanin Ibrahim Ahmed
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Centre d'anthropobiologie et de génomique de Toulouse (CAGT), Laboratoire d'Anthropobiologie et d'Imagerie de Synthèse, CNRS UMR 5288, Faculté de Médecine de Purpan, Toulouse, France
| | - Konstanze D Laquai
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luis F Rivera
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Renjie Chen
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - W John Raupp
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, USA
| | - Eric L Olson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Jong-Yeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Robert F Park
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Yi Ding
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, New South Wales, Australia
| | - Deng-Cai Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Firuza Y Nasyrova
- Institute of Botany, Plant Physiology and Genetics, Tajik National Academy of Sciences, Dushanbe, Tajikistan
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Mehrdad Abbasi
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Meng Li
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Naveen Kumar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
| | - Wilku B Meyer
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Brian J Steffenson
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, USA
| | - Oadi Matny
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, USA
| | - Parva K Sharma
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Vijay K Tiwari
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Surbhi Grewal
- Nottingham Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, UK
| | - Curtis J Pozniak
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
| | - Harmeet Singh Chawla
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jennifer Ens
- University of Saskatchewan, Crop Development Centre, Agriculture Building, Saskatoon, Saskatchewan, Canada
| | - Luke T Dunning
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Gerard R Lazo
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Steven S Xu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Yong Q Gu
- Crop Improvement and Genetics Research Unit, Western Regional Research Center, USDA-ARS, Albany, CA, USA
| | - Xianyang Xu
- Peanut and Small Grains Research Unit, USDA-ARS, Stillwater, OK, USA
| | | | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Gurcharn S Brar
- Faculty of Land and Food Systems, The University of British Columbia (UBC), Vancouver, British Columbia, Canada
- Faculty of Agricultural, Life and Environmental Sciences, University of Alberta, Edmonton, Canada
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
10
|
Wang Z, He J, Qi Q, Wang K, Tang H, Feng Y, Zhao X, Yi S, Zhao Y, Xu D. Chromosome-level genome assembly of Cnidium monnieri, a highly demanded traditional Chinese medicine. Sci Data 2024; 11:667. [PMID: 38909038 PMCID: PMC11193713 DOI: 10.1038/s41597-024-03523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
Cnidium monnieri, a medicinal herb of the Cnidium genus and the Apiaceae family, is among the most important traditional Chinese medicines and is widely distributed in China. However, to date, no C. monnieri-related genomic information has been described. In this study, we assembled the C. monnieri genome of approximately 1210.23 Mb with a contig N50 of 83.14 Mb. Using PacBio HiFi and Hi-C sequencing data, we successfully anchored 93.86% of the assembled sequences to 10 pseudochromosomes (2n = 20). We predicted a total of 37,460 protein-coding genes, with 97.02% of them being functionally annotated in Non-Redundant, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and other databases. In addition, we identified 2,778 tRNAs, 4,180 rRNAs, 258 miRNAs, and 1,700 snRNAs in the genome. This is the first reported C. monnieri genome. Hopefully, the availability of this chromosome-level reference genome provides a significant basis for upcoming natural product-related biosynthetic pathway assessment in C. monnieri.
Collapse
Affiliation(s)
- Zixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiaxin He
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi Qi
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yimeng Feng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xinyue Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Shanyong Yi
- Department of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
- Medical Botanical Garden, China Pharmaceutical University, Nanjing, 210009, China.
| | - Dingqiao Xu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| |
Collapse
|
11
|
Wang ZH, Liu X, Cui Y, Wang YH, Lv ZL, Cheng L, Liu B, Liu H, Liu XY, Deyholos MK, Han ZM, Yang LM, Xiong AS, Zhang J. Genomic, transcriptomic, and metabolomic analyses provide insights into the evolution and development of a medicinal plant Saposhnikovia divaricata (Apiaceae). HORTICULTURE RESEARCH 2024; 11:uhae105. [PMID: 38883332 PMCID: PMC11179723 DOI: 10.1093/hr/uhae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/31/2024] [Indexed: 06/18/2024]
Abstract
Saposhnikovia divaricata, 2n = 2x = 16, as a perennial species, is widely distributed in China, Mongolia, Russia, etc. It is a traditional Chinese herb used to treat tetanus, rubella pruritus, rheumatic arthralgia, and other diseases. Here, we assembled a 2.07 Gb and N50 scaffold length of 227.67 Mb high-quality chromosome-level genome of S. divaricata based on the PacBio Sequel II sequencing platform. The total number of genes identified was 42 948, and 42 456 of them were functionally annotated. A total of 85.07% of the genome was composed of repeat sequences, comprised mainly of long terminal repeats (LTRs) which represented 73.7% of the genome sequence. The genome size may have been affected by a recent whole-genome duplication event. Transcriptional and metabolic analyses revealed bolting and non-bolting S. divaricata differed in flavonoids, plant hormones, and some pharmacologically active components. The analysis of its genome, transcriptome, and metabolome helped to provide insights into the evolution of bolting and non-bolting phenotypes in wild and cultivated S. divaricata and lays the basis for genetic improvement of the species.
Collapse
Affiliation(s)
- Zhen-Hui Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Xiao Liu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yi Cui
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yun-He Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ze-Liang Lv
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Lin Cheng
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin-Yang Liu
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Okanagan V1V1V7, Canada
| | - Zhong-Ming Han
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Li-Min Yang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Department of Biology, University of British Columbia, Okanagan V1V1V7, Canada
| |
Collapse
|
12
|
Grewal S, Yang CY, Scholefield D, Ashling S, Ghosh S, Swarbreck D, Collins J, Yao E, Sen TZ, Wilson M, Yant L, King IP, King J. Chromosome-scale genome assembly of bread wheat's wild relative Triticum timopheevii. Sci Data 2024; 11:420. [PMID: 38653999 PMCID: PMC11039740 DOI: 10.1038/s41597-024-03260-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024] Open
Abstract
Wheat (Triticum aestivum) is one of the most important food crops with an urgent need for increase in its production to feed the growing world. Triticum timopheevii (2n = 4x = 28) is an allotetraploid wheat wild relative species containing the At and G genomes that has been exploited in many pre-breeding programmes for wheat improvement. In this study, we report the generation of a chromosome-scale reference genome assembly of T. timopheevii accession PI 94760 based on PacBio HiFi reads and chromosome conformation capture (Hi-C). The assembly comprised a total size of 9.35 Gb, featuring a contig N50 of 42.4 Mb and included the mitochondrial and plastid genome sequences. Genome annotation predicted 166,325 gene models including 70,365 genes with high confidence. DNA methylation analysis showed that the G genome had on average more methylated bases than the At genome. In summary, the T. timopheevii genome assembly provides a valuable resource for genome-informed discovery of agronomically important genes for food security.
Collapse
Affiliation(s)
- Surbhi Grewal
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Cai-Yun Yang
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Stephen Ashling
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Sreya Ghosh
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Joanna Collins
- Genome Reference Informatics Team, Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Eric Yao
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Taner Z Sen
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Michael Wilson
- University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Levi Yant
- University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ian P King
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Julie King
- Wheat Research Centre, Department of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
13
|
Fukasawa Y, Driguez P, Bougouffa S, Carty K, Putra A, Cheung MS, Ermini L. Plasticity of repetitive sequences demonstrated by the complete mitochondrial genome of Eucalyptus camaldulensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1339594. [PMID: 38601302 PMCID: PMC11005031 DOI: 10.3389/fpls.2024.1339594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/12/2024]
Abstract
The tree Eucalyptus camaldulensis is a ubiquitous member of the Eucalyptus genus, which includes several hundred species. Despite the extensive sequencing and assembly of nuclear genomes from various eucalypts, the genus has only one fully annotated and complete mitochondrial genome (mitogenome). Plant mitochondria are characterized by dynamic genomic rearrangements, facilitated by repeat content, a feature that has hindered the assembly of plant mitogenomes. This complexity is evident in the paucity of available mitogenomes. This study, to the best of our knowledge, presents the first E. camaldulensis mitogenome. Our findings suggest the presence of multiple isomeric forms of the E. camaldulensis mitogenome and provide novel insights into minor rearrangements triggered by nested repeat sequences. A comparative sequence analysis of the E. camaldulensis and E. grandis mitogenomes unveils evolutionary changes between the two genomes. A significant divergence is the evolution of a large repeat sequence, which may have contributed to the differences observed between the two genomes. The largest repeat sequences in the E. camaldulensis mitogenome align well with significant yet unexplained structural variations in the E. grandis mitogenome, highlighting the adaptability of repeat sequences in plant mitogenomes.
Collapse
Affiliation(s)
- Yoshinori Fukasawa
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Patrick Driguez
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Bougouffa
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Karen Carty
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexander Putra
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Ming-Sin Cheung
- Core Labs, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Luca Ermini
- NORLUX NeuroOncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| |
Collapse
|
14
|
Mansfeld BN, Yocca A, Ou S, Harkess A, Burchard E, Gutierrez B, van Nocker S, Gottschalk C. A haplotype resolved chromosome-scale assembly of North American wild apple Malus fusca and comparative genomics of the fire blight Mfu10 locus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:989-1002. [PMID: 37639371 DOI: 10.1111/tpj.16433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/08/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
SUMMARYThe Pacific crabapple (Malus fusca) is a wild relative of the commercial apple (Malus × domestica). With a range extending from Alaska to Northern California, M. fusca is extremely hardy and disease resistant. The species represents an untapped genetic resource for the development of new apple cultivars with enhanced stress resistance. However, gene discovery and utilization of M. fusca have been hampered by the lack of genomic resources. Here, we present a high‐quality, haplotype‐resolved, chromosome‐scale genome assembly and annotation for M. fusca. The genome was assembled using high‐fidelity long‐reads and scaffolded using genetic maps and high‐throughput chromatin conformation capture sequencing, resulting in one of the most contiguous apple genomes to date. We annotated the genome using public transcriptomic data from the same species taken from diverse plant structures and developmental stages. Using this assembly, we explored haplotypic structural variation within the genome of M. fusca, identifying thousands of large variants. We further showed high sequence co‐linearity with other domesticated and wild Malus species. Finally, we resolve a known quantitative trait locus associated with resistance to fire blight (Erwinia amylovora). Insights gained from the assembly of a reference‐quality genome of this hardy wild apple relative will be invaluable as a tool to facilitate DNA‐informed introgression breeding.
Collapse
Affiliation(s)
- Ben N Mansfeld
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alan Yocca
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Shujun Ou
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, USA
| | - Alex Harkess
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | - Erik Burchard
- USDA ARS, Appalachian Fruit Research Station, Kearneysville, West Virginia, USA
| | | | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | | |
Collapse
|
15
|
Abrouk M, Wang Y, Cavalet-Giorsa E, Troukhan M, Kravchuk M, Krattinger SG. Chromosome-scale assembly of the wild wheat relative Aegilops umbellulata. Sci Data 2023; 10:739. [PMID: 37880246 PMCID: PMC10600132 DOI: 10.1038/s41597-023-02658-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Wild wheat relatives have been explored in plant breeding to increase the genetic diversity of bread wheat, one of the most important food crops. Aegilops umbellulata is a diploid U genome-containing grass species that serves as a genetic reservoir for wheat improvement. In this study, we report the construction of a chromosome-scale reference assembly of Ae. umbellulata accession TA1851 based on corrected PacBio HiFi reads and chromosome conformation capture. The total assembly size was 4.25 Gb with a contig N50 of 17.7 Mb. In total, 36,268 gene models were predicted. We benchmarked the performance of hifiasm and LJA, two of the most widely used assemblers using standard and corrected HiFi reads, revealing a positive effect of corrected input reads. Comparative genome analysis confirmed substantial chromosome rearrangements in Ae. umbellulata compared to bread wheat. In summary, the Ae. umbellulata assembly provides a resource for comparative genomics in Triticeae and for the discovery of agriculturally important genes.
Collapse
Affiliation(s)
- Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| | - Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | | | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
16
|
Wang Y, Abrouk M, Gourdoupis S, Koo DH, Karafiátová M, Molnár I, Holušová K, Doležel J, Athiyannan N, Cavalet-Giorsa E, Jaremko Ł, Poland J, Krattinger SG. An unusual tandem kinase fusion protein confers leaf rust resistance in wheat. Nat Genet 2023:10.1038/s41588-023-01401-2. [PMID: 37217716 DOI: 10.1038/s41588-023-01401-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
The introgression of chromosome segments from wild relatives is an established strategy to enrich crop germplasm with disease-resistance genes1. Here we use mutagenesis and transcriptome sequencing to clone the leaf rust resistance gene Lr9, which was introduced into bread wheat from the wild grass species Aegilops umbellulata2. We established that Lr9 encodes an unusual tandem kinase fusion protein. Long-read sequencing of a wheat Lr9 introgression line and the putative Ae. umbellulata Lr9 donor enabled us to assemble the ~28.4-Mb Lr9 translocation and to identify the translocation breakpoint. We likewise cloned Lr58, which was reportedly introgressed from Aegilops triuncialis3, but has an identical coding sequence compared to Lr9. Cytogenetic and haplotype analyses corroborate that the two genes originate from the same translocation event. Our work sheds light on the emerging role of kinase fusion proteins in wheat disease resistance, expanding the repertoire of disease-resistance genes for breeding.
Collapse
Affiliation(s)
- Yajun Wang
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael Abrouk
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Spyridon Gourdoupis
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center and Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Miroslava Karafiátová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - István Molnár
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic
| | - Naveenkumar Athiyannan
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Emile Cavalet-Giorsa
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Bioscience Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jesse Poland
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Simon G Krattinger
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
- Center for Desert Agriculture, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
17
|
Dvorianinova EM, Bolsheva NL, Pushkova EN, Rozhmina TA, Zhuchenko AA, Novakovskiy RO, Povkhova LV, Sigova EA, Zhernova DA, Borkhert EV, Kaluzhny DN, Melnikova NV, Dmitriev AA. Isolating Linum usitatissimum L. Nuclear DNA Enabled Assembling High-Quality Genome. Int J Mol Sci 2022; 23:13244. [PMID: 36362031 PMCID: PMC9656206 DOI: 10.3390/ijms232113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
High-quality genome sequences help to elucidate the genetic basis of numerous biological processes and track species evolution. For flax (Linum usitatissimum L.)-a multifunctional crop, high-quality assemblies from Oxford Nanopore Technologies (ONT) data were unavailable, largely due to the difficulty of isolating pure high-molecular-weight DNA. This article proposes a scheme for gaining a contiguous L. usitatissimum assembly using Nanopore data. We developed a protocol for flax nuclei isolation with subsequent DNA extraction, which allows obtaining about 5 μg of pure high-molecular-weight DNA from 0.5 g of leaves. Such an amount of material can be collected even from a single plant and yields more than 30 Gb of ONT data in two MinION runs. We performed a comparative analysis of different genome assemblers and polishers on the gained data and obtained the final 447.1-Mb assembly of L. usitatissimum line 3896 genome using the Canu-Racon (two iterations)-Medaka combination. The genome comprised 1695 contigs and had an N50 of 6.2 Mb and a completeness of 93.8% of BUSCOs from eudicots_odb10. Our study highlights the impact of the chosen genome construction strategy on the resulting assembly parameters and its eligibility for future genomic studies.
Collapse
Affiliation(s)
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow 115598, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
18
|
Mgwatyu Y, Cornelissen S, van Heusden P, Stander A, Ranketse M, Hesse U. Establishing MinION Sequencing and Genome Assembly Procedures for the Analysis of the Rooibos ( Aspalathus linearis) Genome. PLANTS (BASEL, SWITZERLAND) 2022; 11:2156. [PMID: 36015459 PMCID: PMC9416007 DOI: 10.3390/plants11162156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/08/2022] [Accepted: 08/14/2022] [Indexed: 11/17/2022]
Abstract
While plant genome analysis is gaining speed worldwide, few plant genomes have been sequenced and analyzed on the African continent. Yet, this information holds the potential to transform diverse industries as it unlocks medicinally and industrially relevant biosynthesis pathways for bioprospecting. Considering that South Africa is home to the highly diverse Cape Floristic Region, local establishment of methods for plant genome analysis is essential. Long-read sequencing is becoming standard procedure for plant genome research, as these reads can span repetitive regions of the DNA, substantially facilitating reassembly of a contiguous genome. With the MinION, Oxford Nanopore offers a cost-efficient sequencing method to generate long reads; however, DNA purification protocols must be adapted for each plant species to generate ultra-pure DNA, essential for these analyses. Here, we describe a cost-effective procedure for the extraction and purification of plant DNA and evaluate diverse genome assembly approaches for the reconstruction of the genome of rooibos (Aspalathus linearis), an endemic South African medicinal plant widely used for tea production. We discuss the pros and cons of nine tested assembly programs, specifically Redbean and NextDenovo, which generated the most contiguous assemblies, and Flye, which produced an assembly closest to the predicted genome size.
Collapse
Affiliation(s)
- Yamkela Mgwatyu
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Stephanie Cornelissen
- Agricultural Research Council, Biotechnology Platform, 100 Old Soutpans Road, Onderstepoort 0110, South Africa
| | - Peter van Heusden
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Allison Stander
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| | - Mary Ranketse
- Agricultural Research Council, Biotechnology Platform, 100 Old Soutpans Road, Onderstepoort 0110, South Africa
| | - Uljana Hesse
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
- Institute for Microbial Biotechnology and Metagenomics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa
| |
Collapse
|
19
|
Hai DM, Yen DT, Liem PT, Tam BM, Huong DTT, Hang BTB, Hieu DQ, Garigliany MM, Coppieters W, Kestemont P, Phuong NT, Farnir F. A High-Quality Genome Assembly of Striped Catfish ( Pangasianodon hypophthalmus) Based on Highly Accurate Long-Read HiFi Sequencing Data. Genes (Basel) 2022; 13:923. [PMID: 35627308 PMCID: PMC9141817 DOI: 10.3390/genes13050923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022] Open
Abstract
The HiFi sequencing technology yields highly accurate long-read data with accuracies greater than 99.9% that can be used to improve results for complex applications such as genome assembly. Our study presents a high-quality chromosome-scale genome assembly of striped catfish (Pangasianodon hypophthalmus), a commercially important species cultured mainly in Vietnam, integrating HiFi reads and Hi-C data. A 788.4 Mb genome containing 381 scaffolds with an N50 length of 21.8 Mb has been obtained from HiFi reads. These scaffolds have been further ordered and clustered into 30 chromosome groups, ranging from 1.4 to 57.6 Mb, based on Hi-C data. The present updated assembly has a contig N50 of 14.7 Mb, representing a 245-fold and 4.2-fold improvement over the previous Illumina and Illumina-Nanopore-Hi-C based version, respectively. In addition, the proportion of repeat elements and BUSCO genes identified in our genome is remarkably higher than in the two previously released striped catfish genomes. These results highlight the power of using HiFi reads to assemble the highly repetitive regions and to improve the quality of genome assembly. The updated, high-quality genome assembled in this work will provide a valuable genomic resource for future population genetics, conservation biology and selective breeding studies of striped catfish.
Collapse
Affiliation(s)
- Dao Minh Hai
- FARAH/Sustainable Animal Production, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Duong Thuy Yen
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Pham Thanh Liem
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Bui Minh Tam
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Bui Thi Bich Hang
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Dang Quang Hieu
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Mutien-Marie Garigliany
- FARAH/Veterinary Public Health, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
| | | | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology, Institute of Life, Earth & Environnment, University of Namur, rue de Bruxelles 61, 5000 Namur, Belgium;
| | - Nguyen Thanh Phuong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho 900000, Vietnam; (D.T.Y.); (P.T.L.); (B.M.T.); (D.T.T.H.); (B.T.B.H.); (D.Q.H.); (N.T.P.)
| | - Frédéric Farnir
- FARAH/Sustainable Animal Production, Faculty of Veterinary Medicine, University of Liege (B43), 4000 Liege, Belgium;
| |
Collapse
|
20
|
Sharma P, Masouleh AK, Topp B, Furtado A, Henry RJ. De novo chromosome level assembly of a plant genome from long read sequence data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:727-736. [PMID: 34784084 PMCID: PMC9300133 DOI: 10.1111/tpj.15583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 05/16/2023]
Abstract
Recent advances in the sequencing and assembly of plant genomes have allowed the generation of genomes with increasing contiguity and sequence accuracy. Chromosome level genome assemblies using sequence contigs generated from long read sequencing have involved the use of proximity analysis (Hi-C) or traditional genetic maps to guide the placement of sequence contigs within chromosomes. The development of highly accurate long reads by repeated sequencing of circularized DNA (HiFi; PacBio) has greatly increased the size of contigs. We now report the use of HiFiasm to assemble the genome of Macadamia jansenii, a genome that has been used as a model to test sequencing and assembly. This achieved almost complete chromosome level assembly from the sequence data alone without the need for higher level chromosome map information. Eight of the 14 chromosomes were represented by a single large contig (six with telomere repeats at both ends) and the other six assembled from two to four main contigs. The small number of chromosome breaks appears to be the result of highly repetitive regions including ribosomal genes that cannot be assembled by these approaches. De novo assembly of near complete chromosome level plant genomes now appears possible using these sequencing and assembly tools. Further targeted strategies might allow these remaining gaps to be closed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQLD4072Australia
| | | | - Bruce Topp
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQLD4072Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQLD4072Australia
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food InnovationUniversity of QueenslandBrisbaneQLD4072Australia
- ARC Centre of Excellence for Plant Success in Nature and AgricultureUniversity of QueenslandBrisbaneQLD4072Australia
| |
Collapse
|
21
|
Kress WJ, Soltis DE, Kersey PJ, Wegrzyn JL, Leebens-Mack JH, Gostel MR, Liu X, Soltis PS. Green plant genomes: What we know in an era of rapidly expanding opportunities. Proc Natl Acad Sci U S A 2022; 119:e2115640118. [PMID: 35042803 PMCID: PMC8795535 DOI: 10.1073/pnas.2115640118] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.
Collapse
Affiliation(s)
- W John Kress
- National Museum of Natural History, Smithsonian Institution, Department of Botany, Washington, DC 20013-7012;
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
- Arnold Arboretum, Harvard University, Boston, MA 02130
| | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
- Department of Biology, University of Florida, Gainesville, FL 32611
| | - Paul J Kersey
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AE, United Kingdom
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, Institute for Systems Genomics: Computational Biology Core, University of Connecticut, Storrs, CT 06269-3214
| | - James H Leebens-Mack
- Department of Plant Biology, 2101 Miller Plant Sciences, University of Georgia, Athens, GA 30602-7271
| | - Morgan R Gostel
- Botanical Research Institute of Texas, Fort Worth, TX 76107-3400
| | - Xin Liu
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611
- Biodiversity Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
22
|
Affiliation(s)
- Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA.
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
23
|
Bell KL, Petit RA, Cutler A, Dobbs EK, Macpherson JM, Read TD, Burgess KS, Brosi BJ. Comparing whole-genome shotgun sequencing and DNA metabarcoding approaches for species identification and quantification of pollen species mixtures. Ecol Evol 2021; 11:16082-16098. [PMID: 34824813 PMCID: PMC8601920 DOI: 10.1002/ece3.8281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Molecular identification of mixed-species pollen samples has a range of applications in various fields of research. To date, such molecular identification has primarily been carried out via amplicon sequencing, but whole-genome shotgun (WGS) sequencing of pollen DNA has potential advantages, including (1) more genetic information per sample and (2) the potential for better quantitative matching. In this study, we tested the performance of WGS sequencing methodology and publicly available reference sequences in identifying species and quantifying their relative abundance in pollen mock communities. Using mock communities previously analyzed with DNA metabarcoding, we sequenced approximately 200Mbp for each sample using Illumina HiSeq and MiSeq. Taxonomic identifications were based on the Kraken k-mer identification method with reference libraries constructed from full-genome and short read archive data from the NCBI database. We found WGS to be a reliable method for taxonomic identification of pollen with near 100% identification of species in mixtures but generating higher rates of false positives (reads not identified to the correct taxon at the required taxonomic level) relative to rbcL and ITS2 amplicon sequencing. For quantification of relative species abundance, WGS data provided a stronger correlation between pollen grain proportion and sequence read proportion, but diverged more from a 1:1 relationship, likely due to the higher rate of false positives. Currently, a limitation of WGS-based pollen identification is the lack of representation of plant diversity in publicly available genome databases. As databases improve and costs drop, we expect that eventually genomics methods will become the methods of choice for species identification and quantification of mixed-species pollen samples.
Collapse
Affiliation(s)
- Karen L Bell
- Department of Environmental Sciences Emory University Atlanta Georgia USA
- Present address: School of Biological Sciences University of Western Australia Perth Australia
- Present address: CSIRO Land & Water and CSIRO Health & Biosecurity Floreat WA Australia
| | - Robert A Petit
- Division of Infectious Diseases Department of Medicine Emory University Atlanta Georgia USA
| | - Anya Cutler
- Department of Environmental Sciences Emory University Atlanta Georgia USA
| | - Emily K Dobbs
- Department of Environmental Sciences Emory University Atlanta Georgia USA
- Present address: Department of Biology Northern Kentucky University Highland Heights Kentucky USA
| | - J Michael Macpherson
- Department of Biology Chapman University Orange California USA
- Present address: 23andMe Mountain View California USA
| | - Timothy D Read
- Division of Infectious Diseases Department of Medicine Emory University Atlanta Georgia USA
| | - Kevin S Burgess
- Department of Biology Columbus State University Columbus Georgia USA
| | - Berry J Brosi
- Department of Environmental Sciences Emory University Atlanta Georgia USA
- Present address: Department of Biology University of Washington Seattle Washington USA
| |
Collapse
|