1
|
Nishioka K, Nakagawa M, Tanino Y, Nakaya T. Neisseria perflava isolated from a clinical sample reduces influenza virus replication in respiratory cells. J Oral Biosci 2025; 67:100665. [PMID: 40280275 DOI: 10.1016/j.job.2025.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVES Various bacteria are present in the oral cavity and constitute the oral microbiota. Although the oral microbiota has been analyzed using next-generation sequencing, few studies have investigated whether specific commensal bacteria directly affect immune responses to infections. Here, we focused on Neisseria species present in the oral cavity and investigated their effects on respiratory cells infected with several viruses. METHODS Six Neisseria species were isolated from human saliva. The epithelial cell lines were stimulated with bacterial culture supernatants before viral infection. Changes in the viral susceptibility were assessed. RESULTS Culture supernatants of two Neisseria species were found to affect cells susceptible to influenza viral infection and suppress influenza viral replication. The mechanism underlying the suppression of N. perflava was further investigated. This activity was observed in the 10-30 kDa protein range fractionated by ultrafiltration. Although viral replication was suppressed by stimulation with bacterial proteins, the infection efficiency of the virus and cytokine production were unaffected. Replication of SARS-CoV-2 and human rhinovirus were also suppressed. CONCLUSION Viral infection was performed after supernatant stimulation, suggesting that exposure to oral bacteria directly affects viral infection in the surrounding cells. This effect has been observed for several viruses. Viral genome replication in cells may be suppressed by enhanced expression of viral replication suppression genes. Further analyses are required to elucidate the detailed underlying mechanisms.
Collapse
Affiliation(s)
- Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Maki Nakagawa
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoko Tanino
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Clinical Investigation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
2
|
Yu Q, Mei H, Gu Q, Zeng R, Li Y, Zhang J, Gao C, Fang H, Qu J, Liu J. OLFML3 Promotes IRG1 Mitochondrial Localization and Modulates Mitochondrial Function in Macrophages. Int J Biol Sci 2025; 21:2275-2295. [PMID: 40083707 PMCID: PMC11900800 DOI: 10.7150/ijbs.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/15/2025] [Indexed: 03/16/2025] Open
Abstract
Olfactomedin-like protein 3 (OLFML3), belonging to olfactomedin (OLF) protein family, has poorly defined functions. Recent studies have reported the functions of OLFML3 in anti-viral immunity and tumorigenesis. In this study, we investigated the roles of OLFML3 in macrophages. In LPS- or Pseudomonas aeruginosa-induced acute lung injury (ALI) mouse model, OLFML3 depletion exacerbated inflammatory response, leading to reduced survival. OLFML3 achieved the in vivo activity by regulating macrophage phagocytosis and migration. Mass spectrometry analysis revealed immunoresponsive gene 1 (IRG1) as an OLFML3-interacting protein. IRG1 is a mitochondrial decarboxylase that catalyzes the conversion of cis-aconitate to itaconate, a myeloid-borne mitochondrial metabolite with immunomodulatory activities. Further investigation showed that OLFML3 could prevent LPS-induced mitochondrial dysfunction in macrophages by maintaining the homeostasis of mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mtROS) and itaconate-related metabolites. In-depth protein-protein interaction studies showed that OLFML3 could promote IRG1 mitochondrial localization via a mitochondrial transport protein, apoptosis inducing factor mitochondria associated 1 (AIFM1). In summary, our study showed that OLFML3 could facilitate IRG1 mitochondrial localization and prevent LPS-induced mitochondrial dysfunction in macrophages.
Collapse
Affiliation(s)
- Qijun Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qian Gu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ran Zeng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Yanan Li
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Junjie Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenxu Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Guangzhou Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
3
|
Qiao W, Xie X, Shi PY, Ooi YS, Carette JE. Druggable genome screens identify SPP as an antiviral host target for multiple flaviviruses. Proc Natl Acad Sci U S A 2025; 122:e2421573122. [PMID: 39969998 PMCID: PMC11874179 DOI: 10.1073/pnas.2421573122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
Mosquito-borne flaviviruses, such as dengue virus (DENV), Zika virus (ZIKV), West Nile virus, and yellow fever virus, pose significant public health threats globally. Extensive efforts have led to the development of promising highly active compounds against DENV targeting viral non-structural protein 4B (NS4B) protein. However, due to the cocirculation of flaviviruses and to prepare for emerging flaviviruses, there is a need for more broadly acting antivirals. Host-directed therapy where one targets a host factor required for viral replication may be active against multiple viruses that use similar replication strategies. Here, we used a CRISPR-Cas9 library that we designed to target the druggable genome and identified signal peptide peptidase (SPP, encoded by Histocompatibility Minor 13, HM13), as a critical host factor in DENV infection. Genetic knockout or introducing mutations that disrupt the proteolytic activity of SPP markedly reduced the replication of multiple flaviviruses. Although their substrates differ, SPP has structural homology with γ-secretase, which has been pursued as a pharmacological target for Alzheimer's disease. Notably, SPP-targeting compounds exhibited potent anti-DENV activity at low nanomolar concentrations across multiple primary and disease-relevant cell types, acting specifically through SPP inhibition rather than γ-secretase inhibition. Importantly, SPP inhibitors were active at low nanomolar concentrations against flaviviruses other than DENV including ZIKV while DENV NS4B inhibitors lost activity. This study emphasizes the strong potential of SPP as a pan-flaviviral target and provides a framework for identifying host druggable targets to screen for broad-spectrum antivirals.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Xuping Xie
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX77555
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX77555
| | - Yaw Shin Ooi
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore138648, Singapore
| | - Jan E. Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
4
|
Xie Y, Mei H, Wang W, Li X, Hu P, Tian X, Zhou R, Liu J, Qu J. ALCAM is an entry factor for severe community acquired Pneumonia-associated Human adenovirus species B. Nat Commun 2024; 15:10889. [PMID: 39738070 PMCID: PMC11686370 DOI: 10.1038/s41467-024-55261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated. Here, we perform a CRISPR genetic screen on HAdV-B using two generations of cell surface protein-focused CRISPR libraries and identify a series of host factors including the known receptor DSG-2 and an unknown factor, activated leukocyte cell adhesion molecule (ALCAM). Further investigation shows that ALCAM affects HAdV-B infection by participating in viral internalization. Transcriptomics data from human blood samples suggests that ALCAM expression is higher in SCAP patients with HAdV-B infection than in those with other infections. Chimeric and authentic virus experiments show that ALCAM is a widely used host factor across B1 and B2 genetic clusters of HAdV-B. The dissociation constant between the knob domain of HAdV-B fiber and ALCAM is 837 nM in average. In summary, our results suggest that ALCAM is an entry factor for SCAP-associated HAdV-B.
Collapse
Affiliation(s)
- Yusang Xie
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiao Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Pengfei Hu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingui Tian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, Guangdong, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| |
Collapse
|
5
|
Huang Y, Mei H, Deng C, Wang W, Yuan C, Nie Y, Li JD, Liu J. EXTL3 and NPC1 are mammalian host factors for Autographa californica multiple nucleopolyhedrovirus infection. Nat Commun 2024; 15:7711. [PMID: 39231976 PMCID: PMC11374996 DOI: 10.1038/s41467-024-52193-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024] Open
Abstract
Baculovirus is an obligate parasitic virus of the phylum Arthropoda. Baculovirus including Autographa californica multiple nucleopolyhedrovirus (AcMNPV) has been widely used in the laboratory and industrial preparation of proteins or protein complexes. Due to its large packaging capacity and non-replicative and non-integrative natures in mammals, baculovirus has been proposed as a gene therapy vector for transgene delivery. However, the mechanism of baculovirus transduction in mammalian cells has not been fully illustrated. Here, we employed a cell surface protein-focused CRISPR screen to identify host dependency factors for baculovirus transduction in mammalian cells. The screening experiment uncovered a series of baculovirus host factors in human cells, including exostosin-like glycosyltransferase 3 (EXTL3) and NPC intracellular cholesterol transporter 1 (NPC1). Further investigation illustrated that EXTL3 affected baculovirus attachment and entry by participating in heparan sulfate biosynthesis. In addition, NPC1 promoted baculovirus transduction by mediating membrane fusion and endosomal escape. Moreover, in vivo, baculovirus transduction in Npc1-/+ mice showed that disruption of Npc1 gene significantly reduced baculovirus transduction in mouse liver. In summary, our study revealed the functions of EXTL3 and NPC1 in baculovirus attachment, entry, and endosomal escape in mammalian cells, which is useful for understanding baculovirus transduction in human cells.
Collapse
Affiliation(s)
- Yuege Huang
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Chunchen Deng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Chao Yuan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Nie
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia-Da Li
- Furong Laboratory, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, Hunan, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China.
- Shanghai Asiflyerbio Biotechnology, Shanghai, China.
| |
Collapse
|
6
|
Ju DU, Park D, Kim IH, Kim S, Yoo HM. Development of Human Rhinovirus RNA Reference Material Using Digital PCR. Genes (Basel) 2023; 14:2210. [PMID: 38137032 PMCID: PMC10742479 DOI: 10.3390/genes14122210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The human rhinovirus (RV) is a positive-stranded RNA virus that causes respiratory tract diseases affecting both the upper and lower halves of the respiratory system. RV enhances its replication by concentrating RNA synthesis within a modified host membrane in an intracellular compartment. RV infections often occur alongside infections caused by other respiratory viruses, and the RV virus may remain asymptomatic for extended periods. Alongside qualitative detection, it is essential to accurately quantify RV RNA from clinical samples to explore the relationships between RV viral load, infections caused by the virus, and the resulting symptoms observed in patients. A reference material (RM) is required for quality evaluation, the performance evaluation of molecular diagnostic products, and evaluation of antiviral agents in the laboratory. The preparation process for the RM involves creating an RV RNA mixture by combining RV viral RNA with RNA storage solution and matrix. The resulting RV RNA mixture is scaled up to a volume of 25 mL, then dispensed at 100 µL per vial and stored at -80 °C. The process of measuring the stability and homogeneity of RV RMs was conducted by employing reverse transcription droplet digital polymerase chain reaction (RT-ddPCR). Digital PCR is useful for the analysis of standards and can help to improve measurement compatibility: it represents the equivalence of a series of outcomes for reference materials and samples being analyzed when a few measurement procedures are employed, enabling objective comparisons between quantitative findings obtained through various experiments. The number of copies value represents a measured result of approximately 1.6 × 105 copies/μL. The RM has about an 11% bottle-to-bottle homogeneity and shows stable results for 1 week at temperatures of 4 °C and -20 °C and for 12 months at a temperature of -80 °C. The developed RM can enhance the dependability of RV molecular tests by providing a precise reference value for the absolute copy number of a viral target gene. Additionally, it can serve as a reference for diverse studies.
Collapse
Affiliation(s)
- Dong U Ju
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongju Park
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Il-Hwan Kim
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Seil Kim
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| | - Hee Min Yoo
- Biometrology Group, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Precision Measurement, University of Science & Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
7
|
Qu S, Huang C, Zhu T, Wang K, Zhang H, Wang L, Xu R, Zheng H, Yuan X, Liu G, Zhu R, Qu J, Yi G, Qi S. OLFML3, as a potential predictor of prognosis and therapeutic target for glioma, is closely related to immune cell infiltration. VIEW 2023. [DOI: 10.1002/viw.20220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Affiliation(s)
- Shanqiang Qu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Chengying Huang
- Department of Obstetrics and Gynecology Baiyun Branch, Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Taichen Zhu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Kaicheng Wang
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Huayang Zhang
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Luyao Wang
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Rongyang Xu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Haojie Zheng
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Xi Yuan
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Guangjie Liu
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- The Laboratory for Precision Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Rongzhang Zhu
- The First Clinical Medical College of Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Jiayi Qu
- Department of Plant Sciences University of California Davis Davis California USA
| | - Guozhong Yi
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Nanfang Glioma Center Guangzhou Guangdong People's Republic of China
- Institute of Brain disease Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| | - Songtao Qi
- Department of Neurosurgery Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
- Nanfang Glioma Center Guangzhou Guangdong People's Republic of China
- Institute of Brain disease Nanfang Hospital Southern Medical University Guangzhou Guangdong People's Republic of China
| |
Collapse
|
8
|
Zimmerman O, Holmes AC, Kafai NM, Adams LJ, Diamond MS. Entry receptors - the gateway to alphavirus infection. J Clin Invest 2023; 133:e165307. [PMID: 36647825 PMCID: PMC9843064 DOI: 10.1172/jci165307] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphaviruses are enveloped, insect-transmitted, positive-sense RNA viruses that infect humans and other animals and cause a range of clinical manifestations, including arthritis, musculoskeletal disease, meningitis, encephalitis, and death. Over the past four years, aided by CRISPR/Cas9-based genetic screening approaches, intensive research efforts have focused on identifying entry receptors for alphaviruses to better understand the basis for cellular and species tropism. Herein, we review approaches to alphavirus receptor identification and how these were used for discovery. The identification of new receptors advances our understanding of viral pathogenesis, tropism, and evolution and is expected to contribute to the development of novel strategies for prevention and treatment of alphavirus infection.
Collapse
Affiliation(s)
| | | | | | | | - Michael S. Diamond
- Department of Medicine
- Department of Pathology and Immunology
- Department of Molecular Microbiology, and
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Mei H, Gu Q, Wang W, Meng Y, Jiang L, Liu J. CRISPR-surfaceome: An online tool for designing highly efficient sgRNAs targeting cell surface proteins. Comput Struct Biotechnol J 2022; 20:3833-3838. [PMID: 35891797 PMCID: PMC9307495 DOI: 10.1016/j.csbj.2022.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022] Open
Abstract
CRISPR-based genome-editing tools have emerged as an efficient tool for functional genomics studies. Online tools and databases have been developed to facilitate the design and selection of CRISPR single guide RNA (sgRNA) for gene modifications. However, to the best of our knowledge, none of these tools or database are designated to cell surface proteins. In a previous study, we described the development and application of surfaceome CRISPR libraries targeting to cell surface proteins on human cells. Here, we present the design and construction of an online tool and database (https://crispr-surfaceome.siais.shanghaitech.edu.cn/home), named CRISPR-Surfaceome, for the design of highly efficient sgRNA targeting to the surface proteins on human cells. To show case and validate the efficiencies of sgRNAs designed by this online tool, we chose ICAM-1 gene for knockout studies and found that all the 10 designed ICAM-1 sgRNAs could efficiently generate knockout cells, with more than 80% gene disruption rates. These ICAM-1 knockout cells were found to be resistant to the infection of rhinovirus (RV), which utilizes ICAM-1 as the receptor. Therefore, CRISPR-Surfaceome can serve the research community for the functional genomics studies on cell surface proteins, such as identification of pathogen receptors and discovery of drug targets.
Collapse
Affiliation(s)
- Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Qian Gu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Yu Meng
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- Corresponding authors at: Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shanghai Clinical Research and Trial Center, Shanghai 201210, China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 201210, China
- Corresponding authors at: Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
10
|
Hirano J, Murakami K, Hayashi T. CRISPR-Cas9-Based Technology for Studying Enteric Virus Infection. Front Genome Ed 2022; 4:888878. [PMID: 35755450 PMCID: PMC9213734 DOI: 10.3389/fgeed.2022.888878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Enteric viruses, including numerous viruses that initiate infection in enteric canal, are recognized as important agents that cause wide spectrum of illnesses in humans, depending on the virus type. They are mainly transmitted by fecal-oral route with several vector such as contaminated water or food. Infections by enteric viruses, such as noroviruses and rotaviruses, frequently cause widespread acute gastroenteritis, leading to significant health and economic burdens and therefore remain a public health concern. Like other viruses, enteric viruses ''hijack'' certain host factors (so called pro-viral factors) for replication in infected cells, while escaping the host defense system by antagonizing host anti-viral factors. Identification(s) of these factors is needed to better understand the molecular mechanisms underlying viral replication and pathogenicity, which will aid the development of efficient antiviral strategies. Recently, the advancement of genome-editing technology, especially the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system, has precipitated numerous breakthroughs across the field of virology, including enteric virus research. For instance, unbiased genome-wide screening employing the CRISPR-Cas9 system has successfully identified a number of previously unrecognized host factors associated with infection by clinically relevant enteric viruses. In this review, we briefly introduce the common techniques of the CRISPR-Cas9 system applied to virological studies and discuss the major findings using this system for studying enteric virus infection.
Collapse
Affiliation(s)
- Junki Hirano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosuke Murakami
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Hayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
11
|
Mei H, Zha Z, Wang W, Xie Y, Huang Y, Li W, Wei D, Zhang X, Qu J, Liu J. Correction: Surfaceome CRISPR screen identifies OLFML3 as a rhinovirus-inducible IFN antagonist. Genome Biol 2021; 22:314. [PMID: 34782001 PMCID: PMC8591863 DOI: 10.1186/s13059-021-02534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Zhao Zha
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Yusang Xie
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital and Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuege Huang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenping Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wei
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xinxin Zhang
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital and Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China. .,Shanghai Clinical Research and Trial Center, Shanghai, 201210, People's Republic of China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510182, Guangdong Province, China. .,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China. .,Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
12
|
Mei H, Zha Z, Wang W, Xie Y, Huang Y, Li W, Wei D, Zhang X, Qu J, Liu J. Surfaceome CRISPR screen identifies OLFML3 as a rhinovirus-inducible IFN antagonist. Genome Biol 2021; 22:297. [PMID: 34686207 PMCID: PMC8532573 DOI: 10.1186/s13059-021-02513-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Background Rhinoviruses (RVs) cause more than half of common colds and, in some cases, more severe diseases. Functional genomics analyses of RVs using siRNA or genome-wide CRISPR screen uncovered a limited set of host factors, few of which have proven clinical relevance. Results Herein, we systematically compare genome-wide CRISPR screen and surface protein-focused CRISPR screen, referred to as surfaceome CRISPR screen, for their efficiencies in identifying RV host factors. We find that surfaceome screen outperforms the genome-wide screen in the success rate of hit identification. Importantly, using the surfaceome screen, we identify olfactomedin-like 3 (OLFML3) as a novel host factor of RV serotypes A and B, including a clinical isolate. We find that OLFML3 is a RV-inducible suppressor of the innate immune response and that OLFML3 antagonizes type I interferon (IFN) signaling in a SOCS3-dependent manner. Conclusion Our study suggests that RV-induced OLFML3 expression is an important mechanism for RV to hijack the immune system and underscores surfaceome CRISPR screen in identifying viral host factors. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02513-w.
Collapse
Affiliation(s)
- Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Zhao Zha
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Wei Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Yusang Xie
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital and Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yuege Huang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Science, 100049, Beijing, People's Republic of China
| | - Wenping Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China.,University of Chinese Academy of Science, 100049, Beijing, People's Republic of China
| | - Dong Wei
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Xinxin Zhang
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Jieming Qu
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital and Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China.
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China. .,Shanghai Clinical Research and Trial Center, 201210, Shanghai, People's Republic of China. .,State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 510182, Guangdong Province, China. .,Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, 201210, Shanghai, People's Republic of China. .,Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou Interntional Bio Island, Guangdong Province, 510005, Guangzhou, China.
| |
Collapse
|