1
|
Zeng S, Wang K, Liu X, Hu Z, Zhao L. Potential of longan (Dimocarpus longan Lour.) in functional food: A review of molecular mechanism-directing health benefit properties. Food Chem 2024; 437:137812. [PMID: 37897820 DOI: 10.1016/j.foodchem.2023.137812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/30/2023]
Abstract
Longan (Dimocarpus longan Lour.) has received widespread attention worldwide as a therapeutic food with nutritional, economic, and medicinal value. Its fruit, seed, pericarp, and flower becoming dietary tools for health maintenance when it comes to targeting chronic diseases or sub-health conditions. In recent years, research focusing on longan and human health has intensified, and the high-value products of the whole fruit, including polyphenols, polysaccharides, angiotensin-I-converting enzyme (ACE)-inhibiting peptides, gamma-aminobutyric acid (GABA), and Maillard reaction products etc., may have beneficial effects on human health by preventing the onset of chronic diseases and cancer, maintaining intestinal homeostasis and skin health. Here, we review and summarize the new available evidence on the bioactive role of phytochemicals in longan and explore the relationship between longan bioactive compounds and health benefits, with a focus on the molecular mechanisms of the health effects.
Collapse
Affiliation(s)
- Shiai Zeng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China; College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Feitosa-Junior OR, Lubbe A, Kosina SM, Martins-Junior J, Barbosa D, Baccari C, Zaini PA, Bowen BP, Northen TR, Lindow SE, da Silva AM. The Exometabolome of Xylella fastidiosa in Contact with Paraburkholderia phytofirmans Supernatant Reveals Changes in Nicotinamide, Amino Acids, Biotin, and Plant Hormones. Metabolites 2024; 14:82. [PMID: 38392974 PMCID: PMC10890622 DOI: 10.3390/metabo14020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/25/2024] Open
Abstract
Microbial competition within plant tissues affects invading pathogens' fitness. Metabolomics is a great tool for studying their biochemical interactions by identifying accumulated metabolites. Xylella fastidiosa, a Gram-negative bacterium causing Pierce's disease (PD) in grapevines, secretes various virulence factors including cell wall-degrading enzymes, adhesion proteins, and quorum-sensing molecules. These factors, along with outer membrane vesicles, contribute to its pathogenicity. Previous studies demonstrated that co-inoculating X. fastidiosa with the Paraburkholderia phytofirmans strain PsJN suppressed PD symptoms. Here, we further investigated the interaction between the phytopathogen and the endophyte by analyzing the exometabolome of wild-type X. fastidiosa and a diffusible signaling factor (DSF) mutant lacking quorum sensing, cultivated with 20% P. phytofirmans spent media. Liquid chromatography-mass spectrometry (LC-MS) and the Method for Metabolite Annotation and Gene Integration (MAGI) were used to detect and map metabolites to genomes, revealing a total of 121 metabolites, of which 25 were further investigated. These metabolites potentially relate to host adaptation, virulence, and pathogenicity. Notably, this study presents the first comprehensive profile of X. fastidiosa in the presence of a P. phytofirmans spent media. The results highlight that P. phytofirmans and the absence of functional quorum sensing affect the ratios of glutamine to glutamate (Gln:Glu) in X. fastidiosa. Additionally, two compounds with plant metabolism and growth properties, 2-aminoisobutyric acid and gibberellic acid, were downregulated when X. fastidiosa interacted with P. phytofirmans. These findings suggest that P. phytofirmans-mediated disease suppression involves modulation of the exometabolome of X. fastidiosa, impacting plant immunity.
Collapse
Affiliation(s)
- Oseias R Feitosa-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Andrea Lubbe
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Joaquim Martins-Junior
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Deibs Barbosa
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| | - Clelia Baccari
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Paulo A Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Benjamin P Bowen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Trent R Northen
- The DOE Joint Genome Institute, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Aline M da Silva
- Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil
| |
Collapse
|
3
|
Long L, Lai T, Han D, Lin X, Xu J, Zhu D, Guo X, Lin Y, Pan F, Wang Y, Lai Z, Du X, Fang D, Shuai L, Wu Z, Luo T. A Comprehensive Analysis of Physiologic and Hormone Basis for the Difference in Room-Temperature Storability between ‘Shixia’ and ‘Luosanmu’ Longan Fruits. PLANTS 2022; 11:plants11192503. [PMID: 36235369 PMCID: PMC9572663 DOI: 10.3390/plants11192503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Although the effects of phytohormones (mainly salicylic acid) on the storability of longan fruit have been reported, the relationship between postharvest hormone variation and signal transduction and storability remains unexplored. The basis of physiology, biochemistry, hormone content and signalling for the storability difference at room-temperature between ‘Shixia’ and ‘Luosanmu’ longan fruit were examined. ‘Luosanmu’ longan exhibited faster pericarp browning, aril breakdown and rotting during storage. ‘Luosanmu’ pericarp exhibited higher malondialdehyde but faster decreased total phenolics, flavonoid, glutathione, vitamin C, catalase activity and gene expression. Higher H2O2 and malondialdehyde but lower glutathione, glutathione-reductase and peroxidase activities, while higher activities and gene expressions of polygalacturonase, β-galactosidase and cellulose, lower covalent-soluble pectin, cellulose and hemicellulose but higher water-soluble pectin were observed in ‘Luosanmu’ aril. Lower abscisic acid and methyl jasmonate but higher expressions of LOX2, JAZ and NPR1 in pericarp, while higher abscisic acid, methyl jasmonate and salicylic acid together with higher expressions of ABF, JAZ, NPR1 and PR-1 in ‘Luosanmu’ aril were observed. In conclusion, the imbalance between the accumulation and scavenging of active oxygen in ‘Luosanmu’ longan might induce faster lipid peroxidation and senescence-related hormone signalling and further the polymerization of phenolics in pericarp and polysaccharide degradation in aril.
Collapse
Affiliation(s)
- Libing Long
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Tingting Lai
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences/Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou 510640, China
| | - Xiaolan Lin
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Jianhang Xu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Difa Zhu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Xiaomeng Guo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Yuqiong Lin
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Fengyi Pan
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Yihang Wang
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Ziying Lai
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Xinxin Du
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Di Fang
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou 542899, China
| | - Zhenxian Wu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Correspondence: (Z.W.); (T.L.)
| | - Tao Luo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, Guangzhou 510642, China
- Correspondence: (Z.W.); (T.L.)
| |
Collapse
|
4
|
Effects of high CO2 on the quality and antioxidant capacity of postharvest blueberries (Vaccinium spp.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01062-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Luo T, Yin F, Liao L, Liu Y, Guan B, Wang M, Lai T, Wu Z, Shuai L. Postharvest melatonin treatment inhibited longan ( Dimocarpus longan Lour.) pericarp browning by increasing ROS scavenging ability and protecting cytomembrane integrity. Food Sci Nutr 2021; 9:4963-4973. [PMID: 34532008 PMCID: PMC8441273 DOI: 10.1002/fsn3.2448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Postharvest melatonin treatments have been reported to improve the quality and storability, especially to inhibit browning in many fruits, but the effect had not been systematically investigated on longan fruit. In this study, the effect of 0.4 mM melatonin (MLT) dipping on the quality and pericarp browning of longan fruits stored at low temperature was investigated. The MLT treatment did not influence the TSS content of longan fruits but lead to increased lightness and h° value while decreased a* value of pericarp. More importantly, the treatment significantly delayed the increase in electrolyte leakage and malonaldehyde accumulation, inhibited the activities of polyphenol oxidase and peroxidase, and thus retarded pericarp browning. In addition, the treatment significantly inhibited the production of O2 •- and H2O2 while promoted the accumulation of glutathione, flavonoids, and phenolics at earlier storage stages in longan pericarp. Interestingly, the activities of ascorbate peroxidase (APX) and superoxide dismutase (SOD) were significantly upregulated but activities of catalase were downregulated in the MLT-treated longan pericarp. MLT treatment effectively enhanced APX and SOD activities, increased flavonoid, phenolics, and glutathione content, protected cytomembrane integrity, inhibited the production of O2 •- and H2O2 and browning-related enzymes, and thus delayed the longan pericarp browning.
Collapse
Affiliation(s)
- Tao Luo
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
| | - Feilong Yin
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Lingyan Liao
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Yunfen Liu
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Boyang Guan
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Min Wang
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Tingting Lai
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
| | - Zhenxian Wu
- College of HorticultureSouth China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of EducationGuangzhouChina
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Litchi Engineering Research CenterGuangzhouChina
| | - Liang Shuai
- College of Food and Biological Engineering/Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| |
Collapse
|
6
|
Huang H, Huang C, Yin C, Khan MR, Zhao H, Xu Y, Huang L, Zheng D, Qi M. Preparation and characterization of β-cyclodextrin-oregano essential oil microcapsule and its effect on storage behavior of purple yam. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4849-4857. [PMID: 32476141 DOI: 10.1002/jsfa.10545] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/06/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Natural plant essential oils have antimicrobial properties; however, essential oils are difficult to maintain in a system because of their volatile nature. First, we prepared microcapsules from β-cyclodextrin and oregano essential oil and characterized their properties. Second, the effect of microcapsules on the preservation of freshly cut purple yam was studied using an edible coating technique. Purple yams immersed in distilled water were used as control, and their characteristics were compared with yams coated with citric acid, citric acid + sodium alginate, and citric acid + sodium alginate + β-cyclodextrin-oregano essential oil microcapsules (CA-SA-MC) and stored at 4 °C for 5 days. RESULTS Microcapsules of oregano essential oil and β-cyclodextrin solution were successfully prepared via the inclusion method, with an optimal encapsulation efficiency of 55.14%. Scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis showed strong bonds between β-cyclodextrin and oregano essential oil. All edible coatings, particularly CA-SA-MC, significantly (P ≤ 0.05) maintained firmness, total soluble solids, ascorbic acid content, and anthocyanin content compared with control treatment. This treatment also prevented browning and extended the shelf life of purple yam. CONCLUSION Oregano essential oil can be successfully encapsulated into cyclodextrin microcapsules. It has a great impact on the shelf life extension of purple yam and could be successfully applied to other fresh produce. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haohe Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Cheng Yin
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
- School of Mechanical Engineering, Jiangnan University, Wuxi, China
| | - Muhammad Ru Khan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Yangfan Xu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Lijie Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Dantong Zheng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| | - Minghui Qi
- School of Light Industry and Food Engineering, Guangxi University, Nanning, China
| |
Collapse
|
7
|
Wang J, Guo D, Han D, Pan X, Li J. A comprehensive insight into the metabolic landscape of fruit pulp, peel, and seed in two longan (Dimocarpus longan Lour.) varieties. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1815767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jing Wang
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Dongliang Guo
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Xuewen Pan
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| | - Jianguang Li
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Key Laboratory of Tropical and Subtropical17 Fruit Tree Research of Guangdong Province, Institution of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong Province, China
| |
Collapse
|
8
|
Wang H, Chen G, Shi L, Lin H, Chen Y, Lin Y, Fan Z. Influences of 1-methylcyclopropene-containing papers on the metabolisms of membrane lipids in Anxi persimmons during storage. FOOD QUALITY AND SAFETY 2020. [DOI: 10.1093/fqsafe/fyaa021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Objectives
The aim of this work was to analyse the effects of 1-methylcyclopropene (1-MCP) treatment on the metabolisms of membrane lipids in postharvest Anxi persimmons during storage.
Materials and methods
Anxi persimmon (Diospyros kaki L. f. cv. Anxi) fruits were treated by paper containing 1-MCP with a concentration of 1.35 μl/l. The cellular membrane permeability was analysed by the electric conductivity meter. The activities of lipoxygenase (LOX), phospholipase (PLD) and lipase were determined by spectrophotometry. The component and relative amounts of membrane fatty acids were determined using gas chromatograph (GC).
Results
The 1-MCP-treated Anxi persimmons manifested a lower electrolyte leakage rate, lower LOX, PLD and lipase activities, higher levels of unsaturated fatty acids (USFAs), higher ratio of USFAs to saturated fatty acids (SFAs) (U/S), higher index of USFAs (IUFA), but lower levels of SFAs.
Conclusions
The degradation and the metabolisms of membrane lipids could be suppressed by 1-MCP treatment, which might be accountable for the delaying softening of postharvest Anxi persimmons during storage.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Guo Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lili Shi
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yihui Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yifen Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Zhongqi Fan
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Postharvest Biology of Subtropical Special Agricultural Products (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| |
Collapse
|
9
|
Zhou L, Liao T, Liu W, Zou L, Liu C, Terefe NS. Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Crit Rev Food Sci Nutr 2019; 60:3594-3621. [PMID: 31858810 DOI: 10.1080/10408398.2019.1702500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic acids are widely utilized in the food industry for inhibiting the activity of polyphenol oxidase (PPO) and enzymatic browning. This review discusses the mechanisms of inhibition of PPO and enzymatic browning by various organic acids based on studies in model systems, critically evaluates the relevance of such studies to real food systems and assesses the implication of the synergistic inhibitory effects of organic acids with other physicochemical processing techniques on product quality and safety. Organic acids inhibit the activity of PPO and enzymatic browning via different mechanisms and therefore the suitability of a particular organic acid depends on the structure and the catalytic properties of PPO and the physicochemical properties of the food matrix. Studies in model systems provide an invaluable insight into the inhibitory mechanisms of various organics acids. However, the difference in the effectiveness of PPO inhibitors between model systems and food systems and the lack of correlation between the degree of PPO inhibition based on in vitro assays and enzymatic browning imply that the effectiveness of organic acids can be accurately evaluated only via direct assessment of browning inhibition in a particular food system. Combination of organic acids with physical processing techniques is one of the most viable approaches for PPO inhibition since the observed synergistic effect helps to reduce the undesirable organoleptic quality changes from the use of excessive concentration of organic acids or intense physical processing.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.,School of Life Sciences, Nanchang University, Nanchang, China
| | - Tao Liao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Wei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chengmei Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | | |
Collapse
|
10
|
Luo T, Niu J, Guo X, Wu H, Han D, Shuai L, Wu Z. Preharvest zinc sulfate spray improves the storability of longan (Dimocarpus longan Lour.) fruits by protecting the cell wall components and antioxidants of pericarp. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1098-1107. [PMID: 30047133 DOI: 10.1002/jsfa.9277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Zinc (Zn) fertilization has been reported to improve the quality and storability of many fruits, but the mechanism had not been systematically studied. In this study, the effect of preharvest 0.2% zinc sulfate (ZnSO4 ) spray on the storability of longan fruits was investigated. RESULTS The preharvest ZnSO4 spray did not significantly influence the quality but increased the Zn content in longan pericarp by 12.5-fold. More importantly, the treatment significantly reduced the rotting rate, pericarp browning, and aril breakdown of longan fruits stored at room temperature and low temperature. Physiological and biochemical results indicated that the treatment resulted in higher water retention capacity and inhibited the degradation of cellulose, pectin, flavonoid, and phenolics of longan pericarp at the late stages of storage. Consistent with these results, the activity of cellulase, polygalacturonase, polyphenol oxidase, and lipoxygenase was significantly inhibited in the ZnSO4 -treated longan pericarp at the late stages of storage. CONCLUSION Higher Zn content in the ZnSO4 -treated longan pericarp might help to enhance the resistance against microbial infection, inhibit the hydrolysis of cell wall components, and thus effectively protected the cell wall components, maintained the cellular compartmentation, and prevented the phenolics and flavonoid from degradation by browning-related enzymes. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tao Luo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou, P.R. China
| | - Jiajia Niu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Zhengzhou, P.R. China
| | - Xiaomeng Guo
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
| | - Huitao Wu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
| | - Dongmei Han
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture/Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, P.R. China
| | - Liang Shuai
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
- College of Food and Biological Engineering/Institute of Food Science and Engineering Technology, Hezhou University, Hezhou, P.R. China
| | - Zhenxian Wu
- College of Horticulture, South China Agricultural University/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, Guangzhou, P.R. China
- Guangdong Litchi Engineering Research Center, Guangzhou, P.R. China
| |
Collapse
|
11
|
Wang H, Chen Y, Lin H, Sun J, Lin Y, Lin M. Phomopsis longanae Chi-Induced Change in ROS Metabolism and Its Relation to Pericarp Browning and Disease Development of Harvested Longan Fruit. Front Microbiol 2018; 9:2466. [PMID: 30386318 PMCID: PMC6198053 DOI: 10.3389/fmicb.2018.02466] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Phomopsis longanae Chi is a major pathogenic fungus that infects harvested longan fruit. This study aimed to investigate the effects of P. longanae on reactive oxygen species (ROS) metabolism and its relation to the pericarp browning and disease development of harvested longan fruit during storage at 28°C and 90% relative humidity. Results showed that compared to the control longans, P. longanae-inoculated longans displayed higher indexes of pericarp browning and fruit disease, higher O2 -. generation rate, higher accumulation of malondialdehyde (MDA), lower contents of glutathione (GSH) and ascorbic acid (AsA), lower 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability and reducing power in pericarp. In addition, P. longanae-infected longans exhibited higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) in the first 2 days of storage, and lower activities of SOD, CAT, and APX during storage day 2-5 than those in the control longans. These findings indicated that pericarp browning and disease development of P. longanae-infected longan fruit might be the result of the reducing ROS scavenging ability and the increasing O2 -. generation rate, which might lead to the peroxidation of membrane lipid, the loss of compartmentalization in longan pericarp cells, and subsequently cause polyphenol oxidase (PPO) and peroxidase (POD) to contact with phenolic substrates which result in enzymatic browning of longan pericarp, as well as cause the decrease of disease resistance to P. longanae and stimulate disease development of harvested longan fruit.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yihui Chen
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hetong Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Junzheng Sun
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yifen Lin
- Institute of Postharvest Technology of Agricultural Products, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengshi Lin
- Food Science Program, Division of Food Systems and Bioengineering, University of Missouri, Columbia, MO, United States
| |
Collapse
|
12
|
Ke SW, Chen GH, Chen CT, Tzen JTC, Yang CY. Ethylene signaling modulates contents of catechin and ability of antioxidant in Camellia sinensis. BOTANICAL STUDIES 2018; 59:11. [PMID: 29616373 PMCID: PMC5882471 DOI: 10.1186/s40529-018-0226-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 03/29/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Tea is one of the most popular beverages in the world. There are many secondary metabolites can be found in tea such as anthocyanins, proanthocyanidins, flavonols and catechins. These secondary metabolites in plants are proved to act protective components for human health effect. Plant hormone ethylene is considered to have an important role in regulation of plant development and signal transduction. This study evaluated the effect of ethylene signaling regulation in phenolic compounds in tea plants. The ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) enhanced contents of total catechin in treated oolong tea seedlings. RESULTS The degree of epigallocatechin and epicatechin galloylation was increased after ACC treatment in oolong tea seedlings by high performance liquid chromatography determination. The contents of anthocyanins, flavonoids, and total polyphenol were higher after ACC treatment in comparison with control. Antioxidant enzyme such as catalase, superoxide dismutase, and total peroxidase decreased their antioxidant activities after ACC treatment, yet the activity of ascorbate peroxidase is increased. The ability of oxygen radical absorption and 2,2-diphenyl-1-picrylhydrazyl was used to evaluate the antioxidant activity, which was enhanced by ACC treatment. CONCLUSIONS Taken together the results of this study demonstrate that the ethylene signaling is involved in modulation of secondary metabolites accumulation and antioxidant ability that to enhance the benefit of human health in tea products.
Collapse
Affiliation(s)
- Shun-Wun Ke
- Department of Agronomy, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Guan-Heng Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Chung-Tse Chen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Jason T. C. Tzen
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan
| | - Chin-Ying Yang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227 Taiwan
| |
Collapse
|
13
|
Parijadi AAR, Putri SP, Ridwani S, Dwivany FM, Fukusaki E. Metabolic profiling of Garcinia mangostana (mangosteen) based on ripening stages. J Biosci Bioeng 2017; 125:238-244. [PMID: 28970109 DOI: 10.1016/j.jbiosc.2017.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 10/18/2022]
Abstract
Metabolomics is an emerging research field based on exhaustive metabolite profiling that have been proven useful to facilitate the study of postharvest fruit development and ripening. Specifically, tracking changes to the metabolome as fruit ripens should provide important clues for understanding ripening mechanisms and identify bio-markers to improve post-harvest technology of fruits. This study conducted a time-course metabolome analysis in mangosteen, an economically important tropical fruit valued for its flavor. Mangosteen is a climacteric fruit that requires an important plant hormone ethylene to regulate ripening processes and rate. We first categorized mangosteen samples in different ripening stages based on color changes, an established indicator of ripening. Using gas chromatography/mass spectrometry, small hydrophilic metabolites were profiled from non-ripened to fully ripened (ripening stages 0-6). These metabolites were then correlated with color changes to verify their involvement mangosteen ripening. Our results suggest that the increase of 2-aminoisobutyric acid, psicose, and several amino acids (phenylalanine, valine, isoleucine, serine, and tyrosine) showed a correlation with the progression of mangosteen ripening. This is the first report of the application of non-targeted metabolomics in mangosteen.
Collapse
Affiliation(s)
- Anjaritha A R Parijadi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Sastia P Putri
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia.
| | - Sobir Ridwani
- Center for Tropical Horticulture Studies, Bogor Agricultural University, Jl. Baranangsiang, Bogor 16144, Indonesia
| | - Fenny M Dwivany
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132, Indonesia
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Choi SH, Kozukue N, Kim HJ, Friedman M. Analysis of protein amino acids, non-protein amino acids and metabolites, dietary protein, glucose, fructose, sucrose, phenolic, and flavonoid content and antioxidative properties of potato tubers, peels, and cortexes (pulps). J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|