1
|
Yang S, Guo CH, Tong WY, Liu XY, Li JC, Kang M. Identification and characterization of anaerobically activated promoters in Escherichia coli. J Biotechnol 2025; 402:30-38. [PMID: 40049517 DOI: 10.1016/j.jbiotec.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Anaerobically activated promoters in Escherichia coli play crucial roles in transcriptional regulation during cellular responses to decreased oxygen concentrations and serve as essential tools for implementing dynamic regulation in metabolic engineering. These promoters exhibit transcriptional activity only under low-oxygen or anaerobic conditions. To discover novel anaerobically activated promoters, this study selected 11 native promoters from E. coli databases and characterized their activities using flow cytometry. Subsequently, we optimized the key elements of these promoters and re-evaluated their activities to investigate the impact of functional elements on promoter performance. Furthermore, we verified the regulatory mechanisms of these promoters by knocking out host regulatory genes. Finally, we characterized the promoters' responsiveness to aerobic-anaerobic transitions by rapidly switching cultivation environments during host growth. This study identified several novel anaerobically activated promoters and comprehensively characterized their performance and features from multiple aspects. The identified promoters provide new tools for oxygen-limited or anaerobic production in metabolic engineering, while the findings from promoter element optimization offer valuable references for the design of anaerobically activated promoters.
Collapse
Affiliation(s)
- Sen Yang
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Chao-Hao Guo
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Wen-Yue Tong
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Xiao-Yun Liu
- College of Life Science, Hebei University, Baoding, Hebei 071002, China
| | - Jing-Chen Li
- College of Life Science, Hebei University, Baoding, Hebei 071002, China.
| | - Ming Kang
- College of Life Science, Hebei University, Baoding, Hebei 071002, China; Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
2
|
Wang B, Wang K, Zhao X, Fang Z, Zhao Y, Fang Y, Xiao Y, Yao D. Development and construction of a novel Bacillus subtilis autoinducible extracellular expression system based on a LuxI/R device. Microb Cell Fact 2025; 24:86. [PMID: 40251612 PMCID: PMC12008979 DOI: 10.1186/s12934-025-02719-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 04/11/2025] [Indexed: 04/20/2025] Open
Abstract
BACKGROUND Microbial chassis expression systems are valuable tools in biotechnology and synthetic biology, and Bacillus subtilis is an important industrial microbial chassis. Quorum sensing (QS)-based dynamic regulation is widely used to automatically activate gene expression in response to changes in cell density. The main bottleneck currently limiting the use of exogenous QS systems in B. subtilis for efficient autoinducible extracellular expression of recombinant proteins is their low level of autoinducible expression. RESULTS A novel B. subtilis autoinducible extracellular expression system based on the LuxI/R-type QS system (lux system) of Vibrio fischeri was developed in which the autoinducible expression of the lux system was enhanced by engineering the sensing module and response module promoters. By engineering the sensing module promoter SPluxI core region (- 10 and - 35 elements) and critical region (UP and spacer elements), and the response module promoter RPluxIR6 core region and lux box copy number in the original LuxI/R device (S0-R0), the high-expression Sc-R2 construct was obtained. After shake flask and 3-L fermenter fermentation, the extracellular amylase activity obtained with Sc-R2 was 2.7- and 3.1-fold greater, respectively, than that obtained with the well-characterized promoter Pveg. Sc-R2 achieved 2.6-fold greater extracellular activity than S0-R0 when either levansucrase or invertase was used as a reporter protein. Overall, the B. subtilis autoinducible extracellular expression system developed in this study showed good generalizability and application potential for industrial-scale fermentation. CONCLUSIONS To our knowledge, this is the first study to report enhanced autoinducible expression of the lux system in B. subtilis by engineering the sensing module promoter SPluxI sequence and the lux box copy number of the response module promoter RPluxIR6. This study further expands the application potential of the B. subtilis expression system in synthetic biology.
Collapse
Affiliation(s)
- Bin Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Keyi Wang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Xiuyue Zhao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Yanyan Zhao
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Yulu Fang
- School of Life Sciences, Anhui University, Hefei, 230601, China
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China
| | - Yazhong Xiao
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China.
| | - Dongbang Yao
- School of Life Sciences, Anhui University, Hefei, 230601, China.
- Anhui Key Laboratory of Biocatalysis and Modern Biomanufacturing, Hefei, 230601, China.
- Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, 230601, China.
| |
Collapse
|
3
|
Ricci L, Cen X, Zu Y, Antonicelli G, Chen Z, Fino D, Pirri FC, Stephanopoulos G, Woolston BM, Re A. Metabolic Engineering of E. coli for Enhanced Diols Production from Acetate. ACS Synth Biol 2025; 14:1204-1219. [PMID: 40103233 PMCID: PMC12012870 DOI: 10.1021/acssynbio.4c00839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/20/2025]
Abstract
Effective employment of renewable carbon sources is highly demanded to develop sustainable biobased manufacturing. Here, we developed Escherichia coli strains to produce 2,3-butanediol and acetoin (collectively referred to as diols) using acetate as the sole carbon source by stepwise metabolic engineering. When tested in fed-batch experiments, the strain overexpressing the entire acetate utilization pathway was found to consume acetate at a 15% faster rate (0.78 ± 0.05 g/g/h) and to produce a 35% higher diol titer (1.16 ± 0.01 g/L) than the baseline diols-producing strain. Moreover, singularly overexpressing the genes encoding alternative acetate uptake pathways as well as alternative isoforms of genes in the malate-to-pyruvate pathway unveiled that leveraging ackA-pta and maeA is more effective in enhancing acetate consumption and diols production, compared to acs and maeB. Finally, the increased substrate consumption rate and diol production obtained in flask-based experiments were confirmed in bench-scale bioreactors operated in fed-batch mode. Consequently, the highest titer of 1.56 g/L achieved in this configuration increased by over 30% compared to the only other similar effort carried out so far.
Collapse
Affiliation(s)
- Luca Ricci
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- RINA
Consulting S.p.A., Energy Innovation Strategic
Centre, Via Antonio Cecchi,
6, 16129 Genoa, Italy
| | - Xuecong Cen
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
- Department
of Chemical Engineering, Key Laboratory of Industrial Biocatalysis
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yuexuan Zu
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
| | - Giacomo Antonicelli
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Zhen Chen
- Department
of Chemical Engineering, Key Laboratory of Industrial Biocatalysis
(Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Debora Fino
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Fabrizio C. Pirri
- Centre
for Sustainable Future Technologies, Fondazione
Istituto Italiano di Tecnologia, Via Livorno 60, 10144 Turin, Italy
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Gregory Stephanopoulos
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02142, United States
| | - Benjamin M. Woolston
- Department
of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 223 Cullinane, Boston, Massachusetts 02115, United States
| | - Angela Re
- Department
of Applied Science and Technology, Politecnico
di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
4
|
Fu ZH, Cheng S, Li JW, Zhang N, Wu Y, Zhao GR. Synthetic tunable promoters for flexible control of multi-gene expression in mammalian cells. J Adv Res 2025:S2090-1232(25)00106-7. [PMID: 39938795 DOI: 10.1016/j.jare.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
INTRODUCTION Synthetic biology revolutionizes our ability to decode and recode genetic systems. The capability to reconstruct and flexibly manipulate multi-gene systems is critical for understanding cellular behaviors and has significant applications in therapeutics. OBJECTIVES This study aims to construct a diverse library of synthetic tunable promoters (STPs) to enable flexible control of multi-gene expression in mammalian cells. METHODS We designed and constructed synthetic tunable promoters (STPs) that incorporate both a universal activation site (UAS) and a specific activation site (SAS), enabling multi-level expression control via the CRISPR activation (CRISPRa) system. To evaluate promoter activity, we utilized Massively Parallel Reporter Assays (MPRA) to assess the basal strengths of the STPs and their activation responses. Next, we constructed a three-gene reporter system to assess the capacity of the synthetic promoters for achieving multilevel control of single-gene expression within multi-gene systems. RESULTS The promoter library contains 24,960 unique non-redundant promoters with distinct sequence characteristics. MPRA revealed a wide range of promoter activities, showing different basal strengths and distinct activation levels when activated by the CRISPRa system. When regulated by targeting the SAS, the STPs exhibited orthogonality, allowing multilevel control of single-gene expression within multi-gene systems without cross-interference. Furthermore, the combinatorial activation of STPs in a multi-gene system enlarged the scope of expression levels achievable, providing fine-tuned control over gene expression. CONCLUSION We provide a diverse collection of synthetic tunable promoters, offering a valuable toolkit for the construction and manipulation of multi-gene systems in mammalian cells, with applications in gene therapy and biotechnology.
Collapse
Affiliation(s)
- Zong-Heng Fu
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Si Cheng
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Jia-Wei Li
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Nan Zhang
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China
| | - Yi Wu
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| | - Guang-Rong Zhao
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Wichmann J, Behrendt G, Boecker S, Klamt S. Characterizing and utilizing oxygen-dependent promoters for efficient dynamic metabolic engineering. Metab Eng 2023; 77:199-207. [PMID: 37054967 DOI: 10.1016/j.ymben.2023.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
Promoters adjust cellular gene expression in response to internal or external signals and are key elements for implementing dynamic metabolic engineering concepts in fermentation processes. One useful signal is the dissolved oxygen content of the culture medium, since production phases often proceed in anaerobic conditions. Although several oxygen-dependent promoters have been described, a comprehensive and comparative study is missing. The goal of this work is to systematically test and characterize 15 promoter candidates that have been previously reported to be induced upon oxygen depletion in Escherichia coli. For this purpose, we developed a microtiter plate-level screening using an algal oxygen-independent flavin-based fluorescent protein and additionally employed flow cytometry analysis for verification. Various expression levels and dynamic ranges could be observed, and six promoters (nar-strong, nar-medium, nar-weak, nirB-m, yfiD-m, and fnrF8) appear particularly suited for dynamic metabolic engineering applications. We demonstrate applicability of these candidates for dynamic induction of enforced ATP wasting, a metabolic engineering approach to increase productivity of microbial strains that requires a narrow level of ATPase expression for optimal function. The selected candidates exhibited sufficient tightness under aerobic conditions while, under complete anaerobiosis, driving expression of the cytosolic F1-subunit of the ATPase from E. coli to levels that resulted in unprecedented specific glucose uptake rates. We finally utilized the nirB-m promoter to demonstrate the optimization of a two-stage lactate production process by dynamically enforcing ATP wasting, which is automatically turned on in the anaerobic (growth-arrested) production phase to boost the volumetric productivity. Our results are valuable for implementing metabolic control and bioprocess design concepts that use oxygen as signal for regulation and induction.
Collapse
Affiliation(s)
- Julian Wichmann
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Gerrich Behrendt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Simon Boecker
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Steffen Klamt
- Analysis and Redesign of Biological Networks, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
7
|
Liu X, Zhang P, Zhao Q, Huang AC. Making small molecules in plants: A chassis for synthetic biology-based production of plant natural products. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:417-443. [PMID: 35852486 DOI: 10.1111/jipb.13330] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Plant natural products have been extensively exploited in food, medicine, flavor, cosmetic, renewable fuel, and other industrial sectors. Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products. Compared with engineering microbes for the production of plant natural products, the potential of plants as chassis for producing these compounds is underestimated, largely due to challenges encountered in engineering plants. Knowledge in plant engineering is instrumental for enabling the effective and efficient production of valuable phytochemicals in plants, and also paves the way for a more sustainable future agriculture. In this manuscript, we briefly recap the biosynthesis of plant natural products, focusing primarily on industrially important terpenoids, alkaloids, and phenylpropanoids. We further summarize the plant hosts and strategies that have been used to engineer the production of natural products. The challenges and opportunities of using plant synthetic biology to achieve rapid and scalable production of high-value plant natural products are also discussed.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Peijun Zhang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiao Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), the Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ancheng C Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, School of Life Sciences, SUSTech-PKU Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
8
|
Du Y, Wang M, Chen Sun C, Yu H. Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5' untranslated region for versatile applications in Corynebacterium glutamicum. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:88-96. [PMID: 39416452 PMCID: PMC11446368 DOI: 10.1016/j.biotno.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 10/19/2024]
Abstract
As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism Corynebacterium glutamicum, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the -35 and -10 regions, and the 5'-terminal untranslated region (5'UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using C. glutamicum ATCC13032 as the host. Here, we explored the effect of sequence length between the -35 and -10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5'-terminal untranslated region (5'UTR) and screened out the optimal PtacM4 mutant with a 5'UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5'UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.
Collapse
Affiliation(s)
- Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
| | - Miaomiao Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
| | - Claudia Chen Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
9
|
Zhang W, Wei M, Sun X, Lu F, Guan L, Mao S, Qin HM. Fine-Tuning of Carbon Flux and Artificial Promoters in Bacillus subtilis Enables High-Level Biosynthesis of d-Allulose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13935-13944. [PMID: 36278912 DOI: 10.1021/acs.jafc.2c05585] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
d-Allulose is an attractive rare sugar that can be used as a low-calorie sweetener with significant health benefits. To meet the increasing market demands, it is necessary to develop an efficient and extensive microbial fermentation platform for the synthesis of d-allulose. Here, we applied a comprehensive systematic engineering strategy in Bacillus subtilis WB600 by introducing d-allulose 3-epimerase (DAEase), combined with the deactivation of fruA, levDEFG, and gmuE, to balance the metabolic network for the efficient production of d-allulose. This resulting strain initially produced 3.24 g/L of d-allulose with a yield of 0.93 g of d-allulose/g d-fructose. We further screened and obtained a suitable dual promoter combination and performed fine-tuning of its spacer region. After 64 h of fed-batch fermentation, the optimized engineered B. subtilis produced d-allulose at titers of 74.2 g/L with a yield of 0.93 g/g and a conversion rate of 27.6%. This d-allulose production strain is a promising platform for the industrial production of rare sugar.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Meijing Wei
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Xiaoxuan Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Lijun Guan
- Institute of Food Processing, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, National Engineering Laboratory for Industrial Enzymes, Tianjin 300457, P. R. China
| |
Collapse
|
10
|
Hans S, Kumar N, Gohil N, Khambhati K, Bhattacharjee G, Deb SS, Maurya R, Kumar V, Reshamwala SMS, Singh V. Rebooting life: engineering non-natural nucleic acids, proteins and metabolites in microorganisms. Microb Cell Fact 2022; 21:100. [PMID: 35643549 PMCID: PMC9148472 DOI: 10.1186/s12934-022-01828-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/15/2022] [Indexed: 12/01/2022] Open
Abstract
The surging demand of value-added products has steered the transition of laboratory microbes to microbial cell factories (MCFs) for facilitating production of large quantities of important native and non-native biomolecules. This shift has been possible through rewiring and optimizing different biosynthetic pathways in microbes by exercising frameworks of metabolic engineering and synthetic biology principles. Advances in genome and metabolic engineering have provided a fillip to create novel biomolecules and produce non-natural molecules with multitude of applications. To this end, numerous MCFs have been developed and employed for production of non-natural nucleic acids, proteins and different metabolites to meet various therapeutic, biotechnological and industrial applications. The present review describes recent advances in production of non-natural amino acids, nucleic acids, biofuel candidates and platform chemicals.
Collapse
|
11
|
Metabolic Engineering and Regulation of Diol Biosynthesis from Renewable Biomass in Escherichia coli. Biomolecules 2022; 12:biom12050715. [PMID: 35625642 PMCID: PMC9138338 DOI: 10.3390/biom12050715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
As bulk chemicals, diols have wide applications in many fields, such as clothing, biofuels, food, surfactant and cosmetics. The traditional chemical synthesis of diols consumes numerous non-renewable energy resources and leads to environmental pollution. Green biosynthesis has emerged as an alternative method to produce diols. Escherichia coli as an ideal microbial factory has been engineered to biosynthesize diols from carbon sources. Here, we comprehensively summarized the biosynthetic pathways of diols from renewable biomass in E. coli and discussed the metabolic-engineering strategies that could enhance the production of diols, including the optimization of biosynthetic pathways, improvement of cofactor supplementation, and reprogramming of the metabolic network. We then investigated the dynamic regulation by multiple control modules to balance the growth and production, so as to direct carbon sources for diol production. Finally, we proposed the challenges in the diol-biosynthesis process and suggested some potential methods to improve the diol-producing ability of the host.
Collapse
|
12
|
Yao X, Liu P, Chen B, Wang X, Tao F, Lin Z, Yang X. Synthetic acid stress-tolerance modules improve growth robustness and lysine productivity of industrial Escherichia coli in fermentation at low pH. Microb Cell Fact 2022; 21:68. [PMID: 35459210 PMCID: PMC9026648 DOI: 10.1186/s12934-022-01795-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background During fermentation, industrial microorganisms encounter multiple stresses that inhibit cell growth and decrease fermentation yields, in particular acid stress, which is due to the accumulation of acidic metabolites in the fermentation medium. Although the addition of a base to the medium can counteract the effect of acid accumulation, the engineering of acid-tolerant strains is considered a more intelligent and cost-effective solution. While synthetic biology theoretically provides a novel approach for devising such tolerance modules, in practice it is difficult to assemble stress-tolerance modules from hundreds of stress-related genes. Results In this study, we designed a set of synthetic acid-tolerance modules for fine-tuning the expression of multi-component gene blocks comprising a member of the proton-consuming acid resistance system (gadE), a periplasmic chaperone (hdeB), and reactive oxygen species (ROS) scavengers (sodB and katE). Directed evolution was used to construct an acid-responsive asr promoter library, from which four variants were selected and used in the synthetic modules. The module variants were screened in a stepwise manner under mild acidic conditions (pH 5–6), first by cell growth using the laboratory Escherichia coli strain MG1655 cultured in microplates, and then by lysine production performance using the industrial lysine-producing E. coli strain MG1655 SCEcL3 cultured first in multiple 10-mL micro-bioreactors, and then in 1.3-L parallel bioreactors. The procedure resulted in the identification of a best strain with lysine titer and yield at pH 6.0 comparable to the parent strain at pH 6.8. Conclusion Our results demonstrate a promising synthetic-biology strategy to enhance the growth robustness and productivity of E. coli upon the mildly acidic conditions, in both a general lab strain MG1655 and an industrial lysine-producing strain SCEcL3, by using the stress-responsive synthetic acid-tolerance modules comprising a limited number of genes. This study provides a reliable and efficient method for achieving synthetic modules of interest, particularly in improving the robustness and productivity of industrial strains. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01795-4.
Collapse
Affiliation(s)
- Xurong Yao
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Peng Liu
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China
| | - Bo Chen
- COFCO Nutrition & Health Research Institute, Beijing, 102209, China
| | - Xiaoyan Wang
- COFCO Nutrition & Health Research Institute, Beijing, 102209, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, 382 East Outer Loop Road, University Park, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
13
|
Huang C, Wang C, Luo Y. Research progress of pathway and genome evolution in microbes. Synth Syst Biotechnol 2022; 7:648-656. [PMID: 35224232 PMCID: PMC8857405 DOI: 10.1016/j.synbio.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/16/2022] Open
Abstract
Microbes can produce valuable natural products widely applied in medicine, food and other important fields. Nevertheless, it is usually challenging to achieve ideal industrial yields due to low production rate and poor toxicity tolerance. Evolution is a constant mutation and adaptation process used to improve strain performance. Generally speaking, the synthesis of natural products in microbes is often intricate, involving multiple enzymes or multiple pathways. Individual evolution of a certain enzyme often fails to achieve the desired results, and may lead to new rate-limiting nodes that affect the growth of microbes. Therefore, it is inevitable to evolve the biosynthetic pathways or the whole genome. Here, we reviewed the pathway-level evolution including multi-enzyme evolution, regulatory elements engineering, and computer-aided engineering, as well as the genome-level evolution based on several tools, such as genome shuffling and CRISPR/Cas systems. Finally, we also discussed the major challenges faced by in vivo evolution strategies and proposed some potential solutions.
Collapse
Affiliation(s)
- Chaoqun Huang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chang Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yunzi Luo
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
- Corresponding author. Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
14
|
Hothersall J, Lai S, Zhang N, Godfrey RE, Ruanto P, Bischoff S, Robinson C, Overton TW, Busby SJW, Browning DF. Inexpensive protein overexpression driven by the NarL transcription activator protein. Biotechnol Bioeng 2022; 119:1614-1623. [PMID: 35211956 PMCID: PMC9314961 DOI: 10.1002/bit.28071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/11/2022] [Accepted: 02/20/2022] [Indexed: 11/10/2022]
Abstract
Most Escherichia coli overexpression vectors used for recombinant protein production (RPP) depend on organic inducers, for example, sugars or simple conjugates. However, these can be expensive and, sometimes, chemically unstable. To simplify this and to cut the cost of RPP, we have developed vectors controlled by the Escherichia coli nitrate‐responsive NarL transcription activator protein, which use nitrate, a cheap, stable, and abundant inorganic ion, to induce high‐level controlled RPP. We show that target proteins, such as green fluorescent protein, human growth hormone, and single‐chain variable region antibody fragments can be expressed to high levels using our promoter systems. As nitrate levels are high in many commercial fertilizers, we demonstrate that controlled RPP can be achieved using readily available and inexpensive garden products.
Collapse
Affiliation(s)
- Joanne Hothersall
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sandie Lai
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Nan Zhang
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Patcharawarin Ruanto
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Sarah Bischoff
- School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, UK
| | - Colin Robinson
- School of Biosciences, University of Kent, Ingram Building, Canterbury, CT2 7NJ, UK
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.,College of Health & Life Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK
| |
Collapse
|
15
|
Verma BK, Mannan AA, Zhang F, Oyarzún DA. Trade-Offs in Biosensor Optimization for Dynamic Pathway Engineering. ACS Synth Biol 2022; 11:228-240. [PMID: 34968029 DOI: 10.1021/acssynbio.1c00391] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent progress in synthetic biology allows the construction of dynamic control circuits for metabolic engineering. This technology promises to overcome many challenges encountered in traditional pathway engineering, thanks to its ability to self-regulate gene expression in response to bioreactor perturbations. The central components in these control circuits are metabolite biosensors that read out pathway signals and actuate enzyme expression. However, the construction of metabolite biosensors is a major bottleneck for strain design, and a key challenge is to understand the relation between biosensor dose-response curves and pathway performance. Here we employ multiobjective optimization to quantify performance trade-offs that arise in the design of metabolite biosensors. Our approach reveals strategies for tuning dose-response curves along an optimal trade-off between production flux and the cost of an increased expression burden on the host. We explore properties of control architectures built in the literature and identify their advantages and caveats in terms of performance and robustness to growth conditions and leaky promoters. We demonstrate the optimality of a control circuit for glucaric acid production in Escherichia coli, which has been shown to increase the titer by 2.5-fold as compared to static designs. Our results lay the groundwork for the automated design of control circuits for pathway engineering, with applications in the food, energy, and pharmaceutical sectors.
Collapse
Affiliation(s)
- Babita K. Verma
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
| | - Ahmad A. Mannan
- Warwick Integrative Synthetic Biology Centre, School of Engineering, University of Warwick, Coventry CV4 7AL, U.K
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Diego A. Oyarzún
- School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, U.K
- School of Informatics, The University of Edinburgh, Edinburgh EH8 9AB, U.K
- The Alan Turing Institute, London, NW1 2DB, U.K
| |
Collapse
|
16
|
Xu K, Tong Y, Li Y, Tao J, Rao S, Li J, Zhou J, Liu S. Efficient, Flexible Autoinduction Expression Systems with Broad Initiation in Bacillus subtilis. ACS Synth Biol 2021; 10:3084-3093. [PMID: 34699187 DOI: 10.1021/acssynbio.1c00369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Low expression levels and inflexible induction initiation have been the main obstacles to produce proteins using bacterial quorum sensing (QS). The typical QS system in Bacillus subtilis, ComQXPA, activates the promoter PsrfA using ComX and ComA as an auto-inducer and a promoter activator, respectively. Here, we developed a series of flexible autoinduction expression systems in B. subtilis WB600 based on ComQXPA using a super-folder green fluorescent protein as the reporter. The -35 region of PsrfA was replaced with corresponding conserved sequences of σA-dependent promoters, yielding P1 with 85% enhanced strength. We then applied a semi-rational design within the spacer between the -35 and -15 regions of P1 to generate the QS promoter PS1E, which generated 8.22-fold more expression than PsrfA. Based on PS1E, we finally obtained three types of autoinduction expression systems with initiation ranging from 1.5-9.5 h by optimizing the combination of the promoters for ComX and ComA. The yield of Bacillus deramificans pullulanase generated using autoinduction expression systems in B. subtilis reached 80.2 U/mL, which was 36% more than that of the most powerful constitutive promoter P566. Flexible autoinduction expression systems with diverse dynamic features have considerable potential for improving protein expression and metabolite production in B. subtilis.
Collapse
Affiliation(s)
- Kuidong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yi Tong
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Yi Li
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Jin Tao
- National Engineering Research Center for Corn Deep Processing, Jilin COFCO Biochemical Co. Ltd, Changchun 130033, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 214122 Jiangsu, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
17
|
Tietze L, Lale R. Importance of the 5' regulatory region to bacterial synthetic biology applications. Microb Biotechnol 2021; 14:2291-2315. [PMID: 34171170 PMCID: PMC8601185 DOI: 10.1111/1751-7915.13868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
The field of synthetic biology is evolving at a fast pace. It is advancing beyond single-gene alterations in single hosts to the logical design of complex circuits and the development of integrated synthetic genomes. Recent breakthroughs in deep learning, which is increasingly used in de novo assembly of DNA components with predictable effects, are also aiding the discipline. Despite advances in computing, the field is still reliant on the availability of pre-characterized DNA parts, whether natural or synthetic, to regulate gene expression in bacteria and make valuable compounds. In this review, we discuss the different bacterial synthetic biology methodologies employed in the creation of 5' regulatory regions - promoters, untranslated regions and 5'-end of coding sequences. We summarize methodologies and discuss their significance for each of the functional DNA components, and highlight the key advances made in bacterial engineering by concentrating on their flaws and strengths. We end the review by outlining the issues that the discipline may face in the near future.
Collapse
Affiliation(s)
- Lisa Tietze
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Rahmi Lale
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| |
Collapse
|
18
|
Li J, Yi F, Chen G, Pan F, Yang Y, Shu M, Chen Z, Zhang Z, Mei X, Zhong W. Function Enhancement of a Metabolic Module via Endogenous Promoter Replacement for Pseudomonas sp. JY-Q to Degrade Nicotine in Tobacco Waste Treatment. Appl Biochem Biotechnol 2021; 193:2793-2805. [PMID: 34061306 DOI: 10.1007/s12010-021-03566-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Nicotine-degrading Pseudomonas sp. JY-Q is a preferred strain utilized in reconstituted tobacco process for tobacco waste treatment. However, its efficiency of nicotine metabolism still requires to be improved via genomic technology such as promoter engineering based on genomic information. Concerning upstream module of nicotine metabolic pathway, we found that two homologous genes of nicotine dehydrogenase (nicA2 and nox) coexisted in strain JY-Q. However, the transcriptional amount of nox was 20-fold higher than that of nicA2. Thus, the nicA2 expression required improvement. Combinatorial displacement was accomplished for two predicted endogenous promoters, named as PnicA2 and Pnox for nicA2 and nox, respectively. The mutant with Pnox as the promoters for both nicA2 and nox exhibited the best nicotine metabolic capacity which increased by 66% compared to the wild type. These results suggested that endogenous promoter replacement is also feasible for function improvement of metabolic modules and strain enhancement of biodegradation capacity to meet real environment demand.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fengmei Yi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guoqing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Zeyu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeling Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaotong Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
19
|
Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 2021; 50:107767. [PMID: 33974979 DOI: 10.1016/j.biotechadv.2021.107767] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
To overcome environmental problems caused by the use of fossil resources, microbial cell factories have become a promising technique for the sustainable and eco-friendly development of valuable products from renewable resources. Constructing microbial cell factories with high titers, yields, and productivity requires a balance between growth and production; to this end, tuning gene expression and regulation is necessary to optimise and precisely control complicated metabolic fluxes. In this article, we review the current trends and advances in tuning gene expression and regulation and consider their engineering at each of the three stages of gene regulation: genomic, mRNA, and protein. In particular, the technological approaches utilised in a diverse range of genetic-engineering-based tools for the construction of microbial cell factories are reviewed and representative applications of these strategies are presented. Finally, the prospects for strategies and systems for tuning gene expression and regulation are discussed.
Collapse
|
20
|
Tong Y, Zhou J, Zhang L, Xu P. A Golden-Gate Based Cloning Toolkit to Build Violacein Pathway Libraries in Yarrowia lipolytica. ACS Synth Biol 2021; 10:115-124. [PMID: 33399465 PMCID: PMC7812646 DOI: 10.1021/acssynbio.0c00469] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
Violacein is a naturally
occurring anticancer therapeutic compound
with deep purple color. In this work, we harnessed the modular and
combinatorial feature of a Golden Gate assembly method to construct
a library of violacein producing strains in the oleaginous yeast Yarrowia lipolytica, where each gene in the violacein pathway
was controlled by three different promoters with varying transcriptional
strength. After optimizing the linker sequence and the Golden Gate
reaction, we achieved high transformation efficiency and obtained
a panel of representative Y. lipolytica recombinant
strains. By evaluating the gene expression profile of 21 yeast strains,
we obtained three colorful compounds in the violacein pathway: green
(proviolacein), purple (violacein), and pink (deoxyviolacein). Our
results indicated that strong expression of VioB, VioC, and VioD favors violacein production
with minimal byproduct deoxyvioalcein in Y. lipolytica, and high deoxyviolacein production was found strongly associated
with the weak expression of VioD. By further optimizing
the carbon to nitrogen ratio and cultivation pH, the maximum violacein
reached 70.04 mg/L with 5.28 mg/L of deoxyviolacein in shake flasks.
Taken together, the development of Golden Gate cloning protocols to
build combinatorial pathway libraries, and the optimization of culture
conditions set a new stage for accessing the violacein pathway intermediates
and engineering violacein production in Y. lipolytica. This work further expands the toolbox to engineering Y.
lipolytica as an industrially relevant host for plant or
marine natural product biosynthesis.
Collapse
Affiliation(s)
- Yingjia Tong
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Jingwen Zhou
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Liang Zhang
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Peng Xu
- Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
21
|
Malcı K, Walls LE, Rios-Solis L. Multiplex Genome Engineering Methods for Yeast Cell Factory Development. Front Bioeng Biotechnol 2020; 8:589468. [PMID: 33195154 PMCID: PMC7658401 DOI: 10.3389/fbioe.2020.589468] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
As biotechnological applications of synthetic biology tools including multiplex genome engineering are expanding rapidly, the construction of strategically designed yeast cell factories becomes increasingly possible. This is largely due to recent advancements in genome editing methods like CRISPR/Cas tech and high-throughput omics tools. The model organism, baker's yeast (Saccharomyces cerevisiae) is an important synthetic biology chassis for high-value metabolite production. Multiplex genome engineering approaches can expedite the construction and fine tuning of effective heterologous pathways in yeast cell factories. Numerous multiplex genome editing techniques have emerged to capitalize on this recently. This review focuses on recent advancements in such tools, such as delta integration and rDNA cluster integration coupled with CRISPR-Cas tools to greatly enhance multi-integration efficiency. Examples of pre-placed gate systems which are an innovative alternative approach for multi-copy gene integration were also reviewed. In addition to multiple integration studies, multiplexing of alternative genome editing methods are also discussed. Finally, multiplex genome editing studies involving non-conventional yeasts and the importance of automation for efficient cell factory design and construction are considered. Coupling the CRISPR/Cas system with traditional yeast multiplex genome integration or donor DNA delivery methods expedites strain development through increased efficiency and accuracy. Novel approaches such as pre-placing synthetic sequences in the genome along with improved bioinformatics tools and automation technologies have the potential to further streamline the strain development process. In addition, the techniques discussed to engineer S. cerevisiae, can be adapted for use in other industrially important yeast species for cell factory development.
Collapse
Affiliation(s)
- Koray Malcı
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Laura E Walls
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| | - Leonardo Rios-Solis
- Institute for Bioengineering, School of Engineering, The University of Edinburgh, Edinburgh, United Kingdom.,Centre for Synthetic and Systems Biology (SynthSys), The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
22
|
Novak K, Kutscha R, Pflügl S. Microbial upgrading of acetate into 2,3-butanediol and acetoin by E. coli W. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:177. [PMID: 33110446 PMCID: PMC7584085 DOI: 10.1186/s13068-020-01816-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/10/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Acetate is an abundant carbon source and its use as an alternative feedstock has great potential for the production of fuel and platform chemicals. Acetoin and 2,3-butanediol represent two of these potential platform chemicals. RESULTS The aim of this study was to produce 2,3-butanediol and acetoin from acetate in Escherichia coli W. The key strategies to achieve this goal were: strain engineering, in detail the deletion of mixed-acid fermentation pathways E. coli W ΔldhA ΔadhE Δpta ΔfrdA 445_Ediss and the development of a new defined medium containing five amino acids and seven vitamins. Stepwise reduction of the media additives further revealed that diol production from acetate is mediated by the availability of aspartate. Other amino acids or TCA cycle intermediates did not enable growth on acetate. Cultivation under controlled conditions in batch and pulsed fed-batch experiments showed that aspartate was consumed before acetate, indicating that co-utilization is not a prerequisite for diol production. The addition of aspartate gave cultures a start-kick and was not required for feeding. Pulsed fed-batches resulted in the production of 1.43 g l-1 from aspartate and acetate and 1.16 g l-1 diols (2,3-butanediol and acetoin) from acetate alone. The yield reached 0.09 g diols per g acetate, which accounts for 26% of the theoretical maximum. CONCLUSION This study for the first time showed acetoin and 2,3-butanediol production from acetate as well as the use of chemically defined medium for product formation from acetate in E. coli. Hereby, we provide a solid base for process intensification and the investigation of other potential products.
Collapse
Affiliation(s)
- Katharina Novak
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Regina Kutscha
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Research Area Biochemical Engineering, Environmental and Bioscience Engineering, Institute for Chemical, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|
23
|
Chen X, Zhang C, Lindley ND. Metabolic Engineering Strategies for Sustainable Terpenoid Flavor and Fragrance Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10252-10264. [PMID: 31865696 DOI: 10.1021/acs.jafc.9b06203] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Terpenoids derived from plant material are widely applied in the flavor and fragrance industry. Traditional extraction methods are unsustainable, but microbial synthesis offers a promising solution to attain efficient production of natural-identical terpenoids. Overproduction of terpenoids in microbes requires careful balancing of the synthesis pathway constituents within the constraints of host cell metabolism. Advances in metabolic engineering have greatly facilitated overcoming the challenges of achieving high titers, rates, and yields (TRYs). The review summarizes recent development in the molecular biology toolbox to achieve high TRYs for terpenoid biosynthesis, mainly in the two industrial platform microorganisms: Escherichia coli and Saccharomyces cerevisiae. The biosynthetic pathways, including alternative pathway designs, are briefly introduced, followed by recently developed methodologies used for pathway, genome, and strain optimization. Integrated applications of these tools are important to achieve high "TRYs" of terpenoid production and pave the way for translating laboratory research into successful commercial manufacturing.
Collapse
Affiliation(s)
- Xixian Chen
- Biotransformation Innovation Platform, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673
| | - Congqiang Zhang
- Biotransformation Innovation Platform, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673
| | - Nicholas D Lindley
- Biotransformation Innovation Platform, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673
- TBI, Université de Toulouse, CNRS, INRA, INSA,31077 Toulouse, France
| |
Collapse
|
24
|
Monteiro LMO, Sanches-Medeiros A, Westmann CA, Silva-Rocha R. Unraveling the Complex Interplay of Fis and IHF Through Synthetic Promoter Engineering. Front Bioeng Biotechnol 2020; 8:510. [PMID: 32626694 PMCID: PMC7314903 DOI: 10.3389/fbioe.2020.00510] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/30/2020] [Indexed: 02/03/2023] Open
Abstract
Bacterial promoters are usually formed by multiple cis-regulatory elements recognized by a plethora of transcriptional factors (TFs). From those, global regulators are key elements since these TFs are responsible for the regulation of hundreds of genes in the bacterial genome. For instance, Fis and IHF are global regulators that play a major role in gene expression control in Escherichia coli, and usually, multiple cis-regulatory elements for these proteins are present at target promoters. Here, we investigated the relationship between the architecture of the cis-regulatory elements for Fis and IHF in E. coli. For this, we analyze 42 synthetic promoter variants harboring consensus cis-elements for Fis and IHF at different distances from the core -35/-10 region and in various numbers and combinations. We first demonstrated that although Fis preferentially recognizes its consensus cis-element, it can also recognize, to some extent, the consensus-binding site for IHF, and the same was true for IHF, which was also able to recognize Fis binding sites. However, changing the arrangement of the cis-elements (i.e., the position or number of sites) can completely abolish the non-specific binding of both TFs. More remarkably, we demonstrated that combining cis-elements for both TFs could result in Fis and IHF repressed or activated promoters depending on the final architecture of the promoters in an unpredictable way. Taken together, the data presented here demonstrate how small changes in the architecture of bacterial promoters could result in drastic changes in the final regulatory logic of the system, with important implications for the understanding of natural complex promoters in bacteria and their engineering for novel applications.
Collapse
Affiliation(s)
| | | | - Cauã Antunes Westmann
- Ribeirão Preto Medical School (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Dynamic Metabolic Analysis of Cupriavidus necator DSM545 Producing Poly(3-hydroxybutyric acid) from Glycerol. Processes (Basel) 2020. [DOI: 10.3390/pr8060657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cupriavidus necator DSM 545 can utilise glycerol to synthesise poly(3-hydroxybutyric acid) under unbalanced growth conditions, i.e., nitrogen limitation. To improve poly(3-hydroxybutyric acid) (PHB) batch production by C. necator through model-guided bioprocessing or genetic engineering, insights into the dynamic effect of the fermentation conditions on cell metabolism are crucial. In this work, we have used dynamic flux balance analysis (DFBA), a constrained-based stoichiometric modelling approach, to study the metabolic change associated with PHB synthesis during batch cultivation. The model employs the ‘minimisation of all fluxes’ as cellular objectives and measured extracellular fluxes as additional constraints. The mass balance constraints are further adjusted based on thermodynamic considerations. The resultant flux distribution profiles characterise the evolution of metabolic states due to adaptation to dynamic extracellular conditions and provide further insights towards improvements that can be implemented to enhance PHB productivity.
Collapse
|
26
|
|
27
|
Gao L, Wu X, Zhu C, Jin Z, Wang W, Xia X. Metabolic engineering to improve the biomanufacturing efficiency of acetic acid bacteria: advances and prospects. Crit Rev Biotechnol 2020; 40:522-538. [DOI: 10.1080/07388551.2020.1743231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ling Gao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology Shandong Academy of Sciences, Jinan, PR China
| | - Xiaodan Wu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Cailin Zhu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, PR China
| | - Wu Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, PR China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education School of Biotechnology, Jiangnan University, Wuxi, PR China
| |
Collapse
|
28
|
Han L, Chen Q, Lin Q, Cheng J, Zhou L, Liu Z, Guo J, Zhang L, Cui W, Zhou Z. Realization of Robust and Precise Regulation of Gene Expression by Multiple Sigma Recognizable Artificial Promoters. Front Bioeng Biotechnol 2020; 8:92. [PMID: 32140461 PMCID: PMC7042180 DOI: 10.3389/fbioe.2020.00092] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/31/2020] [Indexed: 01/28/2023] Open
Abstract
Precise regulation of gene expression is fundamental for tailor-made gene circuit design in synthetic biology. Current strategies for this type of development are mainly based on directed evolution beginning with a native promoter template. The performances of engineered promoters are usually limited by the growth phase because only one promoter is recognized by one type of sigma factor (σ). Here, we constructed multiple-σ recognizable artificial hybrid promoters (AHPs) composed of tandems of dual and triple natural minimal promoters (NMPs). These NMPs, which use σA, σH and σW, had stable functions in different growth phases. The functions of these NMPs resulted from an effect called transcription compensation, in which AHPs sequentially use one type of σ in the corresponding growth phase. The strength of the AHPs was influenced by the combinatorial order of each NMP and the length of the spacers between the NMPs. More importantly, the output of the precise regulation was achieved by equipping AHPs with synthetic ribosome binding sites and by redesigning them for induced systems. This strategy might offer promising applications to rationally design robust synthetic promoters in diverse chassis to spur the construction of more complex gene circuits, which will further the development of synthetic biology.
Collapse
Affiliation(s)
- Laichuang Han
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiaoqing Chen
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jintao Cheng
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Li Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongmei Liu
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junling Guo
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Wenjing Cui
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
29
|
Ren J, Lee J, Na D. Recent advances in genetic engineering tools based on synthetic biology. J Microbiol 2020; 58:1-10. [PMID: 31898252 DOI: 10.1007/s12275-020-9334-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/19/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022]
Abstract
Genome-scale engineering is a crucial methodology to rationally regulate microbiological system operations, leading to expected biological behaviors or enhanced bioproduct yields. Over the past decade, innovative genome modification technologies have been developed for effectively regulating and manipulating genes at the genome level. Here, we discuss the current genome-scale engineering technologies used for microbial engineering. Recently developed strategies, such as clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9, multiplex automated genome engineering (MAGE), promoter engineering, CRISPR-based regulations, and synthetic small regulatory RNA (sRNA)-based knockdown, are considered as powerful tools for genome-scale engineering in microbiological systems. MAGE, which modifies specific nucleotides of the genome sequence, is utilized as a genome-editing tool. Contrastingly, synthetic sRNA, CRISPRi, and CRISPRa are mainly used to regulate gene expression without modifying the genome sequence. This review introduces the recent genome-scale editing and regulating technologies and their applications in metabolic engineering.
Collapse
Affiliation(s)
- Jun Ren
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jingyu Lee
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
30
|
Jin L, Nawab S, Xia M, Ma X, Huo Y. Context-dependency of synthetic minimal promoters in driving gene expression: a case study. Microb Biotechnol 2019; 12:1476-1486. [PMID: 31578818 PMCID: PMC6801132 DOI: 10.1111/1751-7915.13489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022] Open
Abstract
Synthetic promoters are considered ideal candidates in driving robust gene expression. Most of the available synthetic promoters are minimal promoters, for which the upstream sequence of the 5' end of the core region is usually excluded. Although the upstream sequence has been shown to mediate transcription of natural promoters, its impact on synthetic promoters has not been widely studied. Here, a library of chromosomal DNA fragments is randomly fused with the 5' end of the J23119 synthetic promoter, and the transcriptional performance of the promoter is evaluated through β-galactosidase assay, fluorescence intensity and chemical biosynthesis. Results show that changes in the upstream sequence can induce significant variation in the promoter strength of up to 5.8-fold. The effect is independent of the length of the insertions and the number of potential transcription factor binding sites. Several DNA fragments that are able to enhance the transcription of both the natural and the synthetic promoters are identified. This study indicates that the synthetic minimal promoters are susceptible to the surrounding sequence context. Therefore, the upstream sequence should be treated as an indispensable component in the design and application of synthetic promoters, or as an independent genetic part for the fine-tuning of gene expression.
Collapse
Affiliation(s)
- Liyuan Jin
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Said Nawab
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Mengli Xia
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Xiaoyan Ma
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
| | - Yi‐Xin Huo
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life ScienceBeijing Institute of Technology5 South Zhongguancun Street, Haidian DistrictBeijing100081China
- UCLA Institute for Technology Advancement (Suzhou)10 Yueliangwan Road, Suzhou Industrial ParkSuzhou215123China
| |
Collapse
|
31
|
Nora LC, Wehrs M, Kim J, Cheng JF, Tarver A, Simmons BA, Magnuson J, Harmon-Smith M, Silva-Rocha R, Gladden JM, Mukhopadhyay A, Skerker JM, Kirby J. A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides. Microb Cell Fact 2019; 18:117. [PMID: 31255171 PMCID: PMC6599526 DOI: 10.1186/s12934-019-1167-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/24/2019] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Rhodosporidium toruloides is a promising host for the production of bioproducts from lignocellulosic biomass. A key prerequisite for efficient pathway engineering is the availability of robust genetic tools and resources. However, there is a lack of characterized promoters to drive expression of heterologous genes for strain engineering in R. toruloides. RESULTS This data describes a set of native R. toruloides promoters, characterized over time in four different media commonly used for cultivation of this yeast. The promoter sequences were selected using transcriptional analysis and several of them were found to drive expression bidirectionally. Promoter expression strength was determined by measurement of EGFP and mRuby2 reporters by flow cytometry. A total of 20 constitutive promoters (12 monodirectional and 8 bidirectional) were found, and are expected to be of potential value for genetic engineering of R. toruloides. CONCLUSIONS A set of robust and constitutive promoters to facilitate genetic engineering of R. toruloides is presented here, ranging from a promoter previously used for this purpose (P7, glyceraldehyde 3-phosphate dehydrogenase, GAPDH) to stronger monodirectional (e.g., P15, mitochondrial adenine nucleotide translocator, ANT) and bidirectional (e.g., P9 and P9R, histones H3 and H4, respectively) promoters. We also identified promoters that may be useful for specific applications such as late-stage expression (e.g., P3, voltage-dependent anion channel protein 2, VDAC2). This set of characterized promoters significantly expands the range of engineering tools available for this yeast and can be applied in future metabolic engineering studies.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Prêto, São Paulo CEP 14049-900 Brazil
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Maren Wehrs
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Institut für Genetik, Technische Universität Braunschweig, 38106 Brunswick, Germany
| | - Joonhoon Kim
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 USA
| | - Jan-Fang Cheng
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Angela Tarver
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Blake A. Simmons
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Jon Magnuson
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Chemical and Biological Process Development Group, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99354 USA
| | - Miranda Harmon-Smith
- Department of Energy, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598 USA
| | - Rafael Silva-Rocha
- Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Prêto, São Paulo CEP 14049-900 Brazil
| | - John M. Gladden
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550 USA
| | - Aindrila Mukhopadhyay
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
| | - Jeffrey M. Skerker
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- QB3-Berkeley, University of California, Berkeley, CA 94720 USA
| | - James Kirby
- DOE Joint BioEnergy Institute, 5885 Hollis St, Emeryville, CA 94608 USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720 USA
- Department of Biomass Science and Conversion Technology, Sandia National Laboratories, 7011 East Ave, Livermore, CA 94550 USA
| |
Collapse
|
32
|
Chen M, Chen L, Zeng AP. CRISPR/Cas9-facilitated engineering with growth-coupled and sensor-guided in vivo screening of enzyme variants for a more efficient chorismate pathway in E. coli. Metab Eng Commun 2019; 9:e00094. [PMID: 31193188 PMCID: PMC6520568 DOI: 10.1016/j.mec.2019.e00094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/01/2019] [Accepted: 05/01/2019] [Indexed: 01/24/2023] Open
Abstract
Protein engineering plays an increasingly important role in developing new and optimizing existing metabolic pathways for biosynthesis. Conventional screening approach of libraries of gene and enzyme variants is often done using a host strain under conditions not relevant to the cultivation or intracellular conditions of the later production strain. This does not necessarily result in the identification of the best enzyme variant for in vivo use in the production strain. In this work, we propose a method which integrates CRISPR/Cas9-facilitated engineering of the target gene(s) with growth-coupled and sensor-guided in vivo screening (CGSS) for protein engineering and pathway optimization. The efficiency of the method is demonstrated for engineering 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) synthase AroG, a key enzyme in the chorismate pathway for the synthesis of aromatic amino acids (AAAs), to obtain variants of AroG (AroGfbr) with increased resistance to feedback inhibition of Phe. Starting from a tryptophan (Trp)-producing E. coli strain (harboring a reported Phe-resistant AroG variant AroGS180F), the removal of all the endogenous DAHP synthases makes the growth of this strain dependent on the activity of an introduced AroG variant. The different catalytic efficiencies of AroG variants lead to different intracellular concentration of Trp which is sensed by a Trp biosensor (TnaC-eGFP). Using the growth rate and the signal strength of the biosensor as criteria, we successfully identified several novel Phe-resistant AroG variants (including the best one AroGD6G−D7A) which exhibited higher specific enzyme activity than that of the reference variant AroGS180F at the presence of 40 mM Phe. The replacement of AroGS180F with the newly identified AroGD6G−D7A in the Trp-producing strain significantly improved the Trp production by 38.5% (24.03 ± 1.02 g/L at 36 h) in a simple fed-batch fermentation. A novel approach for phenotype-focused and product-targeted in vivo screening of enzyme variants. AroG variant with high resistance to feedback inhibition of phenylalanine. Tryptophan production in E. coli improved by 38.5% with the new variant AroGD6G−D7A.
Collapse
Affiliation(s)
- Minliang Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - Lin Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, 100029, Beijing, China
| |
Collapse
|
33
|
Heyman B, Lamm R, Tulke H, Regestein L, Büchs J. Shake flask methodology for assessing the influence of the maximum oxygen transfer capacity on 2,3-butanediol production. Microb Cell Fact 2019; 18:78. [PMID: 31053124 PMCID: PMC6498610 DOI: 10.1186/s12934-019-1126-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/24/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Production of 2,3-butanediol from renewable resources is a promising measure to decrease the consumption of fossil resources in the chemical industry. One of the most influential parameters on biotechnological 2,3-butanediol production is the oxygen availability during the cultivation. As 2,3-butanediol is produced under microaerobic process conditions, a well-controlled oxygen supply is the key parameter to control biomass formation and 2,3-butanediol production. As biomass is on the one hand not the final product, but on the other hand the essential biocatalyst, the optimal compromise between biomass formation and 2,3-butanediol production has to be defined. RESULTS A shake flask methodology is presented to evaluate the effects of oxygen availability on 2,3-butanediol production with Bacillus licheniformis DSM 8785 by variation of the filling volume. A defined two-stage cultivation strategy was developed to investigate the metabolic response to different defined maximum oxygen transfer capacities at equal initial growth conditions. The respiratory quotient was measured online to determine the point of glucose depletion, as 2,3-butanediol is consumed afterwards. Based on this strategy, comparable results to stirred tank reactors were achieved. The highest space-time yield (1.3 g/L/h) and a 2,3-butanediol concentration of 68 g/L combined with low acetoin concentrations and avoided glycerol formation were achieved at a maximum oxygen transfer capacity of 13 mmol/L/h. The highest overall 2,3-butanediol concentration of 78 g/L was observed at a maximum oxygen transfer capacity of 4 mmol/L/h. CONCLUSIONS The presented shake flask approach reduces the experimental effort and costs providing a fast and reliable methodology to investigate the effects of oxygen availability. This can be applied especially on product and by-product formation under microaerobic conditions. Utilization of the maximum oxygen transfer capacity as measure for the oxygen availability allows for an easy adaption to other bioreactor setups and scales.
Collapse
Affiliation(s)
- Benedikt Heyman
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Robin Lamm
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Hannah Tulke
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Lars Regestein
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.,Leibniz Institute for Natural Product Research and Infection Biology, HKI Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jochen Büchs
- RWTH Aachen University, AVT-Biochemical Engineering, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
34
|
Hernández-Chávez G, Martinez A, Gosset G. Metabolic engineering strategies for caffeic acid production in Escherichia coli. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2018.12.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
35
|
Xu N, Wei L, Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbiol Biotechnol 2019; 35:33. [DOI: 10.1007/s11274-019-2606-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/23/2019] [Indexed: 01/24/2023]
|
36
|
Erian AM, Gibisch M, Pflügl S. Engineered E. coli W enables efficient 2,3-butanediol production from glucose and sugar beet molasses using defined minimal medium as economic basis. Microb Cell Fact 2018; 17:190. [PMID: 30501633 PMCID: PMC6267845 DOI: 10.1186/s12934-018-1038-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/23/2018] [Indexed: 12/03/2022] Open
Abstract
Background Efficient microbial production of chemicals is often hindered by the cytotoxicity of the products or by the pathogenicity of the host strains. Hence 2,3-butanediol, an important drop-in chemical, is an interesting alternative target molecule for microbial synthesis since it is non-cytotoxic. Metabolic engineering of non-pathogenic and industrially relevant microorganisms, such as Escherichia coli, have already yielded in promising 2,3-butanediol titers showing the potential of microbial synthesis of 2,3-butanediol. However, current microbial 2,3-butanediol production processes often rely on yeast extract as expensive additive, rendering these processes infeasible for industrial production. Results The aim of this study was to develop an efficient 2,3-butanediol production process with E. coli operating on the premise of using cost-effective medium without complex supplements, considering second generation feedstocks. Different gene donors and promoter fine-tuning allowed for construction of a potent E. coli strain for the production of 2,3-butanediol as important drop-in chemical. Pulsed fed-batch cultivations of E. coli W using microaerobic conditions showed high diol productivity of 4.5 g l−1 h−1. Optimizing oxygen supply and elimination of acetoin and by-product formation improved the 2,3-butanediol titer to 68 g l−1, 76% of the theoretical maximum yield, however, at the expense of productivity. Sugar beet molasses was tested as a potential substrate for industrial production of chemicals. Pulsed fed-batch cultivations produced 56 g l−1 2,3-butanediol, underlining the great potential of E. coli W as production organism for high value-added chemicals. Conclusion A potent 2,3-butanediol producing E. coli strain was generated by considering promoter fine-tuning to balance cell fitness and production capacity. For the first time, 2,3-butanediol production was achieved with promising titer, rate and yield and no acetoin formation from glucose in pulsed fed-batch cultivations using chemically defined medium without complex hydrolysates. Furthermore, versatility of E. coli W as production host was demonstrated by efficiently converting sucrose from sugar beet molasses into 2,3-butanediol. Electronic supplementary material The online version of this article (10.1186/s12934-018-1038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Maria Erian
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Martin Gibisch
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Stefan Pflügl
- Institute for Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060, Vienna, Austria.
| |
Collapse
|
37
|
Okano K, Honda K, Taniguchi H, Kondo A. De novo design of biosynthetic pathways for bacterial production of bulk chemicals and biofuels. FEMS Microbiol Lett 2018; 365:5087733. [DOI: 10.1093/femsle/fny215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Kenji Okano
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Kohsuke Honda
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Hironori Taniguchi
- Synthetic Bioengineering Laboratory, Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565–0871, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657–8501, Japan
| |
Collapse
|
38
|
Novak K, Flöckner L, Erian AM, Freitag P, Herwig C, Pflügl S. Characterizing the effect of expression of an acetyl-CoA synthetase insensitive to acetylation on co-utilization of glucose and acetate in batch and continuous cultures of E. coli W. Microb Cell Fact 2018; 17:109. [PMID: 29986728 PMCID: PMC6036698 DOI: 10.1186/s12934-018-0955-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Due to its high stress tolerance and low acetate secretion, Escherichia coli W is reported to be a good production host for several metabolites and recombinant proteins. However, simultaneous co-utilization of glucose and other substrates such as acetate remains a challenge. The activity of acetyl-CoA-synthetase, one of the key enzymes involved in acetate assimilation is tightly regulated on a transcriptional and post-translational level. The aim of this study was to engineer E. coli W for overexpression of an acetylation insensitive acetyl-CoA-synthetase and to characterize this strain in batch and continuous cultures using glucose, acetate and during co-utilization of both substrates. RESULTS Escherichia coli W engineered to overexpress an acetylation-insensitive acetyl-CoA synthetase showed a 2.7-fold increase in acetate uptake in a batch process containing glucose and high concentrations of acetate compared to a control strain, indicating more efficient co-consumption of glucose and acetate. When acetate was used as the carbon source, batch duration could significantly be decreased in the overexpression strain, possibly due to alleviation of acetate toxicity. Chemostat cultivations with different dilution rates using glucose revealed only minor differences between the overexpression and control strain. Accelerostat cultivations using dilution rates between 0.20 and 0.70 h-1 indicated that E. coli W is naturally capable of efficiently co-utilizing glucose and acetate over a broad range of specific growth rates. Expression of acetyl-CoA synthetase resulted in acetate and glucose accumulation at lower dilution rates compared to the control strain. This observation can possibly be attributed to a higher ratio between acs and pta-ackA in the overexpression strain as revealed by gene expression analysis. This would result in enhanced energy dissipation caused by an imbalance in the Pta-AckA-Acs cycle. Furthermore, yjcH and actP, genes co-transcribed with acetyl-CoA synthetase showed significant down-regulation at elevated dilution rates. CONCLUSIONS Escherichia coli W expressing an acetylation-insensitive acetyl-CoA synthetase was shown to be a promising candidate for mixed feed processes using glucose and acetate. Comparison between batch and continuous cultures revealed distinct differences in glucose-acetate co-utilization behavior, requiring additional investigations such as multi-omics analysis and further engineering towards even more efficient co-utilization strains of E. coli W.
Collapse
Affiliation(s)
- Katharina Novak
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Lukas Flöckner
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Anna Maria Erian
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Philipp Freitag
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Christoph Herwig
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
- Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved Bioprocesses, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Research Area Biochemical Engineering, Institute for Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| |
Collapse
|