1
|
Xin X, Li L, Cheng J, Wang Y, Lu B, Yang Y, Li L, Wong JWC. Synchronous production of bioethanol and short-chain fatty acids associated with microbial mechanisms via the short-term cultivation of waste molasses inoculated with Aspergillus oryzae. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124888. [PMID: 40081030 DOI: 10.1016/j.jenvman.2025.124888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
This study proposes a novel approach for the concurrent production of short-chain fatty acids (SCFAs) and bioethanol, during a 96 h cultivation of waste molasses (with direct air exposure) inoculated with Aspergillus oryzae using vermiculite as a carrier. Results showed that fungal-bacterial symbiotes were formed by enriching acidogens for the bioconversion of SCFAs, such as Enterococcus, Bacillus and Pseudomonas and bioethanol producers, like Klebsiella, Candida tropicalis, Aspergillus oryzae and Barnettozyma californica. The Aspergillus oryzae was found to play various diverse roles during the short-term cultivation process, secreting hydrolase (i.e. α-amylase) for the hydrolysis of waste molasses and contributing to the formation of fungal-bacterial symbiotes. Furthermore, the mechanisms of fungal-bacterial interaction related to simultaneous generation of SCFAs and bioethanol were investigated. Consequently, the cultivation liquid obtained could feasibly be used as a low-cost carbon source for enhancing total nitrogen (TN) removal in the process of low C/N ratio wastewater treatment.
Collapse
Affiliation(s)
- Xiaodong Xin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Linjuan Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Jian Cheng
- China Northeast Municipal Engineering Design and Research Institute Co., Ltd., Changchun, 130021, PR China
| | - Yanfang Wang
- North China Municipal Engineering Design & Research Institute CO., LTD, Tianjin, 300381, PR China
| | - Boyu Lu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yue Yang
- School of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Lin Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jonathan W C Wong
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| |
Collapse
|
2
|
Hobusch M, Kırtel O, Meramo S, Sukumara S, Hededam Welner D. A life cycle assessment of early-stage enzyme manufacturing simulations from sustainable feedstocks. BIORESOURCE TECHNOLOGY 2024; 400:130653. [PMID: 38575094 DOI: 10.1016/j.biortech.2024.130653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Enzyme-catalyzed reactions have relatively small environmental footprints. However, enzyme manufacturing significantly impacts the environment through dependence on traditional feedstocks. With the objective of determining the environmental impacts of enzyme production, the sustainability potential of six cradle-to-gate enzyme manufacturing systems focusing on glucose, sea lettuce, acetate, straw, and phototrophic growth, was thoroughly evaluated. Human and ecosystem toxicity categories dominated the overall impacts. Sea lettuce, straw, or phototrophic growth reduces fermentation-based emissions by 51.0, 63.7, and 79.7%, respectively. Substituting glucose-rich media demonstrated great potential to reduce marine eutrophication, land use, and ozone depletion. Replacing organic nitrogen sources with inorganic ones could further lower these impacts. Location-specific differences in electricity result in a 14% and a 27% reduction in the carbon footprint for operation in Denmark compared to the US and China. Low-impact feedstocks can be competitive if they manage to achieve substrate utilization rates and productivity levels of conventional enzyme production processes.
Collapse
Affiliation(s)
- Mandy Hobusch
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Onur Kırtel
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Samir Meramo
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Sumesh Sukumara
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark
| | - Ditte Hededam Welner
- The Novo Nordisk Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
3
|
Chen Z, Chen T, Zhang H, Li Y, Fan J, Yao L, Zeng B, Zhang Z. Functional role of a novel zinc finger protein, AoZFA, in growth and kojic acid synthesis in Aspergillus oryzae. Appl Environ Microbiol 2023; 89:e0090923. [PMID: 37702504 PMCID: PMC10617589 DOI: 10.1128/aem.00909-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
Kojic acid (KA) is a valuable secondary metabolite that is regulated by zinc finger proteins in Aspergillus oryzae. However, only two such proteins have been characterized to function in kojic acid production of A. oryzae to date. In this study, we identified a novel zinc finger protein, AoZFA, required for kojic acid biosynthesis in A. oryzae. Our results showed that disruption of AozfA led to increased expression of kojA and kojR involved in kojic acid synthesis, resulting in enhanced kojic acid production, while overexpression of AozfA had the opposite effect. Furthermore, deletion of kojR in the AozfA disruption strain abolished kojic acid production, whereas overexpression of kojR enhanced it, indicating that AoZFA regulates kojic acid production by affecting kojR. Transcriptional activation assay revealed that AoZFA is a transcriptional activator. Interestingly, when kojR was overexpressed in the AozfA overexpression strain, the production of kojic acid failed to be rescued, suggesting that AozfA plays a distinct role from kojR in kojic acid biosynthesis. Moreover, we found that AozfA was highly induced by zinc during early growth stages, and its overexpression inhibited the growth promoted by zinc, whereas its deletion had no effect, suggesting that AoZFA is non-essential but has a role in the response of A. oryzae to zinc. Overall, these findings provide new insights into the roles of zinc finger proteins in the growth and kojic acid production of A. oryzae.IMPORTANCEKojic acid (KA) is an economically valuable secondary metabolite produced by Aspergillus oryzae due to its vast biological activities. Genetic modification of A. oryzae has emerged as an efficient strategy for enhancing kojic acid production, which is dependent on the mining of genes involved in kojic acid synthesis. In this study, we have characterized a novel zinc-finger protein, AoZFA, as a negative regulator of kojic acid production by affecting kojR. AozfA is an excellent target for improving kojic acid production without any effects on the growth of A. oryzae. Furthermore, the simultaneous modification of AozfA and kojR exerts a more significant promotional effect on kojic acid production than the modification of single genes. This study provides new insights for the regulatory mechanism of zinc finger proteins in the growth and kojic acid production of A. oryzae.
Collapse
Affiliation(s)
- Ziming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tianming Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Huanxin Zhang
- Institute of Horticulture, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Yuzhen Li
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Junxia Fan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Lihua Yao
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bin Zeng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhe Zhang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
4
|
Wang L, An N, Gao J, Xue H, Li G. The feasibility of sodium hydroxide pretreatment of rice straw for solid substrate preparation to enhance laccase production by solid state fermentation. BMC Biotechnol 2023; 23:16. [PMID: 37391752 PMCID: PMC10314400 DOI: 10.1186/s12896-023-00789-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 06/15/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Currently, broad industrial application of laccases is commonly restricted by the high-cost related production. Solid state fermentation (SSF) using agricultural waste is an attractively economic strategy for laccase production, yet its efficiency is low. Pretreatment of cellulosic substrate might be a vital breakpoint to solve the problem in solid state fermentation (SSF). In this study, sodium hydroxide pretreatment was involved to prepare solid substrates from rice straw. Fermentability of solid substrates in terms of carbon resource supply, accessibility and water retention value, and their influence on performance of SSF were analyzed. RESULTS The results showed that sodium hydroxide pretreatment provided desirable solid substrates with higher enzymatic digestibility and optimal water retention value, which further facilitated the homogeneity of mycelium growth, laccase distribution and nutrition utilization during SSF. The pretreated rice straw (1 h) with diameter less than 0.085 cm gave the maximum laccase production of 2912.34 U/g, which was 7.72 times higher than the control. CONCLUSION Hence, we proposed that enough balance between nutrition accessibility and structure support was a must for rational design and preparation of solid substrate. Additionally, sodium hydroxide pretreatment of lignocellulosic waste might be an ideal step to enhance the efficiency and lower the production cost in SSF.
Collapse
Affiliation(s)
- Lulu Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ni An
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Junting Gao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010110, China
| | - Guanhua Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China.
| |
Collapse
|
5
|
Asiri M, Singh T, Mohammad A, Al Ali A, Alqahtani A, Saeed M, Srivastava M. Bacterial cellulase production via co-fermentation of paddy straw and Litchi waste and its stability assessment in the presence of ZnMg mixed-phase hydroxide-based nanocomposite derived from Litchi chinensis seeds. Int J Biol Macromol 2023; 238:124284. [PMID: 37003389 DOI: 10.1016/j.ijbiomac.2023.124284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/18/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Co-fermentation via co-cultured bacterial microorganisms to develop enzymes in solid-state fermentation (SSF) is a promising approach. This strategy is imperative in a series of sustainable and effective approaches due to superior microbial growth and the use of a combination of inexpensive feedstocks for enzyme production wherein mutually participating enzyme-producing microbial communities are employed. Moreover, the addition of nanomaterials to this technique may aid in its prominent advantage of enhancing enzyme production. This strategy may be able to decrease the overall cost of the bioprocessing to produce enzymes by further implementing biogenic, route-derived nanomaterials as catalysts.Therefore, the present study attempts to explore endoglucanase (EG) production using a bacterial coculture system by employing two different bacterial strains, namely, Bacillus subtillius and Seretia marchansea under SSF in the presence of a ZnMg hydroxide-based nanocompositeas a nanocatalyst. The nanocatalyst based on ZnMg hydroxide has been prepared via green synthesis using Litchi waste seed, while SSF for EG production has been conducted using cofermentation of litchi seed (Ls) and paddy straw (Ps) waste. Under an optimized substrate concentration ratio of 5:6 Ps:Ls and in the presence of 2.0 mg of nanocatalyst, the cocultured bacterial system produced 1.6 IU/mL of EG enzyme, which was ~1.33 fold higher as compared to the control. Additionally, the same enzyme showed its stability for 135 min in the presence of 1.0 mg of nanocatalyst at 38 °C. The nanocatalyst has been synthesized using the green method, wherein waste litchi seed is used as a reducing agent, and the nanocatalyst could be employed to improve the production and functional stability of crude enzymes. The findings of the present study may have significant application in lignocellulosic-based biorefinaries and cellulosic waste management.
Collapse
Affiliation(s)
- Mohammed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Tripti Singh
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh 201015, India
| | - Akbar Mohammad
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk 38541, South Korea
| | - Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, Al Nakhil, Bisha, Saudi Arabia
| | - Abdulaziz Alqahtani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology, BHU, Varanasi 221005, India; LCB Fertilizer Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh 273015, India.
| |
Collapse
|
6
|
Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms 2022; 10:microorganisms10081498. [PMID: 35893556 PMCID: PMC9394342 DOI: 10.3390/microorganisms10081498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Hydrophobins are small amphipathic proteins conserved in filamentous fungi. In this review, the properties and functions of Aspergillus hydrophobins are comprehensively discussed on the basis of recent findings. Multiple Aspergillus hydrophobins have been identified and categorized in conventional class I and two non-conventional classes. Some Aspergillus hydrophobins can be purified in a water phase without organic solvents. Class I hydrophobins of Aspergilli self-assemble to form amphipathic membranes. At the air–liquid interface, RolA of Aspergillus oryzae self-assembles via four stages, and its self-assembled films consist of two layers, a rodlet membrane facing air and rod-like structures facing liquid. The self-assembly depends mainly on hydrophobin conformation and solution pH. Cys4–Cys5 and Cys7–Cys8 loops, disulfide bonds, and conserved Cys residues of RodA-like hydrophobins are necessary for self-assembly at the interface and for adsorption to solid surfaces. AfRodA helps Aspergillus fumigatus to evade recognition by the host immune system. RodA-like hydrophobins recruit cutinases to promote the hydrolysis of aliphatic polyesters. This mechanism appears to be conserved in Aspergillus and other filamentous fungi, and may be beneficial for their growth. Aspergilli produce various small secreted proteins (SSPs) including hydrophobins, hydrophobic surface–binding proteins, and effector proteins. Aspergilli may use a wide variety of SSPs to decompose solid polymers.
Collapse
|
7
|
Potential Role of Sequential Solid-State and Submerged-Liquid Fermentations in a Circular Bioeconomy. FERMENTATION 2021. [DOI: 10.3390/fermentation7020076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
An efficient processing of organic solid residues will be pivotal in the development of the circular bioeconomy. Due to their composition, such residues comprise a great biochemical conversion potential through fermentations. Generally, the carbohydrates and proteins present in the organic wastes cannot be directly metabolized by microorganisms. Thus, before fermentation, enzymes are used in a hydrolysis step to release digestible sugars and nitrogen. Although enzymes can be efficiently produced from organic solid residues in solid-state fermentations (SsF), challenges in the development and scale-up of SsF technologies, especially bioreactors, have hindered a wider application of such systems. Therefore, most of the commercial enzymes are produced in submerged-liquid fermentations (SmF) from expensive simple sugars. Instead of independently evaluating SsF and SmF, the review covers the option of combining them in a sequential process in which, enzymes are firstly produced in SsF and then used for hydrolysis, yielding a suitable medium for SmF. The article reviews experimental work that has demonstrated the feasibility of the process and underlines the benefits that such combination has. Finally, a discussion is included which highlights that, unlike typically perceived, SsF should not be considered a counterpart of SmF but, in contrast, the main advantages of each type of fermentation are accentuated in a synergistic sequential SsF-SmF.
Collapse
|
8
|
Borges JP, Quilles Junior JC, Ohe THK, Ferrarezi AL, Nunes CDCC, Boscolo M, Gomes E, Bocchini DA, da Silva R. Free and Substrate-Immobilised Lipases from Fusarium verticillioides P24 as a Biocatalyst for Hydrolysis and Transesterification Reactions. Appl Biochem Biotechnol 2020; 193:33-51. [PMID: 32808248 DOI: 10.1007/s12010-020-03411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 11/26/2022]
Abstract
Fungal enzymes are widely used in technological processes and have some interesting features to be applied in a variety of biosynthetic courses. Here, free and substrate-immobilised lipases from Fusarium verticillioides P24 were obtained by solid-state fermentation using wheat bran as substrate and fungal carrier. Based on their hydrolytic and transesterification activities, the lipases were characterised as pH-dependent in both reactions, with higher substrate conversion in an alkaline environment. Thermally, the lipases performed well from 30 to 45 °C, being more stable in mild conditions. Organic solvents significantly influenced the lipase selectivity using different vegetable oils as fatty acid source. Omega(ω)-3 production in n-hexane achieved 45% using canola oil, against ≈ 18% in cyclohexane. However, ω-6 production was preferably produced for both solvents using linseed oil with significant alterations in the yield (≈ 79% and 49% for n-hexane and cyclohexane, respectively). Moreover, the greatest enzyme selectivity for ω-6 led us to suppose a lipase preference for the Sn1 position of the triacylglycerol. Lastly, a transesterification reaction was performed, achieving 90% of ester conversion in 72 h. This study reports the characterisation and use of free and substrate-immobilised lipases from Fusarium verticillioides P24 as an economic and efficient method for the first time.
Collapse
Affiliation(s)
- Janaina Pires Borges
- Departament of Biochemistry and Chemical Technology, IQ/UNESP, Rua Prof. Francisco Degni, 55, CEP, Araraquara, SP, 14800-060, Brazil
| | - José Carlos Quilles Junior
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Thiago Hideyuki Kobe Ohe
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Ana Lucia Ferrarezi
- Department of Biology, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | | | - Mauricio Boscolo
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Eleni Gomes
- Department of Biology, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil
| | - Daniela Alonso Bocchini
- Departament of Biochemistry and Chemical Technology, IQ/UNESP, Rua Prof. Francisco Degni, 55, CEP, Araraquara, SP, 14800-060, Brazil
| | - Roberto da Silva
- Department of Chemistry and Environmental Sciences, IBILCE/UNESP, Rua Cristóvão Colombo, 2265, CEP, São José do Rio Preto, SP, 15054-000, Brazil.
| |
Collapse
|