1
|
Puente-Padilla BL, Romero-Villegas GI, Sánchez-Estrada A, Cira-Chávez LA, Estrada-Alvarado MI. Effect of Marine Microalgae Biomass ( Nannochloropsis gaditana and Thalassiosira sp.) on Germination and Vigor on Bean ( Phaseolus vulgaris L.) Seeds "Higuera". Life (Basel) 2025; 15:386. [PMID: 40141731 PMCID: PMC11943941 DOI: 10.3390/life15030386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
The production of marine microalgae provides a sustainable solution for agriculture, acting as biostimulants to enhance seed germination, vigor, and early growth. In the present work, the parameters of pH, airflow, and dilution speed were established to produce biomass of two species of marine algae (Nannochloropsis gaditana and Thalassiosira sp.); in addition, its capacity to stimulate the germination of bean seeds was evaluated. The experimental treatments included three biomass concentrations (Cb) of both microalgae species (0.5, 1, and 1.5 g·L-1) and a control (distilled water) at two temperatures (25 and 35 °C). The rate, index, average time, time at 50% germination, and vigor were evaluated. The results indicated that the highest yield of microalgae biomass was obtained with D = 0.3 day-1 for N. gaditana and 0.2 day-1 for Thalassiosira sp. Microalgae biomass showed activity as a biostimulant on germination, improving the germination rate and reducing the germination time with better vigor for the seedlings at each of the evaluated concentrations.
Collapse
Affiliation(s)
- Brisia Lizbeth Puente-Padilla
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Calle 5 de Febrero 818, Ciudad Obregón 85000, Sonora, Mexico; (B.L.P.-P.); (L.A.C.-C.)
| | | | - Alberto Sánchez-Estrada
- Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Gustavo Enrique Astiazarán Rosas 46, Hermosillo 83304, Sonora, Mexico;
| | - Luis Alberto Cira-Chávez
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Calle 5 de Febrero 818, Ciudad Obregón 85000, Sonora, Mexico; (B.L.P.-P.); (L.A.C.-C.)
| | - María I. Estrada-Alvarado
- Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, Calle 5 de Febrero 818, Ciudad Obregón 85000, Sonora, Mexico; (B.L.P.-P.); (L.A.C.-C.)
| |
Collapse
|
2
|
Paterson S, Alonso-Pintre L, Morato-López E, González de la Fuente S, Gómez-Cortés P, Hernández-Ledesma B. Microalga Nannochloropsis gaditana as a Sustainable Source of Bioactive Peptides: A Proteomic and In Silico Approach. Foods 2025; 14:252. [PMID: 39856918 PMCID: PMC11765504 DOI: 10.3390/foods14020252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The impact of the world's growing population on food systems and the role of dietary patterns in the management of non-communicable diseases underscore the need to explore sustainable and dietary protein sources. Although microalgae have stood out as alternative sources of proteins and bioactive peptides, some species such as Nannochloropsis gaditana remain unexplored. This study aimed to characterize N. gaditana's proteome and evaluate its potential as a source of bioactive peptides by using an in silico approach. A total of 1955 proteins were identified and classified into functional groups of cellular components, molecular functions, and biological processes. In silico gastrointestinal digestion of identified proteins demonstrated that 202 hydrophobic and low-molecular-size peptides with potential bioactivity were released. Among them, 27 exhibited theorical antioxidant, antihypertensive, antidiabetic, anti-inflammatory, and/or antimicrobial activities. Seven of twenty-seven peptides showed ≥20% intestinal absorption, suggesting potential systemic effects, while the rest could act at local level. Molecular docking demonstrated strong affinities with key enzymes such as MPO, ACE, and DPPIV. Resistance to the digestion, capacity to be absorbed, and multifunctionality were demonstrated for peptide FIPGL. This study highlights N. gaditana's potential as a sustainable source of novel potential bioactive peptides with promising local and systemic biological effects.
Collapse
Affiliation(s)
- Samuel Paterson
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (L.A.-P.)
| | - Laura Alonso-Pintre
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (L.A.-P.)
| | - Esperanza Morato-López
- Proteomics Core Facility, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain;
| | - Sandra González de la Fuente
- Biocomputational Core Facility, Centro de Biología Molecular Severo Ochoa (CBM), CSIC-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain;
| | - Pilar Gómez-Cortés
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (L.A.-P.)
| | - Blanca Hernández-Ledesma
- Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain; (S.P.); (L.A.-P.)
| |
Collapse
|
3
|
Wang J, Sun H, Mou H, Yang S. Protein and lysine improvement harnessed by a signal chain of red light-emitting diode light in Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2024; 414:131620. [PMID: 39393645 DOI: 10.1016/j.biortech.2024.131620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Microalgae are emerging as a novel single-cell protein source that can substitute traditional plant protein feeds. In this investigation, lysine and protein accumulation in Chlorella pyrenoidosa were significantly enhanced under red light-emitting diode light, addressing challenge of limiting amino acid in plant proteins. The study employed targeted metabolomics, HPLC, and qRT-PCR to validate the light-induced pathway triggering lysine biosynthesis. Specifically, the pathway involves Ca2+-CaM as an intermediary in signal transduction, which directly inhibits PEPC activity. This inhibition directs a significant carbon flux towards central carbon metabolism, resulting in increased pyruvate levels-a critical precursor for lysine biosynthesis via the diaminopimelate pathway. Ultimately, the content of protein and lysine under red light increased by 36.02 % and 99.56 %, respectively, compared to those under white light. These findings provide a novel orientation for the precise regulation of lysine accumulation in microalgae, and moreover lay a solid theoretical foundation for producing microalgal proteins.
Collapse
Affiliation(s)
- Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Han Sun
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Shufang Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Zhao W, Zhu J, Yang S, Liu J, Sun Z, Sun H. Microalgal metabolic engineering facilitates precision nutrition and dietary regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175460. [PMID: 39137841 DOI: 10.1016/j.scitotenv.2024.175460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/10/2024] [Indexed: 08/15/2024]
Abstract
Microalgae have gained considerable attention as promising candidates for precision nutrition and dietary regulation due to their versatile metabolic capabilities. This review innovatively applies system metabolic engineering to utilize microalgae for precision nutrition and sustainable diets, encompassing the construction of microalgal cell factories, cell cultivation and practical application of microalgae. Manipulating the metabolic pathways and key metabolites of microalgae through multi-omics analysis and employing advanced metabolic engineering strategies, including ZFNs, TALENs, and the CRISPR/Cas system, enhances the production of valuable bioactive compounds, such as omega-3 fatty acids, antioxidants, and essential amino acids. This work begins by providing an overview of the metabolic diversity of microalgae and their ability to thrive in diverse environmental conditions. It then delves into the principles and strategies of metabolic engineering, emphasizing the genetic modifications employed to optimize microalgal strains for enhanced nutritional content. Enhancing PSY, BKT, and CHYB benefits carotenoid synthesis, whereas boosting ACCase, fatty acid desaturases, and elongases promotes polyunsaturated fatty acid production. Here, advancements in synthetic biology, evolutionary biology and machine learning are discussed, offering insights into the precision and efficiency of metabolic pathway manipulation. Also, this review highlights the potential impact of microalgal precision nutrition on human health and aquaculture. The optimized microalgal strains could serve as sustainable and cost-effective sources of nutrition for both human consumption and aquaculture feed, addressing the growing demand for functional foods and environmentally friendly feed alternatives. The tailored microalgal strains are anticipated to play a crucial role in meeting the nutritional needs of diverse populations and contributing to sustainable food production systems.
Collapse
Affiliation(s)
- Weiyang Zhao
- School of Biological Sciences, University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jiale Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China
| | - Shufang Yang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Zheng Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education; International Research Center for Marine Biosciences, Ministry of Science and Technology; Shanghai Ocean University, Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China.
| | - Han Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Hamzelou S, Belobrajdic D, Broadbent JA, Juhász A, Lee Chang K, Jameson I, Ralph P, Colgrave ML. Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. Crit Rev Biotechnol 2024; 44:1280-1295. [PMID: 38035669 DOI: 10.1080/07388551.2023.2283376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.
Collapse
Affiliation(s)
| | | | | | - Angéla Juhász
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| | | | - Ian Jameson
- CSIRO Ocean and Atmosphere, Hobart, Australia
| | - Peter Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Michelle L Colgrave
- CSIRO Agriculture and Food, St Lucia, Australia
- School of Science, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Edith Cowan University, Joondalup, Australia
| |
Collapse
|
6
|
Aldaby ESE, Danial AW, Abdel-Basset R. Photosynthesizing carbonate/nitrate into Chlorococcum humicola biomass for biodiesel and Bacillus coagulans-based biohydrogen production. Microb Cell Fact 2024; 23:247. [PMID: 39261831 PMCID: PMC11391666 DOI: 10.1186/s12934-024-02511-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Biofuel can be generated by different organisms using various substrates. The green alga Chlorococcum humicola OQ934050 exhibited the capability to photosynthesize carbonate carbon, maybe via the activity of carbonic anhydrase enzymes. The optimum treatment is C:N ratio of 1:1 (0.2 mmoles sodium carbonate and 0.2 mmoles sodium nitrate) as it induced the highest dry mass (more than 0.5 mg.mL-1). At this combination, biomass were about 0.2 mg/mL-1 carbohydrates, 0.085 mg/mL-1 proteins, and 0.16 mg/mL-1 oil of this dry weight. The C/N ratios of 1:1 or 10:1 induced up to 30% of the Chlorococcum humicola dry mass as oils. Growth and dry matter content were hindered at 50:1 C/N and oil content was reduced as a result. The fatty acid profile was strongly altered by the applied C.N ratios. The defatted leftovers of the grown alga, after oil extraction, were fermented by a newly isolated heterotrophic bacterium, identified as Bacillus coagulans OQ053202, to evolve hydrogen content as gas. The highest cumulative hydrogen production and reducing sugar (70 ml H2/g biomass and 0.128 mg/ml; respectively) were found at the C/N ratio of 10:1 with the highest hydrogen evolution efficiency (HEE) of 22.8 ml H2/ mg reducing sugar. The optimum treatment applied to the Chlorococcum humicola is C:N ratio of 1:1 for the highest dry mass, up to 30% dry mass as oils. Some fatty acids were induced while others disappeared, depending on the C/N ratios. The highest cumulative hydrogen production and reducing sugar were found at the C/N ratio of 10:1.
Collapse
Affiliation(s)
- Eman S E Aldaby
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Amal W Danial
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - R Abdel-Basset
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
Moscariello C, Matassa S, Pirozzi F, Esposito G, Papirio S. Valorisation of industrial hemp ( Cannabis sativa L.) residues and cheese whey into volatile fatty acids for single cell protein production. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100439. [PMID: 39027465 PMCID: PMC11254950 DOI: 10.1016/j.ese.2024.100439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/20/2024]
Abstract
The production of single cell protein (SCP) using lignocellulosic materials stands out as a promising route in the circular bioeconomy transition. However, multiple steps are necessary for lignocellulosics-to-SCP processes, involving chemical pretreatments and specific aerobic cultures. Whereas there are no studies that investigated the SCP production from lignocellulosics by using only biological processes and microbial biomass able to work both anaerobically and aerobically. In this view, the valorisation of industrial hemp (Cannabis sativa L.) biomass residues (HBRs), specifically hurds and a mix of leaves and inflorescences, combined with cheese whey (CW) was investigated through a semi-continuous acidogenic co-fermentation process (co-AF). The aim of this study was to maximise HBRs conversion into VFAs to be further used as carbon-rich substrates for SCP production. Different process conditions were tested by either removing CW or increasing the amount of HBRs in terms of VS (i.e., two and four times) to evaluate the performance of the co-AF process. Increasing HBRs resulted in a proportional increase in VFA production up to 3115 mg HAc L-1, with experimental production nearly 40% higher than theoretical predictions. The synergy between HBRs and CW was demonstrated, proving the latter as essential to improve the biodegradability of the former. The produced VFAs were subsequently tested as substrates for SCP synthesis in batch aerobic tests. A biomass concentration of 2.43 g TSS L-1 was achieved with a C/N ratio of 5.0 and a pH of 9.0 after two days of aerobic fermentation, reaching a protein content of 42% (g protein per g TSS). These results demonstrate the overall feasibility of the VFA-mediated HBR-to-SCP valorisation process.
Collapse
Affiliation(s)
- Carlo Moscariello
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy
| | - Silvio Matassa
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy
| | - Francesco Pirozzi
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy
| | - Stefano Papirio
- Department of Civil, Architectural and Environmental Engineering, University of Napoli Federico II, via Claudio 21, 80125, Napoli, Italy
| |
Collapse
|
8
|
Marques F, Pereira F, Machado L, Martins JT, Pereira RN, Costa MM, Genisheva Z, Pereira H, Vicente AA, Teixeira JA, Geada P. Comparison of Different Pretreatment Processes Envisaging the Potential Use of Food Waste as Microalgae Substrate. Foods 2024; 13:1018. [PMID: 38611325 PMCID: PMC11011475 DOI: 10.3390/foods13071018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A significant fraction of the food produced worldwide is currently lost or wasted throughout the supply chain, squandering natural and economic resources. Food waste valorization will be an important necessity in the coming years. This work investigates the ability of food waste to serve as a viable nutritional substrate for the heterotrophic growth of Chlorella vulgaris. The impact of different pretreatments on the elemental composition and microbial contamination of seven retail food waste mixtures was evaluated. Among the pretreatment methods applied to the food waste formulations, autoclaving was able to eliminate all microbial contamination and increase the availability of reducing sugars by 30%. Ohmic heating was also able to eliminate most of the contaminations in the food wastes in shorter time periods than autoclave. However, it has reduced the availability of reducing sugars, making it less preferable for microalgae heterotrophic cultivation. The direct utilization of food waste containing essential nutrients from fruits, vegetables, dairy and bakery products, and meat on the heterotrophic growth of microalgae allowed a biomass concentration of 2.2 × 108 cells·mL-1, being the culture able to consume more than 42% of the reducing sugars present in the substrate, thus demonstrating the economic and environmental potential of these wastes.
Collapse
Affiliation(s)
- Fabiana Marques
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Francisco Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Luís Machado
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
| | - Joana T. Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ricardo N. Pereira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Monya M. Costa
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | | | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.C.); (H.P.)
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Pedro Geada
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (F.M.); (F.P.); (L.M.); (J.T.M.); (R.N.P.); (J.A.T.); (P.G.)
- LABBELS—Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Shitanaka T, Fujioka H, Khan M, Kaur M, Du ZY, Khanal SK. Recent advances in microalgal production, harvesting, prediction, optimization, and control strategies. BIORESOURCE TECHNOLOGY 2024; 391:129924. [PMID: 37925082 DOI: 10.1016/j.biortech.2023.129924] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023]
Abstract
The market value of microalgae has grown exponentially over the past two decades, due to their use in the pharmaceutical, nutraceutical, cosmetic, and aquatic/animal feed industries. In particular, high-value products such as omega-3 fatty acids, proteins, and pigments derived from microalgae have high demand. However, the supply of these high-value microalgal bioproducts is hampered by several critical factors, including low biomass and bioproduct yields, inefficiencies in monitoring microalgal growth, and costly harvesting methods. To overcome these constraints, strategies such as synthetic biology, bubble generation, photobioreactor designs, electro-/magnetic-/bioflocculation, and artificial intelligence integration in microalgal production are being explored. These strategies have significant promise in improving the production of microalgae, which will further boost market availability of algal-derived bioproducts. This review focuses on the recent advances in these technologies. Furthermore, this review aims to provide a critical analysis of the challenges in existing algae bioprocessing methods, and highlights future research directions.
Collapse
Affiliation(s)
- Ty Shitanaka
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Haylee Fujioka
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Muzammil Khan
- Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Manpreet Kaur
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States
| | - Zhi-Yan Du
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States.
| | - Samir Kumar Khanal
- Department of Molecular Biosciences & Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI 96822, United States.
| |
Collapse
|
10
|
Sägesser C, Kallfelz JM, Boulos S, Hammer L, Böcker L, Portmann R, Nyström L, Mathys A. A novel approach for the protein determination in food-relevant microalgae. BIORESOURCE TECHNOLOGY 2023; 390:129849. [PMID: 37813318 DOI: 10.1016/j.biortech.2023.129849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Microalgae are gaining interest as food ingredient. Assessments of functional and nutritional properties are necessary to forward their implementation. In this study, protein content and composition of eight commercially available microalgae biomasses were determined and compared to conventional food proteins. A novel procedure for the determination of the true protein content was proposed: Multiplication of proteinic nitrogen with a sample-specific nitrogen-to-protein conversion factor kA. The proteinic nitrogen was derived from the difference of total nitrogen minus non-protein nitrogen. The average kA for microalgae was 5.3 and considerable variation between different microalgae biomasses were detected. In addition, the content of non-protein nitrogen varied between 3.4% and 15.4%. The amino acid profiles of Chlorella samples were nutritionally superior to the tested plant proteins but indicated lower protein interaction tendency, potentially limiting their structuring functionality. In contrast, Auxenochlorella contained lower amounts of indispensable amino acids while showing comparable interaction potential to plant proteins.
Collapse
Affiliation(s)
- Corina Sägesser
- Sustainable Food Processing Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Johanna M Kallfelz
- Sustainable Food Processing Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Samy Boulos
- Laboratory of Food Biochemistry, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Laila Hammer
- Development and Analytics Research Division, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland; Department of Health, Swiss Distance University of Health (FFSH), Zollstrasse 11, 8005 Zürich, Switzerland; Division of Human Nutrition and Health, Wageningen University and Research, Stippeneng 4, 6708 Wageningen, Netherlands
| | - Lukas Böcker
- Sustainable Food Processing Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Reto Portmann
- Development and Analytics Research Division, Agroscope, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Laura Nyström
- Laboratory of Food Biochemistry, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Alexander Mathys
- Sustainable Food Processing Laboratory, Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| |
Collapse
|
11
|
Li Z, Zhou T, Zhang Q, Liu T, Lai J, Wang C, Cao L, Liu Y, Ruan R, Xue M, Wang Y, Cui X, Liu C, Ren Y. Influence of cold atmospheric pressure plasma treatment of Spirulina platensis slurry over biomass characteristics. BIORESOURCE TECHNOLOGY 2023; 386:129480. [PMID: 37437813 DOI: 10.1016/j.biortech.2023.129480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Cold atmospheric pressure plasma (CAPP) technique is an innovative non-thermal approach for food preservation and decontamination. This study aimed to evaluate the effect of CAPP power density on microorganism inactivation and quality of Spirulina platensis (S. platensis) slurry. 91.31 ± 1.61% of microorganism were inactivated within 2.02 ± 0.11 min by 26.67 W/g CAPP treatment under 50 ℃. Total phenolic, Chlorophyll-a (Chl-a), and carotenoids contents were increased by 20.51%, 63.55%, and 70.04% after 20.00 W/g CAPP treatment. Phycobiliproteins (PBPs), protein, intracellular polysaccharide, and moisture content of S. platensis was decreased, while vividness, lightness, color of yellow and green, antioxidant activity, Essential Amino Acid Index were enhanced after CAPP treatment. The nutrient release and filaments breakage of CAPP-treated S. platensis improved its bio-accessibility. The findings provided a deep understanding and insight into the influence of CAPP treatment on S. platensis, which were meaningful for optimizing its sterilization and drying processing condition.
Collapse
Affiliation(s)
- Zihan Li
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Zhou
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Qi Zhang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Tongying Liu
- Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, China
| | - Jiangling Lai
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Canbo Wang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Leipeng Cao
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul MN 55108, USA
| | - Mingxiong Xue
- Beihai Spd Science Technology Co., LTD, Beihai, Guangxi 530021, China
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resource, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Cuixia Liu
- School of Energy & Environment, Zhongyuan University of Technology, Zhengzhou, Henan 450007, China
| | - Yan Ren
- Zhejiang Suntown Environment Protection Co., LTD, Quzhou, Zhejiang 324000, China
| |
Collapse
|
12
|
Xie W, Li X, Xu H, Chen F, Cheng KW, Liu H, Liu B. Optimization of Heterotrophic Culture Conditions for the Microalgae Euglena gracilis to Produce Proteins. Mar Drugs 2023; 21:519. [PMID: 37888454 PMCID: PMC10608195 DOI: 10.3390/md21100519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content of heterotrophic culture cells. In this study, the effects of nitrogen sources, temperature, initial pH, and C/N ratios on the protein production of E. gracilis were evaluated under heterotrophic cultivation. These results indicated that ammonium sulfate was the optimal nitrogen source for protein production. The protein content of E. gracilis cultured by ammonium sulfate increased by 113% and 44.7% compared with that cultured by yeast extract and monosodium glutamate, respectively. The manipulation of the low C/N ratio further improved E. gracilis protein content to 66.10% (w/w), which was 1.6-fold of that in the C/N = 25 group. Additionally, amino acid analysis revealed that the nitrogen-to-protein conversion factor (NTP) could be affected by nitrogen sources. A superior essential amino acid index (EAAI) of 1.62 and a balanced amino acid profile further confirmed the high nutritional value of E. gracilis protein fed by ammonium sulfate. This study highlighted the vast potency of heterotrophic cultured E. gracilis as an alternative dietary protein source.
Collapse
Affiliation(s)
- Weiying Xie
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China (H.X.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Huo Xu
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China (H.X.)
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
13
|
Sandgruber F, Gielsdorf A, Schenz B, Müller SM, Schwerdtle T, Lorkowski S, Griehl C, Dawczynski C. Variability in Macro- and Micronutrients of 15 Rarely Researched Microalgae. Mar Drugs 2023; 21:355. [PMID: 37367680 DOI: 10.3390/md21060355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Microalgae have enormous potential for human nutrition, yet the European Commission has authorized the consumption of only eleven species. Strains of fifteen rarely researched microalgae from two kingdoms were screened regarding their nutritional profile and value for human health in two cultivation phases. Contents of protein, fiber, lipids, fatty acids, minerals, trace elements and heavy metals were determined. In the growth phase, microalgae accumulated more arginine, histidine, ornithine, pure and crude protein, Mg, Mn, Fe and Zn and less Ni, Mo and I2 compared to the stationary phase. Higher contents of total fat, C14:0, C14:1n5, C16:1n7, C20:4n6, C20:5n3 and also As were observed in microalgae from the chromista kingdom in comparison to microalgae from the plantae kingdom (p < 0.05). Conversely, the latter had higher contents of C20:0, C20:1n9 and C18:3n3 as well as Ca and Pb (p < 0.05). More precisely, Chrysotila carterae appeared to have great potential for human nutrition because of its high nutrient contents such as fibers, carotenoids, C20:6n3, Mg, Ca, Mn, Fe, Se, Zn, Ni, Mo and I2. In summary, microalgae may contribute to a large variety of nutrients, yet the contents differ between kingdoms, cultivation phases and also species.
Collapse
Affiliation(s)
- Fabian Sandgruber
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany
- Competence Cluster for Nutritional and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany
| | - Annekathrin Gielsdorf
- Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Benjamin Schenz
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany
- Competence Cluster for Nutritional and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany
| | - Sandra Marie Müller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, 14469 Potsdam, Germany
- German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutritional and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany
- Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Carola Griehl
- Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, 06406 Bernburg, Germany
| | - Christine Dawczynski
- Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University, 07743 Jena, Germany
- Competence Cluster for Nutritional and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Dornburger Str. 25, 07743 Jena, Germany
| |
Collapse
|
14
|
Zhang R, Song X, Liu W, Xiang Q. Mixed fermentation of Chlorella pyrenoidosa and Bacillus velezensis SW-37 by optimization. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|